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We study the periodic boundary value problem

u′′′ = p1(t)u + p2(t)u′ + p3(t)u′′ + q(t), (1)
u(i−1)(b) = u(i−1)(a) + ci (i = 1, 2, 3), (2)

where −∞ < a < b < +∞, the ci (i = 1, 2, 3) are real constants, and the pi : [a, b] → R (i = 1, 2, 3)
and q : [a, b] → R are Lebesgue integrable functions.

By C̃ we denote the space of absolutely continuous functions x : [a, b] → R, and by C̃1 we denote
the space of functions x : [a, b] → R absolutely continuous together with their first derivatives.
We write x(t) �≡ y(t) if functions x and y differ on a set of a positive measure.

In what follows, we consider the cases in which there exists a number σ ∈ {−1, 1} such that

σp1(t) ≥ 0 for a ≤ t ≤ b, p1(t) �≡ 0, (3)

and one of the following four conditions is satisfied:

p2 ∈ C̃, p3 ∈ C̃1, σ (p2(b) − p2(a)) ≥ 0, p3(b) = p3(a), σ (p′
3(b) − p′

3(a)) ≤ 0, (41)

p1 ∈ C̃, p3 ∈ C̃1, p1(b) ≥ p1(a), p3(b) = p3(a), σ (p′
3(b) − p′

3(a)) ≤ 0, (42)

p1 ∈ C̃1, p2 ∈ C̃, p1(b) = p1(a), σ (p′
1(b) − p′

1(a)) ≤ 0, σ (p2(b) − p2(a)) ≥ 0, (43)

p1 ∈ C̃1, p2 ∈ C̃, p1(b) = p1(a), σ (p′
1(b) − p′

1(a)) ≥ 0, σ (p2(b) − p2(a)) ≤ 0. (44)

In these cases, we find earlier unknown (see [1–14] and the bibliography therein) and, in a sense,
sharp criteria for the unique solvability of problem (1), (2).

Along with problem (1), (2), consider the corresponding homogeneous problem

u′′′ = p1(t)u + p2(t)u′ + p3(t)u′′, (10)
u(i−1)(b) = u(i−1)(a) (i = 1, 2, 3). (20)

Suppose that this problem has a nontrivial solution u. If we consecutively multiply both sides of
Eq. (10) by σu(t), σu′′(t), and −u′(t) and integrate from a to b, then, in view of (3), we obtain

b∫

a

|p1(t)| u2(t)dt + σ

b∫

a

p2(t)u′(t)u(t)dt + σ

b∫

a

p3(t)u′′(t)u(t)dt = 0, (5)

σ

b∫

a

p3(t)u′′2(t)dt + σ

b∫

a

p2(t)u′(t)u′′(t)dt +

b∫

a

|p1(t)| u(t)u′′(t)dt = 0, (6)
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b∫

a

u′′2(t)dt +

b∫

a

p1(t)u(t)u′(t)dt +

b∫

a

p2(t)u′2(t)dt +

b∫

a

p3(t)u′′(t)u′(t)dt = 0. (7)

On the other hand, if i ∈ {1, 2, 3}, j ∈ {1, 2}, and pi ∈ C̃, then
b∫

a

pi(t)u(j−1)(t)u(j)(t)dt =
1
2

(pi(b) − pi(a))
[
u(j−1)(a)

]2 − 1
2

b∫

a

p′
i(t)

[
u(j−1)(t)

]2
dt.

If i ∈ {1, 3}, pi ∈ C̃1, and pi(b) = pi(a), then
b∫

a

pi(t)u(t)u′′(t)dt =
1
2

(p′
i(a) − p′

i(b)) u′2(a) +
1
2

b∫

a

p′′
i (t)u

2(t)dt −
b∫

a

pi(t)u′2(t)dt.

Therefore, if condition (41) is satisfied, then, from (5) and (6), we obtain
b∫

a

(
|p1(t)| −

σ

2
p′

2(t) +
σ

2
p′′

3(t)
)

u2(t)dt ≤ σ

b∫

a

p3(t)u′2(t)dt, (81)

σ

b∫

a

p3(t)u′′2(t)dt ≤ σ

2

b∫

a

p′
2(t)u

′2(t)dt −
b∫

a

|p1(t)| u(t)u′′(t)dt, (91)

and if condition (42) is satisfied, then relations (5) and (7) imply that
b∫

a

(
|p1(t)| +

σ

2
p′′

3(t)
)

u2(t)dt ≤ −σ

b∫

a

p2(t)u′(t)u(t)dt + σ

b∫

a

p3(t)u′2(t)dt, (82)

b∫

a

u′′2(t)dt ≤ 1
2

b∫

a

p′
1(t)u

2(t)dt −
b∫

a

[
p2(t) −

1
2
p′

3(t)
]

u′2(t)dt. (92)

Likewise, if condition (43) is satisfied, then it follows from (5) and (6) that
b∫

a

(
|p1(t)| −

σ

2
p′

2(t)
)

u2(t)dt ≤ −σ

b∫

a

p3(t)u′′(t)u(t)dt, (83)

σ

b∫

a

p3(t)u′′2(t)dt ≤
b∫

a

(
|p1(t)| +

σ

2
p′

2(t)
)

u′2(t)dt − σ

2

b∫

a

p′′
1(t)u

2(t)dt. (93)

If condition (44) holds, then from (6), we obtain
b∫

a

(
|p1(t)| +

σ

2
p′

2(t)
)

u′2(t)dt − σ

2

b∫

a

p′′
1(t)u

2(t)dt − σ

b∫

a

p3(t)u′′2(t)dt ≤ 0. (94)

Now let us show that
b∫

a

u′′2(t)dt > 0. (10)

Indeed, otherwise we would have u(t) ≡ c0 = const �= 0 by condition (20) and hence p1(t)c0 ≡ 0.
But this contradicts condition (3).

We have thereby proved the following assertion.
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Lemma 1. Let p1 satisfy condition (3), and let problem (10), (20) have a nontrivial solution u.
If, in addition, condition (4k) is satisfied for some k ∈ {1, 2, 3}, then u satisfies inequalities (8k),
(9k), and (10). If condition (44) holds, then u satisfies inequalities (94) and (10).

We introduce the notation
d =

b − a

2π
to be used throughout the following.

Theorem 1. Let conditions (3) and (41) be satisfied. In addition, suppose that either

σ (p′
2(t) − p′′

3(t)) ≤ 2 |p1(t)| ,
σp3(t) ≤ 0 for a < t < b,

p′
2(t) − p′′

3(t) �≡ 2p1(t)
(11)

or there exist constants δ ∈ ]0, 1], �1 > 0, �2 ≥ 0, �3 > 0, and � ∈ ]0, �3] such that

σ (p′
2(t) − p′′

3(t)) ≤ 2(1 − δ) |p1(t)| , |p1(t)| < �1 for a < t < b, (12)
σp′

2(t) ≤ 2�2, � ≤ σp3(t) ≤ �3 for a < t < b, (13)

d (�1�3/δ)
1/2 + d2�2 ≤ �. (14)

Then problem (1), (2) has exactly one solution.

Proof. Suppose the contrary. Then the homogeneous problem (10), (20) has a nontrivial solu-
tion u, which satisfies inequalities (81), (91), and (10) by Lemma 1.

If, along with (3) and (41), condition (11) is satisfied, then inequality (81) leads to a contradiction:

0 <

b∫

a

(
|p1(t)| −

σ

2
p′

2(t) +
σ

2
p′′

3(t)
)

u2(t)dt ≤ 0.

Let us proceed to the case in which, along with (3) and (41), conditions (12)–(14) are satisfied.
Then from (81), we obtain the inequality

δ

b∫

a

|p1(t)| u2(t)dt ≤ �3

b∫

a

u′2(t)dt.

This, together with the Wirtinger theorem [15, Th. 258], implies that
b∫

a

|p1(t)| u2(t)dt ≤ �3

δ
d2

b∫

a

u′′2(t)dt. (15)

If, along with (10) and (12)–(15), we use the Schwartz and Wirtinger inequalities, then from (91),
we obtain

�

b∫

a

u′′2(t)dt ≤ �2

b∫

a

u′2(t)dt +

⎛
⎝

b∫

a

p2
1(t)u

2(t)dt

⎞
⎠

1/2 ⎛
⎝

b∫

a

u′′2(t)dt

⎞
⎠

1/2

< �2

b∫

a

u′2(t)dt + �
1/2
1

⎛
⎝

b∫

a

|p1(t)| u2(t)dt

⎞
⎠

1/2 ⎛
⎝

b∫

a

u′′2(t)dt

⎞
⎠

1/2

≤
[
d2�2 + d

(
�1�3

δ

)1/2
] b∫

a

u′′2(t)dt ≤ �

b∫

a

u′′2(t)dt.

The resulting contradiction completes the proof of the theorem.
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If pi(t) ≡ pi = const (i = 2, 3), i.e., Eq. (1) has the form

u′′′ = p1(t)u + p2u
′ + p3u

′′ + q(t), (11)

then Theorem 1 implies the following assertion.

Corollary 1. Let condition (3) be satisfied. In addition, suppose that either σp3 ≤ 0 or

σp3 > 0, |p1(t)| < d−2 |p3| for a < t < b. (16)

Then problem (11), (2) has exactly one solution.

Remark 1. If
p1(t) ≡ d−2p3, p2(t) ≡ −d−2, p3(t) ≡ p3 �= 0, (17)

then conditions (3), (41), (13), and (14) are satisfied, where σ = sgn p3, δ = 1, �1 = d−2 |p3|, �2 = 0,
and � = �3 = |p3|, and, instead of (12) and (16), we have

σ (p′
2(t) − p′′

3(t)) ≤ 2(1 − δ) |p1(t)| , |p1(t)| ≤ �1 for a < t < b, (12′)
σp3 > 0, |p1(t)| ≤ d−2p3 for a < t < b, (16′)

respectively. Nevertheless, the homogeneous problem (10), (20) has the nontrivial solution

u(t) = sin
2π(t − a)

b − a
.

Consequently, condition (12) [respectively, (16)] in Theorem 1 (respectively, Corollary 1) is sharp
in the sense that it cannot be replaced by condition (12′) [respectively, (16′)].

Theorem 2. Let conditions (3) and (42) be satisfied. In addition, suppose that there exist
constants δ ∈ ]0, 1] and �i ≥ 0 (i = 1, 2, 3), � ≥ 0, such that

p′
1(t) ≤ 2�1 |p1(t)| , 2p2(t) − p′

3(t) > −2� for a < t < b, (18)
�1p

2
2(t) ≤ �2 |p1(t)| , σ�1p3(t) ≤ �3, �p′′

3(t) ≥ −2(1 − δ) |p1(t)| for a < t < b, (19)

� +
(
δ−1�1/2

2 + δ−1/2�1/2
3

)2

≤ d−2. (20)

Then problem (1), (2) has exactly one solution.

Proof. Suppose the contrary. Then problem (10), (20) has a nontrivial solution u, which satisfies
inequalities (82), (92), and (10) by Lemma 1.

By virtue of condition (19) and the Schwartz inequality, it follows from (82) that

�1

b∫

a

|p1(t)| u2(t)dt ≤ δ−1�1/2
2 �1/2

1

b∫

a

|p1(t)|1/2 |u(t)||u′(t)| dt + δ−1�3

b∫

a

u′2(t)dt

≤ δ−1�
1/2
2

⎛
⎝�1

b∫

a

|p1(t)| u2(t)dt

⎞
⎠

1/2 ⎛
⎝

b∫

a

u′2(t)dt

⎞
⎠

1/2

+ δ−1�3

b∫

a

u′2(t)dt,

and consequently,

�1

b∫

a

|p1(t)| u2(t)dt ≤
(
δ−1�

1/2
2 + δ−1/2�

1/2
3

)2
b∫

a

u′2(t)dt.

DIFFERENTIAL EQUATIONS Vol. 42 No. 2 2006



ON THE UNIQUE SOLVABILITY OF A PERIODIC BOUNDARY VALUE PROBLEM 169

If, along with the last inequality, we use conditions (10), (18), and (20) and apply the Wirtinger
theorem, then from (92), we obtain

b∫

a

u′′2(t)dt < �1

b∫

a

|p1(t)| u2(t)dt + �

b∫

a

u′2(t)dt

≤
[
� +

(
δ−1�

1/2
2 + δ−1/2�

1/2
3

)2
] b∫

a

u′2(t)dt ≤
b∫

a

u′′2(t)dt.

The resulting contradiction proves the theorem.
This implies the following assertion for the differential equation

u′′′ = p1u + p2(t)u′ + p3u + q(t), (12)

where p1 and p3 are constants.

Corollary 2. If p1 �= 0 and

p2(t) > −d−2 for a < t < b, (21)

then problem (12), (2) has exactly one solution.

Remark 2. If condition (17) is satisfied, then conditions (3), (42), (19), and (20) are valid,
where σ = sgn p3, δ = 1, �1 = �2 = �3 = 0, and � = d−2, and, instead of (18) and (21), we have

p′
1(t) ≤ 2�1 |p1(t)| , 2p2(t) − p′

3(t) ≥ −� for a < t < b, (18′)
p2(t) ≥ −� for a < t < b, (21′)

respectively. On the other hand, in this case, the homogeneous problem (10), (20) has the nontrivial
solution u(t) = sin(2π(t−a)/(b−a)). Consequently, condition (18) [respectively, (21)] in Theorem 2
[respectively, Corollary 2)] is sharp in the sense that it cannot be replaced by condition (18′)
[respectively, (21′)].

Theorem 3. Let conditions (3) and (43) be satisfied. In addition, suppose that there exist
constants δ ∈ ]0, 1] and �i ≥ 0 (i = 1, 2, 3), � ≥ 0, such that

σp′′
1(t) ≤ �1 |p1(t)| , |p1(t)| +

σ

2
p′

2(t) ≤ �2 for a < t < b, (22)

σp′
2(t) ≥ 2(1 − δ) |p1(t)| , �1p

2
3(t) ≤ �3 |p1(t)| for a < t < b, (23)

σp3(t) > � for a < t < b, (24)
d2�2 + δ−2�3 ≤ �. (25)

Then problem (1), (2) has exactly one solution.

Proof. Suppose the contrary. Then the homogeneous problem (10), (20) has a nontrivial solu-
tion u, which satisfies inequalities (83), (93), and (10) by Lemma 1.

By condition (23) and the Schwartz inequality, from (83), we obtain the inequality

�
1/2
1

b∫

a

|p1(t)| u2(t)dt ≤ δ−1�
1/2
3

⎛
⎝

b∫

a

|p1(t)| u2(t)dt

⎞
⎠

1/2 ⎛
⎝

b∫

a

u′′2(t)dt

⎞
⎠

1/2

.

Therefore,

�1

b∫

a

|p1(t)|u2(t)dt ≤ δ−2�3

b∫

a

u′′2(t)dt.
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If, along with this inequality, we use conditions (10), (22), (24), and (25) and apply the Wirtinger
theorem, then from (93), we obtain

�

b∫

a

u′′2(t)dt < �2

b∫

a

u′2(t)dt + �1

b∫

a

|p1(t)| u2(t)dt

≤
[
d2�2 + δ−2�3

] b∫

a

u′′2(t)dt ≤ �

b∫

a

u′′2(t)dt.

The resulting contradiction proves the theorem.
The following assertion can be proved by analogy with the preceding theorem.

Theorem 4. Let conditions (3) and (44) be satisfied, and let

σp′′
1(t) ≤ 0, |p1(t)| +

σ

2
p′

2(t) > 0, σp3(t) ≤ 0 for a < t < b.

Then problem (1), (2) has exactly one solution.

Theorems 3 and 4 imply the following assertion for the differential equation

u′′′ = p1u + p2u
′ + p3(t)u, (13)

where p1 and p2 are constants.

Corollary 3. Let p1 �= 0, and let either

p1p3(t) ≤ 0 for a < t < b,

or
p3(t) sgn p1 > d2 |p1| for a < t < b. (26)

Then problem (13), (2) has exactly one solution.

Remark 3. As was mentioned above, if condition (17) is satisfied, then the homogeneous
problem (10), (20) has a nontrivial solution. This implies that condition (24) [respectively, condi-
tion (26)] in Theorem 3 (respectively, in Corollary 3) cannot be replaced by the condition

σp3(t) ≥ � for a < t < b
(
p3(t) sgn p1 ≥ d2 |p1| for a < t < b

)
.
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14. Kiguradze, I. and Puža, B., Boundary Value Problems for Systems of Linear Functional Differential

Equations , Brno, 2003.
15. Hardy, G., Littlewood, J., and Polya, G., Inequalities , Cambridge, 1934. Translated under the title

Neravenstva, Moscow, 1948.

DIFFERENTIAL EQUATIONS Vol. 42 No. 2 2006


