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ON ONE NEUMANN TYPE PROBLEM FOR SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS
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Abstract. Optimal in a certain sense conditions guaranteeing the existence of a unique solution of
the differential equation

u′′ = p(t)u + q(t),

satisfying the Neumann type boundary conditions

u′(a) = `1u(a) + c1, u′(b) = `2u(b) + c2,

are established.

On a finite interval [a, b], we consider the differential equation

u′′ = p(t)u+ q(t) (1)

with the boundary conditions

u′(a) = `1u(a) + c1, u′(b) = `2u(b) + c2, (2)

where p, q ∈ [a, b]→ R are Lebesgue integrable functions, ci ∈ R (i = 1, 2),

`1 ≥ 0, `2 ≤ 0.

For `i = 0 (i = 1, 2), the boundary conditions (2) are the Neumann ones. In this case, problem
(1), (2) is studied in detail (see, e.g., [1, 3–5] and the references therein). However, this problem in a
general case remains still insufficiently studied. The present paper is devoted to fill up this gap.

Assume

p+(t) ≡
(
|p(t)|+ p(t)

)/
2, p−(t) ≡

(
|p(t)| − p(t)

)/
2,

P+ =

b∫
a

p+(t) dt, P− =

b∫
a

p−(t) dt.

Theorem 1. Let `1 ≥ 0, `2 ≤ 0,

`1 − `2 + mes
{
t ∈ [a, b] : p(t) 6= 0

}
> 0, (3)

`1 − `2 + P+ ≤ P−, (4)

and there exist a number λ ≥ 1 such that

b∫
a

[p(t)]λ− dt ≤
4

b− a

( π

b− a

)2λ−2
. (5)

Then problem (1), (2) has one and only one solution.

To prove this theorem, we need the following
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Lemma 1. Let `1 ≥ 0, `2 ≤ 0, conditions (3), (4) be fulfilled and the homogeneous problem

u′′ = p(t)u, (10)

u′(a) = `1u(a), u′(b) = `2u(b) (20)

have a nontrivial solution u. Then there exist points t0 ∈ ]a, b[ , t1 ∈ [a, t0[ , and t2 ∈ ]t0, b] such that

u(t0) = 0, u′(t1) = 0, u′(t2) = 0. (6)

Proof. In view of (20), it is obvious that

u(a) 6= 0, u(b) 6= 0. (7)

First, let us show that the solution u in the interval ]a, b[ has at least one zero. Assume the contrary,
i.e., u(t) 6= 0 for a < t < b. Then by virtue of inequality (7), we have

u(t) 6= 0 for a ≤ t ≤ b.

Consequently,

u′′(t)

u(t)
+ p(t) = 0 for almost all t ∈ [a, b]. (8)

Integrating this identity from a to b, and taking into account equality (20), we find

b∫
a

u′
2
(t)

u2(t)
dt = `1 − `2 + P+ − P−,

whence, owing to conditions (2)–(4) and (8), it follows that u′(t) ≡ 0,

p(t) = 0 for almost all t ∈ ]a, b], `1 − `2 > 0,

and either u(a) = 0, or u(b) = 0. But this contradicts condition (7). The obtained contradiction
proves that for some t0 ∈ ]a, b[ the equality

u(t0) = 0 (9)

is fulfilled.
Without loss of generality, we can assume that

u′(t0) > 0. (10)

If `1 = 0, then

u′(t1) = 0, (11)

where t1 = a. Let us show that if `1 > 0, then this equality is fulfilled for some t1 ∈ ]a, t0[ . Assume
the contrary, i.e.,

u′(t) > 0 for a < t ≤ t0.

Then, in view of (9), we have

u(t) < 0 for a ≤ t < t0.

But this is impossible since

u(a) = u′(a)/`1 ≥ 0.

Thus we have proved that for some t1 ∈ [a, t0[ equality (11) is fulfilled.
Analogously we can show that for some t2 ∈ ]t0, b], the equality

u′(t2) = 0

is fulfilled. �
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Lemma 2 (T. Kiguradze [2]). Let for some a0 ∈ [a, b[ and b0 ∈ ]a0, b] the differential equation (10)
have a nontrivial solution u satisfying either the boundary conditions

u′(a0) = 0, u(b0) = 0,

or the boundary conditions

u(a0) = 0, u′(b0) = 0.

Then

(b0 − a0)2λ−1
b0∫
a0

[p(t)]λ− dt >
(π

2

)2λ−2
for λ ≥ 1.

This lemma is a corollary of Theorem 1.3 from [2].

Proof of Theorem 1. Assume that the theorem is not true. Then, owing to the Fredholmicity of
problem (1), (2), the homogeneous problem (10), (20) has a nontrivial solution u.

According to Lemma 1, there exist points t0 ∈ ]a, b[ , t1 ∈ [a, t0[ and t2 ∈ ]t0, b] such that the solution
u satisfies equalities (6). Thus by Lemma 2, we have the inequalities

(t0 − t1)2λ−1
t0∫
t1

[p(t)]λ− dt >
(π

2

)2λ−2
, (t2 − t0)2λ−1

t2∫
t0

[p(t)]λ− dt >
(π

2

)2λ−2
.

Consequently,

[
(t0 − t1)(t2 − t0)

]2λ−1( t0∫
t1

[p(t)]λ− dt

)( t2∫
t0

[p(t)]λ− dt

)
>
(π

2

)4λ−4
.

On the other hand,

(t0 − t1)(t2 − t0) ≤ (t2 − t1)2

4
≤ (b− a)2

4
,( t0∫

t1

[p(t)]λ− dt

)( t2∫
t0

[p(t)]λ− dt

)
≤
( t2∫
t1

[p(t)]λ− dt

)2/
4 ≤

( b∫
a

[p(t)]λ− dt

)2/
4.

Therefore,

1

4

(b− a
2

)4λ−2( b∫
a

[p(s)]λ− ds

)2

>
(π

2

)4λ−4
.

However, this inequality contradicts inequality (5). The obtained contrdiction proves the theorem. �

Remark 1. If `1 ≥ 0 and `2 ≤ 0, then for problem (1), (2) to be uniquely solvable, it is necessary
that inequality (3) is fulfilled. Indeed, if the above-mentioned inequality is violated, then p(t) = 0 for
almost all t ∈ ]a, b[ , `1 = `2 = 0 and, consequently, the homogeneous problem (10), (20) has an infinite
set of solutions.

Remark 2. Examples 1 and 2 below show that conditions (4) and (5) in Theorem 1 are unimprovable
and they cannot be replaced by the conditions

`1 − `2 + P+ < P− + ε, (12)

b∫
a

[p(t)]λ− dt <
4

b− a

(π + ε

b− a

)2λ−2
(13)

no matter how small ε > 0 is.
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Example 1. Let ε be an arbitrary positive constant,

p(t) ≡ −
( 2x

b− a

)2
, `1 =

2x

b− a
tg(x), `2 = − 2x

b− a
tg(x), (14)

and x ∈ ]0, 1[ be so small that

4x

b− a
tg(x) <

4x2

b− a
+ ε.

Then `1 > 0, `2 < 0,

`1 − `2 + P+ =
4x

b− a
tg(x) < P− + ε,

b∫
a

[p(t)]λ− dt = (b− a)
( 2x

b− a

)2λ
< (b− a)

( 2

b− a

)2λ
<

4

b− a

( π

b− a

)2λ−2
.

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (4), instead of which
inequality (12) holds. Nevertheless, in this case the homogeneous problem (10), (20) has the nontrivial
solution

u(t) ≡ cos
(2x(t− a)

b− a
− x
)
.

Example 2. Let ε ∈ ]0, π4 [ , x ∈ ]0, ε[ ,

p(t) ≡ −
(π + x

b− a

)2
, `1 =

π + x

b− a
tg(x), `2 = 0,

and the number λ ∈ [1,+∞[ be such that

π + x

b− a
<
( 2

b− a

) 1
λ
(π + ε

b− a

)1− 1
λ

.

Then

`1 − `2 + P+ =
π + x

b− a
tg(x) <

π + x

b− a
<

(π + x)2

b− a
= P−,

b∫
a

[p(t)]λ− dt = (b− a)
(π + x

b− a

)2λ
<

4

b− a

(π + ε

b− a

)2λ−2
.

Consequently, all the conditions of Theorem 1 are fulfilled, except inequality (5), instead of which
inequality (13) holds. On the other hand, the homogeneous problem (10), (20) has the nontrivial
solution

u(t) ≡ cos
( (π + x)(t− a)

b− a
− x
)
.

Theorem 2. If `1 ≥ 0, `2 ≤ 0, and

P− <
`1 − `2 + P+

1 + (b− a)(`1 − `2 + P+)
, (15)

then problem (1), (2) has one and only one solution.

Proof. First note that inequality (15) yields the following inequalities

δ = `1 − `2 + P+ − P− > 0, (16)

r = 1− (b− a)(P− + δ−1P2
−) > 0. (17)

Assume that the theorem is not true. Then the homogeneous problem (10), (20) has a nontrivial
solution u. Put

x = min
{
|u(t)| : a ≤ t ≤ b

}
, y =

( b∫
a

u′
2
(t) dt

) 1
2

.
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Then
x2 ≤ u2(t) ≤ x2 + 2(b− a)

1
2 y + (b− a)y2 for a ≤ t ≤ b. (18)

On the other hand, in view of inequality (16), it is obvious that

y > 0. (19)

Integrating both sides of the identity

u′′(t)u(t) = p(t)u2(t) for almost all t ∈ [a, b]

from a to b and taking into account the boundary conditions (20), we obtain

`1u
2(a)− `2u2(b) +

b∫
a

[p(t)]+u
2(t) dt+

b∫
a

u′
2
(t) dt =

b∫
a

[p(t)]−u
2(t) dt.

Thus, by inequality (18), it follows that

(`1 − `2 + P+)x2 + y2 ≤ P−
(
x2 + 2(b− a)

1
2xy + (b− a)y2

)
,

that is, (
δ

1
2x− (b− a)

1
2 δ−

1
2P−y

)2
+ ry2 ≤ 0.

However, this inequality contradicts inequalities (17) and (19). The obtained contradiction proves the
theorem. �

Remark 3. Condition (15) is unimprovable and it cannot be replaced by the condition

P− <
`1 − `2 + P+

1 + (b− a)(`1 − `2 + P+)
+ ε (20)

no matter how small is ε > 0.

Indeed, if

0 < ε <
4

b− a
, 0 < x < ε

1
2 (b− a)

1
2

/
2,

and the function p and numbers `i (i = 1, 2) are defined by equalities (14), then instead of (15)
inequality (20) holds, but nevertheless, the homogeneous problem (10), (20) has the nontrivial solution

u(t) ≡ cos
(2x(t− a)

b− a
− x
)
.
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