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1. Introduction

Suppose > 2 is an arbitrary natural numbefpoo <a < b < +o00, andp; :la, b[ > R
(i=1,...,n) andq:la, b[ > R are measurable functions. The differential equation

n
u® =" piu +q(1) (1.1)
i=1
is said to besingularif some of its coefficients are nonintegrable [anb] having singu-
larities at one or several points in this segmé-or the singularaguation (1.1) two-point
boundary value problems and ttitpoint problems of the \ée-Poussin and Cauchy—
Nicoletti types have been investigated more or less in detail (see [1,2,5-9,11-13,21-25,27]
and the references therein). As for so-calf®nlocal multi-point problems (i.e., problems
with conditions connecting the values of a desired solution and its derivatives at different
points in the segmeii&, b]), are studied mainly for a second order equation (see, e.g., [10,
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14-20]), while for higher order equations these problems only rarely studied. The present
paper is devoted to the investigation of two such problems. More precisely, we consider
the singular equation (1.%ith the boundary conditions

D=0 (=1,...,n-1),

n—nq n—np

Z Ol]_jl/t(jil)(flj) + Z 012ju(j71)(l2j) =0, (1.2)
j=1 j=1
or
n—ng
W D@=0 (=1..n-0, Y au V=0, (1.3)
j=1
wheren; € {0,...,n — 1} (k=0,1, 2),
a<tyg<b, a<tyj<to(j=1,...,n—ny),
fo<t;<b (j=1,...,n—n2), a<t;<b (j=1,...,n—np),

and byu~Y(a) (by u~V (b)) it is understood the right (the left) limit of the function
uU~D at the pointz (at the point).
Throughout the paper, we use the following notations:

e R=]—00,400[, Ry =[0, +o0f.

e [x]4+ and[x]- are the positive and the negative parts of the numbeére., [x]+ =
(x| +x), [x]- = 3(x| — x).

° C,’;;,}Z(]a, b]) is the Banach space ¢f — 1)-times continuously differentiable func-
tionsu : la, b[ — R having the limits

lim (t — @)™ u"V (1), im®—0"2uY@) (=1,...,n),
t—a t—b
where
ny =i +n1—nly, ny=li+n2—nly+ (=1,...,n). (1.4)

e The norm of an arbitrary elementof this space is defined by the equality

n
lull s :sup{ Z(r —a)"(b— "2 V)| a <t < b}.

ny.ny =1

o C,’;lj,}z(]a, b[) is the space of functions € C}'., "} (la, b[) for which u*~1) is locally
absolutely continuous o, b[, i.e., absolutely continuous da + ¢,b — ¢] for an
arbitrarily small positives.

e Ly, n,(la, bl) is the Banach space of integrable with the weight- a)"1(b — 1)"2

functionsg : ]a, b[ — R with the norm

b
”q”Lnl,ng = /(t —a)"(b— t)"2|q(t)‘ dt.
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We seek solutions of problems (1.1), (1.2) and (1.1), (1.3), respectively, in the spaces
Cr (la, bD) andCy (la, bD.

ni,nz

Along with (1.1) we consider the homogeneous equation

n
u® = Z i HuD, (1.10)

i=1

and introduce the following definition.

Definition 1.1. We say that problem (1.1), (1.2)~(problem (1.1), (1.3)) has the Fredholm
property in the spac€”1 (la, b[) (in the spaceCy ,~(la, b)) if the unique solvability

1,12

of the corresponding homogeneous probldmy), (1 2) (problem(1.1p), (1.3)) in this
space implies the unique solvability of problem (1.1), (1.2) (of problem (1.1), (1.3)) in
the space&” 1 (Ja, b[) (in the spaccC” 1(]a b)) for everyg € Ly, »,(la, b[) (for every

ni,n2

q € Lo »,(Ja, b)), and for its solution the following estimate
[luel] -1 <rlgl -, (IIMII w1 <rligll - 1) (1.5)
Cuy.np Cny.inp 0)10 Con no

holds, where is a positive constant independentoénd

G = / (i — sY"Tq(s)ds

(n— 1)'

(ci(r) e / (t—s5)"" 1q(s)ds) (1.6)

Remark 1.1. From (1.6) it is evident that
Igll., . <pollgly,,, (Ilqll -1 S pollgll, ),
n1)12 112 Ono "0
wherepg is a positive constant independentfThus (1.5) yields the estimate

<rollg ( r )
”””c;;;%z <roliqll,,, ., fluell et < OIIQIIL0

whererg = por is a positive constant independeniof

In what follows problem (1.1), (1.2) is investigated in the case where the fungtions
(i =1,...,n) have nonintegrablesjularities at the points, ro, andb, but

/(t — )M (b — )22 |t — 1" pi ()| dt <+00  (i=1,....n), (1.7)
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whereny; andny; (i =1,...,n) are the numbers given by equalities (1.4). As for prob-
lem (1.1), (1.3), it is considered in the case where the functigng@ =1, ...,n) have
nonintegrableiagularities ony at the points: andb, and

b
/@—@Wﬁhﬁwrwpmﬂm<+w (i=1,...,n), (1.8)

where
nOiz[i+n0—n]+ (l:l,,n)

It is proved that in the above-mentioned cases problems (1.1), (1.2) and (1.1), (1.3) have
the Fredholm property, and in a certain seogtmal conditions are found which guarantee
the unique solvability of these problems.

2. Fredholm typetheorems

Throughout this section, tfii"—l (la, b[) we understand the Banach space of functions

ni,nz

u e C"1 (Ja, b)), satisfying the initial conditions

ni,ng
uViag)y=0 (=1,....n—1)
with the norm||u||8wl = ”””cn—i .

ni.np ni.np

Lemma 2.1 in [11] implies the following lemma.
LemmaZ2.l.Letp > 0, pg € Ly, »,(la, b[) be a nonnegative function and Igbe the set of
(n — 1)-times continuously differentiable functions]a, b[ — R satisfying the conditions
VWi Vi)=0 (i=1,....n—-1), v Do) < p (2.1)

and
t

|v(”7l)(t) — v(”fl)(s)| < /po(r) dr fora<s<t<b. (2.2)

N

ThensS is a compact subset of the spa@oigjz (la, b]).
In addition to this lemma, we need the following simple lemma.

Lemma 2.2. Let

. [to—a b—t
8=mm{02a, 291} y = (1+b—a)rtnzg2—2n, (2.3)
Then an arbitrary functiom e (O?gjz(]a, b]) satisfying the inequality
lullo, , <1, (2.4)

ny.np
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also satisfies the inequalities

V| <yt —a)y™ib -2t —1o"" fora<t<b(i=1...,n).(2.5)

Proof. Inview of (2.4) it is clear that

WV <t —a)y™(b—1)"% fora<t<b(i=1...,n), (2.6)
and, particularly,

"D <t —a)y™pb-n""2 fora<t<b. (2.7)

By virtue of inequality (2.7) and notation (2.3), the identities

t
. 1 .
utVipy=—— /(r — )" Dy ds i=1,...,n—1)
n—1—1i)!
1o

(
imply
=) 1 omn n—i
‘M (f)‘ <m5 |t — fol
(b — a)mutia .
A e T LR B
n—i)!

<yt —a)y™b—1)"2 |t — 10"
fora+6<r<b-6@G=1,...,n—1).

If together with this we take into account iopgalities (2.6), then the validity of estimates
(2.5) becomes obvious.O

Theorem 2.1;|fconditions(1.7) hold, then problendl.1), (1.2) has the Fredholm property
in the spac&C 1 (Ja, b[).

ni,n2

Proof. SupposeB = 5‘;’,;}12(]a,b[) x R is a Banach space with elements= (u, x),

whereu € €71 (la, b)), x € R, and the norm is defined in the following manner:

ni,n2

lwily = llullg, o =+ IxI.
n,np

For anyw = (u, x) € B andg € Ly, »,(la, b[), we set

_u" Do) +x n—1
gw)(@) = W (t—1)

t
1 n— . i—
o =9 1(;pi<s)u< 1>(s>)ds,
1o =

n—nj n—np
tw)y=x+ Y au V) + ) azu D),
i=1 i=1



136 R.P. Agarwal, |. Kiguradze / J. Math. Anal. Appl. 297 (2004) 131-151

h(w) (1) = (g(w) (1), L(w)),

1

gt = m

t
/ (t— sy Yq(s)ds.  ho(t) = (3(1). 0).
fo

Then problem(1.1), (1.2) in the spacef,’}lf,}z(]a,b[) is equivalent to the linear operator
equation

w = h(w) + ho (2.8)

in the spaceB sincew = (u, x) € B is a solution of Eq. (2.8) if and only if =0 andu is
a solution of problem (1.1), (1.2). As for the homogeneous equation

w = h(w), (2.80)

it is equivalent to the homogeneous probléiry), (1.2).
Let

Bi={weB: |wl, <1},
y be the number given by equalities (2.3),

n—nq
p=1+t0—a) " (b—10) "+ Y lawi|(ti —a) " (b — t21) "
i=1
n—n»
+ ) loail(ti — )" (b —120) "2,
i=1
and

n
po) =y Y (t—a) (b —1) "% |t — to]" | pi (1))
i=1
Then, according to condition (1.7)g € Ly, ,x,(a, b[). On the other hand, by Lemma 2.2,
foranyw = (u, x) € B the functioru satisfies inequalities (2.5), and consequently, almost
everywhere ofa, b[ we have

n
> P u P )< pot).
i=1
If together with this we take into consideration inequalities (2.6) and (2.7), then it becomes
evident that

lew)| < p.

and the functiorv(¢z) = g(w)(¢) satisfies conditions (2.1) and (2.2), i.e.€ S. Thus we
have shown that the linear operatotransforms the balB; onto the setS x [—p, p].
However, by Lemma 2.1§ x [—p, p] is a compact set of the spaBe Therefore, the linear
operatorh : B — B is compact. By this fact and the Fredholm alternative for operator
equations (see [4, Chapter XIlI, 85, Theorem 1]), Eqg. (2.8) is uniquely solvable if and
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only if Eq. (2.80) has only a trivial solution. Moreover, if Eq2.8p) has only a trivial
solution, then the operatdr— i, wherel : B — B is the identity operator, is invertible
and(I — h)~1: B — B is a linear bounded operator. We denoterbihe norm of the
operator(I — h)~1. Then the solutiom = (u, 0) of Eq. (2.8) admits the estimate
lwlly, <7lholly =rllgle, s - (2.9)
ni,np

Since problem (1.1), (1.2) is equivalent to Eq. (2.8), itis clear that problem (1.1), (1.2) is
uniquely solvable if and only if problerfi.1p), (1.2) has only a trivial solution. Moreover,
if (1.1p), (1.2) has only a trivial solution, then for a solutiemf problem (1.1), (1.2), from

estimate (2.9) the estimate (1.5) follows since= («, 0) and||w|, = ||u||Cn_1 . 0O
ni,np

Theorem 2.2;Ifconditions(1.8) hold, then problen(l.1), (1.3) has the Fredholm property
in the spacecg;g(]a, b).

Proof. Letag < a be an arbitrarily fixed number. Pup =0,

pit)=0 forap<t<a(i=1,...,n), (2.10)
and in the intervalag, b[ consider the differential equation (1.1) with the boundary condi-
tions

n—ng
u(i_l)(a)zo (i=1,...,n), aou(ao) + Z aju(j_l)(tj)zO. (2.112)

j=1
Problems (1.1), (1.3) and (1.1), (2.11) are equivalent in the sense thatlib ,,,(lao, b[),

then the restriction of an arbitrary solutiane C‘g;g(]ao, b[) of problem (1.1), (2.11) to

la, bl is a solution of problem (1.1), (1.3), and vice versa, the extension of an arbitrary
solutionu € C&;é(]ao, b]) to lag, b[ as a solution of Eqg. (1.1) is a solution of problem

(1.1), (2.11) in the spac€},*(lao, bI).
On the other hand, according to conditions (1.8) and (2.10), we have

b
/(t — )" (b — )" | pi(1)|dt <400 (i=1,...,n).
ag

Hence, by Theorem 2.1 it follows that problem (1.1), (2.11) has the Fredholm property in
the space?{)”;;(]ao, bD. O

Remark 2.1. For the general boundary conditions

u D=0 (=1,...,n—-1),

n—nj ' n—np ' m n ]
Y au @y + > puIB) + Y Dy P =0 (2.12)
j=1 j=1 k=1j=1

and
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W Da@y=0 (=1..n-1),
n—ng
Zﬁ ut™ 1>(b)+22y,ku Dz =0, (2.13)
k=1j=1
where
a<tjp<b, a<tip<b (j=1....nk=1...,m)

from the proofs of Theorems 2.1 and 2.2 it is clear that if conditions (1.7) (conditions (1.8))
are satisfied, then problem (1.1), (2.12) (problem (1.1), (2.13)) has the Fredholm property
in the spac&” 1 (la. b[) (in the space’y, (]a bD).

ni,ng

3. Existence and uniqueness theorems

For Eq.(1.1p) we consider the following tevauxiliary initial conditions:
u D=0 (=1,...,n-1), u" V(1) = ¢ (3.1)
Wi V@)=0 (=1...n-1), u™ V@) =ec. (3.2)
We first prove the following lemma.

Lemma 3.1. If conditions(1.7) (conditions(1.8)) are fulfilled, then for any € R problem
(1.19), (3. 1) (problem(1.1p), (3.2)) is uniquely solvable in the spaCﬁ (la, b) (inthe

spaceCy,X(la. bD).

1,12

Proof. We prove the lemma only for problet.1p), (3.1) since for problenil.1p), (3.2)
it can be proved analogously. Set

n—i

n
(t —1o)
1 = —— pi (D).
q() C,; o PO
Then, according to conditions (1.9) € L, n,(la, b[). On the other hand, it is evident that
problem(1.1p), (3.1) is uniquely solvable in the spa(flf?1 ,}2(]a b[) if and only if in the
mentioned space the differential equation (1.1) has a unique solution satisfying the initial
conditions
W Viay=0 (=1,....n). (3.3)
However, due to Remark 2.1, problem (1.1), (3.3) has the Fredholm property in the space
C,';l ,%2(]a b[). Thus, to prove the lemma, it suffices to show that the homogeneous problem
(1.1p), (3.3) inthe spacé?,,1 nz(]a b[) has only a trivial solution.
Letu € C"~1 (Ja, b]) be a solution of problenl.1p), (3.3). According to conditions

ni,n2

(1.7), we have

/\u“’)(s)\ds

fo

<400 fora<t <b.

(t) =
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Thus the identities
t

u(”fl)(t)z/‘u(")(s)ds,

fo

t
. 1 .
V)= ——— /(r —s)" 0 Dyds (=1,...,n—1)
n—1-10)!
fo
resultin
‘ (i-1) |t — 10" .
u (t)‘gi,v(t) fora<r<b(i=1,...,n).
(n—1i)!
On the basis of these estimates frghilg) we find
t
v(t) < /po(s)v(s) ds| fora <t <b,
fo
where

|t — 10"
po(t) = ; oo |pi(®)] and  po € Ly ny(la. bl).
Now in view of the Gronwall-Bellman lemma, the last inequality imph¢s = 0, and
consequently(r)=0. O

Theorem 3.1. Let conditiong1.7) be fulfilled and

(-)" Vo1, 20 (j=1,...,n—ny), a; >0 (j=1,....,n—ny),
n—nj n—np
Z loe | + Z aj > 0. (3.4)
j=1 j=1
Let, moreover, a solutiong of EQ.(1.1p) under the initial conditions
uy Po)=0 (=1...n-1, uf Po)=1 (3.5)

satisfies the inequalities

(—1)"1ué"_"1_1) (t)>0 fora<t<t,

ug”_"z_l) (t) >0 foreg<t<b. (3.6)
Then for every € Ly, »,(la, b[) problem(1.1), (1.2) is uniquely solvable in the space
Crx (a. bl).

Proof. By Theorem 2.1, it suffices to show that the homogeneous profiety), (1.3)

in the spacef,’j;,}z (la, b]) has only the trivial solution. Assume the contrary that the men-

tioned problem has a nontrivial solutiane €1 (]a, b[). Then, by Lemma 3.1, without

ni,nz

loss of generality we may assume thét— (10) = 1, and consequently,
u(t) = uo(t).
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In view of this identity and conditins (3.5) and (3.6), we obtain
)"y D@)y>0 fora<t<to(j=1,....,n—n1),
uDiey>0 forrg<t<b (Gj=1,...,n—no).

These inequalities and conditions (3.4) yield

n—ni n—np

Z (xlju(j_l)(tlj) + Z Olzju(j_l)(tzj) > 0.
j=1 j=1

But this is impossible since is a solution of problem (1.1), (1.2). The contradiction ob-
tained proves the theoremnO

Coroallary 3.1. Let conditions(1.7) and (3.4) hold. Let, moreover, the functions (i =
1,...,n)inthe intervalla, to[ satisfy one of the following two conditians

n lo
1 . )
; (n—1i)! /(to =" ED T 0] di <L (3.71)
n _ pn—i—-1 _
; % (D" pi0], <201 [p] <22 (3.8)

and in the intervallzg, b)[—one of the following two conditions

b
n 1 o
> oo ¢ 0] dr< L (3.72)
i1 n 1): o
n —i—1
(t —to)"™"
Z (n—i—1)! [pi(t)]_ < A21, [pn(t)]_ < A2z, (3.82)
i=1 :
whereAg1 andig2 (k =1, 2) are nonnegative constants such that
+00 J
S
/ A11+ A2s + 52 Zlo— (3.91)
+00 J
S
/ ho1+Agas +52 b= to. (3.92)
0

Then for every € L, »,(la, b[) problem(1.1), (1.2) is uniquely solvable.
To prove this corollary, we need the following lemma.

Lemma 3.1;. Let along with(1.7) either condition(3.71) or conditions(3.81) and (3.91)
be fulfilled. Then

(—1"uy ") >0 fora<r <. (3.10)
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Proof. Assume that the lemma is not true. Then in view of (3.5) there euists[a, to[
such that

(1" uP)>0 forag<i<io(i=1,...,n) (3.11)
and

ud"P(ag) = 0. (3.12)
Moreover,

if n1>0, then ag>a. (3.13)

First we suppose that conditi@B.71) holds. We choose; € ]ag, r0] so that
0= max{ué” Dty ag<t < fo} —ué” D(ar)
and
(n—1)
ug () <p forap<t<a.
Then, due to conditions (3.5) and (3.11), we have

nei (i—1) (to—1)" .
O<(=D""uy () < ﬁp forag<t<a1(i=1,...,n).
n—it).
On account of these inequalitieschequality (3.12), frong1.1p) we find
ai

n 4
p= / ug(dt<ey / (D" pi ()], (~D"u§ V() dr
i:lao

ag

)" [(=)" pi ()], dr

But, according to conditio3.71), we obtain the contradiction < p.
It remains to consider the case where conditi@8;) and(3.91) are satisfied. For this,
in view of (3.5) and (3.11), we have

t— 1 n—1—i B
(t —10) W2 ()

10 forag<tr <1

0<(-D"uf ey < -
(i=1...,n—1).
If along with this we take into account inequaliti€s8;), then from(1.1g) we get
(")(t) )»1114(" (1) + Alu(” Yty forao<t <o,
and, consequently,

i (1)

<A1+ Av() forag <t <o,
G2
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where
V)
v(t) = ECEL PN
Ug @)

and, now it follows from (3.5), (3.11), and (3.12),

v(®) >0 forag<t < 1o, v(ap) =0, tlirT) v(t) = +oc. (3.14)
1o

On the other hand,

(n)
, ug (1)
V(1) = —(;’T +02().
Ug ()
Therefore,

V(1) < M1+ Aov(@) +v2() forag <t <to.

If we divide this inequality by.11 + A1ov(¢) + v2(¢), and then integrate fromy to 7o, and
take into consideration (3.14), we obtain

+oo 4
S
— — < tg —ap. 3.15
/k11+k125+52 040 (3.15)
0

But this contradicts inequalit§3.91). The contradiction obtained proves the lemma

Remark 3.1. If n1 > 0, then by virtue of (3.13) inequality (3.15) contradicts the inequality

+00

ds
_—  —>1fy—a. 3.16;
0/)»11+)»12S+s2 0 ( )

Therefore, forn; > 0 condition (3.91) in Lemma 31; can be replaced by condition
(3.16y).

From Lemma 3L, by the change of variable, we obtain the following lemma.

Lemma 3.1,. Let along with(1.7) either condition(3.72) or conditions(3.82) and (3.92)
be fulfilled. Then

ug”_"z_l) () >0 forr<r<b. (3.17)

Proof of Corollary 3.1. By Lemmas 31; and 31, the conditions of Corollary 3.1 guar-
antee conditions (3.6). If now we apply Theorem 3.1, then the validity of the corollary
becomes evident.O
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Remark 3.2. According to Remark 3.1, i1 > 0, then condition(3.9;) in Corollary 31
can be replaced by conditigB.16;) and ifnz > 0, then condition(3.92) can be replaced
by the condition

+00

ds
B b 31
/ A21+ A22s + 52 0 (3.16)

Another corollary of Theorem 3.1 deals with the case in whiglit) =0 (k =
n—no+1,...,n), whereng e {1,...,n — 1}, i.e., the case in which Egs. (1.1) a(dlp)
have the forms

n—ng
u® =" piu™ + 4@, (3.18)
i=1
n—ng
=3 pieuY, (3.180)

i=1

respectively.

Corollary 3.2. Letn; €{1,...,no} (i =1, 2) and along with(3.4) the conditions

b

/(r —a)"(b—1)"2|t — to|" ' | pi()|dt <400 (i=1,...,n—no), (3.19)
n—ng 1 o

Yo / (to— )" (t =) [(=D)"' pi(1)], dt < (1o — )", (3-20)
= (n—1)! J

n—ng 1 b

Z ! f(t — 10" (b —1)"2[pi(1)] _dt < (b —10)™ (3.21)
i=1 : o

be fulfilled. Then for every € Ly, »,(la, b[) problem(1.1), (1.2) is uniquely solvable in
the spac&” 1 (1a, b|).

ni,nz

Proof. By Theorem 3.1, it suffices to show that a solutiapnof problem(3.18p), (3.5)
satisfies inequalities (3.10) and (3.17). We give only the proof of inequality (3.10) since
inequality (3.17) can be proved analogously.

Assume the contrary that inequality (3.10) is violated. Then there exist$a, ro[ such
that

(1" ul @) >0 forag<t<to(i=1,...,n—ny) (3.22)
and
ud" " (ag) =0. (3.23)
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Put
n—ng )
m=n+1  vO=CD""ST0, g =Y pitug D).
i=1

Then, in view of conditions (3.5) and (3.23), the functiois a solution of the problem
v = (=1)" q0(1),
v(ag) =0, i Vi) =0 (=1,....m-1),

satisfying the conditions

= Do)

v(t) >0 forag<t <1, =
t—to (fg—t)"—1

Thus
(m — D)
1<)O:SU W.ao<t<to}<+oo,
and there exists € Jag, o] such that
to—t m—1
V() < up forap<t<a (3.24)
(m —1)!
and
(to —ap)™ 1
=— = . 3.25
vla) === (3.25)

On the other hand, according to (3.5) and (3.22), we have

n—ng

q00) < Y [(=D)" pi)], Jug P @) forag <t <. (3.26)
i=1

Moreover, ifn1 <n —i, then

Io
. 1 .
|I/l(()l 1)(t)| = m /(S - t)ninlililv(s)ds (l = 1, .., n—ng — 1)
t

The last identities and inequalities (3.24) imply

(i-1) (to— )"
OIS oo’ forai <t <o,
: t _t n—i
Jug 1)(f)|<%p forap<t<ai (i=1,...,no). (3.27)
n—it).
According to Green’s function and equality (3.25), the representation
(1o — ap" /
to—a))™”
(mi_ D1 p=v(a1) = / g(ax, s)qo(s)ds (3.28)

ag
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is valid, where

1
(m—1)!

1 s—a\™
< < ) (to —ap)™ ! forag<s <ay,

m—1 m—1
s —ap §—ai -1
o —ao fIo—a1
1 s—a\™
(— (to—a))" Y foray <s <t

<
m—-—D'\to—a

If along with the last two inequalities we take into account inequalities (3.19), (3.26), and
(3.27), then from (3.28) we find

0<glar,s)=

s ao m—1
- -1
> (to — ap)™
fo—ao

1
(m — 1)!

O<g(a1,s)=

_ Io
n—ng 1 ' '
p<plo-a ™ Y o o= 0"t —ap [ pi(0)]  dr < .
i=1 ’ a

The obtained contradiction proves the validity of inequality (3.1G).

As mentioned above, problem (1.1), (1.3) is equivalent to problem (1.1), (2.10), where
ap =0, ap < a, and the functiong; (i =1,...,n) are extended tduo, b[ by equalities
(2.10). In view of this fact, from TheoremBand its corollaries the following propositions
on the unique solvability of problems (1.1), (1.3) and (3.18), (1.3) follow rather easily.

Theorem 3.2. Let conditiong1.8) and

n—ng

@j>0 (j=1,...,n0), Y ;>0 (3.29)
j=1
hold. Let, moreover, a solutiary of Eq.(1.1p), together with the initial conditions
wi ™ P@=0 (=1...,n-1, ufl Vo) =1,
satisfy the inequality
uéninofl) (t)>0 fora<rt<b.

Then for everyy € Lo ,,(la, b[) problem(1.1), (1.3) is uniquely solvable in the space
Col(la, bD).

0,no

Corollary 3.3. Let along with(1.8) and (3.29) either the condition

b
n 1 )
> D /(t —a)"[pi(n)]_dt <1, (3.30)
i=1 : a
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or the condition

n—1 (t —a)'—i-1
Zm [Pi(f)]_ < A, [Pn(t)]_ <Az fora<t<b (3.31)
i=1 ’

holds, where\; (i =1, 2) are nonnegative constants such that

+00 J
S
b—a. 3.32
/ A1+ Aos + 52 ~ 4 ( )
Then for everyy € Lo »,(la, b[) problem(1.1), (1.3) is uniquely solvable in the space
Coalla, bl).

Coroallary 3.4. If along with (3.29) the conditions

b
/(t —a)" (b= )" pi(0)|dt <+o00 (i=1,...,n—no), (3.33)
n—ng 1 b

> o @ -] di < b -ayo (3.34)
= (n—1)! J

are satisfied, then for everye Lo ,,(Ja, b[) problem(3.18), (1.3) is uniquely solvable in
the space&C” (1, b[).

0,no

Remark 3.3. Forng > 0 condition (3.32) in Corollary 3.3 can be replaced by the condition

+00

d

/ L S (3.35)
A1+ Aos + 52

0

Remark 3.4. Corollaries 3.3 and 3.4 are the generalizations (for the singular problems
(1.1), (1.3) and (3.18), (1.3)) of the Vallée-Poussin [26] and Hartman—-Wintner [3] well-
known results on the unique solvability of tvpoint boundary value problems for second
order linear differential equations with continuous coefficients.

Remark 3.5. The presence of the Fredholm property for problems (1.1), (1.2) and
(1.1), (2.3) and the unique solvability of these problems in the spﬁggﬁz(]a, b[) and

ég’;gqa, b)), respectively, do not guarantee the existence of a solution of Eq. (1.1) in the

mentioned spaces, satisfying the boundary conditions
Wi Day=¢; (=1,....,n-1),
n—nj n—nz

Z arjul V() + Z az;u V() =0,
j=1 j=1
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or
n—ng

u(i—l)(a):cl- (lzl,,n—l), Z()[]u(/_l)(t]):Os
=1

where}"_; |ci| # 0. Indeed, as examples we consider the boundary value problems

! (1) sign(t — )"+t t
= i-1 (Itp—0 t(ol)(t gr2)(b —O)t))"—"“ W (= a)(qlao(—)t))"*”e ’ (3:39)
W Vey=c; (=1...,n-1), (=" Yu@) +u®)=0, (3.37)
and
n (¢ . !
"= ; ((t — a)flgi)t))”"'“ W ((t— a)(qlﬂo(—)t))"*”s ’ (3:38)
Wi Vay=c¢ (=1,...,n—1), u(b) =0, (3.39)

wherepog; : [a,b] — 10, +o0[ (i =1,...,n) andgo: [a, b] - R are continuous functions,
ande € [0,1[. If c; =0 (i = 1,...,n), then according to Theorem 2.1 and Corollary 3.1
(according to Theorem 2.2 and Corollary 3@pblem (3.36), (3.37) (problem (3.38),
(3.39)) has the Fredholm property and is uniquely solvable in the &ﬁ’;@%n_l(]a, b))

(inthe spacé&;il(]a, b[)). Onthe other hand, itis evidentthatjf>0(i =1,...,n—1)

andz;lz‘ll ¢; > 0, then problem (3.36), (3.37) (problem (3.38), (3.39)) does not have a so-
lution in the mentioned space.

4. Examples

In this section, we give examples veiifig the optimality of conditions in Corol-
laries 3.1-3.4 guaranteeing the unique solvabiitproblems (1.1), (1.2) and (1.1), (1.3).

Example4.l. Letrg€la,bl,e €10,1[, ke {l,...,n— 1},

t
(1) = 1 /(t )12 b-s sd forto<t<b
Y V=) ORI
fo

) = 0 fora <t <1,
PO =1 _eb —1)s=1/(b — 10 w*D (1) fortg <t <b,
pit)=0 fora<t<b(i#k,i=1,...,n).

Then
t
b—s\° b—t b—t\**\ -1t
w("*2>(t)=/ ) ds=2"5(1- 5> -0
b—1o 1+e¢ b—1g 1+e¢
fo
forrg <t <b,
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|pr()] = —pi(6) < e+ &) (n =R —10) (b —10) " (b—1)"""
forg <t <b.
Therefore, evidently, conditions (1.7) are satisfied. Moreover, in the int¢wyg][ both

conditions(3.71) and (3.81) hold, wherei11 = A12 = 0, and in the intervalz, b[ the
inequality

b
n 1 '
Z /(t —10)" [pi)]_dt <1+e (4.1)
fo

= (n—1)!
is fulfilled instead of(3.72). Nevertheless the homogeneous problgnig) under the
boundary conditions
W Di)=0 (=1....n-1, " Dw)=0 (4.2)
has the nontrivial solution
(=19
u(p) =1 @-or fora <t <,
w(t) forrg<t<b,

in the spacefg’al(]a, b[). The constructed example shows that conditigid,) in Corol-
lary 3.1 cannot be replaced by condition (4.1) no matter how simalD. In view of this
example, it also becomes evident that conditidr71) in Corollary 3.1 (condition (3.30)
in Corollary 3.3) cannot be replaced by the condition

Io
n 1 - y

b

n 1 .
(Zm/(t—a) [Pi(f)]dt<1+g).

i=1

Example 4.2. Supposep € la, b[, andip1, Ap2 are positive constants such that
+oo

ds
— _=b—1p. 4.3
/k21+k225+52 ° )
Put
_]o fora <t <1, _]o fora <t <1,
pnl(t)—{_)LZl fortg <t < b, p”(t)_{—xzz forr <t <b,
and

pit)=0 fora<t<b(@=1,...,n—-2) ifn>3

Then the functiong; (i =1,...,n) satisfy conditiong3.7;) and (3.81) in the interval
la, to[, wherer11 = 12 = 0, and condition$3.8y) in the intervallzg, b[, whereix,; andios
satisfy equality (4.3) instead of inequality.92). We show that the homogeneous problem
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(1.1p), (4.2) in the spacé?g!gl(]a, b[) has a nontrivial solution. Indeed, letbe a solution
of Eqg. (1.1p) satisfying the initial conditions

u D=0 (=1,...,n-1), u" D) =1,
and let

bo = supt € lto, b[: u" P (s) > 0foreg < s <1}.
Set
u= V()
u®=2)(z)
Thenv(t) > 0forrg <t < b, v(t) - 400 ast — tg, and

fortp <t < bg.

v(t) =

V' (t) = —Ap1 — Aoou(t) — v2(t) fortg <t < bo.

Therefore,
+oo
/ ds _b ;
Aol Agps 52 0O

v(bo)
Hence, in view of equality (4.3), it follows thab = b andv(b) = 0. Thusu™~(b) = 0
and, consequently, € Cg)al(]a, b[) is a nontrivial solution of problenil.1y), (4.2). The
constructed example shows thatf= 0 (n1 = 0), then conditior{3.9,) (condition(3.91))
in Corollary 3.1 cannot be replaced by conditi@16;) (by condition(3.16p)). This ex-
ample also shows thatify = 0, then condition (3.32) in Corollary 3.3 cannot be replaced
by condition (3.35).
Example4.3. Lete €10, 1[, eo = £/2, o € la, b[, bo = (1o + b) /2,

0 fora<it<r,
Pa-1(t) = { —g0(1 4 €0)|t — bo|*0[(b — bo)1+¥0 — |1 — bo| 0]t
fortg <t <b, t # by,

and

pit)=0 fora<t<b(i=1,....,.n—2) ifn>2
We consider Eq(3.18y), whereng = 1, with the boundary conditions

W Vigy=0 (=1,....n—-1, u"20B)=0. (4.4)
In view of the definition ofp,,_1 we have

|pn(®)| = —pu-a1(t) foreg <t <b, t #bo,

Pn—1(t) = pu—1(2bg—1t) forbg <t <b,

|Pn—1(0)] < eo(L+ £0) (b — bo) "0t — bo)**1(b—1)"* forbg <t <b.
Thus
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b b
/u—mw—obwuﬂ_m=2/a—mw—ow%ﬂmm
to bo

b

<%muww@—mr%/a—@a—mw4m

bo
b —bg
=21 b—1ty—
a+ 80)( 0= 1 80)

=(1+280)(b —10) = (1 + &) (b — 1t0).
Therefore, the functiong; (i =1,...,n — 1) satisfy conditions (3.19) and (3.20), where
n1 =n2 = ng, and instead of (3.21) the condition

b
n—ng 1 .
Z m /(l — 1) (b — t)"z[pl- (t)], dt < (L+&)(b — tg)"2 (4.5)
i=1 : A

holds. We show that the proble8.18y), (4.4) has a nontrivial solution. Indeed, suppose

W(t) _ (1 + 80)(b0 - tO)SO (t — tO) fora <t L1,
= (b _ b0)1+60 _ |t _ b0|l+60 for to<t< b.

Thenw is a solution of the problem
w” = pp_1(t)w; w(70) =0, w(b) =0.
We put

(t)—#j(t— )" Bw(s)d
u —(n_3)' S wis S
fo

if n >3, andu(t) = w(z) if n = 2. Obviouslyu C‘i‘ll(]a, b[) is a nontrivial solution of
problem(3.18y), (4.4).

The constructed example shows that condition (3.21) in Corollary 3.2 cannot be re-
placed by condition (4.5) no matter how smalt 0. Due to this example, it is also evident
that condition (3.20) in Corollary 3.2 anawdition (3.34) in Corollary 3.4 are optimal as
well.
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