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Abstract. We investigate some boundary value problems for an Emden–
Fowler type differential system

u′1 = g1(t)u
λ1
2 , u′2 = g2(t)u

λ2
1

on a finite or infinite interval I = [a, b), where gi : I → [0,∞) (i = 1, 2),
are locally integrable functions. We give the optimal, in a certain sense,
sufficient conditions which guarantee the existence of a unique (at least
of one) nonnegative solution, satisfying one of the two following boundary
conditions:

i) u1(a) = c0, lim
t→b

u1(t) = c; ii) u2(a) = c0, lim
t→b

u1(t) = c,

in case 0≤c0<c<+∞ (in case c0≥0, c=+∞ and λ1λ2>1). Moreover, the
global two-sided estimations of the above-mentioned solutions are obtained
together with applications to differential equations with p-Laplacian.
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1. Introduction

Let −∞ < a < b ≤ +∞ and I = [a, b). Consider the system

u′1 = g1(t)u
λ1
2 , u′2 = g2(t)u

λ2
1 , (1.1)

on the interval I (finite or infinite), where λ1, λ2 are positive numbers,
functions gi : I → R+ = [0,+∞) (i = 1, 2) are locally Lebesgue integrable
on I, i.e., integrable on [a, t0] for any t0 ∈ (a, b). By a nonnegative solution
of the system (1.1), defined on I, we mean a locally absolutely continuous
vector function (u1, u2) : I → R2

+ which satisfies (1.1) a.e. on I.
We study the following problems on nonnegative solutions of the system

(1.1), defined on I:

u1(a) = c0, lim
t→b

u1(t) = c1; (1.2)

u2(a) = c0, lim
t→b

u1(t) = c1; (1.3)

u1(a) = c0, lim
t→b

u1(t) = +∞; (1.4)

u2(a) = c0, lim
t→b

u1(t) = +∞, (1.5)

where c0 is a nonnegative and c1 is a positive constant. Observe that the
functions gi in (1.1) need not be integrable on I; in this sense, the problems
(1.1), (1.k) (k = 2, 3, 4, 5) are singular. As for the problems (1.1), (1.4) and
(1.1), (1.5), they are also singular if the functions gi are integrable on I,
and in this case we get the blow-up phenomena.

The system (1.1) includes the differential equation with the p-Laplacian
operator (( u′

h0(t)

)p)′
= h(t)uℓ, (1.6)

where p and ℓ are positive constants, h0 : I → (0,+∞) and h : I → R+ are
locally Lebesgue integrable functions.

A locally absolutely continuous nondecreasing function u : I → R+ is
said to be a nonnegative nondecreasing solution of the equation (1.6) if
there exists a locally absolutely continuous function v : I → R+ such that( u′(t)

h0(t)

)p
= v(t), v′(t) = h(t)vℓ(t) a.e. on I.

From the above-said we can see that a locally absolutely continuous non-
decreasing function u : I → R+ is a solution of the equation (1.6) if and
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only if the vector function (u1, u2) with the components

u1(t) =
( u′(t)
h0(t)

)p
, u2(t) = u(t) (1.71)

is a solution of the system (1.1), where

λ1 = ℓ, λ2 =
1

p
, g1(t) = h(t), g2(t) = h0(t). (1.81)

Analogously, the equalities

u1(t) = u(t), u2(t) =
( u′(t)
h0(t)

)p
(1.72)

establish one-to-one correspondence between the set of nonnegative nonde-
creasing solutions of the equation (1.6) and that of nonnegative solutions
of the system (1.1), where

λ1 =
1

p
, λ2 = ℓ, g1(t) = h0(t), g2(t) = h(t). (1.82)

The above-stated problems on nonnegative solutions of the system (1.1)
correspond the following problems on nonnegative nondecreasing solutions
of the equation (1.6):

lim
t→a

u′(t)

h0(t)
= c0, lim

t→b

u′(t)

h0(t)
= c1; (1.91)

u(a) = c0, lim
t→b

u(t) = c1; (1.92)

u(a) = c0, lim
t→b

u′(t)

h0(t)
= c1; (1.101)

lim
t→a

u′(t)

h0(t)
= c0, lim

t→b
u(t) = c1; (1.102)

lim
t→a

u′(t)

h0(t)
= c0, lim

t→b

u′(t)

h0(t)
= +∞; (1.111)

u(a) = c0, lim
t→b

u(t) = +∞; (1.112)

u(a) = c0, lim
t→b

u′(t)

h0(t)
= +∞; (1.121)

lim
t→a

u′(t)

h0(t)
= c0, lim

t→b
u(t) = +∞. (1.122)
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Asymptotic properties of solutions of differential system (1.1) and equa-
tion (1.6) have been widely investigated in the literature (see, e.g., [1–21]
and references therein), where the following terminology have been used.

If b = +∞, then a positive solution (u1, u2) of the system (1.1) (positive,
nondecreasing solution u of equation (1.6)), defined in some neighborhood
+∞, is called proper.

The proper solution (u1, u2) (solution u) is called weakly increasing, if

lim
t→+∞

u1(t) < +∞
(

lim
t→+∞

u′(t)

h0(t)
< +∞

)
and strongly increasing, if

lim
t→+∞

u1(t) = +∞
(

lim
t→+∞

u′(t)

h0(t)
= +∞

)
.

A positive solution (u1, u2) of the system (1.1) (positive, nondecreasing
solution u of equation (1.6)), defined in some finite interval [t∗, t

∗) and
satisfying the condition

lim
t→t∗

u1(t) = +∞
(
lim
t→t∗

u′(t) = +∞
)

is called blow-up, or by the terminology adopted in [14], a singular solution
of the second kind.

The problems on the existence of positive, nondecreasing proper and
blow-up solutions of different types have been investigated in details. How-
ever, every such problem can be reduced to one of the above-formulated sin-
gular boundary value problems. Therefore a complete description of sets of
proper and blow-up solutions of the system (1.1) and equation (1.6) can be
achieved by solving the problems (1.1), (1.2)–(1.1), (1.5) and (1.6), (1.91)–
(1.6), (1.122). Nevertheless, these problems remain still little studied. In
our work we will make an attempt to fill in this gap.

In Section 2 we establish optimal, in a certain sense, sufficient condi-
tions which guarantee the existence of a unique nonnegative solution of the
problems (1.1), (1.2) and (1.1), (1.3). Similarly, in Section 3 we give optimal
sufficient conditions for the existence of at least one nonnegative solution of
the problems (1.1), (1.4) and (1.1), (1.5). Moreover, for the solutions of the
problems (1.1), (1.4) and (1.1), (1.5) we obtain two-sided global estimations.
In Section 4, we apply our results to the problems (1.6), (1.91)–(1.6), (1.122).

In particular, when b = +∞ (b < +∞) our theorems improve the earlier
obtained results on the existence of weakly and strongly increasing proper
solutions (blow-up solutions) of the differential equation (1.6) and the sys-
tem (1.1), see [1–6], [13–19] and [21].
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Throughout the paper the following notation will be used: [x]+ = (x +
|x|)/2 for a real number x; L(I;R+) is the set of Lebesgue integrable func-
tions; Lloc(I;R+) is the set of functions, Lebesgue integrable in the interval
[a, t0] for an arbitrary t0 ∈ I.

2. Problems (1.1), (1.2) and (1.1), (1.3)

We study the problems (1.1), (1.2) and (1.1), (1.3) in the case when

g1 ∈ L(I;R+), g2 ∈ Lloc(I;R+), G0 ∈ L(I;R+) (2.1)

and
meas {t ∈ I : g1(t) > 0} > 0, (2.2)

where

G0(t) = g1(t)

( t∫
a

g2(s) ds

)λ1

. (2.3)

For any x > 0 put

φ(x, λ) =



[
x1−λ − (1− λ)

∫ b

a
G0(s) ds

] 1
1−λ

+
for λ < 1

exp
(
−

∫ b

a
G0(s) ds

)
x for λ = 1(

x1−λ + (λ− 1)

∫ b

a
G0(s) ds

) 1
1−λ

for λ > 1

. (2.4)

Theorem 2.1. Assume (2.1), (2.2) and

0 ≤ c0 ≤ φ(c1, λ), (2.5)

where λ = λ1λ2. Then the problem (1.1), (1.2) has a unique nonnegative
solution.

For the proof of Theorem 2.1 the following two lemmas will be needed.

Lemma 2.1. Assume (2.1), (2.2) and

0 < c0 ≤ φ(c1, λ), (2.6)

where λ = λ1λ2. Let (v1, v2) : I → R2
+ be a solution of the system of

differential inequalities

0 ≤ v′1(t) ≤ g1(t)v
λ1
2 (t), 0 ≤ v′2(t) ≤ g2(t)v

λ2
1 (t), (2.7)

satisfying the initial conditions

v1(a) = c0, v2(a) = 0. (2.8)
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Then

v1(b−) = lim
t→b

v1(t) ≤ c1. (2.9)

Proof. In view of (2.3), it follows from (2.7) and (2.8) that

0 ≤ v2(t) ≤
∫ t

a
g2(s)v

λ2
1 (s) ds ≤ vλ2

1 (t)

∫ t

a
g2(s) ds

and 0 ≤ v′1(t) ≤ G0(t)v
λ
1 (t). From this inequality it follows that v1(b−) ≤

v(b−), where v is a solution of the Cauchy problem

v′(t) = G0(t)v
λ(t), v(a) = c0.

Since

v(t) =


(
c1−λ
0 + (1− λ)

∫ t

a
G0(ξ) dξ

) 1
1−λ

for λ ̸= 1

c0 exp
(∫ t

a
G0(ξ) dξ

)
for λ = 1,

summarizing (2.4) and (2.6), we obtain (2.9). 2

Lemma 2.2. Let ωi : I ×R+ → R+ (i = 0, 1, 2) be functions satisfying the
conditions

ωi(t, 0) = 0 a.e. on I (i = 0, 1, 2), (2.10)

ω0(·, x) ∈ L(I;R+),

∫ b

a
ω0(s, x) ds > 0 for x ∈ (0,+∞). (2.11)

Let (v1, v2) : I → R2 be a solution of the system of differential inequalities

v′1(t) sgn v2(t) ≥ ω0(t, |v2(t)|), v′2(t) sgn v1(t) ≥ 0, (2.121)

|v′1(t)| ≤ ω1(t, |v2(t)|), |v′2(t)| ≤ ω2(t, |v1(t)|) (2.122)

such that

v1(a)v2(a) = 0, v1(b−) = 0. (2.13)

Then vi(t) ≡ 0 (i = 1, 2).

Proof. In view of (2.121) and (2.13)we have

d

dt
(v1(t)v2(t)) ≥ 0 a.e. on I, (2.14)

v1(t)v2(t) ≥ 0 for t ∈ I. (2.15)

First, we show that

v1(t)v2(t) ≡ 0. (2.16)
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Assume the contradiction. In view of (2.14) and (2.15), there exists t0 ∈
(a, b) such that v1(t)v2(t) > 0 for t0 ≤ t < b. From here and (2.121) we get

|v1(t)|′ = v′1(t) sgn v1(t) = v′1(t) sgn v2(t) ≥ 0 a.e. on t ∈ (t0, b)

and |v1(b−)| ≥ |v1(t0)| > 0, which contradicts the equality v1(b−) = 0.
Therefore (2.16) is true.

Now we will prove that
v2(t) ≡ 0. (2.17)

Assume the contradiction. There exists an interval (a1, b1) ⊂ (a, b) such
that

v2(t) ̸= 0 for a1 < t < b1 (2.18)

and

either a1 = a, b1 = b or a1 > a, v2(a1) = 0
(
b1 < b, v2(b1) = 0

)
. (2.19)

In accordance with (2.16) and (2.18), we have v1(t) = 0 for a1 < t < b1.
So, from (2.10) and (2.122) we get v′2(t) = 0 a.e. on t ∈ (a1, b1). In view
of this equality, it follows from (2.18) and (2.19) that a1 = a, b1 = b and
v2(t) ≡ c, where c = v2(a) ̸= 0. Hence, by (2.121) and (2.13) we obtain

v′1(t) sgn c ≥ ω0(t, |c|) a.e. on I, v1(a) = v1(b−) = 0.

Consequently,

0 =
(
v1(b−)− v1(a)

)
sgn c ≥

∫ b

a
ω0(s, |c|) ds,

which contradicts (2.11). Hence (2.17) holds.
In view of (2.10) and (2.17), from (2.122) we get v′1(t) ≡ 0 a.e. on t ∈ I.

From here and from the equality v1(b−) = 0 it follows that v1(t) ≡ 0. 2

Proof of Theorem 2.1. First we will prove the assertion in the case
where b < +∞. For any natural k put

δk =
b− a

2k
, τk(t) =

{
a for a ≤ t ≤ a+ δk

t− δk for a+ δk < t ≤ b
(2.20)

and consider the delayed differential system

u′1(t) = g1(t)u
λ1
2 (τk(t)), u′2(t) = g2(t)u

λ2
1 (τk(t)) (2.21)

with the initial conditions

u1(a) = c0, u2(a) = γ. (2.22)

In accordance with (2.1) and (2.20), for every γ ∈ R+ the problem (2.21),
(2.22) has the unique nonnegative solution (u1k(· , γ), u2k(· , γ)) which is
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continuous with respect to the parameter γ. Moreover, u1k(· , γ) has the
finite limit u1k(b−, γ), and u1k(b−, · ) : R+ → R+ is a continuous function.

If c0 = 0, then uik(t, 0) ≡ 0 (i = 1, 2) and, consequently,

u1k(b−, 0) ≤ c1. (2.23)

We will show that this inequality holds also for c0 > 0. Indeed, it fol-
lows from (2.20) and (2.21) that the vector function (v1, v2), where vi(t) =
uik(t, 0) (i = 1, 2), is a solution of the problem (2.7), (2.8) and so, according
to the condition (2.6) and Lemma 2.1, we get (2.23).

By (2.4) we have φ(x, λ) ≤ x for x > 0. Therefore, from (2.5) we have
c0 ≤ c1. In accordance with (2.2), there exists γ0 ≥ 0 such that

γλ1
0 = (c1 − c0)

(∫ b

a
g1(s) ds

)−1
.

Hence from (2.21) and (2.22) we get u2k(t, γ0) ≥ γ0 for t ∈ I and

u1k(b−, γ0) ≥ c0 + γλ1
0

∫ b

a
g1(s) ds ≥ c1. (2.24)

In view of the continuity of u1k(b−, ·) : R+ → R+, it follows from (2.23)
and (2.24) the existence of a number γk ∈ [0, γ0] such that u1k(b−, γk) = c1.
Put

uik(t) = uik(t, γk) for t ∈ I (i = 1, 2).

Obviously, (u1k, u2k) is a solution of the system (2.21) satisfying the bound-
ary conditions

u1k(a) = c0, u1k(b−) = c1.

Moreover,

0 ≤ u1k(t) ≤ c1, 0 ≤ u2k(t) ≤ γ0 + cλ2
1

∫ t

a
g2(s) ds for t ∈ I, (2.25)

0 ≤ u1k
′(t) ≤ G(t), 0 ≤ u2k

′(t) ≤ cλ2
1 g2(t) a.e. on I, (2.26)

and

0 ≤ c1 − u1k(t) ≤
∫ b

t
G(s) ds for t ∈ I, (2.27)

where

G(t) = g1(t)
(
γ0 + cλ2

1

∫ t

0
g2(s) ds

)λ1

and, as follows from (2.1),

G ∈ L(I;R+). (2.28)
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In accordance with (2.1) and (2.26), the inequalities (2.25), (2.26) yield that
the sequences (uik)

∞
k=1 (i = 1, 2) are uniformly bounded and equicontinuous

on [a, b− ε] for any small ε > 0. Hence by the Ascoli–Arzelá lemma there
exists a sequence of natural integers (km)∞m=1 for which (uikm)

∞
m=1 (i = 1, 2)

converge uniformly on each interval [a, b− ε] for any small ε > 0. Set

ui(t) = lim
m→∞

uikm(t) (i = 1, 2).

Passing to the limit as m→ ∞ in the equalities

u1km(t) = c0 +

∫ t

a
g1(s)u

λ1
2km

(τkm(s)) ds,

u2km(t) = u2km(a) +

∫ t

a
g2(s)u

λ2
1km

(τkm(s)) ds for a ≤ t < b,

by the Lebesgue dominant convergence theorem and by (2.20) we obtain

u1(t) = c0 +

∫ t

a
g1(s)u

λ1
2 (s) ds,

u2(t) = u2(a) +

∫ t

a
g2(s)u

λ2
1 (s) ds for t ∈ I.

On the other hand, in light of (2.27), it holds

0 ≤ c1 − u1(t) ≤
∫ b

t
G(s) ds for t ∈ I.

Consequently, (u1, u2) is a solution of the problem (1.1), (1.2).
Let us now prove that the problem (1.1), (1.2) does not have solutions

different from (u1, u2). Let (u1, u2) be an arbitrary solution of (1.1), (1.2).
Put

vi(t) = ui(t)− ui(t) (i = 1, 2).

Then

v′1(t) = g1(t)
(
uλ1
2 (t)− uλ1

2 (t)
)
, v′2(t) = g2(t)

(
uλ2
1 (t)− uλ2

1 (t)
)
. (2.29)

Moreover, v1 and v2 satisfy (2.13).
It is known that if α ≥ 1, then for any x > 0, x > 0 it holds

(xα − xα) sgn (x− x) ≥ |x− x|α, |xα − xα| ≤ αzα−1|x− x|,

and if 0 < α < 1, then

(xα − xα) sgn (x− x) ≥ αzα−1|x− x|, |xα − xα| ≤ |x− x|α,
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where z = max{x, x}. Obviously, z ≤ x+ x < 1 + x+ x for x > 0, x > 0.
Therefore, (2.29) yields the inequalities (2.121) and (2.122), where

ω0(t, x) =

{
g1(t)x

λ1 for λ1 ≥ 1

λ1g1(t)
(
1 + u2(t) + u2(t)

)λ1−1
x for 0 < λ1 < 1

and for i ∈ {1, 2},

ωi(t, x) =

{
λigi(t)

(
1 + u3−i(t) + u3−i(t)

)λi−1
x for λi ≥ 1

gi(t)x
λi for 0 < λi < 1.

On the other hand, taking into account (2.1) and (2.2), it is obvious that
functions ωi : I × R+ → R+ (i = 0, 1, 2) satisfy the conditions (2.10) and
(2.11). Applying Lemma 2.2, we get vi(t) ≡ 0 (i = 1, 2), i.e. ui(t) ≡ ui(t)
(i = 1, 2).

It remains to consider the case where b = +∞. In this case, by means of
the transformation

x = 1− (1 + t− a)−1, ui(t) = wi(x) (i = 1, 2),

the problem (1.1), (1.2) is reduced to the problem

w′
1 = h1(x)w

λ1
2 , w′

2 = h2(x)w
λ2
2 , (2.30)

w1(0) = c0, lim
x→1

w1(x) = c1, (2.31)

where clearly, the symbol ′ denotes the derivative with respect to x, and

hi(x) = (1− x)−2gi
(
a+ (1− x)−1 − 1

)
(i = 1, 2).

On the other hand, by the conditions (2.1) and (2.2) we have

h1∈L([0, 1);R+), h2∈Lloc([0, 1);R+), meas
{
x∈[0, 1) : h1(x)>0

}
>0,(2.32)∫ 1

0
H0(x) dx =

∫ +∞

a
G0(t) dt < +∞, (2.33)

where

H0(x) = h1(x)
(∫ x

0
h2(ξ) dξ

)λ1

.

However, according to the above-proved result, the conditions (2.32), (2.33)
and (2.5) guarantee the unique solvability of the problem (2.30), (2.31).
Consequently, the problem (1.1), (1.2) is uniquely solvable as well. 2

Remark 2.1. The condition (2.2) is necessary for the unique solvability of
the problem (1.1), (1.2). In fact, if g1(t) ≡ 0, then for c0 ̸= c1 the problem
(1.1), (1.2) does not have a solution and for c0 = c1 it has an infinite set of
solutions.
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Remark 2.2. In Theorem 2.1 the condition (2.5) is optimal and it cannot
be replaced by the condition

0 ≤ c0 ≤ φ(c1, λ) + ε (2.34)

for any small ε > 0. Indeed, if g1 ∈ L(I;R+) is any function satisfying
condition (2.2),

g2(t) ≡ 0 and c0 = c1 + ε,

the problem (1.1), (1.2) does not have a nonnegative solution even if all
conditions of Theorem 2.1 are fulfilled except (2.5) which is replaced by
(2.34).

Now we consider the problem (1.1), (1.3). Suppose

G1(t) = g1(t)
(
1 +

∫ t

a
g2(s) ds

)λ1

.

For any x > 0 and y > 0, put

ψ(x, y, λ) =



(x
1
λ2 + y)1−λ − x

1−λ
λ2 − (1− λ)

∫ b

a
G1(s) ds for λ < 1

x
1
λ2 + y − exp

(∫ b

a
G1(s) ds

)
x

1
λ2 for λ = 1

x
1−λ
λ2 − (x

1
λ2 + y)1−λ − (λ− 1)

∫ b

a
G1(s) ds for λ > 1

.

Theorem 2.2. Let the condition (2.1) hold and, moreover, either c0 = 0
or

c0 > 0 and ψ(c0, c1, λ) ≥ 0. (2.35)

Then the problem (1.1), (1.3) has a unique nonnegative solution.

To prove the theorem, we need the following lemma.

Lemma 2.3. Assume (2.1) and (2.35). In addition, let the system of dif-
ferential inequalities (2.7) have a solution (v1, v2) satisfying the conditions

v1(a) = 0, v2(a) = c0. (2.36)

Then the inequality (2.9) is valid.

Proof. Put

v(s) = c
1
λ2
0 + v1(s).

Then we have from (2.7) and (2.36)

v(a+) = c
1
λ2
0 , v(b−) = c

1
λ2
0 + v1(b−), v(t) ≥ c

1
λ2
0 ,
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0 < v2(t) ≤ c0 +

∫ t

0
g2(s)v

λ2
1 (s) ds ≤

≤ c0 + vλ2
1 (t)

∫ t

0
g2(s) ds ≤ vλ2(t)

(
1 +

∫ t

0
g2(s) ds

)
and

v′(t)

vλ(t)
=

1

vλ(t)

∫ t

0
g1(s)v

λ1
2 (s) ds ≤ G1(t) for t ∈ I.

Integrating this inequality from a to b, we get

ψ(c0, v1(b−), λ) ≤ 0.

Since ψ is an increasing function with respect to the second argument, from
here and (2.35) the inequality (2.9) follows. 2

Proof of Theorem 2.2. If g1(s) ≡ 0, then the unique solvability of the
problem (1.1), (1.3) is obvious. Hence, in what follows, we assume that the
condition (2.2) is satisfied. The proof of the existence of a nonnegative
solution of the investigated problem will be omitted because it is similar to
that one of the problem (1.1), (1.2). The only difference is that one must
use Lemma 2.3 instead of Lemma 2.1.

Now we prove that the problem (1.1), (1.3) has no more than one non-
negative solution. Assume the contrary that there exist two different non-
negative solutions (u1, u2) and (u1, u2).

If u1(s) = u1(s) for some s ∈ I, then by Theorem 2.1, u1(t) = u1(t) for
s < t < b. Thus, because (u1, u2) and (u1, u2) are different solutions, there
exists t0 ∈ I such that u1(t) ̸= u1(t) for a < t < t0 and

u1(t0) = u1(t0). (2.37)

Without loss of generality we can assume that

u1(t) > u1(t) for a < t < t0. (2.38)

Then

u2(t)− u2(t) =

∫ t

a
g2(s)

(
uλ2
1 (s)− uλ2

1 (s)
)
ds ≥ 0 for a < t < t0

and (
u1(t)− u1(t)

)′
= g1(t)

(
uλ2
2 (t)− uλ2

2 (t)
)
≥ 0 a.e. on (a, t0).

The last inequality gives a contradiction with the conditions (2.37) and
(2.38). If u1(s) ̸= u1(s) for any s ∈ I, the argument is similar and so the
proof is complete. 2
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Remark 2.3. It can be easily seen that if g1 ∈ L(I;R+), g2 ∈ Lloc(I;R+)
and G0 ̸∈ L(I;R+), then for any c0 ≥ 0 and c1 ∈ (0,+∞) the problems
(1.1), (1.2) and (1.1), (1.3) do not have solutions. Consequently, in Theo-
rems 2.1 and 2.2 the condition G0 ∈ L(I;R+) is necessary.

3. Problems (1.1), (1.4) and (1.1), (1.5)

We study the problems (1.1), (1.4) and (1.1), (1.5) in the case when (2.1)
holds but the assumption (2.2) is changed by the stronger one

meas
{
s ∈ (t, b) : g1(s)g2(s) > 0

}
> 0 for a < t < b. (3.1)

Below we will use the following notation:

λ = λ1λ2, µ =
(1 + λ1)(1 + λ2)

λ1 + λ2 + 2
, µi =

1 + λi
µ

(i = 1, 2), (3.2)

g(t) =
(
µ1g1(t)

) 1
µ1

(
µ2g2(t)

) 1
µ2 , (3.3)

Gρ(t) = g1(t)
(
ρ+

∫ t

a
g2(s) ds

)λ1

(ρ > 0). (3.4)

Obviously, when G0 ∈ L(I;R+), we have Gρ ∈ L(I;R+). Put

r1(t; ρ) =

[(
(λ− 1)

∫ b

t
Gρ(s) ds

) 1
1−λ − 1

]
+

,

r2(t; ρ) =

∫ t

a
g2(s)r

λ2
1 (s; ρ) ds,

(3.5)

and for g ∈ L(I;R+) put

r∗i (t; ρ)=ρ+

(
(1+λi)

∫ t

a
gi(τ)

(
(µ−1)

∫ b

τ
g(s) ds

) λi
1−µ

dτ

) 1
1+λi

(i=1, 2). (3.6)

Theorem 3.1. Assume (2.1), (3.1) and

λ > 1, 0 ≤ c0 <
(
(λ− 1)

∫ b

a
G0(s) ds

) 1
1−λ

. (3.7)

Then the problem (1.1), (1.4) has at least one nonnegative solution (u1, u2),
g ∈ L(I;R+) and there exists a positive number ρ such that (u1, u2) satisfies

ri(t; ρ) ≤ ui(t) ≤ r∗i (t; ρ) for t ∈ I (i = 1, 2). (3.8)

To prove this theorem, we need the four lemmas below.
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Lemma 3.1. Let

gi ∈ Lloc(I;R+) (i = 1, 2), λ > 1, (3.9)

and the condition (3.1) be satisfied. In addition, let the system (1.1) have
at least one nontrivial nonnegative solution (u1, u2) on I. Then∫ b

a
g(s) ds <∞, (3.10)

and (u1, u2) satisfies

u1(t)u2(t) ≤
(
(µ− 1)

∫ b

t
g(s) ds

) 1
1−µ

for t ∈ I. (3.11)

Proof. In view of (3.1) and the fact that (u1, u2) is a nontrivial solution
of (1.1), there exists a0 ∈ I such that

v(t) = u1(t)u2(t) > 0 for a0 < t < b. (3.12)

Moreover,

either a0 = a, or a0 > a and v(t) = 0 for a < t < a0. (3.13)

It is clear that

v′(t) = g1(t)u
λ1+1
2 (t) + g2(t)u

λ2+1
1 (t). (3.14)

Since λ > 1, it follows from (3.2)

µ > 1, µi > 1 (i = 1, 2),
1

µ1
+

1

µ2
= 1.

Using this and the Young inequality, we get

g(t)vµ(t) =
(
(µ1g1(t))

1
µ1 uµ1 (t)

)(
(µ2g2(t))

1
µ2 uµ2 (t)

)
≤

≤ g1(t)u
λ1+1
2 (t) + g2(t)u

λ2+1
1 (t) for a0 < t < b.

Hence it follows from (3.12) and (3.14)

v′(t)

vµ(t)
≥ g(t) a.e. on (a0, b).

Integrating this inequality from t to s, a0 < t < s < b, we have

1

vµ−1(t)
≥ 1

vµ−1(s)
+ (µ− 1)

∫ s

t
g(τ) dτ > (µ− 1)

∫ s

t
g(τ) dτ,

and, consequently, as s→ b,

∞ >
1

vµ−1(t)
≥ (µ− 1)

∫ b

t
g(τ) dτ for a0 < t < b.
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From here and the fact g ∈ Lloc(I;R+), the inequalities (3.10) and (3.11)
follow. 2

Lemma 3.2. Let the assumptions of Lemma 3.1 be fulfilled. Then there
exists a positive constant ρ such that any solution (u1, u2) : I → R2

+ of the
system (1.1) satisfies the estimation

ui(t) ≤ r∗i (t; ρ) for t ∈ I (i = 1, 2). (3.15)

Proof. In view of (3.1), there exists a0 ∈ (a, b) such that∫ a0

a
gi(s) ds > 0 (i = 1, 2). (3.16)

On the other hand, according to Lemma 3.1, the condition (3.10) is satisfied.
Since λ > 1, we have µ > 1. Put

ρ1 =
(
(µ− 1)

∫ b

a
g(s) ds

) 1
(1−µ)λ2

(∫ a0

a
g2(s) ds

)− 1
λ2 ,

ρ2 =
(
(µ− 1)

∫ b

a
g(s) ds

) 1
(1−µ)λ1

(∫ a0

a
g1(s) ds

)− 1
λ1 ,

and ρ = max {1, ρ1, ρ2}. Let (u1, u2) : I → R2
+ be a solution of the system

(1.1). According to Lemma 3.1, the estimation (3.11) holds. If u1(a) ≤ 1,
then, obviously,

u1(a) ≤ ρ. (3.17)

We will show that this estimation holds also when u1(a) > 1. In this case
we have u1(a0) > u1(a) > 1, and from here and (3.11) we get

u2(a0) <
(
(µ− 1)

∫ b

a0

g(s) ds
) 1

1−µ
.

Taking into account this and the condition (3.16), we have from (1.1)

u2(a0) = u2(a) +

∫ a0

a
g2(s)u

λ2
1 (s) ds > uλ2

1 (a)

∫ a0

a
g2(s) ds

and so

u1(a) < u
1
λ2
2 (a0)

(∫ a0

a
g2(s) ds

)− 1
λ2 < ρ1.

Hence, (3.17) holds.
From (1.1) we have(

u1+λ1
1 (t)

)′
= (1 + λ1)g1(t)

(
u1(t)u2(t)

)λ1 .
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From here and the inequalities (3.11) and (3.17) we have(
u1+λ1
1 (t)

)′ ≤ (1 + λ1)g1(t)
(
(µ− 1)

∫ b

t
g(s) ds

) λ1
1−µ

and by integration

u1+λ1
1 (t) ≤ ρ1+λ1 + (1 + λ1)

∫ t

a
g1(τ)

(
(µ−1)

∫ b

τ
g(s) ds

) λ1
1−µ

dτ for t∈I.

Consequently, using (3.2) and the inequality (x+ y)q ≤ xq + yq for x > 0,
y > 0 (0 < q < 1), we have

u1(t) ≤ r∗1(t; ρ) for t ∈ I.

Analogously, the second estimation (3.15) can be proved. 2

Lemma 3.3. Let λ > 1 and the conditions (2.1) and (3.1) be satisfied.
In addition, let the system (1.1) have at least one nontrivial nonnegative
solution (u1, u2) on I. Then there exists a positive number ρ such that u1
satisfies the estimation

1 + u1(t) ≥
(
δ + (λ− 1)

∫ b

t
Gρ(s) ds

) 1
1−λ

for t ∈ I, (3.18)

where
δ = lim

t→b
(1 + u1(t))

1−λ. (3.19)

Proof. By Lemma 3.2, there exists ρ > 0 such that any solution (u1, u2) :
I → R2

+ of the system (1.1) satisfies the estimation ui(a) ≤ ρ (i = 1, 2).
Taking into account this and (3.4), from (1.1) we have

u2(t) = u2(a) +

∫ t

a
g2(s)u

λ2
1 (s) ds ≤ ρ+

(∫ t

a
g2(s) ds

)
uλ2
1 (t) ≤

≤
(
ρ+

∫ t

a
g2(s) ds

)
(1 + u1(t))

λ2 for t ∈ I

and
(λ− 1)u′1(t)

(1 + u1(t))λ
≤ (λ− 1)Gρ(t) for t ∈ I.

Integrating this inequality from t to b, we get

(1 + u1(t))
1−λ ≤ δ + (λ− 1)

∫ b

t
Gρ(s) ds for t ∈ I.

From here, the estimation (3.18) follows. 2

In the sequel, we will also use the following obvious lemma.
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Lemma 3.4. Let gi ∈ Lloc(I;R+) (i = 1, 2) and (u1k, u2k) : I → R2
+

(k = 1, 2, . . .) be a sequence of solutions of the system (1.1) such that

lim sup
k→+∞

uik(t) < +∞ for t ∈ I (i = 1, 2).

Then there exists a solution (u1, u2) : I → R2
+ of the system (1.1) and a

subsequence of the given sequence (u1km , u2km) (m = 1, 2, . . .) such that for
any b0 ∈ (a, b),

lim
k→∞

uikm(t) = ui(t) (i = 1, 2)

uniformly on [a, b0].

Proof of Theorem 3.1. In accordance with (2.4) and (3.7), there exists
c > 0 such that

c0 < φ(c+ k, λ) (k = 1, 2, . . .).

By Theorem 2.1, for any integer k the system (1.1) has a solution (u1k, u2k) :
I → R2

+ satisfying the boundary conditions

u1k(a+) = c0, u1k(b−) = c+ k. (3.20)

On the other hand, by Lemmas 3.1–3.3, the condition (3.10) is satisfied
and there exists a positive constant ρ such that for any integer k there are
satisfied the following inequalities

uik(t) ≤ r∗i (t; ρ) for t ∈ I (i = 1, 2) (3.21)

and

1 + u1k(t) ≥
(
δk + (λ− 1)

∫ b

t
Gρ(s) ds

) 1
1−λ

for t ∈ I (i = 1, 2), (3.22)

where δk = (c + k)1−λ. By Lemma 3.4 and the condition (3.21) without
loss of generality we can suppose that for any b0 ∈ (a, b) the sequence
(u1k, u2k) (k = 1, 2, . . .) is uniformly convergent on (a, b0) to some solution
(u1, u2) : I → R2

+ of the system (1.1). Then in view of (3.5) and (3.20)–
(3.22) we have that (u1, u2) is a solution of the problem (1.1), (1.4) satisfying
the inequalities (3.8). 2

Theorem 3.2. Assume (2.1), (3.1) and

λ > 1, 0 ≤ c0 <
(
(λ− 1)

∫ b

a
G1(s) ds

) λ2
1−λ

. (3.23)

Then the problem (1.1), (1.4) has at least one nonnegative solution (u1, u2)
and there exists a positive number ρ such that (u1, u2) satisfies (3.8).
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Theorem 3.2 can be proved analogously to Theorem 3.1. The only dif-
ference is in using Theorem 2.2 instead of Theorem 2.1. 2

4. Problems for the Equation (1.6)

For an arbitrary ρ ≥ 0, we set

H1ρ(t)=h(t)
(
ρ+

∫ t

0
h0(s) ds

)ℓ
, H2ρ(t)=h0(t)

(
ρ+

∫ t

0
h(s) ds

)1/p
. (4.1)

We study the problems (1.6), (1.9i) and (1.6), (1.10i) in the cases when

h ∈ L(I;R+), h0 ∈ Lloc(I; (0,+∞)), H10 ∈ L(I;R+); (4.21)

h0 ∈ L(I; (0,+∞)), h ∈ Lloc(I;R+), H20 ∈ L(I;R+) (4.22)

and

meas
{
t ∈ I : h(t) > 0

}
> 0. (4.3)

When investigating the problems (1.6), (1.11i) and (1.6), (1.12i), instead
of (4.3) we assume that

meas
{
s ∈ (t, b) : h(s) > 0

}
> 0 for t ∈ I. (4.4)

If for some i ∈ {1, 2} the condition (4.2i) is fulfilled, then for arbitrary
x > 0 and y > 0 we define

φi(x, ℓ, p) =



[
x

p−ℓ
p − p− ℓ

p

∫ b

a
Hi0(s) ds

] p
p−ℓ

+

for ℓ < p

exp
(
−

∫ b

a
Hi0(s) ds

)
x for ℓ = p(

x
p−ℓ
p +

ℓ− p

p

∫ b

a
Hi0(s) ds

) p
p−ℓ

for ℓ > p

, (4.5i)

ψ1(x, y, ℓ, p) =



(xp + y)
p−ℓ
p − xp−ℓ − p− ℓ

p

∫ b

a
H11(s) ds for ℓ < p

xp + y − exp
(∫ b

a
H11(s) ds

)
xp for ℓ = p

xp−ℓ − (xp + y)
1− ℓ

p − ℓ− p

p

∫ b

a
H11(s) ds for ℓ > p

,
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ψ2(x, y, ℓ, p) =



(x1/ℓ + y)
p−ℓ
p − x

p−ℓ
ℓp − p− ℓ

p

∫ b

a
H21(s) ds for ℓ < p

x1/ℓ + y − exp
(∫ b

a
H21(s) ds

)
x1/ℓ for ℓ = p

x
p−ℓ
ℓp − (x1/ℓ + y)

p−ℓ
p − ℓ− p

p

∫ b

a
H21(s) ds for ℓ > p

.

Theorem 4.1. Let i ∈ {1, 2}. Assume (4.2i), (4.3) and the condition

0 ≤ c0 ≤ φi(c1, ℓ, p) (4.6i)

hold. Then the problem (1.6), (1.9i) has a unique nonnegative, nondecreas-
ing solution.

Proof. As it is mentioned in Introduction, formulas (1.7i) establish one-to-
one correspondence between the set of nonnegative, nondecreasing solutions
of the problem (1.6), (1.9i) and that of nonnegative solutions of the problem
(1.1), (1.2), where the numbers λ1, λ2 and the functions g1, g2 are given
by the equalities (1.8i). On the other hand, from the equalities (4.1), (4.5i)
and the conditions (4.2i), (4.3) and (4.6i) follow the conditions (2.1), (2.2)
and (2.5). However, by Theorem 2.1, the last three conditions guarantee
the existence of a unique nonnegative solution of the problem (1.1), (1.2).
Consequently, the problem (1.6), (1.9i) has likewise a unique nonnegative,
nondecreasing solution. 2

Analogously, from Theorem 2.2 we have the following.

Theorem 4.2. Let i ∈ {1, 2} and the condition (4.2i) hold. Moreover,
either c0 = 0, or c0 > 0 and ψi(c0, c1, ℓ, p) ≥ 0. Then the problem
(1.6), (1.10i) has a unique nonnegative, nondecreasing solution.

Let ν, ν1, ν2 be the numbers and h1 the function defined by

ν =
(1 + ℓ)(1 + p)

ℓp+ 2p+ 1
, ν1 =

ℓp+ 2p+ 1

1 + p
, ν2 =

ℓp+ 2p+ 1

p(1 + ℓ)
; (4.7)

h1(t) = (ν1h(t))
1/ν1(ν2h(t))

1/ν2 . (4.8)

If ℓ > p, then for an arbitrary ρ > 0 we put

w0(t; ρ)=

[(ℓ−p
p

∫ b

t
H1ρ(s) ds

) p
p−ℓ−1

]1/p
+

, w1(t; ρ)=

∫ t

a
h0(s)w0(s; ρ) ds; (4.9)

w2(t; ρ)=

[(ℓ−p
p

∫ b

t
H2ρ(s) ds

) p
p−ℓ − 1

]
+

; (4.10)
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w∗(t; ρ)=ρ+

((
1+

1

p

)∫ t

a
h0(τ)

(
(ν−1)

∫ b

τ
h1(s) ds

) 1
p(1−ν)

dτ

) p
1+p

. (4.11)

We study the problem (1.6), (1.11i) in the case when

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ b

a
Hi0(s) ds

) p
p−ℓ

, (4.12i)

and the problems (1.6), (1.121) and (1.6), (1.122) in the cases when

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ b

a
H11(s) ds

) 1
p−ℓ

, (4.131)

and

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ b

a
H21(s) ds

) ℓp
p−ℓ

, (4.132)

respectively.

Theorem 4.3. Let i ∈ {1, 2} and the conditions (4.2i), (4.4) and (4.12i)
hold. Then the problem (1.6), (1.11i) has at least one nonnegative, nonde-
creasing solution u and there exists a positive constant ρ, independent of
c0, such that u satisfies the estimation

wi(t; ρ) ≤ u(t) ≤ w∗(t; ρ) for t ∈ I. (4.14)

Theorem 4.4. Let i ∈ {1, 2} and the conditions (4.2i), (4.4) and (4.13i)
hold. Then the problem (1.6), (1.12i) has at least one nonnegative, nonde-
creasing solution u and there exists a positive constant ρ, independent of
c0, such that u satisfies (4.14).

Theorem 4.3 (Theorem 4.4) is proved similarly to Theorem 4.1. The only
difference is that instead of Theorem 2.1 we use Theorem 3.1 (Theorem 3.2).

As an example, let us consider the case when b = +∞,

a > 0, lim
t→a

h0(t) = 1 (4.15)

and there exist constants γ1 > 0, γ2 > γ1, σ ∈ R and σ0 ∈ R such that

γ1t
σ ≤ h(t) ≤ γ2t

σ, γ1t
σ0 ≤ h0(t) ≤ γ2t

σ0 a.e. on (a,+∞). (4.16)

In this case, the boundary conditions (1.11i) and (1.12i) (i = 1, 2) take,
respectively, the form

u′(a) = c0, lim
t→+∞

(
t−σ0u′(t)

)
= +∞; (4.171)

u(a) = c0, lim
t→+∞

u(t) = +∞; (4.172)
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u(a) = c0, lim
t→+∞

(
t−σ0u′(t)

)
= +∞; (4.181)

u′(a) = c0, lim
t→+∞

u(t) = +∞, (4.182)

where u′(a) = lim
t→a

u′(t).

Along with (1.6), (4.17i) and (1.6), (4.18i) (i = 1, 2) we consider also for
every t0 ∈ (a,+∞) the problem on the existence of a blow-up solution u of
the equation (1.6) which satisfies one of the following two conditions:

u′(a) = c0, lim
t→t0

u(t) = +∞; (4.191)

u(a) = c0, lim
t→t0

u(t) = +∞. (4.192)

In view of (4.1) and (4.16), to fulfil (4.21) it is necessary and sufficient
that

either σ0 > −1, σ < −1− ℓ(σ0 + 1), or σ0 ≤ −1, σ < −1, (4.201)

and to fulfil (4.22) it is necessary and sufficient that

either σ > −1, σ0 < −1− σ + 1

p
, or σ ≤ −1, σ0 < −1. (4.202)

We consider the problems (1.6), (4.17i) and (1.6), (4.19i) in the case when

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ +∞

a
Hi0(s) ds

) p
p−ℓ

, (4.21i)

and the problems (1.6), (4.181) and (1.6), (4.182), respectively, in the cases
when

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ +∞

a
H11(s) ds

) 1
p−ℓ

, (4.221)

and

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ +∞

a
H21(s) ds

) ℓp
p−ℓ

. (4.222)

Corollary 4.1. Let i ∈ {1, 2} and assume (4.15), (4.16), (4.20i) and
(4.21i). Then the problem (1.6), (4.17i) has at least one nonnegative, non-
decreasing solution u and there exist constants ρ1 > 0 and ρ2 > ρ1, inde-
pendent on c0, such that u satisfies the inequalities

ρ1 ≤ lim inf
t→+∞

(t−αu(t)) ≤ lim sup
t→+∞

(t−αu(t)) ≤ ρ2, (4.23)

where

α =
1 + σ + p(1 + σ0)

p− ℓ
. (4.24)
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Proof. According to the above-said, if along with (4.16) the condition
(4.20i) is fulfilled, then the condition (4.2i) is likewise fulfilled. On the other
hand, (4.16) and (4.21i) guarantee the fulfilment of the conditions (4.4) and
(4.12i). Moreover, (4.15) shows that the boundary conditions (1.11i) and
(4.17i) are equivalent. Consequently, all the conditions of Theorem 4.3 are
fulfilled. Therefore the problem (1.6), (1.17i) has at least one nonnegative,
nondecreasing solution u and every such solution satisfies (4.14), where ρ is
a positive constant, independent of c0. If i = 1, σ0 > −1, σ < −1−ℓ(σ0+1)
(i = 2, σ > −1, σ0 < −1− σ+1

p ), then in view of (4.15) and (4.16), it follows

from (4.1), (4.9) and (4.10) that

wi(t; ρ) ≥ ρ1t
α for t ≥ a0,

where a0 ≥ a and ρ1 > 0 are independent on c0 and u. Therefore from
(4.14) we find that

lim inf
t→+∞

(
t−αu(t)

)
≥ ρ1. (4.25)

Let us now show that the above inequality holds even in the case, when
i = 1, σ0 ≤ −1, σ < −1 (i = 2, σ ≤ −1, σ0 < −1). Let v : [a,+∞) → R be
a locally absolutely continuous function such that

v(t) =
( u′(t)
h0(t)

)p
, v′(t) = h(t)uℓ(t) a.e. on (a,+∞). (4.26)

Then by virtue of (4.16), a.e. on (a,+∞) we have

v1/p(t)v′(t) ≥ γ1
γ2
tσ−σ0uℓ(t)u′(t), (4.27)

v1/p(t)v′(t) ≤ γ2
γ1
tσ−σ0uℓ(t)u′(t). (4.28)

Consider first the case, when σ < σ0. We choose t0 > a and t1 > t0 so
that v(t0) > 0 and

β1t
σ−σ0uℓ+1(t0) < v

p+1
p (t0) for t ≥ t1,

where β1 =
(1+p)γ1
(1+ℓ)pγ2

. Integrating (4.27) on (t0, t), we obtain

v
p+1
p (t) ≥ v

p+1
p (t0) +

(p+ 1)γ1
pγ2

∫ t

t0

sσ−σ0uℓ(s)u′(s) ds >

> v
p+1
p (t0) + β1t

σ−σ0
(
uℓ+1(t)− uℓ+1(t0)

)
>

> β1t
σ−σ0uℓ+1(t) for t ≥ t1.
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Hence it follows from (4.26) that

v′(t)v
− ℓ(p+1)

p(ℓ+1) (t) < β2t
σ+

ℓ(σ0−σ)
ℓ+1 a.e. on (t1,+∞),

where β2 = γ2β
− ℓ

ℓ+1

1 . The integration of this inequality on (t,+∞) yields

v
p−ℓ

p(ℓ+1) (t) < β
p−ℓ
ℓ+1

3 t
σ+1+ℓ(σ0+1)

ℓ+1 for t ≥ t1,

where

β3 =
( (ℓ− p)β2
p(1 + σ + (1 + σ0)ℓ)

) ℓ+1
p−ℓ

.

Taking into account (4.16), we get from the last inequality

u′(t) > γ1β3t
σ+1+ℓ(σ0+1)

p−ℓ
+σ0 for t ≥ t1

and

u(t) > ρ1t
α for t ≥ t1,

where ρ1 = (γ1β3)/α. Consequently, the inequality (4.25) is valid.
The validity of the inequality (4.25) for σ ≥ σ0 can be proved analogously.

In this case instead of (4.27) we have to apply the inequality (4.28).
To complete the proof, it remains to show that

lim sup
t→+∞

(
t−αu(t)

)
≤ ρ2, (4.29)

where ρ2 is a positive constant, not depending on c0 and u.
Since, along with the condition (4.20i) the inequality ℓ > p is likewise

fulfilled, then from (4.7) and (4.24) we obtain

σ

ν1
+
σ0
ν2

+ 1 =
(1 + p)(1 + σ) + p(1 + ℓ)(1 + σ0)

ℓp+ 2p+ 1
< 0,(

1 + σ0 +
( σ
ν1

+
σ0
ν2

+ 1
) 1

p(1− ν)

) p

1 + p
= α.

By virtue of these conditions and the inequalities (4.16), from (4.8) and
(4.11) we have

w∗(t; ρ) ≤ ρ2t
α for t ≥ a,

where ρ2 is a positive constant, depending only on a, p, ℓ, γ1, γ2, σ0,
σ. Taking into account the above estimation, from (4.14) we obtain the
inequality (4.29). 2

Reasoning analogously, from Theorem 4.4 we obtain the following.
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Corollary 4.2. Let i ∈ {1, 2} and assume (4.15), (4.16), (4.20i) and
(4.22i). Then the problem (1.6), (1.18i) has at least one nonnegative, non-
decreasing solution u and there exist constants ρ1 > 0 and ρ2 > ρ1, inde-
pendent on c0, such that u satisfies the inequalities (4.23), where α is given
by (4.24).

Remark 4.1. According to Corollaries 4.1 and 4.2, it is clear that in
Theorems 3.1 and 3.2 (in Theorems 4.3 and 4.4) the two-sided estimations
(3.8) and (4.14) are optimal in the sense that they cannot be replaced by
the estimations

η1(t)ri(t; ρ) ≤ ui(t) ≤ η2(t)r
∗
i (t; ρ) for t ∈ I (i = 1, 2)

and
η1(t)wi(t; ρ) ≤ u(t) ≤ η2(t)w

∗(t; ρ) for t ∈ I,

where ηi : [a,+∞) → (0,+∞) (i = 1, 2) are continuous functions such that
either lim

t→b
η1(t) = +∞, or lim

t→b
η2(t) = 0.

Corollary 4.3. Let i ∈ {1, 2} and assume (4.15), (4.16), (4.20i) and (4.21i)
be fulfilled. Then for an arbitrary t0 ∈ (a,+∞) the problem (1.6), (4.19i)
has at least one nonnegative, nondecreasing solution u and there exist con-
stants ρ1(t0) > 0 and ρ2(t0) > ρ1(t0), independent on c0, such that u
satisfies the inequalities

ρ1(t0)≤ lim inf
t→t0

(
(t−t0)

p+1
ℓ−p u(t)

)
≤ lim sup

t→t0

(
(t−t0)

p+1
ℓ−p u(t)

)
≤ρ2(t0). (4.30)

Proof. First, notice that the boundary conditions (4.191) are equivalent
with the conditions

u′(a) = c0, lim
t→t0

u′(t) = +∞, (4.19′1)

because the functions h0 and h are bounded in the interval (a, t0).
Let a0 = t0 − a. Using the transformation

x =
a20

t0 − t
, v(x) = u(t) for a < t < t0, (4.31)

the equation (1.6) is reduced to the equation(( v′

f0(x)

)p)′
= f(x)vℓ, (4.32)

where, clearly, the symbol ′ denotes the derivative with respect to x, and

f0(x) =
(a0
x

)2
h0

(
t0 −

a20
x

)
, f(x) =

(a0
x

)2
h
(
t0 −

a20
x

)
. (4.33)
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As for the boundary conditions (4.19′1) and (4.192), they take, respec-
tively, the form

v′(a0) = c0, lim
x→+∞

(x2v′(x)) = +∞ (4.341)

and

v(a0) = c0, lim
x→+∞

v(x) = +∞. (4.342)

By virtue of the conditions (4.15), (4.16) and (4.21i), it follows from
(4.33) that

lim
x→a0

f0(x) = 1,

δ1(t0) ≤ x2f0(x) ≤ δ2(t0), δ1(t0) ≤ x2f(x) ≤ δ2(t0) for x ≥ a0
(4.35)

and

ℓ > p, 0 ≤ c0 <
(ℓ− p

p

∫ +∞

a
Fi0(s) ds

)
, (4.36i)

where δ1(t0) and δ2(t0) are positive constants, depending on t0,

F10(x) = f(x)
(∫ x

a0

f0(s) ds
)ℓ
, F20(x) = f0(x)

(∫ x

a0

f0(s) ds
)1/p

.

By Corollary 4.1, under the conditions (4.35) and (4.36i) the problem
(4.32), (4.34i) has at least one nonnegative, nondecreasing solution v and
there exist constants η1(t0) > 0 and η2(t0) > η1(t0), independent on c0,
such that v satisfies the inequalities

η1(t0) ≤ lim inf
x→+∞

(
x

p+1
p−ℓ v(x)

)
≤ lim sup

x→+∞

(
x

p+1
p−ℓ v(x)

)
≤ η2(t0).

On the other hand, according to the above-said, the transformation
(4.31) establishes one-to-one correspondence between the set of nonnega-
tive, nondecreasing solutions of the problems (1.6), (1.19i) and (4.32), (4.34i).
Therefore it is clear that the problem (1.6), (1.19i) has at least one nonnega-
tive, nondecreasing solution and every such solution satisfies the inequalities
(4.30), where

ρk(t0) = a
2(p+1)
p−ℓ

0 ηk(t0) (k = 1, 2). 2
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2. M. Cecchi, Z. Došlá, M. Marini, On the dynamics of the generalized Emden-Fowler

equation. Georgian Math. J. 7(2000), No. 2, 269-282.
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4. M. Cecchi, Z. Došlá, M. Marini, Principal solutions and minimal sets of quasilinear
differential equations. Dynam. Systems Appl. 13(2004), No. 2, 221–232.

5. T. A. Chanturia, On singular solutions of nonlinear systems of ordinary differential
equations. Colloq. Math. Soc. J. Bolyai 15(1975), 107–119.

6. T. A. Chanturia, On monotonic solutions of systems of nonlinear differential equa-
tions. (Russian) Ann. Polon. Math. 37(1980), 59–70.
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