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1 Quadratic Forms

A quadratic function f : R → R has the form f(x) = a · x2. Generalization
of this notion to two variables is the quadratic form

Q(x1, x2) = a11x
2
1 + a12x1x2 + a21x2x1 + a22x

2
2.

Here each term has degree 2 (the sum of exponents is 2 for all summands).
A quadratic form of three variables looks as

f(x1, x2, x3) =
a11x

2
1 + a12x1x2 + a13x1x3+

a21x2x1 + a22x
2
2 + a23x2x3+

a31x1x3 + a32x3x2 + a33x
2
3.

A general quadratic form of n variables is a real-valued function Q : Rn →
R of the form

Q(x1, x2, ..., xn) = a11x
2
1 + a12x1x2 + ... + a1nx1xn+

a21x2x1 + a22x
2
2 + ... + a2nx2xn+

... ... ... ...
an1xnx1 + an2xnx2 + ... + annx

2
n

In short Q(x1, x2, ..., xn) =
∑n

i,j aijxixj.
As we see a quadratic form is determined by the matrix

A =




a11 ... a1n

..............
an1 ... ann


 .

1.1 Matrix Representation of Quadratic Forms

Let Q(x1, x2, ..., xn) =
∑n

i,j aijxixj be a quadratic form with matrix A. Easy
to see that

Q(x1, ..., xn) = (x1, ..., xn) ·



a11 ... a1n

..............
an1 ... ann


 ·




x1

..
xn


 .
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Equivalently Q(x) = xT · A · x.
Example. The quadratic form Q(x1, x2, x3) = 5x2

1 − 10x1x2 + x2
2 whose

symmetric matrix is A =

(
5 −5
−5 1

)
is the product of three matrices

(x1, x2, x3) ·
(

5 −5
−5 1

)
·



x1

x2

x3


 .

1.1.1 Symmetrization of matrix

The quadratic form Q(x1, x2, x3) = 5x2
1−10x1x2 +x2

2 can be represented, for
example, by the following 2× 2 matrices

(
5 −2
−8 1

)
,

(
5 −3
−7 1

)
,

(
5 −5
−5 1

)

the last one is symmetric: aij = aji.

Theorem 1 Any quadratic form can be represented by symmetric matrix.

Indeed, if aij 6= aji we replace them by new a′ij = a′ji = aij+aji

2
, this does

not change the corresponding quadratic form.
Generally, one can find symmetrization A′ of a matrix A by A′ = A+AT

2
.

1.2 Definiteness of Quadratic Forms

A quadratic form of one variable is just a quadratic function Q(x) = a · x2.
If a > 0 then Q(x) > 0 for each nonzero x.
If a < 0 then Q(x) < 0 for each nonzero x.
So the sign of the coefficient a determines the sign of one variable quadratic

form.
The notion of definiteness described bellow generalizes this phenomenon

for multivariable quadratic forms.

1.2.1 Generic Examples

The quadratic form Q(x, y) = x2 + y2 is positive for all nonzero (that is
(x, y) 6= (0, 0)) arguments (x, y). Such forms are called positive definite.

The quadratic form Q(x, y) = −x2 − y2 is negative for all nonzero argu-
ments (x, y). Such forms are called negative definite.

The quadratic form Q(x, y) = (x − y)2 is nonnegative. This means that
Q(x, y) = (x − y)2 is either positive or zero for nonzero arguments. Such
forms are called positive semidefinite.
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The quadratic form Q(x, y) = −(x− y)2 is nonpositive. This means that
Q(x, y) = (x − y)2 is either negative or zero for nonzero arguments. Such
forms are called negative semidefinite.

The quadratic form Q(x, y) = x2 − y2 is called indefinite since it can
take both positive and negative values, for example Q(3, 1) = 9 − 1 = 8 >
0, Q(1, 3) = 1− 9 = −8 < 0.

1.2.2 Definiteness

Definition. A quadratic form Q(x) = xT · A · x (equivalently a symmetric
matrix A) is
(a) positive definite if Q(x) > 0 for all x 6= 0 ∈ Rn;
(b) positive semidefinite if Q(x) ≥ 0 for all x 6= 0 ∈ Rn;
(c) negative definite if Q(x) < 0 for all x 6= 0 ∈ Rn;
(d) negative semidefinite if Q(x) ≤ 0 for all x 6= 0 ∈ Rn;
(e) indefinite if Q(x) > 0 for some x and Q(x) < 0 for some other x.

1.2.3 Definiteness and Optimality

Determining the definiteness of quadratic form Q is equivalent to determining
wether x = 0 is max, min or neither. Particularly:
If Q is positive definite then x = 0 is global maximum;
If Q is negative definite then x = 0 is global minimum.

1.2.4 Definiteness of 2 Variable Quadratic Form

Let Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 = (x1, x2) ·
(

a b
b c

)
·

(
x1

x2

)
be a 2

variable quadratic form.

Here A =

(
a b
b c

)
is the symmetric matrix of the quadratic form. The

determinant

∣∣∣∣∣
a b
b c

∣∣∣∣∣ = ac− b2 is called discriminant of Q.

Easy to see that

ax2
1 + 2bx1x2 + cx2

2 = a(x1 +
b

a
x2)

2 +
ac− b2

a
x2

2.

Let us use the notation D1 = a, D2 = ac − b2. Actually D1 and D2 are
leading principal minors of A. Note that there exists one more principal
(non leading) minor (of degree 1) D′

1 = c.
Then

Q(x1, x2) = D1(x1 +
b

a
x2)

2 +
D2

D1

x2
2.

From this expression we obtain:
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1. If D1 > 0 and D2 > 0 then the form is of x2 + y2 type, so it is positive
definite;

2. If D1 < 0 and D2 > 0 then the form is of −x2 − y2 type, so it is negative
definite;

3. If D1 > 0 and D2 < 0 then the form is of x2 − y2 type, so it is indefinite;

If D1 < 0 and D2 < 0 then the form is of −x2 + y2 type, so it is also
indefinite;

Thus if D2 < 0 then the form is indefinite.

Semidefiniteness depends not only on leading principal minors D1, D2

but also on all principal minors, in this case on D′
1 = c too.

4. If D1 ≥ 0, D′
1 ≥ 0 and D2 ≥ 0 then the form is positive semidefinite.

Note that only D1 ≥ 0 and D2 ≥ 0 is not enough, the additional condition
D′

1 ≥ 0 here is absolutely necessary: consider the form Q(x1, x2) = −x2
2 with

a = 0, b = 0, c = −1, here D1 = a ≥ 0, D2 = ac− b2 ≥ 0, nevertheless the
form is not positive semidiefinite.

5. If D1 ≤ 0, D′
1 ≤ 0 and D2 ≥ 0 then the form is negative semidefinite.

Note that only D1 ≤ 0 and D2 ≥ 0 is not enough,the additional condition
D′

1 ≤ 0 again is absolutely necessary: consider the form Q(x1, x2) = x2
2 with

a = 0, b = 0, c = 1, here D1 = a ≤ 0, D2 = ac − b2 ≥ 0, nevertheless the
form is not negative semidiefinite.

1.2.5 Definiteness of 3 Variable Quadratic Form

Let us start with the following
Example. Q(x1, x2, x3) = x2

1 + 2x2
2 − 7x2

3 − 4x1x2 + 8x1x3. The symmetric
matrix of this quadratic form is




1 −2 4
−2 2 0

4 0 −7


 .

The leading principal minors of this matrix are

|D1| =
∣∣∣ 1

∣∣∣ = 1, |D2| =
∣∣∣∣∣

1 −2
−2 2

∣∣∣∣∣ = −2, |D3| =
∣∣∣∣∣∣∣

1 −2 4
−2 2 0

4 0 −7

∣∣∣∣∣∣∣
= −18.
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Now look:

Q(x1, x2, x3) = x2
1 + 2x2

2 − 7x2
3 − 4x1x2 + 8x1x3 =

x2
1 − 4x1x2 + 8x1x3 + 2x2

2 − 7x2
3 = x2

1 − 4x1(x2 − 2x3) + 2x2
2 − 7x2

3 =
[x2

1 − 4x1(x2 − 2x3) + 4(x2 − 2x3)− 4(x2 − 2x3)] + 2x2
2 − 7x2

3 =
[x1 − 2x2 + 4x3]

2 − 2x2
2 − 16x2x3 − 23x2

3 =
[x1 − 2x2 + 4x3]

2 − 2(x2
2 − 8x2x3)− 23x2

3 =
[x1 − 2x2 + 4x3]

2 − 2[x2
2 − 8x2x3 + 16x2

3 − 16x2
3]− 23x2

3 =
[x1 − 2x2 + 4x3]

2 − 2[x2 − 4x3]
2 − 16x2

3)− 23x2
3 =

[x1 − 2x2 + 4x3]
2 − 2[x2 − 4x3]

2 + 32x2
3 − 23x2

3 =
[x1 − 2x2 + 4x3]

2 − 2[x2 − 4x3]
2 + 9x2

3 =
|D1|l21 + D2

D1
l2 + D3

D2
l23,

where
l1 = x1 −2x2 +4x3,
l2 = x2 −4x3,
l3 = x3.

That is (l1, l2, l3) are linear combinations of (x1, x2, x3). More precisely




l1
l2
l3


 =




1 −2 4
0 1 −4
0 0 1


 ·




x1

x2

x3




where

P =




1 −2 4
0 1 −4
0 0 1




is a nonsingular matrix (changing variables).

Now turn to general 3 variable quadratic form

Q(x1, x2, x3) = (x1, x2, x3) ·



a11 a12 a13

a21 a22 a23

a31 a32 a33


 ·




x1

x2

x3


 .

The following three determinants

|D1| =
∣∣∣ a11

∣∣∣ , |D2| =
∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣ , |D3| =
∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣

are leading principal minors.

It is possible to show that, as in 2 variable case, if |D1| 6= 0, |D2| 6= 0,
then

Q(x1, x2, x3) = |D1|l21 +
|D2|
|D1| l

2
2 +

|D3|
|D2| l

2
3
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where l1, l2, l3 are some linear combinations of x1, x2, x3 (this is called La-
grange’s reduction).

This implies the following criteria:

1. The form is positive definite iff |D1| > 0, |D2| > 0, |D3| > 0, that is all
principal minors are positive.

2. The form is negative definite iff |D1| < 0, |D2| > 0, |D3| < 0, that is
principal minors alternate in sign starting with negative one.

Example. Determine the definiteness of the form Q(x1, x2, x3) = 3x2
1+2x2

2+
3x2

3 − 2x1x2 − 2x2x3.
Solution. The matrix of our form is




3 −1 0
−1 2 −1
0 −1 3


 .

The leading principal minors are

|D1| = 3 > 0, |D2| =
∣∣∣∣∣

3 −1
−1 2

∣∣∣∣∣ > 5, |D3| =
∣∣∣∣∣∣∣

3 −1 0
−1 2 −1
0 −1 3

∣∣∣∣∣∣∣
= 18 > 0,

thus the form is positive definite.

1.2.6 Definiteness of n Variable Quadratic Form

Let Q(x1, ..., xn) = (x1, ..., xn) ·




a11 ... a1n

a21 ... a2n

... ... ...
an1 ... ann


 ·




x1

...
xn


 be an n variable

quadratic form.
The following n determinants

|D1| =
∣∣∣ a11

∣∣∣ , |D2| =
∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣ , ... , |Dn| =

∣∣∣∣∣∣∣∣∣

a11 ... a1n

a21 ... a2n

... ... ...
an1 ... ann

∣∣∣∣∣∣∣∣∣

are leading principal minors.

As in previous cases, it is possible to show that

Q(x1, ... , x3) = |D1|l21 +
|D2|
|D1| l

2
2 + ... +

|Dn|
|Dn−1| l

2
n

where (l1, l2, ... , ln) are linear combinations of (x1, x2, ... , xn), more precisely



l1
...
ln


 =




p11 ... p1n

. . .
pn1 ... pnn


 ·




x1

...
xn



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where

P =




p11 ... p1n

. . .
pn1 ... pnn




is a nonsingular matrix (changing variables).

Theorem 2 1. A quadratic form is positive definite if and only if

|D1| > 0, |D2| > 0, ... , |Dn| > 0,

that is all principal minors are positive;

2. A quadratic form is negative definite if and only if

|D1| < 0, |D2| > 0, |D3| < 0, |D4| > 0, ... ,

that is principal minors alternate in sign starting with negative one.

3. If some kth order leading principal minor is nonzero but does not fit
either of the above two sign patterns, then the form is indefinite.

The situation with semidefiniteness is more complicated, here are involved
not only leading principal minors, but all principal minors.

Theorem 3 1. A quadratic form is positive semidefinite if and only if all
principal minors are ≥ 0;

2. A quadratic form is negative semidefinite if and only if all principal
minors of odd degree are ≤ 0, and all principal minors of even degree are
≥ 0.

1.3 Definiteness and Eigenvalues

As we know a symmetric n × n matrix has n real eigenvalues (maybe some
multiple).

Theorem 4 Given a quadratic form Q(x) = xT Ax and let λ1, ... , λn be
eigenvalues of A. Then Q(x) is

• positive definite iff λi > 0, i = 1, ... , n;

• negative definite iff λi < 0, i = 1, ... , n;

• positive semidefinite iff λi ≥ 0, i = 1, ... , n;

• negative semidefinite iff λi ≤ 0, i = 1, ... , n;

Proof. Just xT Ax > 0 ⇒ ∀ λi > 0. Let v be the normalized eigenvector of
λi, that is Av = λiv. Then

0 < vTAv = λivTv = λi.
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1.4 Linear Constraints and Bordered Matrices

1.4.1 Two Variable Case

The quadratic form Q(x1, x2) = x2
1 − x2

2 is indefinite (why?).

But if we restrict Q to the subset (subspace) of R2 determined by the
constraint x2 = 0 we obtain a one variable quadratic form q(x) = Q(x, 0) =
x2 which is definitely positive definite. Thus the restriction of Q on x1 axis
is positive definite.

Similarly, the constraint x1 = 0 gives q(x) = Q(0, x) = −x2 which is
negative definite. Thus the restriction of Q on x2 axis is positive definite.

Now let us consider the constraint x1 − 2x2 = 0. Solving x1 from this
constraint we obtain x1 = 2x2. Substituting in Q we obtain one variable
quadratic form q(x) = Q(2x, x) = 4x2 − x2 = 3x2 which is positive definite.
Thus the restriction of Q on the line x1 + 2x2 = 0 is positive definite.

Let us repeat the last calculations for a general 2 variable quadratic form

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 = (x1, x2)

(
a b
b c

) (
x1

x2

)

subject to the linear constraint

Ax1 + Bx2 = 0.

Let us, as above, solve x1 from the constraint

x1 = −B

A
x2

and substitute in Q:

Q(x1, x2) = Q(−B
A
x2, x2) = a11(−B

A
x2)

2 + 2a12(−B
A
x2)x2 + a22x

2
2 =

= aB2−2bAB+cA2

A2 x2
2.

So the definiteness of Q(x1, x2) on the constraint set Ax1 +Bx2 = 0 depends
on the sign of coefficient aB2−2bAB+cA2

A2 , more precisely on the nominator

aB2 − 2bAB + cA2,

which is nothing else than It is easy to see that

−det




0 A B
A a b
B b c


 .
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This matrix 


0 A B
A a b
B b c




is called bordered matrix of A.
Thus we have proved the

Theorem 5 A two variable quadratic form Q(x1, x2) = a11x
2
1 + 2a12x1x2 +

a22x
2
2 restricted on the constrained set Ax1 + Bx2 = 0 is positive (resp. neg-

ative) if and only if the determinant of the bordering matrix

det




0 A B
A a b
B b c




is negative (resp. positive).

1.4.2 n Variable m Constraint Case

Analogous result holds in general case.
Let

x =




x1

...
xn


 , A =




a11 .. a1n

...
an1 ... ann




and
Q(x1, ... , xn) = xT Ax

be an n variable quadratic form. Consider a constraint set



B11 ... B1n

...
Bm1 ... Bmn







x1

...
xn


 =




0
...
0


 .

In fact this set is the null space of B, is not it?
The bordered matrix for this situation looks as

H =




0 ... 0 | B11 ... B1n

... | ...
0 ... 0 | Bm1 ... Bmn

− − − − − −
B11 ... Bm1 | a11 ... a1n

... | ...
B1n ... Bmn | an1 ... ann




=

(
0 B

BT A

)
.

This (m + n)× (m + n) matrix has m + n leading principal minors

M1, M2, ... ,Mm, Mm+1, ... ,M2m−1, M2m, M2m+1, ... , Mm+n = H.
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The first m matrices M1, ... , Mm are zero matrices.

Next m− 1 matrices Mm+1, ... ,M2m−1 have zero determinant.

The determinant of the next minor M2m is ±det B′2 where B′ is the left
m×m minor of B, it does not carry any information about A.

And only the determinants of last n−m matrices M2m+1, ... , Mm+n carry
information about the matrix A, i.e. about the quadratic form Q. Exactly
these minors are essential for constraint definiteness.

Theorem 6 (i) If the determinant of H = Mm+n has the sign (−1)n and
the signs of determinants of last m + n leading principal minors

M2m+1, ... , Mm+n

alternate in sign, then Q is negative definite on the constraint set Bx = 0,
so x = 0 is a strict global max of Q on the constraint set Bx = 0.

(ii) If the determinants of all last m + n leading principal minors

M2m+1, ... , Mm+n

have the same sign (−1)m, then Q is positive definite on the constraint set
Bx = 0, so x = 0 is a strict global min of Q on the constraint set Bx = 0.

(iii) If both conditions (i) and (ii) are violated by some nonzero minors from
last m + n leading principal minors

M2m+1, ... , Mm+n

then Q is indefinite on the constraint set Bx = 0, so x = 0 is neither max
nor min of Q on the constraint set Bx = 0.

This table describes the above sign patterns:

Mm+m+1 Mm+m+2 ... Mm+n−1 Mm+n

negative (−1)m+1 (−1)m+2 ... (−1)n−1 (−1)n

positive (−1)m (−1)m ... (−1)m (−1)m

Example

Determine the definiteness of the following constrained quadratics

Q(x1, x2, x3) = x2
1 + x2

2 − x2
3 + 4x1x3 − 2x1x2,

subject to x1 + x2 + x3 = 0.
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Solution. Here n = 3, m = 1.
The bordered matrix here is




0 | 1 1 1
− − − − −
1 | 1 −1 2
1 | −1 1 0
1 | 2 0 −1




.

The leading principal minors are

|M1| = 0, |M2| =
∣∣∣∣∣

0 1
1 1

∣∣∣∣∣ = −1,

|M3| =
∣∣∣∣∣∣∣

0 1 1
1 1 −1
1 −1 1

∣∣∣∣∣∣∣
= −4 < 0, |M4| =

∣∣∣∣∣∣∣∣∣

0 1 1 1
1 1 −1 2
1 −1 1 0
1 2 0 −1

∣∣∣∣∣∣∣∣∣
= 16 > 0.

in this case n = 3, m = 1, so the essential minors are M3 and M4.
For negative definiteness the sign pattern must be

(−1)n−1 = (−1)2 = ” + ”, (−1)n = (−1)3 = ”− ”

And for positive definiteness the sign pattern must be

(−1)m = (−1)1 = ”− ”, (−1)m = (−1)1 = ”− ”,

since we have −4 < 0, 16 > 0, which differs from both patterns, our con-
strained quadratic is indefinite.

1.5 Change of variables*

Let Q = xT Ax be a quadratic form of variable x ∈ Rn. Let us step to
new variable y ∈ Rn which is connected to x by x = Py where P is some
nonsingular matrix . Note that in this case xT = (Py)T = yT P T . Then

Q = xT Ax = yT P T APy = yT (P T AP )y,

so the matrix of new quadratic form of variable y is B = P T AP .

If A is symmetric, B = P T AP is symmetric too (prove it using the
definition of symmetric matrix A = AT ).

Jacobi’s Theorem states that any symmetric matrix A can be trans-
formed to a diagonal matrix Λ = P T AP by an orthogonal matrix P . The
elements of Λ are uniquely determined up to permutation.

If we allow P to be a nonsingular matrix, then A can be transformed to
a diagonal matrix where each diagonal element is 1, -1 or 0.
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Important remark: Let

D1, D2, ... Dn

be the leading principal minors of A, and let Λ be corresponding diagonal
matrix with 1,0,-1 on the diagonal, then the Λ-s leading principal minors
have the same sign pattern as Di-s.

Silvester’s Law of inertia states that the number of 0-s n0, the number
of 1-s n+ and the number of -1-s n− are invariant in the sense that any other
diagonalization gives the same n0, n+ and n−.

The signature of a quadratic form is defined as n+−n−, so the signature
is an invariant of quadratic form too.

A quadratic form Q is positive definite if n+ = n.
A quadratic form Q is negative definite if n− = n.
A quadratic form Q is positive semi definite if n− = 0.
A quadratic form Q is negative semi definite if n+ = 0.
A quadratic form Q is indefinite if n+ > 0 and n− > 0.

1.6 Why Quadratic Forms?*

Recall Taylor formula

f(x0 + h) = f(x0) + f ′(x0) · h +
f ′′(x0)

2
· h2 +

f ′′′(x0)

3!
· h3 + ...

and ask a question: is this function increasing at x = x0? That is if h > 0 is

f(x0 + h)− f(x0) = f ′(x0) · h +
f ′′(x0)

2
· h2 +

f ′′′(x0)

3!
· h3 + ...

positive?
Notice, that for small enough h the quadratic term f ′′(x0)

2
·h2, the cubical

term f ′′′(x0)
3!

·h3 etc are smaller that the linear term f ′(x0) ·h, so the positivity
of f(x0 + h) − f(x0) depends on positivity of the coefficient f ′(x0) of that
linear form f ′(x0) · h, that is on the positivity of the derivative at x0.

Well, from this easily follows, that a local extremum we can expect at a
critical point f ′(x0) = 0.

Now ask a question: how to recognize, is a critical point x0 min or max?
Address again to Taylor formula which now, since f ′(x0) = 0, looks as

f(x0 + h) = f(x0) +
f ′′(x0)

2
· h2 +

f ′′′(x0)

3!
· h3 + ... .

Consider the difference

f(x0 + h)− f(x0) =
f ′′(x0)

2
· h2 +

f ′′′(x0)

3!
· h3 + ... .

12



The point x0 is min if this difference f(x0 +h)−f(x0) is positive for all small
enough values of h.

For small enough h the cubical term f ′′′(x0)
3!

· h3, the term of degree 4
f (4)(x0)

4!
·h4 etc are smaller that the quadratic term f ′′(x0)

2
·h2, so the positivity

of the difference f(x0 + h) − f(x0) depends on positivity of the coefficient
f ′′(x0)

2
of that quadratic form f ′′(x0)

2
·h2, that is on the positivity of the second

derivative at x0.
So, at h = 0 this form has minimum (it is positive definite) if its coefficient

f ′′(x0) is positive (our good old second order condition).

Now consider a function of two variables F (x1, x2). Again there exists
Taylor for two variables

F (x1 + h1, x2 + h2) =
F (x1, x2) + ∂F

∂x1
(x1, x2) · h1 + ∂F

∂x2
(x1, x2) · h2+

1
2

∂2F
∂x2

1
(x1, x2) · h2

1 + ∂2F
∂x1∂x2

(x1, x2) · h1h2 + 1
2

∂2F
∂x2

2
(x1, x2) · h2

2+
1
3

∂3F
∂x3

1
(x1, x2) · h3

1 + ... .

As in one-variable case, an optimum (min or max) can be expected at a
critical point, where the linear form ∂F

∂x1
(x1, x2) ·h1 + ∂F

∂x2
(x1, x2) ·h2 vanishes.

And the minimality or maximality depends on the quadratic form

Q(h1, h2) =
1

2

∂2F

∂x2
1

(x1, x2) · h2
1 +

∂2F

∂x1∂x2

(x1, x2) · h1h2 +
1

2

∂2F

∂x2
2

(x1, x2) · h2
2.

Namely, if this form is positive definite, that is if Q(h1, h2) > 0 for all
(h1, h2) 6= (0, 0), then (x1, x2) is a point of minimum, and if the form is
negative definite, that is Q(h1, h2) < 0 for all (h1, h2) 6= (0, 0), then (x1, x2)
is a point of maximum.

13



Exercises

1. Write the following quadratic forms in matrix form
(a) Q(x1, x2) = x2

1 − 2x1x2 + x2
2.

(b) Q(x1, x2) = 5x2
1 − 10x1x2 + x2

2.
(c) Q(x1, x2, x3) = x2

1 + 2x2
2 + 3x2

3 + 4x1x2 − 6x1x3 + 8x2x3.

2. By direct matrix multiplication express each of the following matrix
products as a quadratic form

(a)
(

x1 x2

)
·
(

4 2
2 3

)
·
(

x1

x2

)
, (b)

(
u v

)
·
(

5 2
4 0

)
·
(

u
v

)
.

3. Write the quadratic form corresponding to the matrix A and then find
a symmetric matrix which determines the same quadratic form for

(a) A =

(
2 −1
−2 1

)
, (b) A =




1 2 0
3 4 5
0 7 6


 (c) A =




1 0 3 0
0 2 0 5
5 0 4 0
0 1 0 6


 .

4. Write an example of 2 variable quadratic form Q(x1, x2) which is
(a) positive definite.
(b) negative definite.
(c) positive semidefinite.
(d) negative semidefinite.
(e) indefinite.

5. Write an example of 3 variable quadratic form Q(x1, x2, x3) which is
(a) positive definite.
(b) negative definite.
(c) positive semidefinite.
(d) negative semidefinite.
(e) indefinite.

6. Determine definiteness of the following symmetric matrices (quadratic
forms)

(a)

(
2 −1
−1 1

)
, (b)

(
−3 4
4 −5

)
, (c)

(
−3 4
4 −6

)
, (d)

(
2 4
4 8

)
,

(e)




1 2 0
2 4 5
0 5 6


 (f)



−1 1 0
1 −1 0
0 0 −2


 (g)




1 0 3 0
0 2 0 5
3 0 4 0
0 5 0 6


 .

7. Formulate criteria for positive and negative definiteness of the quadratic
form given by a diagonal matrix

14






a1 0 ... 0 0
0 a2 ... 0 0
... ... ... ... ...
0 0 ... an−1 0
0 0 ... 0 an




.

8. Determine the definiteness of the following constrained quadratics

(a) Q(x1, x2) = x2
1 + 2x1x2 − x2

2, subject to x1 + x2 = 0.
(b) Q(x1, x2) = 4x2

1 + 2x1x2 − x2
2, subject to x1 + x2 = 0.

(c) Q(x1, x2, x3) = x2
1 + x2

2 − x2
3 + 4x1x3 − 2x1x2, subject to

x1 + x2 + x3 = 0.
(d) Q(x1, x2, x3) = x2

1 + x2
2 + x2

3 + 4x1x3 − 2x1x2, subject to
x1 + x2 + x3 = 0.
(e) Q(x1, x2, x3) = x2

1 − x2
3 + 4x1x2 − 6x2x3, subject to

x1 + x2 − x3 = 0.
(f) Q(x1, x2, x3, x4) = x2

1 − x2
2 + x2

3 + x2
4 + 4x2x3 − 2x1x4,

subject to x1 + x2 − x3 + x4 = 0. x1 − 9x2 + x4 = 0.

Homework

5, 6(g), 7, 8(e), 8(f).

Essay (optional, please type)
1. Lagrangian reduction. If all leading minors |Dk| of the symmetric

matrix of a quadratic form are nonzero then

Q(x1, ... , x3) = |D1|l21 +
|D2|
|D1| l

2
2 + ... +

|Dn|
|Dn−1| l

2
n

where l1, ... , ln are some linear combinations of x1, ... , xn

We have shown it for n = 2 in general case and for some particular
example for n = 3 (see above).

(a) Give a general proof for n = 3.
(b) Deduce the criterion for definiteness from this reduction.

2. Linear restriction of a quadratic form. We have actually proved
the criterion for definiteness of restricted quadratic form in terms of bordered
matrix for n = 2 and m = 1 (see above). Do the same for n = 3 and m = 1.

3. Definiteness of restricted form. Show that if a quadratic form
Q(x1, x2) = a11x

2
1 + 2a12x1x2 + a22x

2
2 is positive (negative) definite then its

restriction on a linear constraint set Ax1 + Bx2 = 0 is also positive (nega-
tive) definite. Hint: Calculate the determinant of bordered matrix. Or just
substitute in Q the value x2 = −A

B
x1. But if a form is indefinite then the

restricted form can be whatever you wish (give examples).
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Short Summary
Quadratic Forms

Q(x1, x2, ..., xn) =
n∑

i,j

aijxixj = (x1, ..., xn)·



a11 ... a1n

..............
an1 ... ann


·




x1

..
xn


 = xT ·A·x

A is symmetric. If not, take its symmetrization A′ = A+AT

2
.

Definiteness of Q(x):
(a) positive definite if Q(x) > 0 for all x 6= 0 ∈ Rn;
(b) positive semidefinite if Q(x) ≥ 0 for all x 6= 0 ∈ Rn;
(c) negative definite if Q(x) < 0 for all x 6= 0 ∈ Rn;
(d) negative semidefinite if Q(x) ≤ 0 for all x 6= 0 ∈ Rn;
(e) indefinite if Q(x) > 0 for some x and Q(x) < 0 for some other x.

Definiteness and Optimality
If Q is positive definite then x = 0 is global maximum;
If Q is negative definite then x = 0 is global minimum.

Leading principal minors

|D1| =
∣∣∣ a11

∣∣∣ , |D2| =
∣∣∣∣∣

a11 a12

a21 a22

∣∣∣∣∣ , ... , |Dn| = |A|.

A quadratic form Q(x) is:
Positive definite iff |D1| > 0, |D2| > 0, ... , |Dn| > 0.
Negative definite iff |D1| < 0, |D2| > 0, |D3| < 0, |D4| > 0, ... .
Indefinite iff some nonzero Dk violates above sign patterns.

Positive semidefinite iff all principal minors Mk ≥ 0.
Negative semidefinite iff all M2k+1 ≤ 0 and M2k ≥ 0.

Definiteness of Q(x) = xT · A · x on the constrained set B · x = 0:

Mm+m+1 Mm+m+2 ... Mm+n−1 Mm+n

negative (−1)m+1 (−1)m+2 ... (−1)n−1 (−1)n

positive (−1)m (−1)m ... (−1)m (−1)m

where M2m+1, ..., Mm+n are last n−m minors of the bordered matrix



0 ... 0 | B11 ... B1n

... | ...
0 ... 0 | Bm1 ... Bmn

− − − − − −
B11 ... Bm1 | a11 ... a1n

... | ...
B1n ... Bmn | an1 ... ann




.
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