
1 Optimization

Reading [Simon], Chapter 17, p. 396-410.

1.1 Recall One Variable Case

Let f : U → R be a one variable and real valued function whose domain is
an open set U ⊂ R.

A point x∗ ∈ U is a critical point for f if f ′(x∗) = 0. This condition is
necessary condition for local extremum:

If x∗ is a point of local maximum or minimum then f ′(x∗) = 0.
But of course this is not a sufficient condition, see for example f(x) = x3.
The sufficient condition is not vanishing of second derivative:
If f ′(x∗) = 0 and f ′′(x∗) < 0 (f ′′(x∗) > 0) then x∗ is a local maximum

(minimum) point.

1.2 Multivariable Case

Let F : U → R be an n-variable and real valued function whose domain is
an open set U ⊂ Rn.

First some definitions.

1. A point x∗ = (x∗1, ... , x∗n) ∈ U is a global max of f if

F (x∗) ≥ F (x) for all x ∈ U.

2. A point x∗ = (x∗1, ... , x∗n) ∈ U is a local max of f if

F (x∗) ≥ F (x) for all x ∈ U
⋂

Br(x
∗),

for some ball Br(x
∗).

3. A point x∗ = (x∗1, ... , x∗n) ∈ U is a strict global max of f if

F (x∗) > F (x) for all x ∈ U.

4. A point x∗ = (x∗1, ... , x∗n) ∈ U is a strict local max of f if

F (x∗) > F (x) for all x ∈ U
⋂

Br(x
∗),

for some ball Br(x
∗).

Similarly are defined min-s.

Examples
1. F (x1, x2) = x2

1 + x2
2 has strict global minimum at x∗ = (0, 0), check by

plotting in MAPLE!
2. F (x1, x2) = x2

1 has global minimums at each point x∗ = (0, x2), check by
plotting in MAPLE!

1



1.2.1 First Order Conditions

Theorem 1 If x∗ ∈ U ⊂ Rn is a local max or min, then x∗ is a critical
point, that is

∂F

∂xi

(x∗) = 0, i = 1, ..., n.

Proof. Let us assign to our n variable function the one variable function

f(xi) = F (x∗1, ..., x
∗
i−1, xi, x

∗
i+1, ..., x

∗
n).

The derivative f ′(x∗i ) =
dF (x∗1,...,x∗i−1,xi,x

∗
i+1,...,x∗n)

dxi
(x∗i ) coincides with the partial

derivative ∂F
∂xi

(x∗1, ..., x
∗
n). The function f(xi) has a local optimum at x∗i , thus

f ′(x∗i ) = 0, this completes the proof.
Example. Find critical points for F (x, y) = x3 − y3 + 9xy.
Solution.

∂F

∂x
(x, y) = 3x2 + 9y,

∂F

∂y
(x, y) = −3y2 + 9x.

To find critical points solve the system

{
∂F
∂x

(x, y) = 0
∂F
∂y

(x, y) = 0

∣∣∣∣∣
3x2 + 9y = 0
−3y2 + 9x = 0

∣∣∣ −1
3
x4 + 9x = 0

the solutions are (x = 0, y = 0), (x = 3, y = −3). To determine whether
either of these critical points is min max or neither we need second order
conditions which involve second derivatives of F .

1.2.2 Second Order Sufficient Conditions

We use the notation ∂2F
∂xi∂xj

= Fxixj
. Let

D2F =




Fx1x1 Fx2x1 ... Fxnx1

Fx1x2 Fx2x2 ... Fxnx2

... ... ... ...
Fx1xn Fx2xn ... Fxnxn




be the Hessian matrix of F .

Theorem 2 Suppose x∗ ∈ U ⊂ Rn is a critical point, then
(1) If D2F (x∗) negative definite then x∗ is strict local max;
(2) If D2F (x∗) positive definite then x∗ is strict local min;
(3) If D2F (x∗) indefinite then x∗ is a saddle point (that is a critical

point which is neither a local max nor a local min).
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Sketch of Proof. Consider the approximation of F by it’s second order
Taylor polynomial

F (x∗ + h) ≈ F (x∗) + D1F (x∗) · h +
1

2
hT ·D2F (x∗) · h.

Since x∗ is a critical point D1F (x∗) = 0, thus

F (x∗ + h)− F (x∗) ≈ hT ·D2F (x∗) · h.

(1) If our quadratic form is negative definite, then for all h 6= 0 the right
hand side is negative, thus so is the left hand side in some neighborhood of
x∗, this completes the proof.

Similarly for (2) and (3).

Do you remember when a quadratic form is negative definite?
Let us recall.

Let Q(x1, ..., xn) = (x1, ..., xn)·




a11 ... a1n

a21 ... a2n

... ... ...
an1 ... ann


·




x1

...
xn


 be an n variable

quadratic form.
The following n determinants

|D1| =
∣∣∣ a11

∣∣∣ , |D2| =
∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣ , ... , |Dn| =

∣∣∣∣∣∣∣∣∣

a11 ... a1n

a21 ... a2n

... ... ...
an1 ... ann

∣∣∣∣∣∣∣∣∣

are called leading principal minors.

Theorem 3 A quadratic form is positive definite if and only if

|D1| > 0, |D2| > 0, ... , |Dn| > 0

that is all principal minors are positive.

A quadratic form is negative definite if and only if

|D1| < 0, |D2| > 0, |D3| < 0, ...

that is principal minors alternate in sign starting with negative one.

From this definiteness criteria and the Theorem 2 follows
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Corollary 1 Suppose

∂F

∂xi

= 0, i = 1, 2, ..., n,

and n leading principal minors of D2F (x∗) alternate in sign

∣∣∣ Fx1x1

∣∣∣ < 0,

∣∣∣∣∣
Fx1x1 Fx2x1

Fx1x2 Fx2x2

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣

Fx1x1 Fx2x1 Fx3x1

Fx1x2 Fx2x2 Fx3x2

Fx1x3 Fx2x3 Fx3x3

∣∣∣∣∣∣∣
< 0, ...

at x∗. Then x∗ is a strict local max.

Corollary 2 Suppose

∂F

∂xi

= 0, i = 1, 2, ..., n,

and n leading principal minors of D2F (x∗) are positive

∣∣∣ Fx1x1

∣∣∣ > 0,

∣∣∣∣∣
Fx1x1 Fx2x1

Fx1x2 Fx2x2

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣

Fx1x1 Fx2x1 Fx3x1

Fx1x2 Fx2x2 Fx3x2

Fx1x3 Fx2x3 Fx3x3

∣∣∣∣∣∣∣
> 0, ...

at x∗. Then x∗ is a strict local min.

Corollary 3 Suppose

∂F

∂xi

= 0, i = 1, 2, ..., n,

and some nonzero leading principal minors of D2F (x∗) violate the sign pat-
terns of Corollaries 1 and 2. Then x∗ is a saddle point.

Example. Now we can classify two critical points (0, 0) and (3,−3) of the
function F (x, y) = x3 − y3 + 9xy. The Hessian of F is

∣∣∣∣∣
Fxx Fyx

Fxy Fyy

∣∣∣∣∣ =

∣∣∣∣∣
6x 9
9 −6y

∣∣∣∣∣ .

The first leading principal minor is Fxx = 6x and the second order principal
leading minor is |D2F (x)| = −36xy − 81.

At (0, 0) these two minors are 0 and −81, this is the situation of Corollary
3, so (0, 0) is a saddle point.

At (3,−3) these two minors are 18 and 24, this is the situation of Corollary
2, so (3,−3) is a strict local min point.

Note that this local min is not global: the restriction F (0, y) = 03− y3 +
9 · 0 · y = −y3 decreases to −∞ when y increases to ∞.
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1.2.3 Necessary Conditions

For a one variable function we have the following implications:

x∗ is min ⇒ f ′(x∗) = 0

that is ”f ′(x∗) = 0” is necessary condition for minimality;

x∗ is min ⇐
{

f ′(x∗) = 0
f ′′(x∗) > 0

that is ”f ′(x∗) = 0 and f ′′(x∗) > 0” is sufficient for minimality.
But not

x∗ is min ⇒
{

f ′(x∗) = 0
f ′′(x∗) > 0

that is ”f ′(x∗) = 0 and f ′′(x∗) > 0” is not necessary : counterexample is
f(x) = x4.

But

x∗ is min ⇒
{

f ′(x∗) = 0
f ′′(x∗) ≥ 0

that is ”f ′(x∗) = 0 and f ′′(x∗) ≥ 0” is necessary.
Is the last condition sufficient for minimality? In other words, is the

implication

x∗ is min ⇐
{

f ′(x∗) = 0
f ′′(x∗) ≥ 0

correct?
No: let f(x) = x4, g(x) = −x4, h(x) = x3, the point x∗ = 0 is critical for

all these functions, besides

f ′′(0) = g′′(0) = h′′(0) = 0 ≥ 0,

but x∗ = 0 is a min for f , max for g and neither for h.
A similar result is true in multivariable case

Theorem 4 Suppose x∗ is a local min (max) for F . Then, ∇F (x∗) = 0 and
D2F (x∗) is negative (positive) semidefinite.

Corollary 4 (a) If x∗ is a local min for F , then

∂F

∂xi

(x∗) = 0, i = 1, ..., n,

and all the principal minors of Hessian D2F (x∗) are ≥ 0.
(b) If x∗ is a local max for F , then

∂F

∂xi

(x∗) = 0, i = 1, ..., n,

and all the principal minors of Hessian D2F (x∗) of odd degree are ≤ 0 and
all principal minors of even degree are ≥ 0.
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1.3 Global Maxima and Minima

How to recognize that a local max (min) found by the above described first
and second condition is global?

In one variable case there are such criteria:
1. If x∗ is a local max (min) and it is the only critical point, then it is

global.
2. If f ′′(x) ≤ 0 (f ′′(x) ≥ 0) for each x and x∗ is a local max (min), then

it is global.
The first condition does work in higher dimensions, but the condition 2

does:

Theorem 5 If x∗ is a critical point ∇F (x∗) = 0, and the Hessian D2F (x)
is negative (positive) semidefinite for all x, then x∗ is global max (min).

1.4 Economic Applications

1.4.1 Profit-Maximizing Firm

Suppose a firm uses n inputs and produces one output, and the production
function is given by G(x), here x is input bundle x = (x1, ..., xn). Suppose the
price of the unit of output product is p. The revenue then is R(x) = pG(x),
and the profit is

F (x) = R(x)− C(x) = pG(x)− C(x),

where C(x) is the cost function.
For which value of input bundle x the profit is maximal?
The first order necessary condition gives

0 =
∂F

∂xi

(x) =
∂R

∂xi

(x)− ∂C

∂xi

(x),

that is where marginal revenue equals to marginal cost.
Question: Can you explain the economical meaning of this fact?

Consider now more simple situation - constant marginal cost: suppose
C(x) = w · x = w1x1 + ... + wnxn. In this case

∂C

∂xi

(x) = wi.

On the other hand

∂R

∂xi

(x) =
∂pG

∂xi

(x) = p
∂G

∂xi

(x),

so the first order condition ∂R
∂xi

(x) = ∂C
∂xi

(x) gives

p
∂G

∂xi

(x) = wi, thus
∂G

∂xi

(x) =
wi

p
.
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So to be a maximizer pretends a solution x∗ of the equation

∂G

∂xi

(x) =
wi

p
.

Now look at the second order condition. By necessary condition, for maxi-
mizer x∗ the Hessian D2F (x∗) must be negative semidefinite. In our case of
constant marginal cost, easy to see that

D2(F )(x) = pD2G(x).

Thus for maximizer the Hessian D2G(x∗) must be negative semidefinite. In
particular all principal minors of degree 1 must be nonpositive, that is ∂2G

∂x2
i
≤

0. This is necessary condition for a critical point x∗ to be maximizer.

1.4.2 Discriminating Monopolist

Suppose a firm sells its product at two markets (say domestic and foreign).
Let Q1 be the amount supplied to market 1 and Q2 be the amount supplied
to market 2. Suppose the inverse price functions are

P1 = G1(Q1), P2 = G2(Q2).

What is revenue? R(Q1 + Q2) = R(Q1) + R(Q2), where

R(Q1) = Q1P1 = Q1G(Q1), R(Q2) = Q2P2 = Q2G(Q2).

Suppose that the total production cost C depends on the total production
Q1 + Q2, so C = C(Q1 + Q2). Then the profit is

F (Q1, Q2) = R(Q1, Q2)− C(Q1, Q2) =
R(Q1) + R(Q2)− C(Q1, Q2) = Q1G(Q1) + Q2G(Q2)− C(Q1, Q2).

The first order condition gives that a maximizer must satisfy

0 = ∂F
∂Q1

= dQ1G(Q1)
dQ1

− C ′(Q1 + Q2);

0 = ∂F
∂Q2

= dQ2G(Q2)
dQ2

− C ′(Q1 + Q2)

or
dQ1G(Q1)

dQ1

=
dQ2G(Q2)

dQ2

= C ′(Q1 + Q2),

So the marginal revenue in each market should equal the marginal cost of
total output.

Example. A monopolist producing a single output has two types of cus-
tomers. If it produces Q1 units for customers of type 1, then these customers
are willing to pay a price of 50−5Q1 dollars per unit. If it produces Q2 units
for customers of type 2, then these customers are willing to pay a price of
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100−10Q2 dollars per unit. The monopolist’s cost of manufacturing Q units
of output is 90+20Q dollars. In order to maximize profits, how much should
the monopolist produce for each market?
Solution. The profit function is

F (Q1, Q2) =

Q1(50− 5Q1) + Q2(100− lOQ2)− (90 + 20(Q1 + Q2)).

The critical points of F satisfy

∂F
∂Q1

= 50− 10Q1 − 20 = 0, Q1 = 3,
∂F
∂Q2

= 100− 20Q2 − 20 = 0, Q2 = 4.

So the critical point is (3, 4).
Now check the second order conditions. Since

FQ1Q1 = −10, FQ2Q2 = −20, FQ1Q2 = 0,

the Hessian looks as

D2(Q1, Q2) =

(
FQ1Q1 FQ2Q1

FQ1Q2 FQ2Q2

)
=

(
−10 0
0 −20

)
.

The first order leading principal minor of D2F (3, 4) is −10 and the second
leading principal minor is 200. Therefore (3, 4) is strict local max. But is it
a global max?

Yes, it is, because the Hessian D2F (x) is a constant (that is independent
on x) negative definite matrix.

1.5 Application: Regression Analysis - Least Squares
Approximation

Regression analysis is the process of fitting an elementary function to a set
of data points using the method of least squares.

1.5.1 Linear Case

Suppose the points (xi, yi) ∈ R2, i = 1, 2, ..., n are given. Aim is to construct
a linear function y = ax + b that best fits these data points.

Idea: for each xi consider the difference yi− axi− b (called residual), and
take the sum of squares of all residuals

F (a, b) =
n∑

i=1

(yi − axi − b)2,

this is a function of two variables, a and b. The goal is to minimize this
function. For this just solve the system of equations Fa = 0, Fb = 0
for a and b.
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Question: Why the sum o squares, why not just the sum of all residuals,
or the sum of absolute values of all residuals?

Formal (boring) Solution.

Fa =
∑n

i=1 2(yi − axi − b)(−xi) = 0,
Fb =

∑n
i=1 2(yi − axi − b)(−1) = 0.

Simplifying we obtain the system
{

(
∑n

i=1 x2
i )a + (

∑n
i=1 xi)b =

∑n
i=1 xiyi

(
∑n

i=1 xi)a + nb =
∑n

i=1 yi
.

Solving this system we obtain

a =
n·(

∑n

i=1
xiyi)−(

∑n

i=1
xi)·(

∑n

i=1
yi)

n·(
∑n

i=1
x2

i )−(
∑n

i=1
xi)2

b =
(
∑n

i=1
x2

i )·(
∑n

i=1
yi)−(

∑n

i=1
xi)·(

∑n

i=1
xiyi)

n·(
∑n

i=1
x2

i )−(
∑n

i=1
xi)2

Example. Fit the data (2, 4), (5, 6), (6, 7), (9, 8) by linear function.
Solution. Let us try to approximate by

y = ax + b.

The function F then looks as

F (a, b) = (4− (2a + b))2 + (6− (5a + b))2 + (7− (6a + b)2 + (8− (9a + b)2.

Simplification gives

F (a, b) = 165− 304a− 50b + 146a2 + 44a ∗ b + 4b2.

The partials of F are

Fa = −304 + 292a + 44b, Fb = −50 + 44a + 8b.

Solution of the system
{
−304 + 292a + 44b = 0
−50 + 44a + 8b = 0

gives a = 0.59, b = 3.06, so the best fitting line is

y = 0.59x + 3.06.

Now we solve the same problem using above formulae:

xi yi xiyi x2
i

2 4 8 4
5 6 30 25
6 7 42 36
9 8 72 81

22 25 152 146,
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so

a =
4 · 152− 22 · 25

4 · 146− 223
= 0.58,

b =
146 · 25− 22 · 152

4 · 146− 223
= 3.06,

thus the best fitting line is

y = 0.58x + 3.06.

MAPLE makes it faster:

> with(Statistics) :
> X := V ector([2, 5, 6, 9]) :
> Y := V ector([4, 6, 7, 8]) :
> Fit(a ∗ x + b,X, Y, x);
0.579999999999999960x + 3.05999999999999828

1.5.2 Quadratic Case

Suppose the points (xi, yi) ∈ R2, i = 1, 2, ..., n are given. Aim is to construct
a quadratic function y = ax2 + bx + c that best fits these data points.

Idea: for each xi consider the difference yi−ax2
i −bxi−c (called residual),

and take the sum of squares of all residuals

F (a, b) =
n∑

i=1

(yi − ax2
i − bxi − c)2,

this is a function of three variables, a, b and c. The goal is to minimize this
function. For this just solve the system of equations Fa = 0, Fb =
0, Fc = 0 for a, b and c.

Same for higher order polynomials.
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Exercises

1. For each of the following functions find the critical points and classify
these as local max, local min, saddle point, or ”can’t tell” using first and
second order conditions:

(a) F (x, y) = x2 + xy + y2 − 3x, (b) F (x, y) = xy − x3 − y2;
(c) F (x, y) = xy2 + x3y − xy, (d) F (x, y) = 3x4 + 3x2y − y3.

2. A firm produces two kind of golf ball, one that sells for $3 and one for
$2. The total cost, in thousands of dollars, of producing of x thousand balls
at $3 each and y thousand balls at $2 each is given by

C(x, y) = 2x2 − 2xy + y2 − 9x + 6y + 7.

Find the amount of each type of ball that must be produced and sold in order
to maximize profit.

3. A one-product company finds that its profit, in millions of dollars, is
a function P given by

P (a, p) = 2ap + 80p− 15p2 − 1/10 · a2p− 100,

where a is the amount spent on advertising, in millions of dollars, and p is
the price charged per item of the product, in dollars. Find the maximum
value of P and the values of a and p at which it is attained.

4. A one-product company finds that its profit, in millions of dollars, is
a function P given by

P (a, n) = −5a2 − 3n2 + 48a− 4n + 2an + 300,

where a is the amount spent on advertising, in millions of dollars, and n is
the number of items sold, in thousands. Find the maximum value of P and
the values of a and n at which it is attained.

5. A trash company is designing an open-top, rectangular container that
will have a volume of 320 ft3. The cost of making the bottom of the container
is $5 per square foot, and the cost of the sides is $4 per square foot. Find
the dimensions of the container that will minimize total cost. (Hint: Make a
substitution using the formula for volume.)

6. A computer firm, markets two kinds of electronic calculator that com-
pete with one another. Their demand functions are expressed by the following
relationships:

q1 = 78− 6p1 − 3p2,

q2 = 66− 3p1 − 6p2,
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where p1 and p2 are the price of each calculator, in multiples of $10, and ql

and q2 are the quantity of each calculator demanded, in hundreds of units.
a) Find a formula for the total-revenue function R in terms of the variables

p1 and p2.
b) What prices p1 and p2 should be charged for each product in order to

maximize total revenue?
c) How many units will be demanded?
d) What is the maximum total revenue?

7. For the following data

(0, 10), (5, 22), 10, 31), (15, 46), (20, 51)

find the last squares line and estimate y when x = 2.5.

8. Find the coefficients of the parabola

y = ax2 + bx + c

that is the best fit for the points

((1, 2), (2, 1), (3, 1), (4, 3).

Exercise 17.1-17.8 from [SB ].
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