sibrtye sivrceSi
ganvixiloT pirveli rigis
gantoleba sami ucnobiT
A sadac
(1)
Aanu
AA,B,C
koeficientebidan erTi mainc aranulovania.
Teorema.
Nnebismieri sibrtye sivrceSi marTkuTxa
koordinatTa sistemaSi moicema (1) gantolebiT da piriqiT, nebismieri aseTi
gantoleba marTkuTxa koordinatTa sistemaSi aRwers sibrtyes.
Ddamtkiceba. marTlac vTqvaT π
sibrtye mocemulia Tavisi wertiliT da n aranulovani
normaluri veqtoriT. MmaSin sivrce sam nawilad gaiyofa: erTi nawili sibrtyis
wertilebia, danarCeni ori nawili ki sibrtyis sxvadasxva mxares mdebare
wertilebisgan Sedgeba. is Tu am sami nawilidan sad mdebareobs sivrcis
nebismieri M wertili ganisazRvreba
skalaruli namravlis n
niSniT.
kerZod:
Tu M wertili π sibrtyeze
mdebareobs maSin n
=0
radgan kuTxe n
da
veqtorebs Soris
marTia. Tu es M wertili π
sibrtyeze ar mdebareobs maSin es kuTxe
maxvilia da n
>0,
an blagvia da n
<0.
Aam skalaruli namravlis niSani sibrtyis
erT mxares mdebare wertilebiTvis erTnairia.
avRniSnoT koordinatebi: ,
,
MmaSin
=
da Tu M
wertili π sibrtyeze mdebareobs gvaqvs:
,
Aanu frCxilebis gaxsniT gvaqvs:
, sadac
.
aq A,B,C koeficientebidan erTi mainc aranulovania, radgan veqtori
aranulovania. amiT damtkicda Teoremis pirveli nawili, e.i. rom sibrtye aris (1)
gantolebis geometriuli saxe.
Teoremis meore nawilis dasamtkiceblad
avirCioT ricxvebi ,
,
, romlebic akmayofileben (1) gantolebas. (aseTi ricxvebi
arsebobs, mag. Tu
SegviZlia aviRoT
,
=
). am ricxvebs Seesabameba wertili
, romelic ekuTvnis (1) gantolebis geometriul saxes. Gvaqvs
(2)
gamovakloT (1)-s (2), miviRebT
(3)
(3) toloba aris orTogonulobis
kriteriumi veqtorebisTvis (A,B,C) da
, sadac wertili M
es kriteriumi sruldeba im sibrtyis wertilebisTvis
romelic gadis
wertilze da
(A,B,C)
veqtoris marTobulia (da ar sruldeba sivrcis sxva wertilebisTvis.) e.i. (1) aris aRniSnuli sibrtyis gantoleba. ▄
GgansazRvreba. A(1) gantolebas ewodeba sibrtyis zogadi
gantoleba. Kkoeficientebs A,B,C
aqvs
geometriuli
azri: veqtori n=(A,B,C) sibrtyis
marTobulia,
amitom mas ewodeba sibrtyis normaluri veqtori.
sibrtyis
specialuri saxis gantolebebi.
Eesenia:
1. sibrtyis veqtoruli da parametruli gantolebebi;
2. sam mocemul wertilze gamavali sibrtyis gantoleba;
3. sibtyis gantoleba monakveTebSi;
4. sibrtyis normaluri gantoleba;
1. vTqvaT da
da
wertilebis radius veqtorebia. MmaSin
=
da piroba rom
sibrtye gadis
wertilze da
veqtoris marTobulia SegviZlia CavweroT
skalaruli namravlis gamoyenebiT (anu
da
veqtorebis
skalaruli namravli nulis tolia)
0, (4)
n
0
(4) gantolebas ewodeba sibrtyis veqtoruli gantoleba.
Ffiqsirebul sibrtyeze (sivrceSi)
avirCioT ori aranulovani da arakolinearuli veqtori, anu bazisi (gavixsenoT bazisi).
Aanu arsebobs ricxvebi ,
rom
=
,
Aanu . (5)
(5) gantolebas ewodeba sibrtyis parametruli gantoleba,
parametrebiT ,
sam mocemul wertilze ,
,
,
gamavali sibrtyis gantolebaa
= 0 .
(6)
Ddamtkiceba. Uunda vaCvenoT rom am sam mocemul
wertilze gamaval sibrtyeze mdebare M=(x,y,z)
wertilebis simravle moicema (6)
gantolebiT.
(6) niSnavs rom sami veqtoris Sereuli
namravli nulia:
kerZod am sami veqtoris koordinatebia
determinantis striqonebi, anu:
;
da
veqtorebia Sereuli namravli nulia,
es ki aris am sami veqtoris
komplanarobis (anu erT sibrtyeze mdebareobis) kriteriumi. anu es aris
kriteriumi M, ,
,
,
wertilebis erT sibrtyeze yofnis. r.d.g.
SevniSnoT rom Tu (6)-s gavSliT pirveli
striqonis mixedviT gveqneba
_
(
) +
(
)=0
(7).
Dda frCxilebis gaxsnis mere miviRebT sibrtyis zogad
gantolebas.
(7)-Si meore rigis dererminantebi aris da
veqtorebis veqtoruli namravlis koordinatebi. Ees veqtoruli namravli orive veqtoris da
amitom maTze gamavali sibrtyis marTobulia; e.i. sibrtyis normaluri veqtoria da
misi gamoCena sibrtyis zogad gantolebaSi didi siurprizi araa.
sibtyis
gantoleba monakveTebSi
vTqvaT sibrtye sakoordinto RerZebze CamoWris monakveTebs a,b,c,
maSin
misi gantolebaa
+
+
= 1 (8).
Ddamtkiceba. Ees sibrtye gadis
wertilebze
gamoviyenoT (6):
= 0,
Aanu
bc(x-a)+ acy+abz=0;
gavyoT abc da gavamartivoT, miviRebT (8).