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1. MAIN RESULTS

Let Cloc be the space of continuous functions x : [0,+∞[→ R with the topology of uniform
convergence on each closed interval in [0,+∞[ , let Lloc be the space of locally Lebesgue integrable
functions with the topology of convergence in mean on each closed interval in [0,+∞[ , and let
f : Cloc → Lloc be a continuous operator. Consider the functional-differential equation

u(n)(t) = f(u)(t) (1.1)

of order n ≥ 2. Numerous papers (e.g., see [1–17] and the bibliography therein) deal with oscillatory
properties of such equations. Nevertheless, these properties are little studied for the case in which
f is an advance operator. In the present paper, we try to fill this gap. Some special cases of the
theorems proved below were announced in [18, 19].

We introduce the following notions.

Definition 1.1. An operator g : Cloc → Lloc is called an advance operator if g(u)(t) = g(v)(t) for
almost all t ∈ ]0,+∞[ and for arbitrary functions u, v ∈ Cloc satisfying the relation u(s) = v(s)
for s ≥ t.

Definition 1.2. An operator g : Cloc → Lloc is said to be nondecreasing if g(u)(t) ≥ g(v)(t) for
almost all t ∈ ]0,+∞[ and for any u, v ∈ Cloc such that u(s) ≥ v(s) for s ≥ 0.

We study the oscillatory properties of Eq. (1.1) under the assumption that

f : Cloc → Lloc is a continuous odd advance operator (1.2)

and
(−1)kf is nondecreasing (1.3k)

for some k ∈ {1, 2}.
A solution of Eq. (1.1) on an interval [a,+∞[⊂ [0,+∞[ is defined as a function u : [a,+∞[→ R

that, together with its first n − 1 derivatives, is absolutely continuous on each closed interval
in [a,+∞[ and satisfies Eq. (1.1) with u(t) = u(a), 0 ≤ t ≤ a, almost everywhere on [a,+∞[ .

A solution u of Eq. (1.1) defined on some interval [a,+∞[⊂ [0,+∞[ is said to be proper if it
does not vanish identically in an arbitrary neighborhood of +∞.

If a proper solution has a sequence of zeros converging to +∞, then it is said to be oscillatory,
and otherwise it is said to be nonoscillatory.

Following [1, 2], we say that Eq. (1.1) has Property A if one of the following conditions holds:
(i) each proper solution is oscillatory (for even n); (ii) each proper solution is oscillatory or satisfies
the condition

lim
t→+∞

u(i)(t) = 0 (i = 0, . . . , n− 1) (1.4)

(for odd n).
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Equation (1.1) has Property B if one of the following conditions holds: (i) each proper solution
either is oscillatory, or satisfies condition (1.4), or satisfies the condition

lim
t→+∞

∣∣u(i)(t)
∣∣ = +∞ (i = 0, . . . , n− 1) (1.5)

(for even n); (ii) each proper solution either is oscillatory or satisfies condition (1.5) (for odd n).
Let m ∈ {0, . . . , n− 2}. By Definition 10.5 in [9], Eq. (1.1) has Property Am (respectively, Bm)

if each proper solution either is oscillating or satisfies the condition

lim
t→+∞

u(i)(t) = 0 (i = m, . . . , n− 1) (1.6)

[respectively, either is oscillatory, or satisfies condition (1.5), or satisfies condition (1.6)].

Proposition 1.1. Let conditions (1.2) and (1.31) [respectively, conditions (1.2) and (1.32)] be
satisfied. Equation (1.1) has Property A (respectively, B) if and only if it has Property A0 (respec-
tively, B0).

For each ` ∈ {1, . . . , n}, we set

h`(t, x) = t`−1x, f`(t, x) = tn−` |f (h`(·, x)) (t)| , (1.7`)

and for arbitrary a ≥ 0 and c > 0, we consider the initial value problem

v′(t) =
1

(n− 1)!
f`(t, v(t)), v(a) = c. (1.8`)

Theorem 1.1. Suppose that conditions (1.2) and (1.3k) are satisfied and there exists an
m ∈ {0, . . . , n− 2} such that

+∞∫
0

fm+1(t, δ)dt = +∞ for δ > 0 (1.9)

and for arbitrary a ≥ 0 and c > 0 problem (1.8`k), where

`k = m+ 1 + 2−1
(
1 + (−1)n−m+k

)
, (1.10)

has no upper solution defined on [a,+∞[ . If k = 1 (respectively, k = 2), then Eq. (1.1) has
Property Am (respectively, Bm).

Theorem 1.2. Suppose that conditions (1.2) and (1.3k) are satisfied and there exist numbers
m ∈ {0, . . . , n− 2} and δ0 > 0 and a continuous function ω : ]0,+∞[→ ]0,+∞[ such that

+∞∫
1

dx

ω(x)
< +∞, (1.11)

fm+1(t, x) ≥ fm+1 (t, δ0)ω(x) for t ≥ 0, x > 0. (1.12)

If k = 1 (respectively, k = 2), then condition (1.9) is necessary and sufficient for Eq. (1.1) to have
Property Am (respectively, Bm).

Theorem 1.3. Suppose that m ∈ {0, . . . , n − 2}, n −m is odd (respectively, even), and condi-
tions (1.2) and (1.31) [respectively, (1.2) and (1.32)] are satisfied. Moreover, suppose that there exists
a locally integrable function g : [0,+∞[→ [0,+∞[ and a continuous function ω : ]0,+∞[→ ]0,+∞[
such that

fm+2(t, x) ≥ g(t)ω(x) for t ≥ 0, x > 0 (1.13)
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and, in addition to (1.11),
+∞∫
0

g(t)dt = +∞. (1.14)

Then condition (1.9) is necessary and sufficient for Eq. (1.1) to have Property Am (respectively, Bm).

For arbitrary ` ∈ {1, . . . , n} and a ∈ [0,+∞[ , by va,` we denote an upper solution, maximally
extended to the right, of the problem

v′(t) =
1

`!(n− `)!f`(t, v(t)), v(a) = 1. (1.15`)

Theorems 1.1–1.3 deal with the case in which the intervals on which the functions va,`
(` = m + 1, . . . , n) are defined are finite. In what follows, we consider the case in which the
above-mentioned intervals coincide with [a,+∞[ .

For arbitrary n0 ∈ {0, . . . , n − 2} and k ∈ {1, 2}, by N (k)
n0,n

we denote the set of ` ∈ {n0, . . . , n}
such that `+ n+ k is even.

Theorem 1.4. Suppose that m ∈ {0, . . . , n − 2}, and, in addition to (1.2) and (1.3k), the con-
ditions

+∞∫
0

f`(t, δ)dt = +∞ for δ > 0 (` = m+ 1, . . . , n) (1.16)

are satisfied. Suppose that for arbitrary a ≥ 0 and ` ∈ {m+ 1, . . . , n− 1} ∩N
(k)

m+1,n, problem (1.15`)
has an upper solution va,` defined on [a,+∞[ , and 1

+∞∫
a

tn−`−1 |f (wa,`)(t)| dt = +∞, wa,`(t) = t`−1va,`(t). (1.17)

Then for k = 1 (respectively, k = 2), Eq. (1.1) has Property Am (respectively, Bm).

Theorem 1.5. Suppose that m ∈ {0, . . . , n − 2}, n −m is odd (respectively, even), and condi-
tions (1.2) and (1.31) [respectively, (1.2) and (1.32)] are satisfied. Moreover, suppose that for each
δ > 0, there exist positive numbers a, γ, and η such that

f`(t, δ) ≥ γtfm+1(t, η) for t ≥ a (` = m+ 2, . . . , n). (1.18)

Then condition (1.9) is necessary and sufficient for Eq. (1.1) to have Property Am (respectively, Bm).

By way of example, we consider the functional-differential equation

u(n)(t) = (−1)k
j∑
i=1

τ(t)∫
τ0(t)

|u(s)|λi sgnu(s)dspi(s, t), (1.19k)

u(n)(t) = (−1)k
τ(t)∫

τ0(t)

u(s)dsp(s, t), (1.20k)

where k ∈ {1, 2}, j ≥ 1, and λi > 0 (i = 1, . . . , j). Moreover, throughout the following, we assume
that τ, τ0 : [0,+∞[→ [0,+∞[ are continuous functions and p, pi : [0,+∞[× [0,+∞[→ [0,+∞[

1 If k = 2 and m = n− 2, then either condition (1.17) is omitted or N
(2)
n−1,n = {n}.
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(i = 1, . . . , j) are nondecreasing functions of the first argument satisfying the conditions
τ(t) > τ0(t) ≥ t for t ≥ 0, p(s, ·) ∈ Lloc and pi(s, ·) ∈ Lloc (i = 1, . . . , j) for s ≥ 0.

Theorems 1.1–1.5 imply the following assertions.

Corollary 1.1. Let j ≥ 2, j0 ∈ {1, . . . , j−1}, m ∈ {0, . . . , n−2}, and λi > 1 (i = j0 +1, . . . , j).
Then the condition

+∞∫
0

tn−m−1

 j∑
i=j0+1

τ(t)∫
τ0(t)

smλidspi(s, t)

 dt = +∞ (1.21)

is sufficient for Eq. (1.191) [respectively, Eq. (1.192)] to have Property Am (respectively, Bm). If,
moreover,

+∞∫
0

tn−m−1

 j0∑
i=1

τ(t)∫
τ0(t)

smλidspi(s, t)

 dt < +∞, (1.22)

then condition (1.21) is also necessary.

Corollary 1.2. Let j ≥ 2, j0 ∈ {1, . . . , j − 1}, λi > 1 (i = j0 + 1, . . . , j), m ∈ {0, . . . , n − 2},
n−m be odd (respectively, even), and

+∞∫
0

tn−m−2

 j∑
i=j0+1

τ(t)∫
τ0(t)

s(m+1)λidspi(s, t)

 dt = +∞. (1.23)

Then the condition
+∞∫
0

tn−m−1

 j0∑
i=1

τ(t)∫
τ0(t)

smλidspi(s, t)

 dt = +∞ (1.24)

is sufficient for Eq. (1.191) [respectively, Eq. (1.192)] to have Property Am (respectively, Bm). If,
moreover,

+∞∫
0

tn−m−1

 j∑
i=j0+1

τ(t)∫
τ0(t)

smλidspi(s, t)

 dt < +∞, (1.25)

then condition (1.24) is also necessary.

Corollary 1.3. Let 0 < λ1 ≤ λi < 1 (i = 1, . . . , j), m ∈ {0, . . . , n− 2}, and

+∞∫
0

g`(t)dt = +∞ (` = m+ 1, . . . , n), (1.26)

where

g`(t) = tn−`
j∑
i=1

τ(t)∫
τ0(t)

s(`−1)λidspi(s, t), (1.27`)

and suppose that the condition

+∞∫
0

tn−`−1

 j∑
i=1

τ(t)∫
τ0(t)

s(`−1)λi

 s∫
0

g`(ξ)dξ

λi/(1−λ1)

dspi(s, t)

 dt = +∞ (1.28)
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is satisfied for each ` ∈ {m+ 1, . . . , n− 1}∩N
(1)

m+1,n [respectively, ` ∈ {m+ 1, . . . , n− 1}∩N
(2)

m+1,n)].
Then Eq. (1.191) [respectively, (1.192)] has Property Am (respectively, Bm).

Corollary 1.4. Let 0 < λ1 ≤ λi < 1 (i = 1, . . . , j), m ∈ {0, . . . , n − 2}, let n − m be odd
(respectively, even), and let

lim inf
t→+∞

(
t−2/λ1τ0(t)

)
> 0. (1.29)

Then Eq. (1.91) [respectively, Eq. (1.192)] has Property Am (respectively, Bm) if and only if

+∞∫
0

tn−m−1

 j∑
i=1

τ(t)∫
τ0(t)

smλidspi(s, t)

 dt = +∞. (1.30)

Corollary 1.5. Let m ∈ {0, . . . , n− 2} and

+∞∫
0

gm+1(t)dt = +∞,

+∞∫
0

tn−`k−1

 τ(t)∫
τ0(t)

s`k−1 exp

 1
`k!(n− `k)!

s∫
0

g`k(ξ)dξ

 dsp(s, t)

 dt = +∞,

where `k is the number given by (1.10) and g`(t) = tn−`
∫ τ(t)

τ0(t)
s`−1dsp(s, t). If k = 1 (respectively,

k = 2), then Eq. (1.20k) has Property Am (respectively, Bm).

Corollary 1.6. Let m ∈ {0, . . . , n− 2}, let n−m be odd (respectively, even), and let

lim inf
t→+∞

(
t−2τ0(t)

)
> 0.

Then the condition
+∞∫
0

tn−m−1

 τ(t)∫
τ0(t)

smdsp(s, t)

 dt = +∞

is necessary and sufficient for Eq. (1.201) [respectively, Eq. (1.202)] to have Property Am (respec-
tively, Bm).

Corollaries 1.3 and 1.4 are generalizations of Theorems 1.1 and 1.2 in [13], which deal with
oscillatory properties of the Emden–Fowler advance differential equation of order n.

2. AUXILIARY ASSERTIONS

By C̃n−1
loc ([a0,+∞[ ), we denote the set of functions u : [a0,+∞[ → R that, together with their

(n − 1)st derivatives, are absolutely continuous on each finite closed subinterval of the interval
[a0,+∞[ . Lemmas 1.1–1.3 in [9] imply the following assertion.

Lemma 2.1. Suppose that u ∈ C̃n−1
loc ([a0,+∞[ ) ,

u(t) > 0 for t ≥ a0, (2.1)
mes

{
s ∈ [t,+∞[ : u(n)(s) 6= 0

}
> 0 for t ≥ a0 (2.2)

and the inequality
(−1)ku(n)(t) ≥ 0 (2.3)
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is valid almost everywhere on [a0,+∞[ for some k ∈ {1, 2}. Then there exists an a1 ∈ [a0,+∞[
and an ` ∈ N

(k)
0,n such that either ` ≤ n− 1 and

u(i)(t) > 0 (i = 0, . . . , `), (−1)i−`u(i)(t) > 0 (i = `, . . . , n− 1) for t ≥ a1, (2.4)
+∞∫
a1

tn−`−1
∣∣u(n)(t)

∣∣ dt < +∞, (2.5)

or k = 2, ` = n, and
u(i)(t) > 0 (i = 0, . . . , `− 1) for t ≥ a1. (2.6)

Lemma 2.2. Let a function u ∈ C̃n−1
loc ([a1,+∞[ ) satisfy inequality (2.3) almost everywhere

on [a1,+∞[ , where k ∈ {1, 2}. Moreover, let inequality (2.4) and the relation
+∞∫
a1

tn−`
∣∣u(n)(t)

∣∣ dt = +∞ (2.7)

be valid for some ` ∈ {1, . . . , n − 1} ∩N
(k)

0,n . Then there exists an a ∈ [a1,+∞[ such that

u(t) ≥ t`−1

`!
u(`−1)(t) for t ≥ a, (2.8)

u(`−1)(t) > `! +
1

(n− `)!

t∫
a

sn−`
∣∣u(n)(s)

∣∣ ds for t ≥ a. (2.9)

Proof. By Lemma 1.3 in [9], the inequalities (`− i)u(i)(t) ≥ tu(i+1)(t) (i = 0, . . . , `−1) are valid
on [a,+∞[ for a sufficiently large number a ∈ [a1,+∞[ . This readily implies inequality (2.8).

Since n− `− k is even, it follows from (2.3) that (−1)n−`sn−`u(n)(s) = sn−`
∣∣u(n)(s)

∣∣ for almost
all s ∈ [a1,+∞[ . If we divide both sides of this identity by (n − `)! and integrate the resulting
relation from a1 to t, then we obtain

n−1∑
i=`−1

(−1)i−1−`

(i+ 1− `)!t
i+1−`u(i)(t) = c+

1
(n− `)!

t∫
a1

sn−`
∣∣u(n)(s)

∣∣ ds, (2.10)

where c =
∑n−1

i=`−1

(
(−1)i−1−`/(i + 1− `)!

)
ai+1−`

1 u(i) (a1). However, by (2.7),

c+ ((n− `)!)−1

a∫
a1

sn−`
∣∣u(n)(s)

∣∣ ds > `!

for a sufficiently large a ∈ [a1,+∞[ . This, together with condition (2.4) and relation (2.10), implies
inequality (2.9) and completes the proof of the lemma.

In the sequel, we need the following obvious lemma on an integral inequality.

Lemma 2.3. Let ϕ : [a,+∞[× [0,+∞[→ [0,+∞[ be a function locally integrable in the first
argument and continuous and nondecreasing in the second argument. Moreover, suppose that there
exists a positive number c and a continuous function y : [0,+∞[→ ]0,+∞[ such that

y(t) > c+

t∫
a

ϕ(s, y(s))ds for t ≥ a.

Then the problem z′(t) = ϕ(t, z(t)), z(a) = c on the interval [a,+∞[ has an upper solution z∗, and
y(t) > z∗(t) ≥ c for t ≥ a.
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Lemma 2.4. Let conditions (1.2), (1.3k), and (1.16) be satisfied, where k = 1 (respectively,
k = 2) and m ∈ {0, . . . , n − 2}, and suppose that Eq. (1.1) does not have Property Am (respec-
tively, Bm). Then there exist a1 ≥ 0, a ≥ a1, and ` ∈ {m+1, . . . , n−1}∩N

(k)
m+1,n such that Eq. (1.1)

has a solution u defined on [a1,+∞[ and satisfying conditions (2.4) and (2.5), problem (1.15`) has
an upper solution va,` defined on [a,+∞[ , and

u(t) > t`−1va,`(t) ≥ t`−1 for t ≥ a. (2.11)

Proof. First, we note that, by conditions (1.2) and (1.3k) and relations (1.7`), for an arbitrary
` ∈ {1, . . . , n} we have f`(t, x) ≡ (−1)ktn−`f (h`(·, x)) (t) sgn x and

f`(t, y) ≥ f`(t, x) ≥ 0 for t ≥ 0, y ≥ x ≥ 0. (2.12)

Since Eq. (1.1) does not have Property Am (respectively, Bm), it follows from conditions (1.2)
and (1.3k) that on some interval [a0,+∞[ , there exists a solution u of this equation that satisfies
relations (2.1) and (2.3) and the inequalities

lim
t→+∞

u(m)(t) > 0, (2.13)

lim
t→+∞

∣∣u(n−1)(t)
∣∣ < +∞. (2.14)

Let us show that u satisfies condition (2.2) as well. Indeed, otherwise for some a1 ∈ [a0,+∞[ ,
we would have

u(n)(t) = 0 for t ≥ a1 (2.15)

and u(t) =
∑`

i=1 cit
i−1 for t ≥ a1, where ` ∈ {m + 1, . . . , n} and c` > 0. Therefore, there exists

a δ > 0 such that
u(t) > δt`−1 for t ≥ a1. (2.16)

Taking account of this estimate, relations (1.7`) and (2.15), and conditions (1.2) and (1.3k), we ob-
tain 0 = tn−`

∣∣u(n)(t)
∣∣ = tn−`|f(u)(t)| ≥ f`(t, δ) for t ≥ a1. This contradicts condition (1.16) and

completes the proof of condition (2.2).
By Lemma 2.1 and condition (2.13), there exists an a1 ∈ [a0,+∞[ and an ` ∈ N (k)

m,n such that
either ` ≤ n− 1 and conditions (2.4) and (2.5) are satisfied, or k = 2, ` = n, and inequalities (2.6)
hold.

Let us first show that ` ≤ n−1. Suppose the contrary: ` = n. Then k = 2, and inequalities (2.3)
and (2.6) are valid. Therefore, there exists a positive number δ such that u(t) ≥ tn−1δ for t ≥ a1.
Taking account of conditions (1.2), (1.32), and (1.16) as well, we obtain

u(n−1)(t) = u(n−1) (a1) +

t∫
a1

f(u)(s)ds >

t∫
a1

fn(s, δ)ds → +∞ as t→ +∞.

But this contradicts condition (2.14). We have thereby shown that ` ∈ {m, . . . , n− 1} ∩N (k)
m,n and

the function u satisfies conditions (2.4) and (2.5).
Suppose that ` = m. Then, taking account of relation (2.13), we obtain u(t) ≥ δtm for t ≥ a1,

where δ is a positive constant. By this inequality and conditions (1.2), (1.3k), and (1.16), one has

+∞∫
a1

tn−m−1
∣∣u(n)(t)

∣∣ dt =

+∞∫
a1

tn−m−1|f(u)(t)|dt ≥
+∞∫
a1

fm+1(t, δ)dt = +∞,

which contradicts condition (2.5) and hence implies that ` ∈ {m+ 1, . . . , n− 1} ∩N (k)
m,n .
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By (2.4), relations (2.16) are valid for some δ > 0. Therefore,

+∞∫
a1

tn−`
∣∣u(n)(t)

∣∣ dt =

+∞∫
a1

tn−`|f(u)(t)|dt ≥
+∞∫
a1

f`(t, δ)dt.

This, together with (1.6), implies (2.7).
By Lemma 2.2, there exists an a ∈ [a1,+∞[ such that the function u satisfies inequalities (2.8)

and (2.9). Taking account of this fact and conditions (1.2) and (1.3k) and setting y(t) = u(`−1)(t)/`!,
we obtain ∣∣u(n)(t)

∣∣ = |f(u)(t)| ≥ t`−nf`(t, y(t)) for t ≥ a,

y(t) > 1 + (`!(n− `)!)−1

t∫
a

f`(s, y(s))ds for t ≥ a.

This, together with Lemma 2.3 and condition (2.12), implies that problem (1.15`) has an upper
solution va,` defined on [a,+∞[ and u(`−1)(t) > `!va,`(t) ≥ `! for t ≥ a. Consequently, the esti-
mate (2.11) is valid, and the proof of the lemma is complete.

Lemma 2.5. Let `0 ∈ {0, . . . , n− 2}, k ∈ {1, 2}, and let conditions (1.2) and (1.3k) be satisfied.
Moreover, suppose that for arbitrary a ≥ 0 and c > 0, problem (1.8`0) has no upper solution defined
on [a,+∞[ . Then

+∞∫
0

f`(t, δ)dt = +∞ for δ > 0 (` = `0, . . . , n) , (2.17)

and for arbitrary a ≥ 0 and ` ∈ {`0, . . . , n− 1} , problem (1.15`) has no upper solution defined
on [a,+∞[ .

Proof. Suppose that for some a0 ≥ 0 and ` ∈ {`0, . . . , n− 1}, the problem

v′(t) = (`!(n− `)!)−1f`(t, v(t)), v (a0) = 1,

has an upper solution v defined on [a0,+∞[ . We set w(t) = t`−`0v(t). Then, by (1.2), (1.3k),
and (1.7`), we have h`(s, v(t)) ≥ h`0(s,w(t)) > 0 for s ≥ t ≥ a0 and

f`(t, v(t)) = (−1)ktn−`f (h`(·, v(t)))(t) ≥ (−1)ktn−`f (h`0(·, w(t)))(t) = t`0−`f`0(t, w(t))

for t ≥ a0. Therefore,

w(t) = t`−`0 +
1

(n− `)!`!t
`−`0

t∫
a0

f`(s, v(s))ds > c+
1

(n − 1)!
t`−`0

t∫
a

s`0−`f`0(s,w(s))ds

≥ c+
1

(n− 1)!

t∫
a

f`0(s,w(s))ds for t ≥ a,

where a = a0 + 2 and c = 1. Therefore, by Lemma 2.3 and condition (2.12), there exists an upper
solution of problem (1.8`0) defined on [a,+∞[ . This contradicts the assumptions of the lemma
and hence implies that for arbitrary a ≥ 0 and ` ∈ {`0, . . . , n− 1}, problem (1.15`) has no upper
solution defined on [a,+∞[ .

In a similar way, we show that for any a ≥ 0 and c > 0, problem (1.8`) has no upper solution
defined on [a,+∞[ if ` ∈ {`0, . . . , n− 1} as well as if ` = n.
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To complete the proof of the lemma, it remains to show that relation (2.17) is valid. Indeed,
otherwise, there would exist ` ∈ {`0, . . . , n}, δ > 0, c ∈ ]0, δ[ , and a > 0 such that

δ > c+ ((n− 1)!)−1

t∫
a

f`(s, δ)ds for t ≥ a.

This, together with Lemma 2.3, implies that there exists an upper solution of problem (1.8`) defined
on [a,+∞[ . On the other hand, as was mentioned above, problem (1.8`) has no upper solutions.
This contradiction completes the proof of the lemma.

Let a ≥ 0, m ∈ {0, . . . , n − 1}, and ci ∈ R (i = 0, . . . ,m). Consider the following problem: find
a solution u of Eq. (1.1) defined on [a,+∞[ and satisfying the condition

u(i)(a) = ci (i = 0, . . . ,m− 1), lim
t→+∞

u(m)(t) = cm. (2.18m)

If m = 0, then condition (2.18m) is treated as the condition limt→+∞ u(t) = c0.

Lemma 2.6. Let k ∈ {1, 2}, m ∈ {0, . . . , n− 1}, and let the operator f satisfy conditions (1.2)
and (1.3k). Then condition (1.9) is necessary for Eq. (1.1) to have Property Am or Bm. Moreover,
if condition (1.9) fails, then there exist positive constants a0 and γi (i = 0, . . . ,m) such that for
arbitrary a ≥ a0 and ci ∈ [−γi, γi] (i = 0, . . . ,m), problem (1.1), (2.18m) has at least one solution.

Proof. Let condition (1.9) fail. Then there exist a0 > 1, δ0 > 0, and γm ∈ ]0, δ0[ such that

a0 ≥ 2 (δ0 − γm)−2
,

+∞∫
a0

fm+1 (s, δ0) ds ≤ δ0 − γm
2

. (2.19)

If m ≥ 1, then we choose the numbers γi (i = 0, . . . ,m− 1) so as to ensure that

(δ0 − γm)
m−1∑
i=0

γi ≤ 1.

By C([a,+∞[ ) we denote the Banach space of continuous bounded functions x : [a,+∞[→ R
with the norm ‖x‖C = sup{|x(t)| : t ≥ a}. For an arbitrary x ∈ C([a,+∞[ ), we set y0(x)(t) = x(t)
for t ≥ a and y0(x)(t) = x(a) for 0 ≤ t ≤ a. For m ≥ 1, we set

ym(x)(t) =
m−1∑
i=0

ci
i!

(t− a)i +
1

(m− 1)!

t∫
a

(t− s)m−1x(s)ds for t ≥ a

and ym(x)(t) = ym(x)(a) for 0 ≤ t ≤ a.
Let a ≥ a0 and ci ∈ [−γi, γi] (i = 0, . . . ,m). In the ball

B = {x ∈ C([a,+∞[ ) : ‖x‖C ≤ (γm + δ0)/2} ,

we consider the operator

g(x)(t) = cm −
1

(n−m− 1)!

+∞∫
t

(t− s)n−m−1f (ym(x)) (s)ds. (2.20)
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Then, by conditions (1.2), (1.3k), and (2.19), we have

|ym(x)(t)| ≤ hm+1 (t, δ0) ,
|f (ym(x)) (t)| ≤ |f (hm+1 (·, δ0)) (t)| = tm+1−nfm+1 (t, δ0) ,

|g(x)(t)| ≤ γm +

+∞∫
t

fm+1 (s, δ0) ds ≤ γm + δ0

2
for t ≥ a.

These inequalities, together with (1.2), imply that the operator g : B → B is compact. By the
Schauder principle, there exists an x ∈ B such that x(t) = g(x)(t) for t ≥ a. We set u(t) = ym(x)(t)
for t ≥ a. By (2.20), the function u is a solution of problem (1.1), (2.18m).

Since problem (1.1), (2.18m) is solvable for arbitrary ci ∈ [−γi, γi] (i = 0, . . . ,m), it follows that
there exist infinitely many solutions of Eq. (1.1) such that

0 < lim
t→+∞

∣∣u(m)(t)
∣∣ < +∞.

Consequently, Eq. (1.1) has neither Property Am nor Property Bm. The proof of the lemma is
complete.

3. PROOF OF THE MAIN RESULTS

Proof of Proposition 1.1

To be definite, we assume that conditions (1.2) and (1.31) are satisfied; the case of conditions (1.2)
and (1.32) can be treated in a similar way.

By the definitions of Properties A and A0, we find that if Eq. (1.1) has Property A [respec-
tively, n is odd and Eq. (1.1) has Property A0], then it has Property A0 (respectively, Property A)
as well. Therefore, to prove Proposition 1.1, it suffices to show that if n is even and Eq. (1.1)
has Property A0, then it does not have any nonoscillatory proper solution. Suppose the contrary:
Eq. (1.1) has a nonoscillatory proper solution u defined on some interval [a0,+∞[ . Then, by condi-
tions (1.2) and (1.31) and Property A0 of Eq. (1.1), we can assume that u satisfies conditions (1.4)
and (2.1)–(2.3), where k = 1. On the other hand, by Lemma 2.1, the function u satisfies inequali-
ties (2.4) for some ` ∈ {1, . . . , n − 1} and a1 ∈ [a0,+∞[ . But this contradicts condition (1.4) and
hence completes the proof of Proposition 1.1.

Proof of Theorem 1.1

First, we note that if the assumptions of Theorem 1.1 are valid, then, by Lemma 2.5, inequali-
ties (1.16) also hold and for arbitrary a ≥ 0 and ` ∈ {`k, . . . , n− 1}, problem (1.15`) has no upper
solution defined on [a,+∞[ .

Now we suppose that k = 1 (respectively, k = 2), and Eq. (1.1) does not have Property Am
(respectively, Property Bm). Then, by Lemma 2.4, for some a ≥ 0 and ` ∈ {`k, . . . , n− 1},
problem (1.15`) has an upper solution defined on [a,+∞[ . On the other hand, by the above
considerations, this problem has no upper solution. This contradiction completes the proof of the
theorem.

Proof of Theorem 1.2

By Lemma 2.6, condition (1.9) is necessary for Property Am or Bm of Eq. (1.1). Consequently,
it remains to show that if k = 1 (respectively, k = 2) and condition (1.9) is satisfied, then Eq. (1.1)
has Property Am (respectively, Bm). First, we note that, by conditions (1.9), (1.11), and (1.12),
problem (1.8m+1) has no upper solution defined on [a,+∞[ for arbitrary a ≥ 0 and c > 0. This fact,
together with Lemma 2.5, implies the validity of (1.16) and the absence of an upper solution of
problem (1.15`) defined on [a,+∞[ for arbitrary a ≥ 0 and ` ∈ {m+ 1, . . . , n− 1}. Hence Eq. (1.1)
has Property Am (respectively, Bm), since otherwise, by Lemma 2.4, problem (1.15`) would have
an upper solution defined on [a,+∞[ for some a ≥ 0 and ` ∈ {m + 1, . . . , n− 1}. The proof of the
theorem is complete.

DIFFERENTIAL EQUATIONS Vol. 38 No. 8 2002



OSCILLATORY PROPERTIES OF HIGHER-ORDER ADVANCE . . . 1105

Proof of Theorem 1.3

By Lemma 2.6, condition (1.9) is necessary for Eq. (1.1) to have Property Am (respectively,
Property Bm). Let us prove the sufficiency of this condition.

If n −m is odd (respectively, even), then it follows from (1.10) that `1 = m + 2 (respectively,
`2 = m+ 2). This, together with conditions (1.11), (1.13), and (1.14), implies that problem (1.8`1)
[respectively, problem (1.8`2)] has no upper solution defined on [a,+∞[ for any a ≥ 0 and c > 0.
Now if we use Theorem 1.1, then we find that Eq. (1.1) has Property Am (respectively, Prop-
erty Bm).

Proof of Theorem 1.4

Suppose the contrary: k = 1 (respectively, k = 2), and Eq. (1.1) does not have Property Am
(respectively, Bm). By Lemma 2.4, there exist a1 ≥ 0, a ≥ a1, and ` ∈ {m+ 1, . . . , n− 1} ∩N

(k)
m+1,n

such that Eq. (1.1) has an upper solution u defined on [a1,+∞[ and satisfying conditions (2.5)
and (2.11). On the other hand, it follows from conditions (1.3k), (2.5), and (2.11) that

+∞∫
a

tn−`−1 |f (wa,`) (t)| dt ≤
+∞∫
a

tn−`−1|f(u)(t)|dt =

+∞∫
a

tn−`−1
∣∣u(n)(t)

∣∣ dt < +∞,

which contradicts condition (1.17) and completes the proof of the theorem.

Proof of Theorem 1.5

The necessity of condition (1.9) for Eq. (1.1) to have Property Am (respectively, Bm) follows
from Lemma 2.6.

Before proving the sufficiency, we note that conditions (1.9) and (1.18) provide the validity of
relations (1.16).

Now we suppose that condition (1.9) is satisfied and nevertheless Eq. (1.1) does not have Prop-
erty Am (respectively, Bm). Then, by Lemma 2.4, there exist a1 ≥ 0, a ≥ a1, and

` ∈ {m + 1, . . . , n − 1} ∩N
(1)

m+1,n

[respectively, ` ∈ {m+ 1, . . . , n− 1} ∩N
(2)

m+1,n)] such that Eq. (1.1) has an upper solution u defined
on [a,+∞[ and satisfying conditions (2.5) and (2.11). Moreover, since n −m is odd (respectively,
even), we have ` ≥ m+ 2.

For δ = 1, we choose positive numbers a, γ, and η so as to satisfy (1.18). Then, by relations (1.7`)
and conditions (1.2), (1.3k), and (2.11), we have

tn−`−1
∣∣u(n)(t)

∣∣ = tn−`−1|f(u)(t)| ≥ t−1f`(t, 1) ≥ γfm+1(t, η) for t ≥ a.

This, together with (2.5), implies that
∫ +∞
a

fm+1(t, η)dt < +∞. This contradicts condition (1.9)
and completes the proof of the theorem.

Equations (1.19k) and (1.20k) considered in Corollaries 1.1–1.6 follow from Eq. (1.1) in the cases

f(u)(t) = (−1)k
j∑
i=1

τ(t)∫
τ0(t)

|u(s)|λi sgnu(s)dspi(s, t), (3.1)

f(u)(t) = (−1)k
τ(t)∫

τ0(t)

u(s)dsp(s, t), (3.2)
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respectively. By the restrictions imposed on the functions τ0, τ , pi (i = 1, . . . , n), and p, in both
cases, the operator f satisfies conditions (1.2) and (1.3k). On the other hand, if f admits the
representation (3.1), then, by (1.7`), we obtain

f`(t, x) = tn−`
j∑
i=1

 τ(t)∫
τ0(t)

s(`−1)λidspi(s, t)

 |x|λi ; (3.1`)

but if f admits (3.2), then

f`(t, x) = tn−`

 τ(t)∫
τ0(t)

s`−1dsp(s, t)

 |x|. (3.2`)

Proof of Corollary 1.1

For each ` ∈ {1, . . . , n}, from (3.1`), we obtain the inequality

f`(t, x) ≥ g`(t)xλ(x) for t ≥ 0, x ≥ 0, (3.3`)

where

g`(t) = tn−`
j∑

i=j0+1

τ(t)∫
τ0(t)

s(`−1)λidspi(s, t), (3.4`)

λ(x) = min {λi : i = j0 + 1, . . . , j} > 1 for x ≥ 1, and λ(x) = max {λi : i = j0 + 1, . . . , j} for
0 ≤ x < 1. Moreover,

g`(t) ≥ gm+1(t) for t ≥ 1 (` = m+ 1, . . . , n), (3.5)

since τ0(t) ≥ t and λi > 1 (i = j0 + 1, . . . , j).
First, we suppose that relation (1.21) is valid. Then, by (3.3`), (3.4`), and (3.5), relations (1.16)

are valid, and for arbitrary a ≥ 0, c > 0, and ` ∈ {m + 1, . . . , n}, problem (1.8`) has no upper
solution defined on [a,+∞[ . This, together with Theorem 1.1, implies that Eq. (1.191) [respectively,
Eq. (1.192)] has Property Am (respectively, Bm).

Let us proceed to the case in which relation (1.21) fails and condition (1.22) is satisfied. Then,
by (3.1m+1), condition (1.9) fails, and it follows from Lemma 2.6 that Eq. (1.91) [respectively,
Eq. (1.192)] does not have Property Am (respectively, Bm). The proof of the corollary is complete.

Proof of Corollary 1.2

We set ω(x) = xλ(x) and g(t) = gm+2(t). Then, by (1.23), (3.3m+2), and (3.4m+2), condi-
tions (1.11), (1.13), and (1.14) are satisfied. On the other hand, if condition (1.25) is satisfied,
then, by the representation (3.1m+1), relation (1.9) holds if and only if relation (1.24) is valid.
If now we use Theorem 1.3, then the validity of Corollary 1.2 becomes obvious.

Proof of Corollary 1.3

Since 0 < λ1 ≤ λi < 1 (i = 1, . . . , j), it follows from (3.1`) for each ` ∈ {1, . . . , n} that
inequality (3.3`) is valid, where g` is the function given by (1.27`), λ(x) = 1 for 0 ≤ x < 1, and
λ(x) = λ1 for x ≥ 1.

On the one hand, relations (1.26) and (3.3`) imply (1.16); on the other hand, they imply that

va,`(t) >

 1− λ1

`!(n− `)!

t∫
a

g`(s)ds

1/(1−λ1)

for t ≥ a (` = 1, . . . , n − 1), (3.6)
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where va,` is an upper solution of problem (1.15`). By these estimates and condition (1.28), it follows
from (3.1) that relation (1.17) is valid for arbitrary a ≥ 0 and ` ∈ {m + 1, . . . , n − 1} ∩ N

(k)
m+1,n.

Consequently, all assumptions of Theorem 1.4 are satisfied; therefore, if k = 1 (respectively, k = 2),
then Eq. (1.19k) has Property Am (respectively, Bm).

Proof of Corollary 1.4

By (1.27`) and (1.29), there exist a > 1 and γ0 > 0 such that

g`(t) ≥ tm+1−` [τ0(t)](`−1−m)λ1 gm+1(t) ≥ γ0tgm+1(t)

for t ≥ a (` = m + 2, . . . , n). These estimates, together with inequalities (3.3`), ` = m + 2, . . . , n,
imply that inequalities (1.18) are valid for arbitrary δ > 0, where γ = γ0δ

λ(δ) and η = 1. On the
other hand, by (3.1`), relation (1.9) holds if and only if relation (1.30) is valid. If we now use
Theorem 1.5, then the validity of Corollary 1.4 becomes obvious.

Corollaries 1.5 and 1.6 can be proved by analogy with Corollaries 1.3 and 1.4. The only difference
is that the representations (3.1) and (3.1`) are replaced by the representations (3.2) and (3.2`); thus,
relation (3.6) is replaced by va,`(t) ≥ exp

(
(`!(n− `)!)−1

∫ t
a
g`(s)ds

)
for t ≥ a (` = 1, . . . , n − 1).
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