
1 Constraint Optimization: Second Order Con-

ditions

Reading [Simon], Chapter 19, p. 457-469.

The above described first order conditions are necessary conditions for
constrained optimization.

Bellow we introduce appropriate second order sufficient conditions for
constrained optimization problems in terms of bordered Hessian matrices.

1.1 Recall Nonconstrained case

In absolute (i.e. non constrained) optimization there are second order suffi-
cient conditions in terms of Hessian matrix

D2F =




Fx1x1 Fx2x1 ... Fxnx1

Fx1x2 Fx2x2 ... Fxnx2

... ... ... ...
Fx1xn Fx2xn ... Fxnxn


 .

1. Max. Suppose
∂F

∂xi

= 0, i = 1, 2, ..., n,

and n leading principal minors of D2F (x∗) alternate in sign

∣∣∣ Fx1x1

∣∣∣ < 0,

∣∣∣∣∣
Fx1x1 Fx2x1

Fx1x2 Fx2x2

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣

Fx1x1 Fx2x1 Fx3x1

Fx1x2 Fx2x2 Fx3x2

Fx1x3 Fx2x3 Fx3x3

∣∣∣∣∣∣∣
< 0, ...

at x∗. Then x∗ is a strict local max.

Shortly {
Df(x∗) = 0
D2f(x∗) < 0

∣∣∣∣∣ ⇒ x∗ max.

2. Min. Suppose
∂F

∂xi

= 0, i = 1, 2, ..., n,

and n leading principal minors of D2F (x∗) are positive

∣∣∣ Fx1x1

∣∣∣ > 0,

∣∣∣∣∣
Fx1x1 Fx2x1

Fx1x2 Fx2x2

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣

Fx1x1 Fx2x1 Fx3x1

Fx1x2 Fx2x2 Fx3x2

Fx1x3 Fx2x3 Fx3x3

∣∣∣∣∣∣∣
> 0, ...
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at x∗. Then x∗ is a strict local min.

Shortly {
Df(x∗) = 0
D2f(x∗) > 0

∣∣∣∣∣ ⇒ x∗ min.

3. Saddle. Suppose
∂F

∂xi

= 0, i = 1, 2, ..., n,

and some nonzero leading principal minors of D2F (x∗) violate previous two
sign patterns. Then x∗ is a saddle point.

1.2 Constrained Optimization of a Quadratic Form Sub-
ject of Linear Constraints

Recall one special case of constrained optimization, where the objective func-
tion is a quadratic form and all constraints are linear:

f(x1, ... , xn) =
∑

i,j

aijxixj,

h1(x1, ... , xn) =
∑n

i=1 B1ixi = 0
...
hm(x1, ... , xn) =

∑n
i=1 Bmixi = 0.

The sufficient condition in this particular case was formulated in terms of
bordered matrix

H =




0 ... 0 | B11 ... B1n

... | ...
0 ... 0 | Bm1 ... Bmn

− − − − − −
B11 ... Bm1 | a11 ... a1n

... | ...
B1n ... B1n | a1n ... ann




=

(
0 B

BT A

)
.

This (m + n)× (m + n) matrix has m + n leading principal minors

M1, M2, ... ,Mm, Mm+1, ... ,M2m−1, M2m, M2m+1, ... , Mm+n = H.

The first m matrices M1, ... , Mm are zero matrices.

Next m− 1 matrices Mm+1, ... ,M2m−1 have zero determinant.
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The determinant of the next minor M2m is ±(det M ′)2 where M ′ is the
left m×m minor of B, so det M2m does not contain information about f .

And only the determinants of last n − m matrices M2m+1, ... , Mm+n

carry information about both, the objective function f and the constraints
hi. Exactly these minors are essential for constraint optimization.

(i) If the determinant of H = Mm+n has the sign (−1)n and the signs of
determinants of last m + n leading principal minors

M2m+1, ... ,Mm+n

alternate in sign, then Q is negative definite on the constraint set Bx = 0,
so x = 0 is a strict global max of Q on the constraint set Bx = 0.

(ii) If the determinants of all last m + n leading principal minors

M2m+1, ... ,Mm+n

have the same sign (−1)m, then Q is positive definite on the constraint set
Bx = 0, so x = 0 is a strict global min of Q on the constraint set Bx = 0.

(iii) If both conditions (i) and (ii) are violated by some from last m + n
leading principal minors

M2m+1, ... ,Mm+n

then Q is indefinite on the constraint set Bx = 0, so x = 0 is neither max
nor min of Q on the constraint set Bx = 0.

This table describes the above sign patterns:

Mm+m+1 Mm+m+2 ... Mm+n−1 Mm+n

negative (−1)m+1 (−1)m+2 ... (−1)n−1 (−1)n

positive (−1)m (−1)m ... (−1)m (−1)m

1.3 Sufficient Condition for Constrained Optimization

Consider now the problem of maximizing f(x1, ..., xn) on the constraint set

Ch = {x ∈ Rn : hi(x) = ci, i = 1, ..., k}.

As usual we consider the Lagrangian

L(x1, ..., xn, µ1, ..., µk) = f(x1, ..., xn)−
k∑

i=1

µi(hi(x1, ..., xn)− ci),
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and the following bordered Hessian matrix

H =




0 ... 0 ∂h1

∂x1
... ∂h1

∂xn

... ... ... ... ... ...
0 ... 0 ∂hk

∂x1
... ∂hk

∂xn
∂h1

∂x1
... ∂hk

∂x1

∂2L
∂x2

1
... ∂2L

∂xn∂x1

... ... ... ... ... ...
∂h1

∂xn
... ∂hk

∂xn

∂2L
∂x1∂xn

... ∂2L
∂x2

n




.

This (k + n)× (k + n) matrix has k + n leading principal minors

H1, H2, ... , Hk, Hk+1, ... , H2k−1, H2k, H2k+1, ... , Hk+n = H.

The first m matrices H1, ... , Hk are zero matrices.

Next k − 1 matrices Hk+1, ... , H2k−1 have zero determinant.

The determinant of the next minor H2k is ±(det H ′)2 where H ′ is the
upper k × k minor of H after block of zeros, so det H2k does not contain
information about f .

And only the determinants of last n− k leading principal minors

H2k+1, H2k+2, ... , H2k+(n−k)=k+n = H

carry information about both, the objective function f and the constraints
hi.

Exactly these minors are essential for the following sufficient condition
for constraint optimization.

Theorem 1 Suppose that x∗ = (x∗1, ..., x
∗
n) ∈ Rn satisfies the conditions

(a) x∗ ∈ Ch;
(b) there exists µ∗ = (µ∗1, ..., µ

∗
k) ∈ Rk such that (x∗1, ..., x

∗
n, µ

∗
1, ..., µ

∗
k) is a

critical point of L;
(c) for the bordered Hessian matrix H the last n − k leading principal

minors
H2k+1, H2k+2, ... , Hn+k = H

evaluated at (x∗1, ..., x
∗
n, µ∗1, ..., µ

∗
k) alternate in sign where the last minor Hn+k =

H has the sign as (−1)n.
Then x∗ is a local max in Ch.

If instead of (c) we have the condition
(c’) For the bordered hessian H all the last n−k leading principal minors

H2k+1, H2k+2, ... , Hn+k = H

evaluated at (x∗1, ..., x
∗
n, µ

∗
1, ..., µ

∗
k) have the same sign as (−1)k, then x∗ is a

local min on Ch.
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This table describes the above sign patterns:

Hk+k+1 Hk+k+2 ... Hk+n−1 Hk+n

max (−1)k+1 (−1)k+2 ... (−1)n−1 (−1)n

min (−1)k (−1)k ... (−1)k (−1)k

Example 1. Find extremum of F (x, y) = xy subject of h(x, y) = x + y = 6.

Solution. The Lagrangian here is

L(x, y) = xy − µ(x + y − 6).

The first order conditions give the solution

x = 3, y = 3, µ = 3

which needs to be tested against second order conditions before we can tell
whether it is maximum, minimum or neither.

The bordered Hessian of our problem looks as

H =




0 1 1
1 0 1
1 1 0


 .

Here n = 2, k = 1 so we have to check just n − k = 2 − 1 = 1 last leading
principal minors, so just H itself. Calculation shows that det H = 2 > 0 has
the sign (−1)2 = (−1)n so our critical point (x = 3, y = 3) is max.

Example 2. Find extremum of F (x, y, z) = x2+y2+z2 subject of h1(x, y, z) =
3x + y + z = 5, h2(x, y, z) = x + y + z = 1.

Solution. The lagrangian here is

L(x, y, µ1, µ2) = x2 + y2 + z2 − µ1(3x + y + z − 5)− µ2(x + y + z − 1).

The first order conditions give the solution

x = 2, y = −1

2
, z = −1

2
, µ1 =

5

2
, µ2 = −7

2
.

Now it is time to switch to bordered hessian in order to tell whether it is
maximum, minimum or neither

H =




0 0 3 1 1
0 0 1 1 1
3 1 2 0 0
1 1 0 2 0
1 1 0 0 2




.
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Here n = 3, k = 2 so we have to check just n − k = 3 − 2 = 1 leading
principal minors, so just H itself. Calculation shows that det H = 16 > 0
has the sign as (−1)k = (−1)2 = +1, so our critical point is min.

Example 3. Find extremum of F (x, y) = x+y subject of h(x, y) = x2+y2 =
2.

Solution. The lagrangian here is

L(x, y) = x + y − µ(x2 + y2 − 2).

The first order conditions give two solutions

x = 1, y = 1, µ = 0.5 and x = −1, y = −1, µ = −0.5

Now it is time to switch to bordered hessian

H =




0 2x 2y
2x −2µ 0
2y 0 −2µ


 .

Here n = 2, k = 1 so we have to check just n − k = 3 − 2 = 1 leading
principal minor H2 = H.

Checking H for (x = 1, y = 1, µ = 0.5) we obtain H = 4 > 0, that is it has
the sign of (−1)n = (−1)2, so this point is max.

Checking H for (x = −1, y = −1, µ = −0.5) we obtain H = −4 < 0, that
is it has the sign of (−1)k = (−1)1, so this point is min.

1.4 Second Order Conditions for Mixed Constraints

Problem: maximize f(x1, ..., xn) subject to k inequality and m equality
constraints

g1(x1, ..., xn) ≤ b1, ... , gk(x1, ..., xn) ≤ bk,
h1(x1, ..., xn) = c1, ... , hm(x1, ..., xn) = cm.

Lagrangian:

L(x1, ..., xn, λ1, ..., λk)) = f(x1, ..., xn)+
−λ1[g1(x1, ..., xn)− b1]− ... − λk[g(x1, ..., xn)− b1]+
−µ1[h1(x1, ..., xn)− c1]− ... − µm[h(x1, ..., xn)− c1].

Theorem 2 Suppose we have

x∗ = (x∗1, ..., x
∗
n), λ∗ = (λ∗1, ... , λ∗k), µ∗ = (µ∗1, ... , µ∗m)
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such that the first order conditions are satisfied, that is

(a) ∂L
∂x1

(x∗, λ∗) = 0, ... , ∂L
∂xn

(x∗, λ∗) = 0,

(b) λ∗1[g1(x
∗)− b1] = 0, ... , λ∗k[gk(x

∗)− b1] = 0,
(c) h1(x

∗) = c1, ... , hm(x∗) = cm,
(d) λ∗1 ≥ 0, ... , λ∗k ≥ 0,
(e) g1(x

∗) ≤ b1, ... , g1(x
∗) ≤ b1.

Furthermore, suppose among inequality constraints

g1, g2, ... , gb

are binding at x∗ and others are not binding. Consider the following bordered
Hessian

H =




0 ... 0 0 ... 0 ∂g1

∂x1
... ∂g1

∂xn

... ... ... ... ... ... ... ... ...

0 ... 0 0 ... 0 ∂gb

∂x1
... ∂gb

∂xn

0 ... 0 0 ... 0 ∂h1

∂x1
... ∂h1

∂xn

... ... ... ... ... ... ... ... ...
0 ... 0 0 ... 0 ∂hm

∂x1
... ∂hm

∂xn
∂g1

∂x1
... ∂gb

∂x1

∂h1

∂x1
... ∂hm

∂x1

∂2L
∂x2

1
... ∂2L

∂xn∂x1

... ... ... ... ... ... ... ... ...
∂g1

∂xn
... ∂gb

∂xn

∂h1

∂xn
... ∂hm

∂xn

∂2L
∂x1∂xn

... ∂2L
∂x2

n




.

Then if last n − (b + m) minors of this Hessian evaluated at (x∗, λ∗, µ∗)
alternate in sign and the sign of largest minor (H) -s that of (−1)n then x∗

is maximizer.

1.5 Again About the Meaning of Multiplier

Consider the problem

Maximize f(x1, ..., xn) subject to hi(x1, ..., xn) = ai, i = 1, ..., k.

Let (x∗, µ∗) = (x∗1, ..., x
∗
n, µ

∗
1, ..., µ

∗
k) be the optimal solution of this prob-

lem. This solution depends on ”budget” constraints a = (a1, ..., ak), so we
can assume that x∗ and µ∗ are functions of a:

(x∗(a), µ∗(a)) = (x∗1(a), ..., x∗n(a), µ∗1(a), ..., µ∗k(a)).

The optimal value f(x∗, µ∗) also can be considered as a function of a:

f(x∗(a)) = f(x∗1(a), ..., x∗n(a)).

Calculation similar to one used in two variable case shows that

∂

∂aj

f(x∗1(a), ..., x∗n(a)) = µ∗j(a).
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This formula has the following meaning:

-µ∗j measures the sensitivity of optimal value f(x∗(a)) to changing the
constraint aj.

-In other words µ∗j measures how the optimal value is affected by relax-
ation of j-th constraint aj.

-One more interpretation: µ∗j measures how the additional dollar invested
in j-th input changes the optimal value.

That is why the Lagrange multiplier sometimes is called shadow price,
internal value, marginal productivity of money.

Example 4. Consider the problem

Maximize f(x, y) = x2y on the constraint set h(x, y) = 2x2 + y2 = 3.
The first order condition gives the solution

x∗(3) = 1, y∗(3) = 1, µ∗(3) = 0.5.

The second order condition allows to check that this is maximizer. The
optimal value is f(1, 1) = 1.

Now let us change the constraint to

h(x, y) = 2x2 + y2 = 3.3.

The first order condition gives new stationary point

x∗(3.3) = 1.048808848, y∗(3.3) = 1.048808848, µ∗(3.3) = 0.5244044241

and the new optimal value is 1.153689733. So increasing the budget a = 3 to
a + ∆a = 3.3 increases the optimal value by 1.153689733− 1 = 0.153689733.

Now estimate the same increasing of optimal value using shadow price:

f(1.048808848, 1.048808848)−f(1, 1) ≈ f(1, 1)+µ∗ ·0.3 = 1+0.5·0.3 = 1.15,

this is good approximation of 1.153689733.

1.5.1 Income Expansion Path

Back to a problem

Maximize f(x1, x2) subject to h(x1, x2) = a.

The shadow price formula here looks as

∂

∂a
f(x∗1(a), x∗2(a)) = µ∗(a).
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The curve R → Rn given by a → x∗(a) = (x∗1(a), x∗2(a)) is called income
expansion path. This is the path on which moves the optimal solution x∗(a)
when the constraint a changes.

Theorem 3 If the objective function f(x1, x2) is homogenous, and the con-
straint function h(x1, x2) = p1x1 + p2x2 is linear, then the income expansion
path is a ray from origin.

Proof. Try!

1.6 Envelop Theorems*

The above theorems about the meaning of multiplier are particular cases of
so called Envelope Theorems.

1.6.1 Version with Maximizers

Let f(x, c), x ∈ Rn, c ∈ Rp be a function of variables x = (x1, ... , xn)
and parameters c = (c1, ... , cp). Let us fix c∗ and suppose x∗(c∗) be the
maximizer of f(x, c∗) with c∗ fixed. Then the maximal value f(x∗(c∗), c∗)
can be considered as a function of c:

F (c∗) = f(x∗(c∗), c∗).

Note that since of first order condition we have

Dxf(x∗(c∗), c∗) = 0

The Envelope Theorem gives an easy way to calculate the gradient of F (c∗).

Theorem 4
DcF (c∗) = Dcf(x∗(c∗), c∗).

Proof. By chain rule and the above mentioned first order condition we have

DcF (c∗) = Dxf(x∗(c∗), c∗) ·Dc(x
∗(c∗)) + Dcf(x∗(c∗), c∗)

= 0 ·Dc(x
∗(c∗)) + Dcf(x∗(c∗), c∗) = Dcf(x∗(c∗), c∗).

Example 6. Consider the maximization problem

max f(x) = −x2 + 2ax + 4a2

which depends on the parameter a. What will be the effect of a unit increase
of a on the maximal value of f(x, a)?

1. Direct solution. Just find a critical point

f ′(x, a) = −2x + 2a = 0, x∗ = a, F (a) = f(x∗(a), a) =
f(a, a) = −a2 + 2a2 + 4a2 = 5a2,
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so the rate of change of maximal value is 10a.

2. Solution using the Envelope Theorem.

F ′(a) =
∂

∂a
f(x, a)|x=a = (2x + 8a)|x=a = 10a.

1.6.2 Version with Constrained Maximum

Consider the problem

max f(x, a) s.t. h(x, a) = 0,

depending on the parameter a. Let (x∗(a), µ∗(a)) be the optimal solution for
the fixed choice of parameter a, so F (a) = f(x∗(a), a) is a maximal value as
a function of a.

Theorem 5 The rate of change of maximal value is

F ′(a) =
d

da
f(x∗(a), a) =

∂

∂a
L(x∗(a), µ∗(a), a).

Remark. Actually when f(x, a) = f(x), that is the objective function does
not depend on the parameter a, and h(x, a) = h̄(x)−a, that is the parameter
a is the budget restriction, then we have our old result F ′(a) = µi, indeed,

F ′(a) = ∂
∂a

L(x, µ, a)|(x=x∗(a),µ=µ∗(a),a) =
∂
∂a

[f(x)− µ(h̄(x)− a)]|(x=x∗(a),µ=µ∗(a),a) = µ|(µ=µ∗(a),a) = µ∗(a).

Example 7. Consider the problem discussed above

max f(x, y) = x2y s.t. h(x, y) = 2x2 + y2 = 3.

As it was calculated the first order condition gives the solution

x∗(3) = 1, y∗(3) = 1, µ∗(3) = 0.5,

the second order condition allows to check that this is maximizer. The opti-
mal value is f(1, 1) = 1.

Now try to estimate how the optimal value will change if we replace the
constraint by

h(x, y) = 2x2 + 1.1y2 = 3.

Instead of solving the problem

max f(x, y) = x2y s.t. h(x, y) = 2x2 + 1.1y2 − 3 = 0

let us use the Envelope Theorem for

h(x, y, a) = 2x2 + ay2 − 3.
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The Lagrangian in this case is

L(x, y, a) = x2y − µ(2x2 + ay2 − 3),

then

F ′(a) =
d

da
L(x, y, a) = −µy2,

thus

F ′(1) =
d

da
L(x, y, a)|(x=1,y=1,µ=0.5) = −µy2|(x=1,y=1,µ=0.5) = −0.5 · 12 = −0.5,

and

F (1.1) = F (1) + F ′(1) · 0.1 = 1 + (−0.5) · 0.1 = 1− 0.05 = 0.95.
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Exercises

1. Write out the bordered Hessian for a constrained optimization problem
with four choice variables and two constraints. Then state specifically the
second-order sufficient condition for a maximum and for a minimum respec-
tively.

2. For the following problems
(i) find stationary values,
(ii) ascertain whether they are min or max,
(iii) find whether relaxation of the constraint (say increasing of budget) will
increase or decrease the optimal value?
(iv) At what rate?

(a) f(x, y) = xy, h(x, y) = x + 2y = 2;
(b) f(x, y) = x(y + 4), h(x, y) = x + y = 8;
(c) f(x, y) = x− 3y − xy, h(x, y) = x + y = 6;
(d) f(x, y) = 7− y + x2, h(x, y) = x + y = 0.

3. Find all the stationary points of f(x, y, z) = x2y2 subject of x2+y2 = 2
and check the second order conditions.

4. Find all the stationary points of f(x, y, z) = x2y2z2 subject of x2 +
y2 + z2 = 3 and check the second order conditions.

5. Find the maximum and minimum values of f(x, y) = x2 + y2 on the
constraint set h(x, y) = x2 + xy + y2 = 3. Redo the problem, this time using
the constraint h(x, y) = 3.3.

Now estimate the shadow price of increasing of constraint by 0.3 units
and compare with previous result.

∗And now estimate the change of optimal value when the objective func-
tion is changed to f(x, y) = x2 + 1.2y2 keeping h = x2 + xy + y2 = 3.

6. Find all the stationary points of f(x, y, z) = x + y + z2 subject to
x2 + y2 + z2 = 1 and y = 0. Check the second order conditions and classify
minimums and maximums.

Homework

1. Exercise 1.
2. Exercise 2d.
3. Exercise 4.
4. Exercise 6.
5. Exercise 19.3 from [Simon].
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