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Abstract. For the differential equation

u′′ = f(t, u),

where the function f : ]a, b[×R → R has non-integrable singularities at t = a and t = b,
we have found optimal sufficient conditions for the solvability and unique solvability of
the boundary value problems

u(a) = c1, u(b) = c2

and

u(a) = c1, u′(b) = c2.
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§ 1. Formulation of the Main Results.

1.1. Statement of problems and the main notation. Consider the
differential equation

u′′ = f(t, u)(1.1)
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260 I. KIGURADZE

with the boundary conditions

u(a) = c1, u(b) = c2(1.2)

or

u(a) = c1, u′(b) = c2.(1.3)

Here−∞ < a < b < +∞, ci ∈ R (i = 1, 2) and the function f : ]a, b[×R→ R

satisfies the local Carathéodory conditions, i.e., f(t, ·) : R→ R is continuous
for almost all t ∈ ]a, b[ , f(·, x) : ]a, b[→ R is measurable for every x ∈ R and
the function

f ∗(t, ρ) = max {|f(t, s)| : |s| ≤ ρ}(1.4)

is integrable in the first argument on [a + ε, b− ε] for arbitrary ρ ∈ [0,+∞[
and ε ∈ ]0, (b − a)/2[ . We do not exclude case where the function f (and
hence the function f ∗) is non-integrable in the first argument on [a, b], hav-
ing singularities at the ends of this segment. In this sense, the problems
under consideration are singular ones. Analogous problems for second order
equations as well as for higher order ones have been are intensively studied
starting from the 60s of the last century up to the present time (see, e.g.,
[1], [2], [6]–[25] and the references cited therein). In the present paper, we
have found new optimal sufficient conditions for the solvability and unique
solvability of the problems (1.1), (1.2) and (1.1), (1.3).

Along with (1.4), the use will be made of the following notation.

R = −]∞,+∞[ , R+ = [0,+∞[ .

If x ∈ R, then

[x]+ =
|x|+ x

2
, [x]− =

|x| − x
2

.

Lloc(]a, b[) and Lloc(]a, b]) are the spaces of the functions p : ]a, b[→ R
which are Lebesgue integrable on the segments [a + ε, b − ε] and [a + ε, b],
respectively, for an arbitrary ε ∈ ]0, (b− a)/2[ .

Lα,β(]a, b[) is the space of the functions p : ]a, b[→ R, integrable on [a, b]
with the weight (t− a)α(b− t)β.

Mα,β(]a, b[×R+) is the set of functions h : ]a, b[×R → R+ such that
h(·, x) ∈ Lα,β(]a, b[) for every x ∈ R, and

h(t, x) ≤ h(t, y) for t ∈ ]a, b[ , 0 ≤ x ≤ y.
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If γ > −2, then kγ : R \ {0, 2, 4, . . .} → R+ is the function given by the
equalities

kγ(s) =


(γ + 3)sγ − s2γ+2 for 0 < s ≤ 1

kγ(2− s) for 1 < s < 2

kγ(s+ 2) = kγ(s) for s ∈ R \ {0, 2, 4, . . .}

.(1.5)

For arbitrary functions pi : ]a, b[→ R (i = 1, 2) the writing p1(t) 6≡ p2(t)
will mean that they are different from each other on a set of positive measure.

A solution of the problem (1.1), (1.2) (of problem the (1.1), (1.3)) is
sought in the space of continuous functions u : [a, b] → R which are ab-
solutely continuous together with their first derivative on every compact in-
terval contained in ]a, b[ (contained in ]a, b]).

1.2. The problem (1.1), (1.2). We consider this problem in the case
where

(1.60) f ∗(·, ρ) ∈ Lloc(]a, b[) for ρ ∈ R+

or

f ∗ ∈M1,1(]a, b[×R+).(1.6)

Theorem 1.1. Let there exist nonnegative functions h0 ∈ L1,1(]a, b[)
and h ∈ M1,1(]a, b[×R+) such that along with (1.60) (along with (1.6)) the
conditions

f(t, x)sgnx ≥ −h0(t)|x| − h(t, |x|) for t ∈ ]a, b[ x ∈ R(1.7)

and

lim
ρ→+∞

1

ρ

∫ b

a
(t− a)(b− t)h(t, ρ) dt = 0(1.8)

hold. Moreover, let either the function h0 satisfy the inequality∫ b

a
(t− a)(b− t)h0(t) dt ≤ b− a(1.9)

or for some γ ∈ ]− 2,+∞[ on the interval ]a, b[ the condition

h0(t) ≤
4

(b− a)2
kγ
(2(t− a)

b− a
)
, h0(t) 6≡

4

(b− a)2
kγ
(2(t− a)

b− a
)

(1.10)
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be fulfilled. Then for c1 = c2 = 0 (for any ci ∈ R (i = 1, 2)), problem
(1.1), (1.2) is solvable.

Theorem 1.1′. Let f(·, 0) ∈ L1,1(]a, b[) and there exist a nonnegative
function h0 ∈ L1,1(]a, b[) such that along with (1.60) (along with (1.6)) the
condition

(1.7′) f(t, x)− f(t, y) ≥ −h0(t)(x− y) for t ∈ ]a, b[ , x ≥ y

hold. Moreover, let either the function h0 satisfy the inequality (1.9), or for
some γ ∈ ] − 2,+∞[ on the interval ]a, b[ the condition (1.10) be fulfilled.
Then for c1 = c2 = 0 (for any ci ∈ R (i = 1, 2)), problem (1.1), (1.2) is
uniquely solvable.

Theorem 1.2. Let there exist a natural number n, a number γ ∈
[4n − 3,+∞[ and nonnegative functions hi ∈ L1,1(]a, b[) (i = 1, 2), h ∈
M1,1(]a, b[×R+) such that

−h2(t)|x| − h(t, |x|) ≤ f(t, x)sgnx ≤ −h1(t)|x|+ h(t, |x|)(1.11)

for t ∈ ]a, b[ , x ∈ R,

h1(t) ≥
4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
, h1(t) 6≡

4n2

(b− a)2
kγ
(2n(t− a)

b− a
)

(1.12)

and ∫ an

a
(t− a)h2(t) dt ≤ 1,

∫ bn

an
h2(t) dt ≤

4n2

bn − an
,∫ b

bn
(b− t)h2(t) dt ≤ 1,

(1.13)

where an = a+(b−a)/4n, bn = b−(b−a)/4n. If, moreover, the condition (1.8)
is fulfilled, then the problem (1.1), (1.2) is solvable for any ci ∈ R (i = 1, 2).

Theorem 1.2′. Let there exist a natural number n, a number γ ∈
[4n− 3,+∞[ and nonnegative functions hi ∈ L1,1(]a, b[) (i = 1, 2) such that

(1.11′) −h2(t)(x− y)≤f(t, x)−f(t, y)≤−h1(t)(x− y) for t∈ ]a, b[ , x≥y,

and let the conditions (1.12) and (1.13) be fulfilled. If, moreover, f(·, 0) ∈
L1,1(]a, b[), then the problem (1.1), (1.2) is uniquely solvable for any ci ∈ R
(i = 1, 2).

Remark 1.1. From the conditions (1.8) and (1.11) (from the condi-
tion (1.11′)) it follows that

h1(t) ≤ h2(t) for t ∈ ]a, b[ .(1.14)
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In this connection there naturally arises the question on the compatibility of
the conditions (1.12)–(1.14), i.e. on the existence of functions hi ∈ L1,1(]a, b[)
(i = 1, 2), satisfying (1.12)–(1.14). Let us show that such are the functions
given by the equalities

hi(t) =
εi

(t− a)α(b− t)α
+

4n2

(b− a)2
kγ
(2n(t− a)

b− a
)

(i = 1, 2)

if γ ≥ 4n− 3, 0 ≤ α < 2,

0 < ε1 ≤ ε2 ≤
2− α

8(2γ + 3)
(
b− a
4n

)2α−2.

Indeed,∫ bn

an
h2(t) dt = ε2

∫ bn

an

dt

(t− a)α(b− t)α
+

2n

b− a

∫ 2n−1/2

1/2
kγ(s) ds <

< ε2
(b− a

4n

)−2α
(b− a) +

4n2

b− a

∫ 1

0
kγ(s) ds =

= ε2
( 4n

b− a
)2α

(b− a)− 4n2

(b− a)(2γ + 3)
+

4n2

b− a
γ + 3

γ + 1
<

<
4n2

b− a
γ + 3

γ + 1
=

4n2(2n− 1)

2n(bn − an)

γ + 3

γ + 1
≤ 4n2

bn − an
,

∫ an

a
(t− a)h2(t) dt = ε2

∫ an

a

(t− a)1−α

(b− t)α
dt+

∫ 1/2

0
skγ(s) ds <

< ε2
(an − a)2−α

(2− α)(b− an)α
+
γ + 3

γ + 2
2−γ−2 <

ε2
2− α

(b− a
4n

)2−2α
+

1

6
< 1

and ∫ b

bn
(b− t)h2(t) dt = ε2

∫ b

bn

(b− t)1−α

(t− a)α
dt+

∫ 1/2

0
skγ(s) ds < 1.

Particular cases of the equation (1.1) are

u′′ =
m∑
k=1

pk(t)|u|λksgnu+ p(t)u+ q(t),(1.15)

u′′ = p(t)u+ q(t),(1.16)

where p, q and pk ∈ Lloc(]a, b[) (k = 1, . . . ,m), and λk (k = 1, . . . ,m) are
positive constants.
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From Theorem 1.1 follows
Corollary 1.1. Let

pk(t) ≥ 0 for a < t < b (k = 1, . . . ,m), q ∈ L1,1(]a, b[),(1.17)

and either the function p satisfy the inequality∫ b

a
(t− a)(b− t)[p(t)]− dt ≤ b− a(1.18)

or for some γ ∈ ]− 2,+∞[ on the interval ]a, b[ the condition

[p(t)]− ≤
4

(b− a)2
kγ
(2(t− a)

b− a
)
, [p(t)]− 6≡

4

(b− a)2
kγ
(2(t− a)

b− a
)

(1.19)

be fulfilled. Then for c1 = c2 = 0, the problem (1.15), (1.2) is uniquely solv-
able, while for its unique solvability for any ci ∈ R (i = 1, 2) it is necessary
and sufficient that

pk ∈ L1,1(]a, b[) (k = 1, . . . ,m), [p]+ ∈ L1,1(]a, b[).(1.20)

Corollary 1.1 for the equation (1.14) takes the following form.
Corollary 1.2. Let q ∈ L1,1(]a, b[) and either the function p satisfy

the inequality (1.18), or for some γ ∈ ] − 2,+∞[ on the interval ]a, b[ the
condition (1.19) be fulfilled. Then for c1 = c2 = 0, the problem (1.16), (1.2)
is uniquely solvable, while for its unique solvability for any ci ∈ R (i = 1, 2)
it is necessary and sufficient that [p]+ ∈ L1,1(]a, b[).

Remark 1.2. If [p]− ∈ L1,1(]a, b[) and [p]+ 6∈ L1,1(]a, b[), then the
problem (1.16), (1.2) has the “semi-Fredholm” property because the absence
of a nontrivial solution in the homogeneous problem

(1.160) u′′ = p(t)u,

(1.20) u(a) = 0, u(b) = 0

guarantees the unique solvability only of the semi-homogeneous problem
(1.16), (1.20) for any q ∈ L1,1(]a, b[). As regards the non-homogeneous prob-
lem (1.16), (1.2), where ci 6= 0 (i = 1, 2), in this case it has no solution. For
example, if q ∈ L1,1(]a, b[) and

p(t) ≥ δ(t− a)−α(b− t)−β,
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where δ > 0, α ≥ 2, β ≥ 2, then by Corollary 1.2, the problem (1.16), (1.20)
is uniquely solvable, while the problem (1.16), (1.2), where ci 6= 0 (i = 1, 2),
has no solution.

Theorem 1.2′ leads to

Corollary 1.3. Let q ∈ L1,1(]a, b[) and there exist a natural number n
and a number γ ∈ [4n− 3,+∞[ such that on the interval ]a, b[ the condition

p(t) ≤ − 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
, p(t) 6≡ − 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)

(1.21)

holds and ∫ an

a
(t− a)|p(t)| dt ≤ 1,

∫ bn

an
|p(t)| dt ≤ 4n2

bn − an
,∫ b

bn
(b− t)|p(t)| dt ≤ 1.

(1.22)

Then for arbitrary ci ∈ R (i = 1, 2), the problem (1.16), (1.2) is uniquely
solvable.

According to Remark 1.1, Corollary 1.3 results in

Corollary 1.4. Let q ∈ L1,1(]a, b[), and there exist a natural number
n and numbers α ∈ [0, 2[ and γ ∈ [4n−3,+∞[ such that on the interval ]a, b[
the condition

− ε

(t− a)α(b− t)α
− 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
≤p(t)<− 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)

holds, where

ε =
2− α

8(2γ + 3)

(b− a
4n

)2α−2
.

Then for arbitrary ci ∈ R (i = 1, 2), the problem (1.16), (1.2) is uniquely
solvable.

Example 1.1. Let n be a natural number, γ > −2,

vγ(s) =


s exp

(
− sγ+2

γ + 2

)
for 0 ≤ s ≤ 1

vγ(2− s) for 1 < s ≤ 2

−vγ(2 + s) for s ∈ R

,(1.23)

p(t) = − 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
, q(t) = vγ

(2n(t− a)

b− a
)
.(1.24)
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It immediately follows from the equalities (1.5), (1.23) and (1.24) that the
homogeneous problem (1.160), (1.20) has a nontrivial solution u0(t) ≡ q(t),
while the semi-homogeneous problem (1.16), (1.20) has no solution because∫ b

a
u0(t)q(t) dt =

∫ b

a
q2(t) dt > 0.

On the other hand, by Remark 1.1, if γ ≥ 4n−3, then the function p satisfies
all conditions of Corollary 1.3, except the inequality

p(t) 6≡ − 4

(b− a)2
kγ
(2n(t− a)

b− a
)
,(1.25)

and the functions f(t, x) ≡ p(t)x + q(t), hi(t) ≡ |p(t)| (i = 1, 2), h(t, x) ≡
|q(t)| satisfy all conditions of Theorems 1.2 and 1.2′, except the inequality

h1(t) 6≡
4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
.(1.26)

Thus the example constructed above shows that the condition (1.26) (con-
dition (1.25)) in Theorems 1.2 and 1.2′ (in Corollary 1.3)) is essential and it
cannot be neglected.

Consider now Example 1.1 for the case n = 1. For the preassigned
ε ∈ ]0, 1[ we put γ = 2/ε− 1 and, taking into account (1.24), we find that∫ b

a
(t− a)(b− a)[p(t)]− dt <

(b− a)2

4

∫ b

a
[p(t)]− dt =

∫ b

a
kγ
(2(t− a)

b− a
)
dt =

= (b− a)
∫ 1

0
kγ(s) ds = (b− a)

(γ + 3

γ + 1
− 1

2γ + 3

)
< (1 + ε)(b− a).

Thus the condition (1.9) (condition (1.18)) in Theorems 1.1 and 1.1′ (in
Corollary 1.2)) is unimprovable in the sense that it cannot be replaced by
the condition ∫ b

a
(t− a)(b− t)h0(t) dt < (1 + ε)(b− a)( ∫ b

a
(t− a)(b− t)[p(t)]− dt < (1 + ε)(b− a)

)
no matter how small ε > 0 is.

1.3. Problem (1.1), (1.3). We investigate this problem in the cases
where

(1.270) f ∗(·, ρ) ∈ Lloc(]a, b]) for ρ ∈ R+,
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or

f ∗ ∈M1,0(]a, b[×R+).(1.27)

Theorem 1.3. Let there exist nonnegative functions h0 ∈ L1,0(]a, b[)
and h ∈ M1,0(]a, b[×R+]) such that along with (1.270) (along with (1.27))
condition (1.7) is fulfilled and

lim
ρ→+∞

1

ρ

∫ b

a
(t− a)h(t, ρ) dt = 0.(1.28)

Let, moreover, either the function h0 satisfy the inequality∫ b

a
(t− a)h0(t) dt ≤ 1,(1.29)

or for some γ ∈ ]− 2,+∞[ on the interval ]a, b[ the condition

h0(t) ≤
1

(b− a)2
kγ
( t− a
b− a

)
, h0(t) 6≡

1

(b− a)2
kγ
( t− a
b− a

)
(1.30)

be fulfilled. Then for c1 = 0 and any c2 ∈ R (for any ci ∈ R (i = 1, 2)) the
problem (1.1), (1.3) is solvable.

Theorem 1.3′. Let f(·, 0) ∈ L1,0(]a, b[) and there exist a nonnegative
function h0 ∈ L1,0(]a, b[) such that along with (1.270) (along with (1.27))
condition (1.7′) is fulfilled. Let, moreover, either the function h0 satisfy the
inequality (1.29), or for some γ ∈ ] − 2,+∞[ on the interval ]a, b[ condition
(1.30) be fulfilled. Then for c1 = 0 and any c2 ∈ R (for arbitrary ci ∈ R
(i = 1, 2)) problem (1.1), (1.3) is uniquely solvable.

Theorem 1.4. Let there exist a natural number n, a number γ ∈
[3n − 1,+∞[ and nonnegative functions hi ∈ L1,0(]a, b[) (i = 1, 2), h ∈
M1,0(]a, b[×R+]) such that along with (1.11) and (1.28) the conditions

h1(t) ≥
(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)
,

h1(t) 6≡
(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)(1.31)

and ∫ an

a
(t− a)h2(t) dt ≤ 1,

∫ b

an
h2(t) dt ≤

4n2

b− an
,(1.32)

where an = a+ (b− a)/(4n− 2), are fulfilled. Then for any ci ∈ R (i = 1, 2)
the problem (1.1), (1.3) is solvable.
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Theorem 1.4′. Let there exist a natural number n, a number γ ∈
[3n − 1,+∞[ and nonnegative functions hi ∈ L1,0(]a, b[) (i = 1, 2) such that
the conditions (1.11′), (1.31) and (1.32) are fulfilled. Then for any ci ∈ R
(i = 1, 2) the problem (1.1), (1.3) is uniquely solvable.

From Theorem 1.3′ for the equation (1.15) we have the following

Corollary 1.5. Let pk(t) ≥ 0 for a < t < b (k = 1, . . . ,m), pk ∈
Lloc(]a, b]) (k = 1, . . . ,m), p ∈ Lloc(]a, b]), q ∈ L1,0(]a, b[) and either the
function [p]− satisfy the inequality

∫ b

a
(t− a)[p(t)]− dt ≤ 1,(1.33)

or for some γ ∈ ]− 2,+∞[ on the interval ]a, b[ the condition

[p(t)]− ≤
1

(b− a)2
kγ
( t− a
b− a

)
, [p(t)]− 6≡

1

(b− a)2
kγ
( t− a
b− a

)
(1.34)

be fulfilled. Then for c1 = 0 and any c2 ∈ R the problem (1.15), (1.3) is
uniquely solvable, while for its unique solvability for any ci ∈ R (i = 1, 2) it
is necessary and sufficient that

pk ∈ L1,0(]a, b[) (k = 1, . . . ,m), [p]+ ∈ L1,0(]a, b[).

For equation (1.16) Corollary 1.5 takes the following form

Corollary 1.6. Let p ∈ Lloc(]a, b]), q ∈ L1,0(]a, b[) and either [p]−
satisfy the inequality (1.33), or for some γ ∈ ]− 2,+∞[ on the interval ]a, b[
the condition (1.34) be fulfilled. Then for c1 = 0 and any c2 ∈ R the problem
(1.16), (1.3) is uniquely solvable, while for its unique solvability for any ci ∈ R
(i = 1, 2) it is necessary and sufficient that [p]+ ∈ L1,0(]a, b[).

Remark 1.3. If [p]− ∈ L1,0(]a, b[), [p]+ 6∈ L1,0(]a, b[) and q ∈
L1,0(]a, b[), then the problem (1.16), (1.3) has the “semi-Fredholm” property,
because the absence of a nontrivial solution in the homogeneous equation
(1.160), satisfying the boundary condition

u(a) = 0, u′(b) = 0,(1.35)

guarantees the unique solvability of the problem (1.16), (1.3) for c1 = 0 only.
For example, if

p(t) ≥ δ(t− a)−α for a < t < b,
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where δ > 0 and α ≥ 2, then by Corollary 1.6, problem (1.16), (1.3) is
uniquely solvable if and only if c1 = 0.

From Theorem 1.4′ for the equation (1.16) we have
Corollary 1.7. Let q ∈ L1,0(]a, b[) and there exist a natural number n

and a number γ ∈ [3n− 1,+∞[ such that on the interval ]a, b[ the condition

p(t) ≤ −(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)
,

p(t) 6≡ −(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)

is satisfied, and∫ an

a
(t− a)|p(t)| dt ≤ 1,

∫ b

an
|p(t)| dt ≤ 4n2

b− an
,

where an = a + (b − a)/(4n − 2). Then for arbitrary ci ∈ R (i = 1, 2) the
problem (1.16), (1.3) is uniquely solvable.

From this corollary we arrive immediately at
Corollary 1.8. Let q ∈ L1,0(]a, b[) and there exist a natural number n

and numbers γ ∈ [3n− 1,+∞[ and α ∈ [0, 2[ such that on the interval ]a, b[
the condition

− ε

(t− a)α
− (2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)
≤ p(t) <

< −(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)

be fulfilled, where

ε =
2− α

8(2γ + 3)

( b− a
4n− 2

)α−2
.

Then for arbitrary ci ∈ R (i = 1, 2) the problem (1.16), (1.3) is uniquely
solvable.

Example 1.2. Let n be a natural number, γ > −2, and let vγ be the
function given by (1.23). Suppose that

p(t) = −(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)
, q(t) = vγ

((2n− 1)(t− a)

b− a
)
.

Then the homogeneous problem (1.160), (1.30) has a nontrivial solution
u0(t) ≡ q(t) and the problem (1.16), (1.30) has no solution because∫ b

a
q(t)u0(t) dt =

∫ b

a
q2(t) dt > 0.
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This example shows that in Theorems 1.4 and 1.4′ (in Corollary 1.7) the
inequality

h1(t) 6≡
(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
)

(
p(t) 6≡ −(2n− 1)2

(b− a)2
kγ
((2n− 1)(t− a)

b− a
) )

is essential and we cannot neglect it.

On the other hand, if n = 1, ε ∈ ]0, 1/2[ and γ = 1/ε− 2, we have

∫ b

a
(t− a)[p(t)]− dt =

∫ 1

0
skγ(s) ds =

γ + 3

γ + 2
− 1

2γ + 4
< 1 + ε.

Consequently, Example 1.2 also shows that in Theorems 1.4 and 1.4′ (in
Corollary 1.6), condition (1.29) (condition (1.33)) cannot be replaced by the
condition∫ b

a
(t− a)h0(t) dt < 1 + ε

( ∫ b

a
(t− a)[p(t)]− dt < 1 + ε

)
no matter how small ε > 0 is.

§ 2. Auxiliary Propositions.

2.1. Radon’s Lemma. Below we will use the following

Lemma 2.1. If λ > 1, αk > 0, βk > 0 (k = 1, . . . ,m), then

m∑
k=1

αλk
βλ−1k

≥
(
m∑
k=1

αk)
λ

(
m∑
k=1

βk)
λ−1

.

This lemma, due to J. Radon (see [3], Theorem 65), is a simple modifi-
cation of the well-known O. Hölder’s lemma. Indeed, if we put

µ =
λ

λ− 1
,

then by means of Hölder’s inequality we can find that

m∑
k=1

αk =
m∑
k=1

αk

β
1/µ
k

β
1/µ
k ≤

( m∑
k=1

αλk
βλ−1k

)1/λ( m∑
k=1

βk
)λ−1

λ .
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2.2. Lemmas on the properties of solutions of second order lin-
ear singular differential equations. Consider a linear differential equa-
tion

u′′ = p(t)u(2.1)

with the coefficient p ∈ Lloc(]a, b[).
Lemma 1.1 from [15] leads to

Lemma 2.2. If p ∈ L1,1(]a, b[), then:

(i) an arbitrary solution u of the equation (2.1) at the points a and b
has, respectively, finite right and left limits u(a+) and u(b−); moreover if
u(a+) = 0 ((u(b−) = 0), then there exists the finite limit u(a+) ((u(b−));

(ii) the equation (2.1) has a unique solution satisfying the initial condi-
tions

u(a+) = 0, u′(a+) = 1;(2.2)

(iii) the equation (2.1) has a unique solution satisfying the initial condi-
tions

u(b−) = 0, u′(b−) = −1.(2.3)

On the basis of the above lemma, we can easily prove that Sturm’s
lemmas remain true for singular differential equations as well. More precisely,
the following two lemmas are valid.

Lemma 2.3. Let p and p0 ∈ L1,1(]a, b[),

p(t) ≥ p0(t) for a < t < b, p(t) 6≡ p0(t),(2.4)

and the equation (2.1) have a non-trivial solution u satisfying the boundary
conditions

u(a+) = 0, u(b−) = 0.(2.5)

Then an arbitrary solution of the equation (2.1), linearly independent of u,
and an arbitrary solution of the equation

v′′ = p0(t)v(2.6)

have at least one zero in the interval ]a, b[ .



272 I. KIGURADZE

Lemma 2.4. Let p and p0 ∈ L1,0(]a, b[), the condition (2.4) be fulfilled
and the equation (2.1) have a nontrivial solution u, satisfying the boundary
conditions

u(a+) = 0, u(b)u′(b) ≤ 0.

Then an arbitrary solution of the equation (2.6) either has at least one zero
in the interval ]a, b[ , or satisfies the inequality

v(b)v′(b) < 0.

Applying Lemma 2.1, we can prove just in the same way as in the classical
case (see [5], or [4], Ch. XI, § 5) that the following lemmas of Liapounoff–
Hartman–Wintner type are valid.

Lemma 2.5. Let p ∈ L1,1(]a, b[) and the inequality (1.18) be fulfilled.
Then any solution of the problem (2.1), (2.2) satisfies the condition

u(t) > 0 for a < t < b, u(b−) > 0,

while any solution of problem (2.1), (2.3) satisfies the condition

u(t) > 0 for a < t < b, u(a+) > 0.

Lemma 2.6. Let p ∈ L1,0(]a, b[) and the inequality (1.33) be fulfilled
(p ∈ L1,0([a, b]) and

∫ b
a (b−t)[p(t)]− dt ≤ 1). Then any solution of the problem

(2.1), (2.2) (of the problem (2.1), (2.3)) satisfies the condition

u′(t) > 0 for a < t ≤ b (u′(t) > 0 for a ≤ t < b ).

Lemma 2.7. Let the function p : [a0, b0] → R be integrable and there
exist a nontrivial solution u of the equation (2.1) having at least n zeros in
the interval ]a0, b0[ , such that

u′(a0) = 0, u′(b0) = 0.(2.7)

Then ∫ b0

a0
[p(t)]− dt >

4n2

b0 − a0
.(2.8)
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Proof. Let ti ∈ ]a0, b0[ (i = 1, . . . , n) be the zeros of the function u;
moreover if n > 1, then

ti < ti+1 (i = 1, . . . , n− 1).

From Lemma 2.6 it follows that∫ t1

a0
(t1 − t)[p(t)]− dt > 1,

∫ b0

tn
(t− tn)[p(t)]− dt > 1

and hence ∫ t1

a0
[p(t)]− dt >

1

t1 − a0
,
∫ b0

tn
[p(t)]− dt >

1

b0 − tn
.

On the other hand, if n > 1, then by Lemma 2.5 we have∫ ti+1

ti
(ti+1 − t)(t− ti)[p(t)]− dt > ti+1 − ti (i = 1, . . . , n− 1).

However,

(ti+1 − t)(t− ti) ≤ (ti+1 − ti)2/4 for ti ≤ t ≤ ti+1.

Therefore ∫ ti+1

ti
[p(t)]− dt >

4

ti+1 − ti
(i = 1, . . . , n− 1).

Thus if n = 1, we have∫ b0

a0
[p(t)]− dt >

1

t1 − a0
+

1

b0 − t1
,

while if n > 1, we get

∫ b0

a0
[p(t)]− dt >

1

t1 − a
+

n−1∑
i=1

4

ti+1 − ti
+

1

b0 − tn
.

By virtue of Lemma 2.1, the above inequalities result in (2.8). 2

Let us now introduce
Definition 2.1. We say that the function p : ]a, b[→ R belongs to the

set U0(]a, b[) (to the set U ′0(]a, b[)) if p ∈ L1,1(]a, b[) (p ∈ L1,0(]a, b[)), and the
solution of the problem (2.1), (2.2) satisfies the condition

u(t) > 0 for a < t < b, u(b−) > 0 (u′(t) > 0 for a < t ≤ b ).
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Definition 2.2. Let k be a natural number. We say that the function
p : ]a, b[→ R belongs to the set Uk(]a, b[) (to the set U ′k(]a, b[)) if p ∈ L1,1(]a, b[)
(p ∈ L1,0(]a, b[)), the solution u of problem (2.1), (2.2) has exactly k zeros (not
less than k−1 and no more than k zeros) in the interval ]a, b[ and u(b−) > 0
((−1)ku′(b) > 0).

Lemma 2.8. Let p ∈ L1,1(]a, b[) and there exist a natural number n and
numbers a∗ ∈ ]a, b[ and b∗ ∈ ]a0, b[ such that∫ a∗

a
(t− a)[p(t)]− dt ≤ 1,(2.9) ∫ b∗

a∗
[p(t)]− dt ≤

4n2

b∗ − a∗
,(2.10) ∫ b

b∗
(b− t)[p(t)]− dt ≤ 1.(2.11)

Let, moreover, the solution u of the problem (2.1), (2.2) has at least n zeros
in the interval ]a, b[ . Then p ∈ Un(]a, b[).

Proof. Suppose that the above lemma is invalid. Then there would exist
numbers t∗ ∈ ]a, b] and ti ∈ ]a, t∗[ (i = 1, . . . , n) such that

u(ti) = 0 (i = 1, . . . , n) and u(t∗−) = 0.

In case n > 1, we will assume that ti < ti+1 (i = 1, . . . , n− 1).
By Roll’s theorem and Lemma 2.7, there exist a0 ∈ ]a, t1[ and b0 ∈ ]tn, t

∗[
such that conditions (2.7) and (2.8) are fulfilled. On the other hand, by
Lemma 2.6 and the inequality (2.9), we have

a0 > a∗.(2.12)

Taking this fact into account, the inequalities (2.8) and (2.10) imply that

b∗ < b0 < t∗.(2.13)

By Lemma 2.6, ∫ t∗

b0
(t∗ − t)[p(t)]− dt > 1.

On the other hand, by the inequalities (2.11) and (2.13) we have∫ t∗

b0
(t∗ − t)[p(t)]− dt ≤

∫ b

b∗
(b− t)[p(t)]− dt ≤ 1.
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The obtained contradiction proves the lemma. 2

Lemma 2.9. Let p ∈ L1,0(]a, b[) and there exist a natural number n and
a number a∗ ∈ ]a, b[ such that along with (2.9) the inequality

∫ b

a∗
[p(t)]− dt ≤

4n2

b− a∗
(2.14)

is fulfilled and the solution u of the problem (2.1), (2.2) has at least n zeros
in the interval ]a, b[ . Then p ∈ U ′n(]a, b[).

Proof. By (2.14), there exists b∗ ∈ ]a, b[ such that the inequalities (2.10)
and (2.11) are fulfilled. This, by Lemma 2.8, implies that p ∈ Un(]a, b[).
Hence the function u in the interval ]a, b[ has exactly n zeros and u(b) 6= 0.

Let ti ∈ ]a, b[ (i = 1, . . . , n) be the zeros of the function u numbered in
increasing order.Then

(−1)nu′(tn) > 0(2.15)

and there exists a0 ∈ ]a, t1[ such that u′(a0) = 0. Moreover, by condition
(2.9) and Lemma 2.6, the inequality (2.12) is satisfied.

To complete the proof of our lemma, it remains to show that

(−1)nu′(b) > 0.

Suppose to the contrary that (−1)nu′(b) ≤ 0. Then by (2.15) there exists
b0 ∈ ]tn, b] such that u′(b0) = 0. Consequently, the conditions of Lemma 2.7
are fulfilled which guarantee the fulfilment of the inequality (2.8). But that
impossible in view of the inequalities (2.12) and (2.14). The obtained con-
tradiction proves the lemma. 2

2.3. Lemmas on solvability and unique solvability of the prob-
lem (1.1), (1.2).

Lemma 2.10. Let there exist functions h0 ∈ L1,1(]a, b[) and h ∈
M1,1(]a, b[×R+) such that along with (1.60) (along with (1.6)) the conditions
(1.7), (1.8) and

−h0 ∈ U0(]a, b[)(2.16)

are fulfilled. Then for c1 = c2 = 0 (for any ci ∈ R (i = 1, 2)) the problem
(1.1), (1.2) is solvable.

Proof. For c1 = c2 = 0, the validity of the lemma follows from Theo-
rem 11.4 of the monograph [9]. It remains for us to prove the case where
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the condition (1.6) is fulfilled and ci (i = 1, 2) are arbitrary. In this case the
problem (1.1), (1.2) is equivalent to the problem

v′′ = f̃(t, v); v(a) = 0, v(b) = 0,(2.17)

where

f̃(t, x) = f(t, x+ u0(t)), u0(t) =
b− t
b− a

c1 +
t− a
b− a

c2.

Set

h∗(t) = max {|f(t, x)| : 0 ≤ x ≤ 2|c1|+ 2|c2|},
h̃(t, ρ) = h∗(t) + (|c1|+ |c2|)|h0(t)|+ h(t, ρ+ |c1|+ |c2|).

Then on the basis of the inequality (1.7), we find that

f̃(t, x)sgnx ≥ −h0(t)|x| − |h0(t)| |x| − |f(t, x+ u0(t))| ≥
≥ −h0(t)|x| − (|c1|+ |c2|)|h0(t)| − h∗(t) for a<t<b, |x| ≤ |c1|+ |c2|,

f̃(t, x)sgnx = f(t, x+ u0(t))sgn (x+ u0(t)) ≥
≥ −h0(t)|x+ u0(t)| − h(t, |x+ u0(t)|) ≥

≥ −h0(t)|x| − (|c1|+ |c2|)|h0(t)| − h(t, |x|+ |c1|+ |c2|)
for a < t < b, |x| > |c1|+ |c2|,

and hence

f̃(t, x)sgnx ≥ −h0(t)|x| − h̃(t, |x|) for a < t < b, x ∈ R.(2.18)

On the other hand, the conditions (1.6) and (1.8) imply that

h̃ ∈M1,1(]a, b[×R+), lim
ρ→+∞

1

ρ

∫ b

a
(t− a)(t− b)h̃(t, ρ) dt = 0.

However, these conditions, as is said above, along with the conditions (2.16)
and (2.18) guarantee the solvability of the problem (2.17). 2

Lemma 2.10′. Let f(·, 0) ∈ L1,1(]a, b[) and there exist h0 ∈ L1,1(]a, b[)
such that along with (1.60) (along with (1.6)) the conditions (1.7′) and (2.16)
are fulfilled. Then for c1 = c2 = 0 (for any ci ∈ R (i = 1, 2)) the problem
(1.1), (1.2) is uniquely solvable.

Proof. The condition (1.7) with h(t, ρ)≡|f(t, 0)|, follows from the con-
dition (1.7′). Moreover, h ∈ M1,1(]a, b[×R+) and (1.8) is fulfilled because
f(·, 0) ∈ L1,1(]a, b[). If we now apply Lemma 2.10, the solvability of the
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problem (1.1), (1.2) becomes evident. As for the uniqueness of the solution,
it follows from Theorem 11.6 of the monograph [9]. 2

Theorems 11.5 and 11.17 of the monograph [9] result in
Lemma 2.11. Let there exist functions hi ∈ L1,1(]a, b[) (i = 1, 2) and

h ∈ M1,1(]a, b[×R+) (let f(·, 0) ∈ L1,1(]a, b[) and there exist functions hi ∈
L1,1(]a, b[) (i = 1, 2)) and a natural number n such that along with (1.8) and
(1.11) (along with (1.11′)) the conditions

−hi ∈ Un(]a, b[) (i = 1, 2)(2.19)

are fulfilled. Then for any ci ∈ R (i = 1, 2) the problem (1.1), (1.2) is solvable
(uniquely solvable).

2.4. Lemmas on solvability and unique solvability of the prob-
lem (1.1), (1.3).

Lemma 2.12. Let there exist functions h0 ∈ L1,0(]a, b[) and h ∈
M1,0(]a, b[×R+) such that along with (1.270) (along with (1.27)) the con-
ditions (1.7), (1.28) and

−h0 ∈ U ′0(]a, b[)(2.20)

are fulfilled. Then for c1 = 0 and any c2 ∈ R (for any ci ∈ R (i = 1, 2)) the
problem (1.1), (1.3) is solvable.

Lemma 2.12′. Let f(·, 0) ∈ L1,0(]a, b[) and there exist a function h0 ∈
L1,0(]a, b[) such that along with (1.270) (along with (1.27)) the conditions
(1.7′) and (2.20) are fulfilled. Then for c1 = 0 and any c2 ∈ R (for arbitrary
ci ∈ R (i = 1, 2)) the problem (1.1), (1.3) is uniquely solvable.

Lemma 2.13. Let there exist functions hi ∈ L1,0(]a, b[) (i = 1, 2) and
h ∈ M1,0(]a, b[×R+) (let f(·, 0) ∈ L1,0(]a, b[) and there exist functions hi ∈
L1,0(]a, b[) (i = 1, 2)) and a natural number n such that along with (1.8) and
(1.11) (along with (1.11′)) the conditions

−hi ∈ U ′n(]a, b[) (i = 1, 2)(2.21)

are fulfilled. Then for arbitrary ci ∈ R (i = 1, 2) the problem (1.1), (1.3) is
solvable (uniquely solvable).

We omit the proofs of Lemmas 2.12 and 2.12′ (of Lemma 2.13) because
they are similar to those of Lemmas 2.10 and 2.10′ (of the Theorems 11.5
and 11.17 of monograph [9]).

3. Proof of the Main Results.
Proof of Theorems 1.1 and 1.1′. According to Lemmas 2.10 and 2.10′,

to prove Theorems 1.1 and 1.1′ it suffices to show that if the function h0 ∈
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L1,1(]a, b[) satisfies one of conditions (1.9) or (1.10), then it satisfies the con-
dition (2.16) as well.

By Lemma 2.5, the inequality (1.9) guarantees the validity of the inclu-
sion (2.16). Thus it remains for us to consider the case where the condition
(1.10) is fulfilled.

Let vγ be the function given by (1.23) and let v(t) = vγ(
2(t−a)
b−a ). Then v

is a solution of the equation

v′′ = − 4

(b− a)2
kγ
(2(t− a)

b− a
)
v

satisfying the conditions

v(a+) = 0, ; v(b−) = 0, v(t) > 0 for a < t < b.

This, by Lemma 2.3 and (1.10), implies that the solution u of the initial value
problem

u′′ = −h0(t)u; u(a+) = 0, u(a+) = 1

satisfies the condition

u(t) > 0 for a < t, b, u(b−) > 0.

Consequently, the inclusion (2.16) is valid. 2

Proof of Theorems 1.2 and 1.2′. First of all, it should be noted that the
inequality (1.14) follows from the (1.8) and (1.11) (from (1.11′)). For every
i ∈ {1, 2} we denote by ui the solution of the initial value problem

u′′ = −hi(t)u; u(a+) = 0, u′(a+) = 1.

Let vγ be the function given by (1.23), and v(t) = vγ(
2n(t−a)
b−a ). Then v is

a non-trivial solution of the problem

v′′ = − 4n2

(b− a)2
kγ
(2n(t− a)

b− a
)
v, v(a+) = 0, v(b−) = 0

which has exactly n− 1 zeros in the interval ]a, b[ . This, by Lemma 2.3 and
the conditions (1.12) and (1.14), implies that the function u1 and hence the
function u2 have at least n zeros in the interval ]a, b[ . However, according
to Lemma 2.8, the inequalities (1.13) and (1.14) and the fact that every
function u1 and u2 has at least n zeros in the interval ]a, b[ guarantee the
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validity of the inclusions (2.19). If we now apply Lemma 2.11, the validity
of Theorems 1.2 and 1.2′ becomes evident. 2

Proof of Corollary 1.1. Equation (1.15) follows from (1.1) in the case
where

f(t, x) =
m∑
k=1

pk(t)|x|λksgnx+ p(t)x+ q(t).

In this case by (1.17), the condition (1.7′) is fulfilled, where h0(t) = [p(t)]−,
and f(·, 0) ∈ L1,1(]a, b[). According to Theorem 1.2′, this implies that if
the condition (1.18) (condition (1.19)) is fulfilled, then for c1 = c2 = 0 the
problem (1.15), (1.2) is uniquely solvable. If, moreover, the condition (1.20)
is also fulfilled, then this problem is uniquely solvable for arbitrary ci ∈ R
(i = 1, 2).

To complete the proof of our corollary, it remains to show that if the
conditions (1.17), (1.18) (conditions (1.17), (1.19)) are fulfilled, then the
condition (1.20) is necessary for the solvability of the problem (1.15), (1.2)
for any ci ∈ R (i = 1, 2). Indeed, let u be a solution of (1.15), (1.2) under
the boundary conditions

u(a) = 2, u(b) = 2.

Set

q0(t) = q(t)− [q(t)]−u(t), q̃(t) =
m∑
k=1

pk(t)|u(t)|λksgnu(t) + [p(t)]+u(t)

and choose the numbers ti ∈ ]a, b[ (i = 1, 2) and r > 0 in such a way that

q̃(t) ≥
m∑
k=1

pk(t) + [p(t)]+ for t ∈ ]a, t1[∪ ]t2, b[ ,

|u(t)|+ |u(ti)|+ |u′(ti)|(b− a) +∫ t1

a
(s− a)|q0(s)| ds+

∫ b

t2
(b− s)|q0(s)| ds < r for a < t < b (i = 1, 2).

Then from the equalities

u(t) = u(ti) + (t− ti)u′(ti) +
∫ t

ti
(t− s)(q0(s) + q̃(s)) ds (i = 1, 2)

we find that ∫ t1

a
(s− a)

( m∑
k=1

pk(s) + [p(s)]+
)
ds < r,

∫ b

t1
(b− s)

( m∑
k=1

pk(s) + [p(s)]+
)
ds < +∞.



280 I. KIGURADZE

Consequently, the condition (1.20) is fulfilled. 2

Proof of Corollary 1.3. Let

f(t, x) = p(t)x+ q(t), hi(t) = −p(t) (i = 1, 2).

Then from (1.21) and (1.22) we obtain the conditions (1.7′), (1.12) and (1.13).
If now we apply Theorem 1.2′, the validity of Corollary 1.3 becomes evident.
2

Theorems 1.3 and 1.3′ (Theorems 1.4 and 1.4′) can be proved just in
the same way as Theorems 1.1 and 1.1′ (as Theorems 1.2 and 1.2′). The
only difference is that instead of Lemmas 2.5, 2.10 and 2.10′ (instead of
Lemmas 2.8 and 2.11) we apply Lemmas 2.6, 2.12 and 2.12′ (Lemmas 2.9
and 2.13), and along with Lemma 2.3 we apply Lemma 2.4.
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