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§ 1. Statement of the Main Results

Let −∞ < a < b < +∞, ci ∈ R (i = 1, 2), f0 : [a, b] → R be the
Lebesgue integrable function, and f : [a, b]×R→ R be a function, satisfying
the local Carathéodory conditions. We consider the differential equation

u′′ = f(t, u) + f0(t)(1.1)
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354 I. KIGURADZE

with the Neumann boundary conditions

u′(a) = c1, u′(b) = c2.(1.2)

In the case, where

lim inf
|x|→+∞

∣∣∣f(t, x)

x

∣∣∣ = 0

or

lim sup
|x|→+∞

∣∣∣f(t, x)

x

∣∣∣ = +∞,

(1.1), (1.2) is the problem at resonance since the corresponding linear homo-
geneous problem

u′′ = 0; u′(a) = 0, u′(b) = 0

has an infinite set of nontrivial solutions.
In the present paper, we establish new and unimprovable, in a certain

sense, sufficient conditions which guarantee, respectively, the solvability and
unique solvability of the problem (1.1), (1.2). These results cover the res-
onance case and differ substantially from the well-known theorems of the
existence and uniqueness of a solution of the problem (1.1), (1.2) (see, e.g.,
[1]–[6]).

In the sequel, it will be assumed that

f(t, 0) = 0 for a ≤ t ≤ b.(1.3)

For arbitrary functions pi : [a, b] → R (i = 1, 2), the writing p1(t) 6≡ p2(t)
means that they differ from each other on a set of positive measure.

Theorem 1.1. Let there exist a nonnegative number r and an integrable
function g : [a, b]→ R such that

f(t, x) sgnx ≥ g(t) for a < t < b, |x| > r(1.4)

and

∣∣∣∣
b∫
a

f0(s) ds+ c1 − c2
∣∣∣∣ ≤

b∫
a

g(s) ds.(1.5)

Then the problem (1.1), (1.2) has at least one solution.
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Theorem 1.2. Let

f(t, x)− f(t, y) > 0 for a < t < b, x > y(1.6)

and for some r ≥ 0 the inequality (1.5) be fulfilled, where

g(t) = min {f(t, r), |f(t,−r)|}.(1.7)

Then the problem (1.1), (1.2) has one and only one solution.
To formulate the next theorem, we need the following definition.
Definition 1.1. We say that the integrable function p : [a, b]→ [0,+∞[

belongs to the set UN([a, b]) if for an arbitrary integrable function p0 : [a, b]→
R, satisfying the inequality

0 ≤ p0(t) ≤ p(t) for a ≤ t ≤ b,(1.8)

the boundary value problem

u′′ + p0(t)u = 0; u′(a) = 0, u′(b) = 0(1.9)

has no nontrivial solution with alternating signs.
Theorem 1.3. Let there exist a nonnegative number r, the function

p ∈ UN([a, b])(1.10)

and integrable functions q : [a, b]→ [0,+∞[ and g : [a, b]→ R such that

−p(t)|x| − q(t) ≤ f(t, x) sgnx ≤ −g(t) for a < t < b, |x| > r(1.11)

and the inequality (1.5) is fulfilled. Then the problem (1.1), (1.2) has at least
one solution.

Corollary 1.1. Let there exist a nonnegative number r and integrable
functions g : [a, b] → R, p : [a, b] → [0,+∞[, and q : [a, b] → [0,+∞[ such
that the inequalities (1.5) and (1.11) are fulfilled. Let, moreover, either

b∫
a

p(s) ds ≤ 4

b− a
,(1.12)

or

p(t) ≤ π2

(b− a)2
, p(t) 6≡ π2

(b− a)2
.(1.13)

Then the problem (1.1), (1.2) has at least one solution.
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Theorem 1.4. Let

−p(t)(x− y) ≤ f(t, x)− f(t, y) < 0 for a < t < b, x > y,(1.14)

where the function p satisfies the condition (1.10). Let, moreover, for some
r ≥ 0 the inequality (1.5) be fulfilled, where

g(t) = min {|f(t, r)|, f(t,−r)}.(1.15)

Then the problem (1.1), (1.2) has one and only one solution.

Corollary 1.2. Let the condition (1.14) be fulfilled, where p : [a, b]→
[0,+∞[ is a function, satisfying either the inequality (1.12), or the inequal-
ities (1.13). Let, moreover, for some r ≥ 0 the inequality (1.5) be fulfilled,
where g is the function, given by the equality (1.15). Then the problem
(1.1), (1.2) has one and only one solution.

In the above-given theorems and their corollaries the condition (1.5) is,
in a certain sense, optimal. Moreover, the following propositions are valid.

Theorem 1.5. Let there exist numbers σ ∈ {−1, 1}, r > 0, and an
integrable function g : [a, b]→ [0,+∞[ such that

|f(t, x)| ≤ g(t) for |x| ≤ r, f(t, x) = σg(t) sgnx for |x| > r.(1.16)

Then for the solvability of the problem (1.1), (1.2) it is necessary and suffi-
cient that the inequality (1.5) be fulfilled.

Theorem 1.6. Let the condition (1.6) (the conditions (1.10) and (1.14))
be fulfilled, and

f(t,−x) = −f(t, x) for a < t < b, x ∈ R.(1.17)

Let, moreover, there exist an integrable function f ∗ : [a, b] → [0,+∞[ such
that

lim
x→+∞

|f(t, x)| = f ∗(x) for a < t < b.(1.18)

Then for the unique solvability of the problem (1.1), (1.2) it is necessary and
sufficient that

∣∣∣∣
b∫
a

f0(s) ds+ c1 − c2
∣∣∣∣ <

b∫
a

f ∗(s) ds.(1.19)
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Let p(t) > 0 for a < t < b, and the condition (1.12) (the condition (1.13))
be fulfilled. Then by virtue of Corollary 1.2, the differential equation

u′′ = −p(t)u+ f0(t)(1.20)

under the boundary conditions (1.2) has a unique solution, no matter how
ci ∈ R (i = 1, 2) and the integrable function f0 : [a, b] → R are. Suppose
now that

α =
2

b− a
, ε > 0, β = 1 +

8

ε
,

p(t) = α2(1− α(t− a))β−2(β + 1− (1− α(t− a))β) for a ≤ t ≤ a+ b

2
,

p(t) = p(b+ a− t) for
a+ b

2
< t ≤ b,

u0(t) = (1− α(t− a)) exp (− β−1(1− α(t− a))β) for a ≤ t ≤ a+ b

2
,

u0(t) = −u0(b+ a− t) for
a+ b

2
< t ≤ b.

Then the homogeneous problem

u′′ + p(t)u = 0; u′(a) = u′(b) = 0

has a nontrivial solution u(t) = u0(t), while the inhomogeneous problem
(1.20), (1.2) has no solution, if only

c2 − c1 6=
b∫
a

f0(s)u0(s) ds.

On the other hand, in this case we have

b∫
a

p(s) ds = 2

b+a
2∫
a

p(s) ds < 2α2(β + 1)

a+b
2∫
a

(1− α(s− a))β−2 ds =
4 + ε

b− a
.

Remark 1.1. The above-constructed example shows that the inequality
(1.12) in Corollaries 1.1 and 1.2 cannot be replaced by the inequality

b∫
a

p(s) ds <
4 + ε

b− a
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no matter how small ε > 0 is. In the same corollaries, the inequalities (1.13)
cannot be replaced by the identity

p(t) ≡ π2

(b− a)2
,

since in this case the problem (1.20), (1.2) has no solution, if only

c2 − c1 6=
b∫
a

f0(s) cos
π(s− a)

b− a
ds.

Finally, as an example let us consider the following differential equations

u′′ = σf1(t)
|u|α

1 + |u|β
sgnu+ f0(t)(1.21)

and

u′′ = σf1(t)
|u|α| sinu|
1 + |u|β

sgnu+ f0(t),(1.22)

where α > 0, β ≥ 0, σ ∈ {−1, 1}, and fi : [a, b]→ R (i = 1, 2) are integrable
functions.

From Theorem 1.6 we have
Corollary 1.3. Let

α = β, f1(t) > 0 for a < t < b,

and either σ = 1, or

σ = −1, α ≥ 1, α

b∫
a

f1(s) ds ≤
4

b− a
.

Then for the unique solvability of the problem (1.21), (1.2) it is necessary and
sufficient that

∣∣∣∣
b∫
a

f0(s) ds+ c1 − c2
∣∣∣∣ <

b∫
a

f1(s) ds.

Corollary 1.4. Let

α > β, f1(t) > 0 for a < t < b
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and either σ = 1, or

σ = −1, 1 ≤ α ≤ β + 1, α

b∫
a

f1(s) ds ≤
4

b− a
.

Then the problem (1.21), (1.2) has one and only one solution.

From Theorem 1.1 and Corollary 1.1 it follows

Corollary 1.5. Let

f1(t) ≥ 0 for a < t < b

and

b∫
a

f0(s) ds = c2 − c1.(1.23)

Let, moreover, either σ = 1, or σ = −1 and α < β + 1, or

σ = −1, α = β + 1, α

b∫
a

f1(s) ds ≤
4

b− a
.

Then the problem (1.22), (1.2) has at least one solution.

Note that if f1(t) ≡ 0, then the problem (1.22), (1.2) is solvable if and
only if the equality (1.23) is fulfilled.

§ 2. Auxiliary Propositions.

By C (by C1) we denote the space of continuous (continuously differen-
tiable) functions u : [a, b]→ R with the norm

‖u‖C = max {|u(s)| : a ≤ s ≤ b} ( ‖u‖C1 = ‖u‖C + ‖u′‖C ),

and by L we denote the space of Lebesgue integrable functions v : [a, b]→ R

with the norm

‖v‖L =

b∫
a

|v(s)| ds.

For an arbitrary u ∈ C, we set

µ(u) = min {|u(s)| : a ≤ s ≤ b}.
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2.1. Lemmas on a priori estimates. Along with (1.1), we have to
consider the differential inequalities

u′′(t) sgnu(t) ≥ −q(t)(2.1)

and

−p(t)|u(t)| − q(t) ≤ u′′(t) sgnu(t) ≤ q(t),(2.2)

where p and q : [a, b]→ [0,+∞[ are the Lebesgue integrable functions.
The function u : [a, b] → R is said to be a solution of the differential

inequality (2.1) (differential inequality (2.2)) if it is absolutely continuous
together with u′ and satisfies that inequality almost everywhere on [a, b].

Lemma 2.1. An arbitrary solution u of the differential inequality (2.1)
admits the estimate

‖u‖C ≤ (2 + b− a)
(
µ(u) + |u′(a)|+ |u′(b)|+ ‖q‖L

)
.(2.3)

Proof. According to (2.1), almost everywhere on [a, b] the inequality

−u′′(t)u(t) ≤ q(t)|u(t)|

is fulfilled.
Integrating both parts of the above inequality from a to b, we obtain

u′(a)u(a)− u′(b)u(b) + ρ2 ≤
b∫
a

q(t)|u(t)| dt,(2.4)

where

ρ =
( b∫
a

u′
2
(t) dt

)1/2

.

On the other hand, it is clear that

‖u‖C ≤ µ(u) +

b∫
a

|u′(s)| ds ≤ µ(u) + (b− a)1/2ρ.(2.5)

Therefore,

|u′(b)u(b)− u(a)u′(a)| ≤ (|u′(a)|+ |u′(b)|)
(
µ(u) + (b− a)1/2ρ

)
,

b∫
a

q(t)|u(t)| dt ≤
(
µ(u) + (b− a)1/2ρ

)
‖q‖L.
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Taking into account the above estimates, the inequality (2.4) yields

ρ2≤
(
|u′(a)|+|u′(b)|+‖q‖L

)
µ(u)+

(
|u′(a)|+|u′(b)|+‖q‖L

)
(b−a)1/2ρ.

However,(
|u′(a)|+|u′(b)|+‖q‖L

)
(b−a)1/2ρ≤ b−a

2

(
|u′(a)|+|u′(b)|+‖q‖L

)2
+
ρ2

2
.

Thus from the above inequality it follows that

ρ2 ≤ 2
(
|u′(a)|+ |u′(b)|+ ‖q‖L

)
µ(u) + (b− a)

(
|u′(a)|+ |u′(b)|+ ‖q‖L

)2
≤

≤
[
(b− a)−

1
2µ(u) + (b− a)1/2

(
|u′(a)|+ |u′(b)|+ ‖q‖L

)]2
and, consequently,

ρ ≤ (b− a)−
1
2µ(u) + (b− a)1/2

(
|u′(a)|+ |u′(b)|+ ‖q‖L

)
.

According to this estimate, (2.5) results in the estimate (2.3). 2

Lemma 2.2. If the condition (1.10) be fulfilled, then there exists a pos-
itive number ρ0 such that for an arbitrary nonnegative function q ∈ L every
solution u of the differential inequality (2.2) admits the estimate

‖u‖C1 ≤ ρ0
(
µ(u) + |u′(a)|+ |u′(b)|+ ‖q‖L

)
.(2.6)

Proof. Assume that the above lemma is not true. Then for an arbitrary
natural number k there exist a nonnegative function qk ∈ L and a solution
uk of the differential inequality

0 ≤ −u′′k(t) sgnuk(t) + qk(t) ≤ p(t)|uk(t)|+ 2qk(t)(2.7)

such that

‖uk‖C1 > k
(
µ(uk) + |u′k(a)|+ |u′k(b)|+ ‖qk‖L

)
.(2.8)

Let

u0k(t) =
uk(t)

‖uk‖C1

, q0k(t) =
qk(t)

‖uk‖C1

, δk(t) = p(t)|u0k(t)|+ 2q0k(t),

ηk(t) =

 0 for δk(t) = 0

(− u′′0k(t) sgnu0k(t) + q0k(t))/δk(t) for δk(t) = 0
,

pk(t) = ηk(t)p(t), Pk(t) =

t∫
a

pk(s) ds,

q1k(t) = (1− 2ηk(t))q0k(t) sgnu0k(t).
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Then by virtue of the inequalities (2.7) and (2.8) we have

0 ≤ ηk(t) ≤ 1 for almost all t ∈ [a, b],

‖u0k‖C1 = 1,(2.9)

µ(u0k) + |u′0k(a)|+ |u′0k(b)| <
1

k
,(2.10)

‖q1k‖L <
1

k
.(2.11)

Moreover, it is clear that for every natural number k the function u0k is a
solution of the differential equation

u′′0k(t) + pk(t)u0k(t) = q1k(t),(2.12)

and the function Pk satisfies the conditions

Pk(0) = 0, 0 ≤ Pk(t)− Pk(τ) ≤
t∫
τ

p(s) ds for a ≤ τ ≤ t ≤ b.(2.13)

By (2.9) and (2.11), from (2.13) we have

‖u′′0k‖L ≤ ‖p‖L + 1.(2.14)

On the other hand, by the Arzela–Ascoli lemma and the conditions (2.10),
(2.13) and (2.14), without loss of generality we can assume that the sequences
(uk)

+∞
k=1, (u′k)

+∞
k=1 and (Pk)+∞k=1 are uniformly convergent on [a, b], i.e., there

exist u ∈ C1 and P0 ∈ C such that

lim
k→+∞

‖u0k − u‖C1 = 0, lim
k→+∞

‖Pk − P0‖C = 0.(2.15)

Thus from (2.9), (2.10), and (2.13) we find

‖u‖C1 = 1,(2.16)

µ(u) = 0, u′(a) = 0, u′(b) = 0,(2.17)

P0(a) = 0, 0 ≤ P0(t)− P0(τ) ≤
t∫
τ

p(s) ds for a ≤ τ ≤ t ≤ b.(2.18)

By the conditions (2.18), the function P0 is absolutely continuous and
admits the representation

P0(t) =

t∫
a

p0(s) ds for a ≤ t ≤ b,(2.19)
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where p0 ∈ L is a function, satisfying the inequality (1.8).
By virtue of Lemma 1.1 of [4] and the conditions (2.15) and (2.19), we

have

lim
k→+∞

t∫
a

pk(s)u0k(s) ds =

t∫
0

p0(s)u(s) ds for t ∈ [a, b].

If along with this we take into account the conditions (2.10) and (2.11), then
from the representation

u′0k(t) = u′0k(a)−
t∫
a

(pk(s)u0k(s)− q1k(s)) ds for a ≤ t ≤ b

we find

u′(t) = −
t∫
a

p0(s)u(s) ds for a ≤ t ≤ b.

Consequently, u is a solution of the equation

u′′ + p0(t)u = 0,

satisfying the conditions (2.16) and (2.17). Thus it is clear that u is a solution
with alternating sings of the problem (1.9). But this contradicts the condi-
tion (1.10) since p0 satisfies the inequality (1.8). The obtained contradiction
proves the lemma. 2

2.2. Lemmas on the set UN([a, b]).
Lemma 2.3. Let p ∈ L be a nonnegative function, satisfying either

the inequality (1.12), or the inequalities (1.13). Then the condition (1.10) is
fulfilled.

Proof. Let p0 ∈ L be an arbitrary function, satisfying the inequality
(1.8). We have to show that the problem (1.9) has no solution with alternat-
ing sings.

Assume the contrary that the above-mentioned problem has a solution
u with alternating signs. Then there exist numbers t0, t1 and t2 such that
a ≤ t1 < t0 < t2 ≤ b,

u(t0) = 0, u′(t) < 0 for t1 < t < t2, u′(t1) = u′(t2) = 0,(2.20)
t0∫
t1

p0(s) ds > 0,

t2∫
t0

p0(s) ds > 0.
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If along with this we take into account the fact that p0 is nonnegative, then
it becomes clear that

max {|u(t)| : t1 ≤ t ≤ t0} = u(t1) =

t0∫
t1

|u′(s)| ds < (t0 − t1)|u′(t0)|,

max {|u(t)| : t0 ≤ t ≤ t1} = |u(t2)| =
t2∫
t0

|u′(s)| ds < (t2 − t0)|u′(t0)|.

Therefore,

|u′(t0)| =
t0∫
t1

p0(s)|u(s)| ds ≤ |u(t1)|
t0∫
t1

p0(s) ds < (t0 − t1)|u′(t0)|
t0∫
t1

p0(s) ds,

|u′(t0)| =
t2∫
t0

p0(s)|u(s)| ds < |u(t2)|
t2∫
t0

p0(s) ds < (t2 − t0)|u′(t0)|
t2∫
t0

p0(s) ds.

It follows from the above estimates that

t0∫
t1

p0(s) ds >
1

t0 − t1
,

t2∫
t0

p0(s) ds >
1

t2 − t0
,

and

t2∫
t1

p(s) ds =

t0∫
t1

p0(s) ds+

t2∫
t0

p0(s) ds >

>
1

t0 − t1
+

1

t2 − t0
=

t2 − t1
(t0 − t1)(t2 − t0)

≥ 4

t2 − t1
≥ 4

b− a
.

Thus the inequality (1.12) is violated.
It remains to consider the case where the inequalities (1.13) are fulfilled.

Obviously, either t1−t0 ≤ (b−a)/2, or t2−t0 ≤ (b−a)/2. For the definiteness,
we assume that t1 − t0 ≤ (b− a)/2. Then by (1.13) we have

p(t) ≤ π2

4(t1 − t0)2
for t1 ≤ t ≤ t0, p(t) 6≡ π2

4(t1 − t0)2
.

In view of the Sturm lemma and the conditions (2.20), it follows that the
boundary value problem

v′′ +
π2

4(t0 − t1)2
v = 0; v′(t1) = 0, v(t0) = 0
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has no positive on ]t0, t1[ solution. But this is not the case because this
problem has the solution v(t) = cos π(t−t1)

2(t0−t1) . The obtained contradiction
proves the lemma. 2

Lemma 2.4. If the condition (1.10) is fulfilled, then there exists ε > 0
such that an arbitrary function p ∈ L, satisfying the inequalities

p(t) ≤ p(t) for a < t < b,

b∫
a

(p(s)− p(s)) ds < ε,(2.21)

satisfies the condition

p ∈ UN([a, b]).

Proof. Let ρ0 be the number appearing in Lemma 2.2,

ε =
1

ρ0
,(2.22)

and p0 ∈ L and p ∈ L be arbitrary functions, satisfying the inequalities (2.21)
and

0 ≤ p0(t) ≤ p(t) for a < t < b.(2.23)

We have to show that the problem (1.9) has no nontrivial solution sat-
isfying the equality

µ(u) = 0.(2.24)

Assume the contrary that there exists a nontrivial solution u of the
problem (1.9), satisfying the equality (2.24). Then u is likewise a solution of
the differential inequality (2.2), where

q(t) = (p(t)− p(t))|u(t)|.

Hence, owing to Lemma 2.2, we find

0 < ‖u‖C ≤ ρ0

b∫
a

(p(s)− p(s))|u(s)| ds.

This inequality by virtue of (2.21) and (2.22) yields

‖u‖C ≤ ‖u‖Cρ0
b∫
a

(p(s)− p(s)) ds < ‖u‖C .

The obtained contradiction proves the lemma. 2
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2.3. Lemmas on the auxiliary boundary value problems. Along
with (1.1), (1.2), let us consider the auxiliary boundary value problems

u′′ = `(t)u; u′(a) = 0, u′(b) = 0(2.25)

and

u′′ = (1− λ)`(t)u+ λf(t, u) + λf0(t),(2.26)

u′(a) = λc1, u′(b) = λc2,(2.27)

where ` ∈ L, and λ ∈ ]0, 1[ is a parameter.
Lemma 2.5. Let either

`(t) ≥ 0 for a ≤ t ≤ b, `(t) 6≡ 0,(2.28)

or

`(t) = −p(t) ≤ 0 for a ≤ t ≤ b, `(t) 6≡ 0,(2.29)

and the condition (1.10) be fulfilled. Then the problem (2.25) has only a
trivial solution.

Proof. Let u be an arbitrary solution of the problem (2.25). Then since
` is of alternating signs, we have

b∫
a

|`(s)|u(s) ds = 0.

If we assume that µ(u) > 0, the above equality yields

0 =

b∫
a

|`(s)| |u(s)| ds ≥ µ(u)

b∫
a

|`(s)| ds > 0 since `(t) 6≡ 0.

The obtained contradiction proves that µ(u) = 0.
Assume now that the inequalities (2.28) are fulfilled. Then u is a solution

of the differential inequality

u′′(t) sgnu(t) ≥ 0,

satisfying the conditions (2.17), whence by Lemma 2.1 it follows that u(t)≡ 0.
Consider now the case where the conditions (1.10) and (2.29) are fulfilled.

Then u is a solution of the differential inequality

−p(t)|u(t)| ≤ u′′(t) sgnu(t) ≤ 0,
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whence by Lemma 2.2 it follows that u(t) ≡ 0.

Thus we have proved that the problem (2.25) has only a trivial solu-
tion. 2

From Corollary 2 of [7] we have the following

Lemma 2.6. Let the problem (2.25) have only a trivial solution, and
there exist a positive constant ρ such that for an arbitrary λ ∈ ]0, 1[ , every
solution u of the problem (2.26), (2.27) admits the estimate

‖u‖C1 ≤ ρ.(2.30)

Then the problem (1.1), (1.2) has at least one solution.

Lemma 2.7. Let there exist numbers σ ∈ {−1, 1}, r ≥ 0, and an
integrable function g : [a, b]→ R such that along with (1.5) the inequalities

σ`(t) > 0, σf(t, x) sgnx ≥ g(t) for a < t < b, |x| ≥ r(2.31)

are fulfilled. Then for every λ ∈ ]0, 1[ an arbitrary solution u of the problem
(2.26), (2.27) admits the estimate

µ(u) ≤ r.(2.32)

Proof. Assume the contrary that the lemma is not true. Then there exist
λ ∈ ]0, 1[ and a solution u of the problem (2.26), (2.27) such that µ(u) > r.

If we assume σ0 = σ sgnu(a), then in view of (2.31), from (2.26) we find

σ0(u
′′(t)− λf0(t)) ≥ (1− λ)µ(u)`(t) + λg(t).

Integrating the above inequality from a to b, according to (2.27) we obtain

σ0λ
(
c2 − c1 −

b∫
a

f0(s) ds
)
≥

> (1− λ)µ(u)

b∫
a

`(s) ds+ λ

b∫
a

g(s) ds > λ

b∫
a

g(s) ds.

But this inequality contradicts the inequality (1.5). The obtained contradic-
tion proves the lemma. 2
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§ 3. Proof of the Main Results.

Proof of Theorem 1.1. Let

f ∗(t, y) = max {|f(t, x)| : |x| ≤ y}+ |f0(t)| for y ≥ 0,(3.1)

q(t) = f ∗(r, t) + |g(t)|,(3.2)

ρ0 = (2 + b− a)
(
r + |c1|+ |c2|+ ‖q‖L

)
,(3.3)

ρ = ρ0 + |c1|+
b∫
a

(1 + f ∗(s, ρ0)) ds,(3.4)

and

`(t) ≡ 1.(3.5)

Then by Lemma 2.5, the problem (2.25) has only a trivial solution. In view
of that fact and Lemma 2.6, to prove the theorem it suffices to state that for
every λ ∈ ]0, 1[ an arbitrary solution u of the problem (2.26), (2.27) admits
the estimate (2.30).

By virtue of Lemma 2.7, the conditions (1.4), (1.5), and (3.5) guarantee
the validity of the estimate (2.32). On the other hand, according to the nota-
tion (3.1) and (3.2), the function u is a solution of the differential inequality
(2.1), and

|u′′(t)| ≤ 1 + f ∗(t, ‖u‖C)(3.6)

almost everywhere on [a, b].

By Lemma 2.1 and the conditions (2.27) and (2.32), we have

‖u‖C ≤ ρ0,

where ρ0 is a number given by the equality (3.3). Taking into account this
estimate and notation (3.4), from (3.6) we obtain

‖u′‖C1 ≤ |c1|+
b∫
a

|u′′(s)| ds ≤ |c1|+
b∫
a

(1 + f ∗(s, ρ0)) ds = ρ− ρ0.

Consequently, the estimate (2.30) is valid. 2

Proof of Theorem 1.2. (1.3), (1.6), and (1.7) result in the inequality
(1.4). Thus all the conditions of Theorem 1.1 are fulfilled which guarantee
the solvability of the problem (1.1), (1.2).
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It remains to prove that the problem (1.1), (1.2) has no more than one
solution. Let u1 and u2 be arbitrary solutions of that problem, and u(t) =
u2(t)− u1(t). Assuming µ(u) > 0, from (1.6) we have

u′′(t)σ0 > 0 almost everywhere on [a, b],

where σ0 = sgnu(0). But this contradicts the equalities u′(a) = u′(b) = 0.
The obtained contradiction proves that µ(u) = 0.

By the condition (1.6), the function u is a solution of the differential
inequality

u′′(t) sgnu(t) ≥ 0.

Hence, by Lemma 2.1 and the condition (2.17), it follows that u(t) ≡ 0, i.e.,
u1(t) ≡ u2(t). 2

Proof of Theorem 1.3. Due to Lemma 2.4 and the condition (1.11),
without loss of generality we can assume that

p(t) > 0 for a < t < b,(3.7)

f(t, x) sgnx ≤ −g(t) for a < t < b, |x| ≥ r,(3.8)

and

−p(t)|x| − q(t) ≤ (f(t, x) + f0(t)) sgnx ≤ q(t) for a < t < b, x ∈ R.(3.9)

By the condition (1.10) and Lemma 2.2, there exists a positive constant
ρ0 such that an arbitrary solution of the differential inequality (2.2) admits
the estimate (2.6). We put

ρ = ρ0
(
r + |c1|+ |c2|+ ‖q‖L

)
.(3.10)

Let

`(t) = −p(t).(3.11)

Then by the conditions (1.10), (3.7) and Lemma 2.5, the problem (2.25) has
only a trivial solution. Taking this fact and Lemma 2.6 into account, to prove
Theorem 1.3 it suffices to state that for every λ ∈ ]0, 1[ an arbitrary solution
u of the problem (2.26), (2.27) admits the estimate (2.30).

By Lemma 2.7, the conditions (1.5), (3.7), (3.8), and (3.11) guarantee the
validity of the estimate (2.32). On the other hand, in view of the conditions
(3.9) and (3.11), it follows from (2.26) that u is a solution of the differential
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inequality (2.2). Therefore this function admits, as is said above, the estimate
(2.6). However, this estimate, due to the conditions (2.27), (2.32) and (3.10),
results in the estimate (2.30). 2

Proof of Theorem 1.4. From (1.3), (1.14), and (1.15) we have the inequal-
ity (1.11). However, by Theorem 1.3, this inequality together with the con-
ditions (1.5) and (1.10) guarantees the solvability of the problem (1.1), (1.2).
It remains to prove that this problem has no more than one solution.

Let u1 and u2 be arbitrary solutions of the problem (1.1), (1.2), and
u(t) = u2(t) − u1(t). If we assume that µ(u) > 0, then in view of (1.14),
almost everywhere on [a, b] we have σ0u

′′(t) < 0, where σ0 = sgnu(a). But
this is impossible since u′(a) = u′(b) = 0. The obtained contradiction proves
that µ(u) = 0.

By the condition (1.14), the function u is a solution of the differential
inequality

−p(t)|u(t)| ≤ u′′(t) sgnu(t) ≤ 0,

whence by Lemma 2.2 it follows that u(t) ≡ 0, i.e., u1(t) ≡ u2(t). 2

Corollary 1.1 (Corollary 1.2) follows from Theorem 1.3 (Theorem 1.4)
and Lemma 2.3.

Proof of Theorem 1.5. First, let us prove the necessity. Let the problem
(1.1), (1.2) have a solution u. Then

c2 − c1 =

b∫
a

f(s, u(s)) ds+

b∫
a

f0(s) ds.(3.12)

Hence, due to (1.6), we get

∣∣∣∣
b∫
a

f0(s) ds+ c1 − c2
∣∣∣∣ ≤

b∫
a

|f(s, u(s))| ds ≤
b∫
a

g(s) ds,

i.e., (1.5) is fulfilled.
It remains to prove that if along with (1.16) the condition (1.5) is fulfilled,

then the problem (1.1), (1.2) is solvable.
Owing to (1.16), in the case σ = 1 (in the case σ = −1), the function

f satisfies the inequality (1.4) (the inequality (1.11), where p(t) ≡ 0, q(t) ≡
g(t)). However, by virtue of Theorem 1.1 (of Corollary 1.1), this inequality
together with the condition (1.5) guarantees the solvability of the problem
(1.1), (1.2). 2
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Proof of Theorem 1.6. First, let us prove the necessity. Let the problem
(1.1), (1.2) have a solution u. Then the equality (3.12) is valid. On the other
hand, by the conditions (1.6), (1.17), and (1.18) (by the conditions (1.14),
(1.17), and (1.18)), we have

|f(t, x)| < f ∗(t) for a < t < b, x ∈ R.

According to that estimate, from (3.12) it follows the inequality (1.19).
Now we prove the sufficiency. Let along with (1.16), (1.17), and (1.18)

(along with (1.10), (1.14), (1.17), and (1.18)) the condition (1.19) be fulfilled.
Then

lim
x→+∞

b∫
a

|f(s, x)| ds =

b∫
a

f ∗(t) dt.

Therefore there exists r > 0 such that the function g(t) = |f(t, r)| =
|f(t,−r)| satisfies the inequality (1.5). However, by Theorem 1.2 (by Theo-
rem 1.4), the inequality (1.5) together with the condition (1.6) (together with
the conditions (1.10) and (1.14)) guarantees the solvability of the problem
(1.1), (1.2).
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