Reading [Simon], Chapter 18, p. 424-439.

1 Inequality Constraints

1.1 One Inequality constraint

Problem: maximize f(z,y) subject to g(x,y) <b.
As we see here the constraint is written as inequality instead of equality.
An inequality constraint g(z,y) < bis called binding (or active) at a point
(x,y) if g(x,y) = b and not binding (or inactive) if g(z,y) < b.
Again we consider the same Lagrangian function

L(:v,y, >‘) = f(xvy) - )\[Q(QT,Q) - b]

Theorem 1 Suppose (z*,y*) is a solution of the above problem: (x*,y*)
mazximizes f on the constraint set g*(x,y) < b.

Suppose the following qualification is satisfied: If g(x*,y*) = b (i.e. if
(x*,y*) is binding) then Dg(x*,y*) # (0,0). Then there emsts a multiplier
A" such that

(a) g%( Ty A)) =

(b) 5@y, A*))I
() Ng(a*,y") =] =
(d) »>0,

(e) g(z*,y") <b.

Remark 1. These conditions, as well as the conditions from theorems bellow
concerning with inequality conditions are called Karush-Kuhn-Tucker (KKT)
conditions.

Remark 2. For the minimization problem the condition (d) must be re-

placed by
(d") A* <0.

Almost a proof. Consider the following two cases: (x*,y*) is binding or
not binding.

Case 1: (z*,y") is not binding g(z*,y*) < 0.



1 min f(x) s.t. g(x) <0
g(xo) < 0 (nonbinding)
Df(xo) = 0

< >

This means that (z*, y*) is an inner (unconstraint) maximum, thus f,(z*, y*) =

0, fy(z*,y*) = 0. In this case we can take A\ = 0 the conditions (a) - (e) are
satisfied. Indeed

(a) Lo(x*, 9", X)) = fal@®,y") = A+ gu (2", y%) = fo(2*,y") = 0- go (2", y*) = 0;
(b) Ly(z", y", A*)) fo(@® ) = A gy(@™, y7) = fy(a™,y") =0 gu(z", y") = 0;
(c)A" - [ ( )—b]—O lg(z”,y) — b] = 0;
(d) 0
(e) ( ) — b < 0.
Case 2: (z*,y") is binding g(z*,y*) = 0.
max f(x) s.t. g(x) <b
4 g(xo) = 0 (binding)
Df(xo) = A Dg(x0)
A>0
g(x)<b

N

— >

N

This means that (z*,y*) is a maximizer constrained by the equality con-
dition, thus there exists A* such that

Ly(z*,y") =0, Ly(z*,y") =0, Ly(z",y") =0,

this again implies the needed conditions (a) - (e):
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A [9( ,y) b = A" -0 =0;
) since of maximality of (z*,y*) the gradients V f(z*,y*) and Vg(z*, y*)
must have the same directions, thus A > 0;

g(a*,y*) —b=0.

\_/g

(e

Remark. What is the meaning of the zero A = 0 multiplier in Case 1?7 The
shadow price in this case is 0: the maximal value f(z*,y*) does not change
when we change b a little.

Example 1. Minimize f(z,y) = 2 + y* subject of g(x,y) = 2z +y < 2.
Solution. There are no critical points of g at all, so the qualification is
satisfied.

The lagrangian in this case is

L(l’,y7/\) :$2+y2 - /\<2I+y_2)7

and the KKT conditions from Theorem are

gf(x JY,A) =2 — 20 =0,

o (2,4, A) =2y — Ay = 0,

Ag(z,y) —b] = A2z +y —2) =0,
<0,

e) g(w,y)=2z+y<2

\_/\_/\_/ \_/\_/

(a
(b
(c
(d
(

We consider two cases:

Case 1. A =0, in this case our system looks as

(@) =0,
(b) y=0,
(¢) 0=0,
(@) 0<0
(e) 2z+y<2,

so the solution in this case is (z,y, A) = (0,0, 0).
Case 2. 2z 4+ y — 2 = 0, in this case our system looks as

(a) 2x =2\,

(0) 2y=A,

() 204+y—2=0,
(@) A<,

(6) 2z + ) S 27

sox = 2y, 2x+y = 2, this gives the solution z = 0.8, y = 0.4but A =0.8 > 0
so this solution can not be a minimizer.



So if this constrained minimization problem has a solution, it can be only
(0,0).

Example 2. Maximize f(x,y) = xy subject of g(z,y) = 2* + y* < 2.

Solution. The constraint function g(x, y) has no critical points at all, so the
qualification is satisfied.
The Lagrangian in this case is

L(I’,y, )\) =Y — )‘('12 +y2 - 2)7

and the KKT conditions from Theorem are

(a) ZE(x,y, A7) =y —2Xz =0,

(0) Gy (z,9,0) =2 —2X=0,

(¢) Mgz, y) = b = Az* +y* —2) =0,
(d) A>0,

(e) glz,y)=a>+y* <2

We consider two cases:

Case 1: A = 0. In this case our system looks as

(a) y=0,
(b) z=0,
(¢) 0=0,
(d) 0>0,
(

e) a?+y*<2
so the solution in this case is (z*,y*, \*) = (0,0, 0).

Case 2: 22 +y? — 2 = 0. In this case our system looks as

(a) y—2 =0,

(b) x—2\y=0,

() (2 +y*—=2)=0,
(d) A>0,

(

The first two equations yield

Y x
)\:7:—
0w 2y or x

Together with the condition (c) it gives thew system

2?2 = o2

2?4yt =2
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The solution gives 22 = 1, y?> = 1, or x = %1, y = £1. Combining with
A = 3~ we obtain corresponding A = j:%.
Combining all these solutions we get the following candidates for maxi-
mizers
ot =41, Yyt =41, X =+3;
rr=—=1, y'=-1, \'=+4:;
x
x

=0 |

=1, yr=+1 N =-—3.

The last two solution contradict to the condition (e) A > 0, so, including
(0,0,0) there are three candidates which satisfy the first order conditions.
Note that the constraint set is compact. Plugging these three into the ob-
jective function, we find that f(1,1) =1, f(—1,—1) = 1 so both (1,1) and
(—1,—1) are the needed maximizers.

Note that the two points with negative multipliers

rr=-1, y=41 \'=-—

(51l IS

are the solutions of the problem of minimizing of f(x,y) = xy subject to
glz,y) =2 +y* < L

Economical Application. Consider the standard problem of maximization
of the utility function
U<:C17 x2>

subject to the budget inequality constraint
p121 + paxg < .

Suppose additionally that p; > 0, ps > 0 and the utility function is
monotonic in both arguments, that is for each commodity bundle (z1, z5)

ou

oUu
aixl(ilﬁl,l'g) > 0, a—xz(xl,m) > 0.

This means that our commodities are goods.
Then the KKT implies an important result: the optimal solution is nec-
essarily binding
p1T1 + paxe = 1,

that is at optimizer the consumer spends all the available income.
Indeed, for the Lagrangian

L(zy,w2) = f(21,22) — A(p1o1 + powy — 1)
we have oL o
oo (T1,22) = 5-(21,22) — Ap1 = 0,

5?72(%,902) = 572(%,962) — Ap1 =0,
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now, since g—g(xl,xz) > (0 and (or) %(Il,l’g) > 0, it follows that A > 0.

Then from the condition
)\(plxl —|—p2$2 — I) =0

we get
p171 + pexg — I = 0.

Notice that it is enough to require that just one of commodities is a good.

1.2 Two Inequality Constraints

Maybe it will be useful to consider separately the following problem:
max f(xl,fﬂg,l'g) =0 s.t. gl(xthvx?)) S bla g?(xlaanm3) S b2-
Lagrangian function in this case is

L<Ilax27$3) =
f($17$27$3) - >\1(91($1,I27$3) - a) - /\2(92@1, T2, Ia) - 52).

The KKT conditions in this case look as

(1) %f(lj,l’g,l’g) — )\1%91(371,1’2,1‘3) — )\26%192(1'1,372,1'3) =0
(2) aimf(xl, To,X3) — )xla%le(xl,xQ, T3) — )\gaimgg(:cl,m,xg) =0
(3) Tmf(l'l,l'g,xg) — /\1%91($1,$2,$3) — )\zaimsgg(l'l,wg,l'g) = 0
(4)  Mlgi(z1,22,23) = b1] =0

(5)  Aofga(w1, @2, 5) — ba] =0

(6) A >0

(7) X220

(8)  gi(x1,w2,23) < by

(9)  go(@1, 22, 23) < bo.

Consider, concerning complementary slackness conditions (4) and (5), the
following 4 cases:

Case 1: \{ =0, Ay =0.

Case 2: gl<l’1,!L‘2,ZE3) - bl = 0, /\2 =0.

Case 3: )\1 = 0, gg(xl,wg,l'g) — b2 = 0.

Case 4: 91(331, .2?2,.%3) — bl = O, 92(371,552, 333) — b2 = 0.

We rewrite the KKT conditions in these cases:



Case 1: Ay =0, Ay =0.

1 aixlf(xlaanx-?)) - O
2 @%Qf(%l,xml‘s) =0
3 aimf(xthaxg)) - O

(
(
(
(4
(
(
(
(

g1<x1,$’2,$3) S bl
Go(x1, T2, x3) < by

)
)
)
)
5)
6)
7)
8)
9)

(

so in this case we face ordinary nonconstrained optimization problem

max  f(z1,xe,x3),

but with additional conditions gy (z1, 2, x3) < by and ga(x1, 22, x3) < be, that
is ignore all candidates (critical points of f) which are out of feasible region.

Case 2: g1(x1,T2,23) — by =0, Ay = 0.
(1 %f@l,@,flfs) )\1396191(901,352,563)
2 a%f(xlam,x?)) /\1(% 91($17$2,$3)
3 if(ﬂfl,iUQ,st) >\13$391(-’E1>$2,$3)

4 91( .2?2,.173)—61 =0

)
(2)
(3)
(4)
(5)
6) A 2>0
(7)
(8)
(9)

G2(1, 22, x3) < by

0
0
0

so in this case we face the problem with one equality constraint

mazx  f(x1,x9,x3) S.t. g1(x1,T0,73) = by

with additional conditions go(x1, Z2, x3) < by,
candidates with go(z1, 2, x3) > by or Ay < 0.

Case 3: A\; =0, go(x1, 29, 23) — by = 0.

—_

/\13xlg1($17$2,$3)
/\1(% gi1(z1, 29, 23) =
/\1390 91($17$2,I3)

agl f(xla T2, Ig)
ang(iﬁl,iUQ,x?,)
ang(xl’ T2, Z‘g)

=W N

go(x1, T2, x3) — by =0

Ao >0
g1(z1, 29, 23) < by

o~~~ o~~~
S N e e e e S N

© 00 ~J O Ot

A1 > 0, that is we ignore all

0
0
0



so in this case we face the problem with one equality constraint
max  f(x1,x9,x3) s.t. gao(x1, T2, 23) = by

with additional conditions g;(z1,xe,x3) < by, Ag > 0, that is we ignore all
candidates with gy (21, e, x3) > by or Ay < 0.

Case 4: 91(%@2@3) — b =0, 92@1,%2,903) — by =0.

—_

f(z1, 20, 23) — /\13%191(%@2, x3) — )\2%92($1,$2,$3) =0
30,/ (X1, T2, 13) — )\1%91(5617372, 3) — Aoz ga (1, T, 23) = 0

(f($1, T3, 9;‘3) ; /\1%91@17@, x3) — )\2%92($17$2,$3) =0
gi1\T1,x2,T3) — 01 =

($17$27'I3) - bZ - 0

NN N N N N N S
© 0~ O O = W N
— e S S S S
Q
\S)

so in this case we face the problem with two equality constraint

maz  f(x1,x2,x3) s.t. gi1(x1, 22, x3) = b1, go(z1, 22, 23) = by

with additional conditions A\; > 0, Ay > 0, that is we ignore all candidates
with )\1 < 0or )\2 < 0.

1.3 Several Inequality Constraints

Problem: maximize f(z1,...,x,) subject to k inequality constraints

gi(xy, ) < by, o gr(Ty, e xy) < by

Recall that constraint g;(x) < b is binding at a solution candidate z* =
(x7,...,x%) if g;(x*) = b, and it is called not binding or slack if g(z*) < b.
Theorem 2 Suppose z* = (xF,...,x%) is a mazimizer for our problem, and
suppose first ko constraints are binding at x* and the last k — ko are not
binding.

Suppose that the following qualification is satisfied: the rank of the
Jacobian of the binding constraints

9 9
a—zi(a:*) ﬁ(m*)
o S
%(w*) %“:(:v*)

is ko, as large as it can be. In other words the gradients of the active inequality
constraints are linearly independent at x*.

8



Consider the lagrangian

L(x17 "'7xn,)\1, 7)\]6) g
F(@1, ey ) = Mg (@1, s ) = 0] = oo = Mlge@1, oo 2) — Da).

Then there exist multipliers \* = (A},...,\;) such that the following KKT
conditions are satisfied

a) g—é(x*,)\*) =0, .. ,%(w*,)\*) =0,
b

(

(0)  Mlgi(@) =bi] =0, ..., A\g[gr(2™) —be] =0,
(©) M>0, ..,A >0,

(d)  qi(a*) < by, oo, gr(a®) < by

Remark. Actually, the Theorem can be reformulated as follows:

Suppose z* € R" is a maximizer of f(z) s.t. g1(z) < by, ..., gx(z) < by,
suppose also that firs ky constraints are binding at x*, i.e.

g1(z) = b1, .., gy (x) = by,
and others are nonbinding, and suppose the vectors
Dgy(z*), ... , Dgg,(x¥)
are linearly independent. Then
Df(z*) € span(Dgi(x*), ... , Dgg,(x")),

i.e.
Df(z*) = MDgi(x*) + ... + Ay Do, (27),

and all the coefficients are nonnegative: A\ > 0, ..., Ay, > 0.

Remark. For the minimization problem the condition (c¢) must be replaced
by
() A} <0, ..., A\; <0.

Example 3. Solve the problem

2

maximize f(z1,22) = —(x1 —4)* — (x5 —4)? subject to g1 (v1, 72) = 11+ 25 <

4, gg(xhl‘g) =+ 31‘2 S 9.

Solution. The Lagrangean looks as

L(l’l,.fg) = —(1’1 — 4)2 — (.IQ — 4)2 — >\1<.I1 + To — 4) — )\Q(l’l + 3$2 — 9)



The KKT conditions look as

—2(1’1—4)—)\1—)\2:0
(3 —4) =M\ —3X =0
)\1([E1+JZ2—4>:O
)\2($1+33§2—9) =0
T+ a9 <4, x4+ 33 <9.

Analyzing the conditions \j(z7 + 29 — 4) = 0, Ag(x1 + 322 —9) = 0 we
consider the following cases

Case 1: z1 +29—4 =0, x1+ 322 — 9 = 0. In this case the solution gives
T = %, To = g, A1 = 6, Ay = —1 but the this solution violates the condition

Ay > 0, so NO SOLUTION of KKT in this case.

Case 2: 11+ 129 —4 =0, Ay = 0. In this case the solution gives x; =
2, xo =2, Ay =4, Ay = 0. This solution is OK, it fulfills KKT.

Case 3: A\ =0, z1 + 322 —9 = 0. In this case the solution gives x; =
3.3, x5 = 1.8 but this violates the condition z; + x5 < 4, so NO SOLUTION
of KKT in this case.

Case 4: \; =0, Ay = 0. In this case the solution gives 1 = 4, xo =4, \| =
0, Xy = 0, this solution violates x1 + x5 < 4, so NO SOLUTION of KKT in
this case.

Finally we have the single solution of KKT zy =2, x5 =2, \y =4, Ay =0.
But KKT is just a necessary condition. So, is it a solution of our maximiza-
tion problem?

1.4 Mixed constraints

Problem: maximize f(zq,...,z,) subject to k inequality and m equality
constraints

gl('xh 7xn) < bla ,gk(ﬂﬁ, 7xn) < bka

hl(Il, ,In) = C1, ... ,hm(])l, ,SL’n) = Cmy-

*

Theorem 3 Suppose z* = (xF,...,x%) is a mazimizer for our problem, and
suppose first ko inequality constraints are binding at x* and the last k — kg
are not binding.

Suppose that the following qualification is satisfied: the rank of the
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Jacobian of the binding constraints

d
oy (27)

e
gy (%)

G (@)

P (1°)

1s kg + m, as large as it can be. In other words the gradients of the active
inequality constraints and the gradients of the equality constraints are linearly

independent at x* .
Consider the lagrangian

L(l‘la ooy Tipy )\la s Aka/"Jla :u’rn)) - f(xh axn)+
—>\1[g1(l'1, ...,xn) — bl] - ...

—Ml[hl(l'l, ,xn) — Cl] - ...

- Ak[g(’xb s xn) - bl]“—
— fm @1, o Ty) — .

Then there exist multipliers \* = (A}, ..., A\p), p* = (ui, ..., puk,) such that

S

o0z

)
e)  gi(z*) <by, ..

(
(
(
(
(

) (AN pt) =0,

) Oxn

*) <.

oL («T*,A*,,Uz*) — 07

b) Mlgi(@™) = b1l =0, .., A[gr(z™) — bi] =0,
) hi(x*) =c1, oo hp(2¥) = cpp,
AT >0, o A >0,
7gl($

Remark. Actually, the Theorem can be reformulated as follows:

Suppose z* € R" is a maximizer of f(z) s.t.

gu(x) < by, s gilx) < bk, hafx) =y o

yhin () = Cp.

Suppose also that first kg inequality constraints are binding at z*, i.e.

gl(l’) = bl,

» 9ko (.ZU) = bko

and the others are nonbinding, and and suppose the vectors

Dgi(x%), ... ,Dgy,(z*), Dhy(z"), ...

are linearly independent. Then

, Dhy(x%)

Df(z*) € span(Dgy(z"), ..., Dgr,(z*), Dhi(z"), ... , Dhy(z")

i.e.

Df(z*) = \MDgi(x*) + ... + Mg Do (") + 1 Dhy(z*) + ... + i Dhp(z7)

and all the \; coefficients are nonnegative: A\; > 0, ..., Ay, > 0.
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1.5 Economical Applications

The KKT conditions sometimes are used not for the finding of optimizers,
rather for some important qualitative conclusions.

1.5.1 A Sales-Maximizing Firm with Advertizing

Let:
y € R, production;
C(y) - cost of manufacturing f y units (assume that C’ > 0);
a € Ry - advertising cost;
C(y) + a - total cost;
R(y,a) - revenue (assume that R, > 0);
m € R, - minimal level of profit.
IT = R(y,a) — C(y) — a - profit.

Problem:
max R(y,a) st. II>m, a>0.
Equivalently
mazr R(y,a) st. —a<0, m—R(y,a)+C(y)+a<0.
Lagrangian:

L(y7 a, )\17 )\2) = R(% CL) + )\1@ - )\Q(m - R(y7 CL) + C(y) + CL).

The KKT conditions for a maximizer y*:

(1) Ly = (1 + )‘2)Ry(y*a a) - /\20/@*) =0
(2) La = (1+)\2)Ra(y*,a)—|—)\1 —)\2 =0
(3) )\1& =0

(4) Ao(m—R(y",a) +Cy") +a) =0

(5) M >0

(6) A2>0

(7) —a<0

(8) m—R(y*,a)+C(y*)+a <0.

Observation 1. In (2) we have (14 A\g)R,(y*,a) >0, A\; >0 = Ay > 0.
This, (4) gives

m—R(y*,a)+C(y") +a=0
i.e. at maximizer y* we have R(y*) — C(y*) — a = m, that is the revenue is
mazimal when the profit is at minimal allowed level!

Observation 2. Let us estimate the marginal profit at the revenue maxi-
mizer y* using (1):

H?J(y*v a) =

L+ Xo) Ry (y) — (1+ X0)C'(y") =

)= Ly(y",a) = C'(y") = 0= C'(y") =

) <



thus the revenue maximizer y* is greater than the profit mazximizer.
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Exercises

1. Compare the solutions of following problems
(a) Find the maximizer of f(x,y) =10 — 2® — 3.

(b) Find the maximizer of f(z,y) = 10—z%—y?, subject to the constraint
h(z,y) =22 + y* = 2.

(¢) Find the maximizer of f(z,y) = 10—2%—y?, subject to the constraint
g(z,y) = 22% +y* < 2.

(d) Find the maximizer of f(z,y) = 10— —1%?, subject to the constraint
g(z,y) =222 +y* > 2.

2. Compare the solutions of following problems
(a) Find the minimizer of f(z,y) = 10 + 2 + y2.

(b) Find the minimizer of f(x,y) = 10+ 22+ y?, subject to the constraint
h(z,y) =22 + y* = 2.

(¢) Find the minimizer of f(z,y) = 10+ 2% +4?, subject to the constraint
g(w,y) = 20° +y* < 2.

(d) Find the minimizer of f(x,y) = 10+ 22 +y?, subject to the constraint
9(x,y) = 22% +y* > 2.

3. Find the dimensions of the box with largest volume if the total surface
area is 24 cm?.

4. Find the maximum and minimum of f(z,y) = 5x — 3y subject to the
constraint 2% + y? = 136.

5. Find the maximum and minimum of f(z,y) = 422 + 10y? subject to
the constraint 22 + 3% < 4.

6. Write down the KKT conditions for the problem:

Minimize f(x1,T2,23) = —x% + x5 — 22123 subject to the constraints:
201 + 13 +23—5=0, 522 —a5 —x3 > 2,11 >0, 3 > 2, w3 > 0. Verify the
KKT conditions for (1,0, 3).

7. Write down the KKT conditions for the problem:

Minimize f(zy, T2, 73) = 2% + 23 + 23 subject to the constraints: —z; +
Ty —x3 > —10, 1 + 29 + 423 > 20. Find all the solutions.
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Homework

Exercises 18.10, 18.11, 18.12, 18.15, 18.17 from [Simon].
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