Reading [Simon], Chapter 18, p. 424-439.

1 Inequality Constraints

1.1 One Inequality constraint

Problem: maximize f(x, y) subject to $g(x, y) \le b$.

As we see here the constraint is written as inequality instead of equality. An inequality constraint $g(x, y) \leq b$ is called *binding (or active) at a point*

(x, y) if g(x, y) = b and not binding (or inactive) if g(x, y) < b.

Again we consider the same Lagrangian function

$$L(x, y, \lambda) = f(x, y) - \lambda[g(x, y) - b].$$

Theorem 1 Suppose (x^*, y^*) is a solution of the above problem: (x^*, y^*) maximizes f on the constraint set $g^*(x, y) \leq b$.

Suppose the following **qualification** is satisfied: If $g(x^*, y^*) = b$ (i.e. if (x^*, y^*) is binding) then $Dg(x^*, y^*) \neq (0, 0)$. Then there exists a multiplier λ^* such that

$$\begin{array}{ll} (a) & \frac{\partial L}{\partial x}(x^*, y^*, \lambda^*)) = 0, \\ (b) & \frac{\partial L}{\partial y}(x^*, y^*, \lambda^*)) = 0, \\ (c) & \lambda^*[g(x^*, y^*) - b] = 0, \\ (d) & \lambda^* \ge 0, \\ (e) & g(x^*, y^*) \le b. \end{array}$$

Remark 1. These conditions, as well as the conditions from theorems below concerning with inequality conditions are called Karush-Kuhn-Tucker (KKT) conditions.

Remark 2. For the minimization problem the condition (d) must be replaced by (d') $\lambda^* \leq 0$.

Almost a proof. Consider the following two cases: (x^*, y^*) is binding or not binding.

Case 1: (x^*, y^*) is not binding $g(x^*, y^*) < 0$.

This means that (x^*, y^*) is an *inner* (unconstraint) maximum, thus $f_x(x^*, y^*) = 0$, $f_y(x^*, y^*) = 0$. In this case we can take $\lambda = 0$ the conditions (a) - (e) are satisfied. Indeed (a) $L_x(x^*, y^*, \lambda^*)) = f_x(x^*, y^*) - \lambda \cdot g_x(x^*, y^*) = f_x(x^*, y^*) - 0 \cdot g_x(x^*, y^*) = 0$; (b) $L_y(x^*, y^*, \lambda^*)) = f_y(x^*, y^*) - \lambda \cdot g_y(x^*, y^*) = f_y(x^*, y^*) - 0 \cdot g_x(x^*, y^*) = 0$; (c) $\lambda^* \cdot [g(x^*, y^*) - b] = 0 \cdot [g(x^*, y^*) - b] = 0$; (d) $0 = \lambda^* \ge 0$; (e) $g(x^*, y^*) - b < 0$.

Case 2: (x^*, y^*) is binding $g(x^*, y^*) = 0$.

This means that (x^*, y^*) is a maximizer constrained by the equality condition, thus there exists λ^* such that

$$L_x(x^*, y^*) = 0, \ L_y(x^*, y^*) = 0, \ L_\lambda(x^*, y^*) = 0,$$

this again implies the needed conditions (a) - (e):

(a) $L_x(x^*, y^*, \lambda^*)) = 0;$ (b) $L_y(x^*, y^*, \lambda^*)) = 0;$ (c) $\lambda^* \cdot [g(x^*, y^*) - b] = \lambda^* \cdot 0 = 0;$ (d) since of maximality of (x^*, y^*) the gradients $\nabla f(x^*, y^*)$ and $\nabla g(x^*, y^*)$ must have the same directions, thus $\lambda \ge 0;$ (e) $g(x^*, y^*) - b = 0.$

Remark. What is the meaning of the zero $\lambda = 0$ multiplier in Case 1? The shadow price in this case is 0: the maximal value $f(x^*, y^*)$ does not change when we change b a little.

Example 1. Minimize $f(x, y) = x^2 + y^2$ subject of $g(x, y) = 2x + y \le 2$. Solution. There are no critical points of g at all, so the qualification is satisfied.

The lagrangian in this case is

$$L(x, y, \lambda) = x^{2} + y^{2} - \lambda(2x + y - 2),$$

and the KKT conditions from Theorem are

$$\begin{array}{ll} (a) & \frac{\partial L}{\partial x}(x,y,\lambda) = 2x - 2\lambda = 0, \\ (b) & \frac{\partial L}{\partial y}(x,y,\lambda) = 2y - \lambda y = 0, \\ (c) & \lambda[g(x,y) - b] = \lambda(2x + y - 2) = 0, \\ (d) & \lambda \leq 0, \\ (e) & g(x,y) = 2x + y \leq 2. \end{array}$$

We consider two cases:

Case 1. $\lambda = 0$, in this case our system looks as

(a)
$$x = 0,$$

(b) $y = 0,$
(c) $0 = 0,$
(d) $0 \le 0,$
(e) $2x + y \le 2,$

so the solution in this case is $(x, y, \lambda) = (0, 0, 0)$. Case 2. 2x + y - 2 = 0, in this case our system looks as

(a)
$$2x = 2\lambda$$
,
(b) $2y = \lambda$,
(c) $2x + y - 2 = 0$,
(d) $\lambda \le 0$,
(e) $2x + y \le 2$,

so x = 2y, 2x+y = 2, this gives the solution x = 0.8, y = 0.4 but $\lambda = 0.8 > 0$ so this solution *can not* be a minimizer.

So if this constrained minimization problem has a solution, it *can be* only (0,0).

Example 2. Maximize f(x, y) = xy subject of $g(x, y) = x^2 + y^2 \le 2$.

Solution. The constraint function g(x, y) has no critical points at all, so the qualification is satisfied.

The Lagrangian in this case is

$$L(x, y, \lambda) = xy - \lambda(x^2 + y^2 - 2),$$

and the KKT conditions from Theorem are

$$\begin{array}{ll} (a) & \frac{\partial L}{\partial x}(x,y,\lambda^*)) = y - 2\lambda x = 0, \\ (b) & \frac{\partial L}{\partial y}(x,y,\lambda)) = x - 2\lambda = 0, \\ (c) & \lambda^*[g(x,y) - b] = \lambda(x^2 + y^2 - 2) = 0, \\ (d) & \lambda \ge 0, \\ (e) & g(x,y) = x^2 + y^2 \le 2. \end{array}$$

We consider two cases:

Case 1: $\lambda = 0$. In this case our system looks as

(a)
$$y = 0,$$

(b) $x = 0,$
(c) $0 = 0,$
(d) $0 \ge 0,$
(e) $x^2 + y^2 \le 2$

so the solution in this case is $(x^*,y^*,\lambda^*)=(0,0,0).$

Case 2: $x^2 + y^2 - 2 = 0$. In this case our system looks as

(a)
$$y - 2\lambda x = 0,$$

(b) $x - 2\lambda y = 0,$
(c) $(x^2 + y^2 - 2) = 0,$
(d) $\lambda \ge 0,$
(e) $x^2 + y^2 \le 2.$

The first two equations yield

$$\lambda = \frac{y}{2x} = \frac{x}{2y}, \text{ or } x^2 = y^2.$$

Together with the condition (c) it gives thew system

$$x^2 = y^2$$
$$x^2 + y^2 = 2.$$

The solution gives $x^2 = 1$, $y^2 = 1$, or $x = \pm 1$, $y = \pm 1$. Combining with $\lambda = \frac{y}{2x}$ we obtain corresponding $\lambda = \pm \frac{1}{2}$. Combining all these solutions we get the following candidates for maxi-

mizers

$$\begin{array}{rl} x^{*}=+1, & y^{*}=+1, & \lambda^{*}=+\frac{1}{2}; \\ x^{*}=-1, & y^{*}=-1, & \lambda^{*}=+\frac{1}{2}; \\ x^{*}=+1, & y^{*}=-1, & \lambda^{*}=-\frac{1}{2}; \\ x^{*}=-1, & y^{*}=+1 & \lambda^{*}=-\frac{1}{2}. \end{array}$$

The last two solution contradict to the condition (e) $\lambda \geq 0$, so, including (0,0,0) there are three candidates which satisfy the first order conditions. Note that the constraint set is compact. Plugging these three into the objective function, we find that f(1,1) = 1, f(-1,-1) = 1 so both (1,1) and (-1, -1) are the needed maximizers.

Note that the two points with negative multipliers

$$\begin{array}{rl} x^* = +1, & y^* = -1, & \lambda^* = -\frac{1}{2}; \\ x^* = -1, & y^* = +1 & \lambda^* = -\frac{1}{2}. \end{array}$$

are the solutions of the problem of minimizing of f(x,y) = xy subject to $q(x, y) = x^2 + y^2 \le 1.$

Economical Application. Consider the standard problem of maximization of the utility function

 $U(x_1, x_2)$

subject to the budget *inequality* constraint

$$p_1 x_1 + p_2 x_2 \le I.$$

Suppose additionally that $p_1 > 0$, $p_2 > 0$ and the utility function is *monotonic* in both arguments, that is for each commodity bundle (x_1, x_2)

$$\frac{\partial U}{\partial x_1}(x_1, x_2) > 0, \quad \frac{\partial U}{\partial x_2}(x_1, x_2) > 0.$$

This means that our commodities are *goods*.

Then the KKT implies an important result: the optimal solution is *nec*essarily binding

$$p_1 x_1 + p_2 x_2 = I,$$

that is at optimizer the consumer spends all the available income. Indeed, for the Lagrangian

$$L(x_1, x_2) = f(x_1, x_2) - \lambda(p_1 x_1 + p_2 x_2 - I)$$

we have

$$\frac{\partial L}{\partial x_1}(x_1, x_2) = \frac{\partial U}{\partial x_1}(x_1, x_2) - \lambda p_1 = 0, \\ \frac{\partial L}{\partial x_2}(x_1, x_2) = \frac{\partial U}{\partial x_2}(x_1, x_2) - \lambda p_1 = 0,$$

now, since $\frac{\partial U}{\partial x_1}(x_1, x_2) > 0$ and (or) $\frac{\partial U}{\partial x_2}(x_1, x_2) > 0$, it follows that $\lambda > 0$. Then from the condition

$$\lambda(p_1x_1 + p_2x_2 - I) = 0$$

we get

$$p_1 x_1 + p_2 x_2 - I = 0.$$

Notice that it is enough to require that just one of commodities is a good.

1.2 Two Inequality Constraints

Maybe it will be useful to consider separately the following problem:

max
$$f(x_1, x_2, x_3) = 0$$
 s.t. $g_1(x_1, x_2, x_3) \le b_1$, $g_2(x_1, x_2, x_3) \le b_2$.

Lagrangian function in this case is

$$L(x_1, x_2, x_3) = f(x_1, x_2, x_3) - \lambda_1(g_1(x_1, x_2, x_3) - a) - \lambda_2(g_2(x_1, x_2, x_3) - b_2).$$

The KKT conditions in this case look as

$$\begin{array}{ll} (1) & \frac{\partial}{\partial x_1} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_1} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_1} g_2(x_1, x_2, x_3) = 0 \\ (2) & \frac{\partial}{\partial x_2} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_2} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_2} g_2(x_1, x_2, x_3) = 0 \\ (3) & \frac{\partial}{\partial x_3} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_3} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_3} g_2(x_1, x_2, x_3) = 0 \\ (4) & \lambda_1 [g_1(x_1, x_2, x_3) - b_1] = 0 \\ (5) & \lambda_2 [g_2(x_1, x_2, x_3) - b_2] = 0 \\ (6) & \lambda_1 \ge 0 \\ (7) & \lambda_2 \ge 0 \\ (8) & g_1(x_1, x_2, x_3) \le b_1 \\ (9) & g_2(x_1, x_2, x_3) \le b_2. \end{array}$$

Consider, concerning complementary slackness conditions (4) and (5), the following 4 cases:

Case 1: $\lambda_1 = 0$, $\lambda_2 = 0$. Case 2: $g_1(x_1, x_2, x_3) - b_1 = 0$, $\lambda_2 = 0$. Case 3: $\lambda_1 = 0$, $g_2(x_1, x_2, x_3) - b_2 = 0$. Case 4: $g_1(x_1, x_2, x_3) - b_1 = 0$, $g_2(x_1, x_2, x_3) - b_2 = 0$.

We rewrite the KKT conditions in these cases:

Case 1: $\lambda_1 = 0$, $\lambda_2 = 0$.

$$\begin{array}{ll} (1) & \frac{\partial}{\partial x_1} f(x_1, x_2, x_3) = 0 \\ (2) & \frac{\partial}{\partial x_2} f(x_1, x_2, x_3) = 0 \\ (3) & \frac{\partial}{\partial x_3} f(x_1, x_2, x_3) = 0 \\ (4) & \\ (5) & \\ (6) & \\ (7) & \\ (8) & g_1(x_1, x_2, x_3) \le b_1 \\ (9) & g_2(x_1, x_2, x_3) \le b_2 \end{array}$$

so in this case we face ordinary nonconstrained optimization problem

max
$$f(x_1, x_2, x_3)$$
,

but with additional conditions $g_1(x_1, x_2, x_3) \leq b_1$ and $g_2(x_1, x_2, x_3) \leq b_2$, that is ignore all candidates (critical points of f) which are out of feasible region.

Case 2:
$$g_1(x_1, x_2, x_3) - b_1 = 0, \ \lambda_2 = 0.$$

(1) $\frac{\partial}{\partial x_1} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_1} g_1(x_1, x_2, x_3) = 0$
(2) $\frac{\partial}{\partial x_2} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_2} g_1(x_1, x_2, x_3) = 0$
(3) $\frac{\partial}{\partial x_3} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_3} g_1(x_1, x_2, x_3) = 0$
(4) $g_1(x_1, x_2, x_3) - b_1 = 0$
(5)
(6) $\lambda_1 \ge 0$
(7)
(8)
(9) $g_2(x_1, x_2, x_3) \le b_2$

so in this case we face the problem with one equality constraint

max
$$f(x_1, x_2, x_3)$$
 s.t. $g_1(x_1, x_2, x_3) = b_1$

with additional conditions $g_2(x_1, x_2, x_3) \leq b_2$, $\lambda_1 \geq 0$, that is we ignore all candidates with $g_2(x_1, x_2, x_3) > b_2$ or $\lambda_1 < 0$.

Case 3:
$$\lambda_1 = 0$$
, $g_2(x_1, x_2, x_3) - b_2 = 0$.
(1) $\frac{\partial}{\partial x_1} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_1} g_1(x_1, x_2, x_3) = 0$
(2) $\frac{\partial}{\partial x_2} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_2} g_1(x_1, x_2, x_3) = 0$
(3) $\frac{\partial}{\partial x_3} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_3} g_1(x_1, x_2, x_3) = 0$
(4)
(5) $g_2(x_1, x_2, x_3) - b_2 = 0$
(6)
(7) $\lambda_2 \ge 0$
(8) $g_1(x_1, x_2, x_3) \le b_1$
(9)

so in this case we face the problem with one equality constraint

max $f(x_1, x_2, x_3)$ s.t. $g_2(x_1, x_2, x_3) = b_2$

with additional conditions $g_1(x_1, x_2, x_3) \leq b_1$, $\lambda_2 \geq 0$, that is we ignore all candidates with $g_1(x_1, x_2, x_3) > b_2$ or $\lambda_2 < 0$.

Case 4:
$$g_1(x_1, x_2, x_3) - b_1 = 0$$
, $g_2(x_1, x_2, x_3) - b_2 = 0$.
(1) $\frac{\partial}{\partial x_1} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_1} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_1} g_2(x_1, x_2, x_3) = 0$
(2) $\frac{\partial}{\partial x_2} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_2} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_2} g_2(x_1, x_2, x_3) = 0$
(3) $\frac{\partial}{\partial x_3} f(x_1, x_2, x_3) - \lambda_1 \frac{\partial}{\partial x_3} g_1(x_1, x_2, x_3) - \lambda_2 \frac{\partial}{\partial x_3} g_2(x_1, x_2, x_3) = 0$
(4) $g_1(x_1, x_2, x_3) - b_1 = 0$
(5) $g_2(x_1, x_2, x_3) - b_2 = 0$
(6) $\lambda_1 \ge 0$
(7) $\lambda_2 \ge 0$
(8)

(9)

so in this case we face the problem with two equality constraint

max
$$f(x_1, x_2, x_3)$$
 s.t. $g_1(x_1, x_2, x_3) = b_1$, $g_2(x_1, x_2, x_3) = b_2$

with additional conditions $\lambda_1 \ge 0$, $\lambda_2 \ge 0$, that is we ignore all candidates with $\lambda_1 < 0$ or $\lambda_2 < 0$.

1.3 Several Inequality Constraints

Problem: maximize $f(x_1, ..., x_n)$ subject to k inequality constraints

$$g_1(x_1, ..., x_n) \le b_1, ..., g_k(x_1, ..., x_n) \le b_k.$$

Recall that constraint $g_i(x) \leq b$ is **binding** at a solution candidate $x^* = (x_1^*, ..., x_n^*)$ if $g_i(x^*) = b$, and it is called **not binding** or **slack** if $g(x^*) < b$.

Theorem 2 Suppose $x^* = (x_1^*, ..., x_n^*)$ is a maximizer for our problem, and suppose first k_0 constraints are binding at x^* and the last $k - k_0$ are not binding.

Suppose that the following **qualification** is satisfied: the rank of the Jacobian of the binding constraints

$$\begin{pmatrix} \frac{\partial g_1}{\partial x_1}(x^*) & \dots & \frac{\partial g_1}{\partial x_n}(x^*) \\ \dots & \dots & \dots \\ \frac{\partial g_{k_0}}{\partial x_1}(x^*) & \dots & \frac{\partial g_{k_0}}{\partial x_n}(x^*) \end{pmatrix}$$

is k_0 , as large as it can be. In other words the gradients of the active inequality constraints are linearly independent at x^* .

Consider the lagrangian

$$L(x_1, ..., x_n, \lambda_1, ..., \lambda_k) = f(x_1, ..., x_n) - \lambda_1[g_1(x_1, ..., x_n) - b_1] - ... - \lambda_k[g_1(x_1, ..., x_n) - b_1].$$

Then there exist multipliers $\lambda^* = (\lambda_1^*, ..., \lambda_k^*)$ such that the following KKT conditions are satisfied

- $\begin{array}{ll} (a) & \frac{\partial L}{\partial x_1}(x^*,\lambda^*) = 0, \ \dots, \frac{\partial L}{\partial x_n}(x^*,\lambda^*) = 0, \\ (b) & \lambda_1^*[g_1(x^*) b_1] = 0, \ \dots, \lambda_k^*[g_k(x^*) b_k] = 0, \\ (c) & \lambda_1^* \ge 0, \ \dots, \lambda_k^* \ge 0, \\ (d) & g_1(x^*) \le b_1, \ \dots, g_k(x^*) \le b_k. \end{array}$

Remark. Actually, the Theorem can be reformulated as follows:

Suppose $x^* \in \mathbb{R}^n$ is a maximizer of f(x) s.t. $g_1(x) \leq b_1, \dots, g_k(x) \leq b_k$, suppose also that firs k_0 constraints are binding at x^* , i.e.

$$g_1(x) = b_1, \dots, g_{k_0}(x) = b_{k_0}$$

and others are nonbinding, and suppose the vectors

$$Dg_1(x^*), \ldots, Dg_{k_0}(x^*)$$

are linearly independent. Then

$$Df(x^*) \in span(Dg_1(x^*), \dots, Dg_{k_0}(x^*)),$$

i.e.

$$Df(x^*) = \lambda_1 Dg_1(x^*) + \dots + \lambda_{k_0} Dg_{k_0}(x^*),$$

and all the coefficients are nonnegative: $\lambda_1 \ge 0, \dots, \lambda_{k_0} \ge 0$.

Remark. For the minimization problem the condition (c) must be replaced bv

(c') $\lambda_1^* < 0, \dots, \lambda_k^* < 0.$

Example 3. Solve the problem

maximize $f(x_1, x_2) = -(x_1 - 4)^2 - (x_2 - 4)^2$ subject to $g_1(x_1, x_2) = x_1 + x_2 \le 4$, $g_2(x_1, x_2) = x_1 + 3x_2 \le 9$.

Solution. The Lagrangean looks as

$$L(x_1, x_2) = -(x_1 - 4)^2 - (x_2 - 4)^2 - \lambda_1(x_1 + x_2 - 4) - \lambda_2(x_1 + 3x_2 - 9).$$

The KKT conditions look as

$$-2(x_1 - 4) - \lambda_1 - \lambda_2 = 0$$

$$-2(x_2 - 4) - \lambda_1 - 3\lambda_2 = 0$$

$$\lambda_1(x_1 + x_2 - 4) = 0$$

$$\lambda_2(x_1 + 3x_2 - 9) = 0$$

$$\lambda_1 \ge 0, \quad \lambda_2 \ge 0$$

$$x_1 + x_2 \le 4, \quad x_1 + 3x_2 \le 9.$$

Analyzing the conditions $\lambda_1(x_1 + x_2 - 4) = 0$, $\lambda_2(x_1 + 3x_2 - 9) = 0$ we consider the following cases

Case 1: $x_1 + x_2 - 4 = 0$, $x_1 + 3x_2 - 9 = 0$. In this case the solution gives $x_1 = \frac{3}{2}$, $x_2 = \frac{5}{2}$, $\lambda_1 = 6$, $\lambda_2 = -1$ but the this solution violates the condition $\lambda_2 \ge 0$, so NO SOLUTION of KKT in this case.

Case 2: $x_1 + x_2 - 4 = 0$, $\lambda_2 = 0$. In this case the solution gives $x_1 = 2$, $x_2 = 2$, $\lambda_1 = 4$, $\lambda_2 = 0$. This solution is OK, it fulfills KKT.

Case 3: $\lambda_1 = 0$, $x_1 + 3x_2 - 9 = 0$. In this case the solution gives $x_1 = 3.3$, $x_2 = 1.8$ but this violates the condition $x_1 + x_2 \leq 4$, so NO SOLUTION of KKT in this case.

Case 4: $\lambda_1 = 0$, $\lambda_2 = 0$. In this case the solution gives $x_1 = 4$, $x_2 = 4$, $\lambda_1 = 0$, $\lambda_2 = 0$, this solution violates $x_1 + x_2 \leq 4$, so NO SOLUTION of KKT in this case.

Finally we have the single solution of KKT $x_1 = 2$, $x_2 = 2$, $\lambda_1 = 4$, $\lambda_2 = 0$. But KKT is just a necessary condition. So, is it a solution of our maximization problem?

1.4 Mixed constraints

Problem: maximize $f(x_1, ..., x_n)$ subject to k inequality and m equality constraints

$$g_1(x_1, ..., x_n) \le b_1, \ ..., g_k(x_1, ..., x_n) \le b_k, h_1(x_1, ..., x_n) = c_1, \ ..., h_m(x_1, ..., x_n) = c_m.$$

Theorem 3 Suppose $x^* = (x_1^*, ..., x_n^*)$ is a maximizer for our problem, and suppose first k_0 inequality constraints are binding at x^* and the last $k - k_0$ are not binding.

Suppose that the following qualification is satisfied: the rank of the

Jacobian of the binding constraints

$$\begin{pmatrix} \frac{\partial g_1}{\partial x_1}(x^*) & \dots & \frac{\partial g_1}{\partial x_n}(x^*) \\ \dots & \dots & \dots \\ \frac{\partial g_{k_0}}{\partial x_1}(x^*) & \dots & \frac{\partial g_{k_0}}{\partial x_n}(x^*) \\ \frac{\partial h_1}{\partial x_1}(x^*) & \dots & \frac{\partial h_1}{\partial x_n}(x^*) \\ \dots & \dots & \dots \\ \frac{\partial h_m}{\partial x_1}(x^*) & \dots & \frac{\partial h_m}{\partial x_n}(x^*) \end{pmatrix}$$

is $k_0 + m$, as large as it can be. In other words the gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x^* .

Consider the lagrangian

$$L(x_1, ..., x_n, \lambda_1, ..., \lambda_k, \mu_1, ..., \mu_m)) = f(x_1, ..., x_n) + -\lambda_1[g_1(x_1, ..., x_n) - b_1] - ... - \lambda_k[g_1(x_1, ..., x_n) - b_1] + -\mu_1[h_1(x_1, ..., x_n) - c_1] - ... - \mu_m[h_1(x_1, ..., x_n) - c_1].$$

Then there exist multipliers $\lambda^* = (\lambda_1^*, ..., \lambda_k^*), \ \mu^* = (\mu_1^*, ..., \mu_m^*)$ such that

 $\begin{array}{ll} (a) & \frac{\partial L}{\partial x_1}(x^*,\lambda^*,\mu^*) = 0, \ \dots, \frac{\partial L}{\partial x_n}(x^*,\lambda^*,\mu^*) = 0, \\ (b) & \lambda_1^*[g_1(x^*) - b_1] = 0, \ \dots, \lambda_k^*[g_k(x^*) - b_1] = 0, \\ (c) & h_1(x^*) = c_1, \ \dots, h_m(x^*) = c_m, \\ (d) & \lambda_1^* \ge 0, \ \dots, \lambda_k^* \ge 0, \\ (e) & g_1(x^*) \le b_1, \ \dots, g_1(x^*) \le b_1. \end{array}$

Remark. Actually, the Theorem can be reformulated as follows:

Suppose $x^* \in \mathbb{R}^n$ is a maximizer of f(x) s.t.

$$g_1(x) \le b_1, \dots, g_k(x) \le b_k, \quad h_1(x) = c_1, \dots, h_m(x) = c_m$$

Suppose also that first k_0 inequality constraints are binding at x^* , i.e.

$$g_1(x) = b_1, \dots, g_{k_0}(x) = b_{k_0}$$

and the others are nonbinding, and and suppose the vectors

$$Dg_1(x^*), \ldots, Dg_{k_0}(x^*), Dh_1(x^*), \ldots, Dh_m(x^*)$$

are linearly independent. Then

$$Df(x^*) \in span(Dg_1(x^*), \dots, Dg_{k_0}(x^*), Dh_1(x^*), \dots, Dh_m(x^*))$$

i.e.

$$Df(x^*) = \lambda_1 Dg_1(x^*) + \dots + \lambda_{k_0} Dg_{k_0}(x^*) + \mu_1 Dh_1(x^*) + \dots + \mu_m Dh_m(x^*)$$

and all the λ_i coefficients are nonnegative: $\lambda_1 \ge 0, \dots, \lambda_{k_0} \ge 0.$

1.5 Economical Applications

The KKT conditions sometimes are used not for the finding of optimizers, rather for some important qualitative conclusions.

1.5.1 A Sales-Maximizing Firm with Advertizing

Let:

 $y \in R_+$ production; C(y) - cost of manufacturing f y units (assume that C' > 0); $a \in R_+$ - advertising cost; C(y) + a - total cost; R(y, a) - revenue (assume that $R_a > 0$); $m \in R_+$ - minimal level of profit. $\Pi = R(y, a) - C(y) - a$ - profit. Problem:

$$max \ R(y,a) \ s.t. \ \Pi \ge m, \ a \ge 0.$$

Equivalently

max
$$R(y,a)$$
 s.t. $-a \le 0$, $m - R(y,a) + C(y) + a \le 0$.

Lagrangian:

$$L(y, a, \lambda_1, \lambda_2) = R(y, a) + \lambda_1 a - \lambda_2 (m - R(y, a) + C(y) + a)$$

The KKT conditions for a maximizer y^* :

(1) $L_y = (1 + \lambda_2) R_y(y^*, a) - \lambda_2 C'(y^*) = 0$ (2) $L_a = (1 + \lambda_2) R_a(y^*, a) + \lambda_1 - \lambda_2 = 0$ (3) $\lambda_1 a = 0$ (4) $\lambda_2(m - R(y^*, a) + C(y^*) + a) = 0$ (5) $\lambda_1 \ge 0$ (6) $\lambda_2 \ge 0$ (7) $-a \le 0$ (8) $m - R(y^*, a) + C(y^*) + a \le 0.$

Observation 1. In (2) we have $(1 + \lambda_2)R_a(y^*, a) > 0$, $\lambda_1 \ge 0 \Rightarrow \lambda_2 > 0$. This, (4) gives

$$m - R(y^*, a) + C(y^*) + a = 0$$

i.e. at maximizer y^* we have $R(y^*) - C(y^*) - a = m$, that is the revenue is maximal when the profit is at minimal allowed level!

Observation 2. Let us estimate the marginal profit at the revenue maximizer y^* using (1):

$$(1+\lambda_2)\Pi_y(y^*,a) = (1+\lambda_2)(R_y(y^*) - C'(y^*)) = (1+\lambda_2)R_y(y^*) - (1+\lambda_2)C'(y^*) = (1+\lambda_2)R_y(y^*) - \lambda_2C'(y^*) - C'(y^*) = L_y(y^*,a) - C'(y^*) = 0 - C'(y^*) = -C(y^*) < 0,$$

thus the revenue maximizer y^* is greater than the profit maximizer.

Exercises

1. Compare the solutions of following problems

(a) Find the maximizer of $f(x, y) = 10 - x^2 - y^2$.

(b) Find the maximizer of $f(x, y) = 10 - x^2 - y^2$, subject to the constraint $h(x, y) = 2x^2 + y^2 = 2$.

(c) Find the maximizer of $f(x, y) = 10 - x^2 - y^2$, subject to the constraint $g(x, y) = 2x^2 + y^2 \le 2$.

(d) Find the maximizer of $f(x, y) = 10 - x^2 - y^2$, subject to the constraint $g(x, y) = 2x^2 + y^2 \ge 2$.

2. Compare the solutions of following problems (a) Find the minimizer of $f(x, y) = 10 + x^2 + y^2$.

(b) Find the minimizer of $f(x, y) = 10 + x^2 + y^2$, subject to the constraint $h(x, y) = 2x^2 + y^2 = 2$.

(c) Find the minimizer of $f(x, y) = 10 + x^2 + y^2$, subject to the constraint $g(x, y) = 2x^2 + y^2 \le 2$.

(d) Find the minimizer of $f(x, y) = 10 + x^2 + y^2$, subject to the constraint $g(x, y) = 2x^2 + y^2 \ge 2$.

3. Find the dimensions of the box with largest volume if the total surface area is $24 \ cm^2$.

4. Find the maximum and minimum of f(x, y) = 5x - 3y subject to the constraint $x^2 + y^2 = 136$.

5. Find the maximum and minimum of $f(x, y) = 4x^2 + 10y^2$ subject to the constraint $x^2 + y^2 \le 4$.

6. Write down the KKT conditions for the problem:

Minimize $f(x_1, x_2, x_3) = -x_1^3 + x_2^2 - 2x_1x_3^2$ subject to the constraints: $2x_1 + x_2^2 + x_3 - 5 = 0, 5x_1^2 - x_2^2 - x_3 \ge 2, x_1 \ge 0, x_2 \ge 2, x_3 \ge 0$. Verify the KKT conditions for (1, 0, 3).

7. Write down the KKT conditions for the problem:

Minimize $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ subject to the constraints: $-x_1 + x_2 - x_3 \ge -10$, $x_1 + x_2 + 4x_3 \ge 20$. Find all the solutions.

Homework

Exercises 18.10, 18.11, 18.12, 18.15, 18.17 from [Simon].