
1 Distance

Reading
[SB], Ch. 29.4, p. 811-816

A metric space is a set S with a given distance (or metric) function d(x, y)
which satisfies the conditions

(a) Positive definiteness d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y;

(b) Symmetry d(x, y) = d(y, x);

(c) Triangle inequality d(x, y) + d(y, z) ≥ d(x, z).

For a given metric function d(x, y):
A closed ball of radius r and center x ∈ S is defined as

B̄r(x) = {y ∈ R, d(x, y) ≤ r}.
An open ball of radius r and center x ∈ S is defined as

B̄r(x) = {y ∈ R, d(x, y) < r}.
A sphere of radius r and center x ∈ S is defined as

Sr(x) = {y ∈ R, d(x, y) = r}.
Example. Metrics on Rn:

1. Euclidian metric dE(x, y) =
√

(x1 − y1)2 + ... + (xn − yn)2.

2. Manhattan metric (or Taxi Cab metric) dM(x, y) = |x1 − y1| + ... +
|xn − yn|.

3. Maximum metric dmax(x, y) = max(|x1 − y1|, ... , |xn − yn|).

Some exotic metrics:

4. Discrete metric ddisc(x, y) = 0 if x = y and ddisc(x, y) = 1 if x 6= y

5. British Rail metric dBR(x, y) = ||x||+ ||y|| if x 6= y and dBR(x, x) = 0.

6. Hamming distance. Let S be the set of all 8 vertices of a cube, in
coordinates

S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
Hamming distance between two vertices is defined as the number of positions
for which the corresponding symbols are different.
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2 Norm

Let V be a vector space, say Rn. A norm is defined as a real valued function
|| − || : V → R, v → ||v||, which satisfies the following conditions:

(i) positive definiteness ||v|| ≥ 0, ||v|| = 0 ⇔ v = 0;

(ii) positive homogeneity or positive scalability ||r · v|| = |r| · ||v||;

(iii) triangle inequality or subadditivity ||v + w|| ≤ ||v||+ ||w||.

Note that from (ii) follows that ||O|| = 0 (here O = (0, ... , 0)), indeed,
||O|| = ||0 · x|| = |0| · ||x|| = 0.

There is the following general weighted Euclidian norm on Rn which de-
pends on parameters a1, ..., an:

||x||a1,...,an =
√

a1 · x2
1 + ... + an · x2

n.

If each ai = 1, then this norm coincides with ordinary Euclidian norm

||x|| =
√

x2
1 + ... + x2

n.

There is s series of norms which depend on parameter k:

||x||k = k

√
|x1|k + ... + |xn|k.

The norm ||x||2 coincides with Euclidian norm.

2.0.1 From Norm to Metric

Theorem 1 Any norm ||x|| induces a metric by d(x, y) = ||x− y||.

Proof. The condition (i) implies the condition (a):
d(x, y) = ||x − y|| ≥ 0; besides, if x = y then x − y = O, thus d(x, y) =
||x− y|| = ||O|| = 0; conversely, suppose d(x, y) = 0, thus ||x− y|| = 0, then,
according to (i) we obtain x− y = O, so x = y.

The condition (ii) implies (b):

d(y, x) = ||y− x|| = ||(−1) · (x− y)|| = |(−1)| · ||x− y|| = ||x− y|| = d(x, y).

The condition(iii) implies (c):

d(x, y) + d(y, z) = ||x− y||+ ||y− z|| ≥ ||x− y + y− z|| = ||x− z|| = d(x, z).
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2.0.2 From Metric to Norm

Conversely, some metrics on Rn, which fit with the vector space structure
determine a norm.

Theorem 2 Suppose a metric d(u, v) is given on a vector space V , and
assume that the following two additional conditions are satisfied

(d) translation invariance d(u, v) = d(u + w, v + w),
and

(e) homogeneity d(ku, kv) = |k| · d(u, v).
Then ||v|| := d(v,O) is a norm.

Proof. The condition (a) implies the condition (i): ||v|| = d(v, O) ≥ 0;
besides, suppose ||v|| = 0, then d(v, O) = 0, thus, according to (i) we obtain
v = O.

The condition (e) implies the condition (ii):

||k · v|| = d(k · v,O) = d(k · v, k ·O) = |k| · d(v, O) = |k| · ||v||.

The condition (d) implies the condition (iii):

||v||+ ||w|| = d(v, O) + d(w,O) = d(v + w, O + w) + d(w,O) =
d(v + w, w) + d(w, O) ≥ d(v + w, O) = ||v + w||.

Examples.
The above metrics 1,2,3 satisfy the properties (d) and (e) (prove this!),

thus they determine the following norms on Rn: for a vector x = (x1, ..., xn)

1’. Euclidian norm ||x||E =
√

(x1)2 + ... + (xn)2.

2’. Manhattan norm ||x||M = |x1|+ ... + |xn|.
3’. Maximum norm ||x||max = max(|x1|, ... , |xn|).

Note that ||x||E = ||x||2, ||x||M = ||x||1 and in some sense ||x||max =
||x||∞.

4’. The discrete metric ddisc does not induce a norm.
Indeed, take v 6= O, then ||2·v|| = d(2·v,O) = 1 6= 2 = 2·d(v, O) = 2·||v||.

2.1 Metric and Norm Induce Topology*

Any metric produces the notion of open ball. In its turn a notion of open
ball produces the notion of open set, i.e.induces a topology.

Since any norm determines a metric, so it induces a topology too.
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2.1.1 Equivalence of Norms*

Two norms ||x|| and ||x||′ are called equivalent if there exist two positive
scalars a and b such that

a · ||x|| ≤ ||x||′ ≤ b · ||x||.

This is an equivalence relation on the set of all possible norms on Rn.

If two norms are equivalent, then they induce the same notions of open
sets (same topology). In particular, if a sequence {an} converges to the limit
a with respect to the norm || − || then this sequence converges to the same
limit with respect to the equivalent norm || − ||′.

The three metrics ||v||max, ||v||E, ||v||M are equivalent. This is a result
of following geometrical inequalities

||v||max ≤ ||v||E ≤ ||v||M ;

||v||E ≤
√

2||v||max;
||v||M ≤ 2||v||max;
||v||M ≤ 2||v||E.

So all these three metrics induce the same topology.
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3 Ordering

Reading
[Debreu], Ch.1.4, p.7-9

The set of real numbers R is ordered : x > y if the difference x − y is
positive.

But what about the ordering on the plane R2? Well, we can say that the
vector (5, 7) ∈ Rn is ”bigger” than the vector (1, 2), but how can we compare
the vectors (1, 2) and (2, 1)?

Unfortunately (or fortunately) we do not have a canonical ordering on
Rn for n > 1. It is possible to consider various notions of ordering suitable
for each particular problem.

3.1 Preorderings and Orderings

A partial preordering on a set X is a relation x ≥ y which satisfies the
following conditions

(i) reflexivity : ∀x ∈ X, x ≥ x;

(ii) transitivity : ∀x, y, z ∈ X, x ≥ y, y ≥ z ⇒ x ≥ z.

A preordering is called total if additionally it satisfies

(iii) totality : ∀x, y ∈ X either x ≥ y or y ≥ x.

A (total) preordering is called (total) ordering if it satisfies additionally
the condition

(iv) antisymmetricity : x ≥ y, y ≥ x ⇒ x = y.

The above defined four notions: partial (total) (pre)ordering can be ob-
served by the following diagram

i, ii
partial preordering

i, ii, iii ↗ ↖ i, ii, iv
total preordering partial ordering

↖ ↗
total ordering

i, ii, iii, iv

where an arrow indicates implication.

Partially ordered sets are called posets.
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3.1.1 Preorderings on R2

1. Norm preordering:

v = (x, y) ≥ v′ = (x′, y′) if ||v|| =
√

x2 + y2 ≥ ||v′|| =
√

x′2 + y′2.

This is a total preordering. Why ”pre”?

2. Product ordering: (a, b) ≤ (c, d) if a ≤ c and b ≤ d. This is a partial
ordering. Why ”partial”?

3. Lexicographical ordering: (a, b) ≤ (c, d) if and only if a < c, but if
a = c then b ≤ d. This is a total ordering. Why ”total”?

3.1.2 Other Examples

1. The set of natural numbers N of course is ordered by the usual ordering
”m ≥ n if m− n is nonnegative”.

2. There exists on N also the following partial ordering ”m ≥ n if m is
divisible by n” (”n divides m”, notation n|b). For example 6 ≥ 2, 6 ≥ 3, but
6 and 4 are not comparable (thus ”partial”).

3. Let S be a set, the set of all its subsets is denoted by 2S. Let us
introduce on 2S the following relation: for arbitrary subsets A ⊆ S, B ⊆ S
we say B ≤ A if B ⊆ A. This is a partial ordering. Why ”partial”?

4. Consider on R3 the following relation:

(x, y, z) ≥ (a, b, c)

if x ≥ a and y ≥ b. This is partial preordering. Why ”partial” and why
”pre”?

3.1.3 Indifference Relation

Each preordering ≥ defines indifference relation:

x ∼ y if x ≥ y and y ≥ x.

Theorem 3 The relation x ∼ y is an equivalence relation.

Proof. We show that the relation x ∼ y satisfies the axioms of equivalence:
(1) Reflexivity x ∼ x;
(2) Symmetricity x ∼ y ⇒ y ∼ x;
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(3) Transitivity x ∼ y, y ∼ z ⇒ x ∼ z.
Indeed,
(1) Since of (i) x ≥ x, thus x ∼ x.
(2) Suppose x ∼ y, then x ≥ y and y ≥ x, thus y ∼ x.
(3) Suppose x ∼ y, this implies x ≥ y and y ≥ x, and suppose y ∼ z, this
implies y ≥ z and z ≥ y. Then since of (ii) we have

x ≥ y, y ≥ z ⇒ x ≥ z

and
z ≥ y, y ≥ x ⇒ z ≥ x,

thus x ∼ z.

The indifference set (or orbit) of an element x ∈ X is defined as

I(x) = {y ∈ X, x ∼ y}.

Since indifference relation is an equivalence, the indifference sets form a par-
tition of X.

Examples.

1. If the starting relation ≥ is an ordering then x ∼ y if and only if
x = y. So the indifference sets are one point sets: I(x) = {x}.

2. For the norm preordering indifference sets are spheres centered at the
origin: I(x) = S|x|(O).

3.1.4 Strict Preordering

Each preoredering ≥ induces the strict preordering > defined by: x > y
if x ≥ y but not y ≥ x. Equivalently x > y if x ≥ y and not x ∼ y.

If a starting preoredering ≥ is an ordering, then x > y is defined as
x ≥ y and x 6= y.

3.2 Maximal and Greatest

Let S be a partially preordered set.
An element x ∈ S is called maximal if there exists no y ∈ S such that

y > x.

An element x ∈ S is called minimal if there exists no y ∈ S such that
y < x.
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An element x ∈ S is called greatest if x ≥ y for all y ∈ S.

An element x ∈ S is called least if x ≤ y for all y ∈ S.

Theorem 4 If S is an ordered set, then a greatest (least) element is unique.

Proof. Suppose x and x′ are greatest elements. Then x ≥ x′ since x is
greatest, and x′ ≥ x since x′ is greatest. Thus, since S is an ordered set, we
get x = x′.

Theorem 5 A greatest element is maximal.

Proof. Suppose x ∈ S is greatest, that is x ≥ y for all y ∈ S, but not
maximal, that is ∃y s.t. y > x. By definition of > this means that y ≥ x
but not x ≥ y. The last contradicts to x ≥ y.

Theorem 6 If a preordering is total, then a maximal element is greatest.

Proof. Suppose x ∈ S is maximal, that is there exists no y ∈ S such that
y > x. Let us show that x is greatest, that is x ≥ z for each z. Indeed,
since of totality ether x ≥ z or z ≥ x. Suppose that x is not greatest, that is
x ≥ z is not correct. Then z ≥ x, but this, together with negation of x ≥ z,
implies z > x, which contradicts to maximality of x.

So when the preordering is total, there is no difference between maximal
and greatest. Similarly for minimal and least.

Examples.

1. The set {1, 2, 3, 4, 5, 6} ordered by the partial ordering ”divisible by”
has three maximal elements 4, 5, 6, no greatest element, one minimal element
1 and one least element 1:

6
↑

4 |
↑ |
2 3 5
↖ ↑ ↗

1

2. Let S be the set of all 8 vertices of a cube, in coordinates

S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
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Hamming ordering on S is defined as follows: v ≥ w if v contains more 1-s
than w.

The least (minimal) element here is (0, 0, 0) and greatest (maximal) ele-
ment is (1, 1, 1).

3. In the partially ordered set 2S the least (minimal) element his the
empty set and greatest (maximal) element is S.

3.3 Utility Function

A real valued function U : X → R is said to represent a preordering ≥ if

∀x, y ∈ X, x ≥ y ⇔ U(x) ≥ U(y).

In economics a preordering ≥ is called preference preordering and a repre-
senting function U is called utility function.

The norm preordering:

v = (x, y) ≥ v′ = (x′, y′) if ||v|| =
√

x2 + y2 ≥ ||v′|| =
√

x′2 + y′2.

is represented by the utility function

U(x, y) =
√

x2 + y2,

or by the function 2U(x, y) = 2
√

x2 + y2, or by U2(x, y) = x2+y2, etc. These
functions differ but all of them have the same indifference sets.

3.3.1 Equivalent Utility Functions

A given preordering can be represented by various functions. Two utility
functions are called equivalent if they have same indifferent sets.

A monotonic transformation of an utility function U is the composition
g ◦ U(x) = g(U(x)) where g is a strictly monotonic function.

It is clear that an utility function U and any its monotonic transformation
g ◦ U represent the same or opposite preordering, so they are equivalent.

Example. The functions

3xy + 2, (xy)3, (xy)3 + xy, exy, ln x + ln y

all are monotonic transformations of the function xy: the corresponding
monotonic transformations are respectively

3z + 2, z3, z3 + z, ez, ln z.
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Exercises

1. Draw the balls B̄1((0, 0)), B̄1(1, 1), B̄2(1, 1) and B̄3(1, 1) for each of
the following metrics

Euclidian metric dE(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Manhattan metric dM(x, y) = |x1 − y1|+ |x2 − y2|.
Maximum metric dmax(x, y) = max(|x1 − y1|, |x2 − y2|).
British Rail metric dBR(x, y) = ||x||+ ||y||.
Discrete metric ddisc(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y

2. Show that the discrete metric ddisc does not induce a norm.

3. For a vector v = (x, y) ∈ R2 let us define ||v||min = min(|x|, |y|). Is
this a norm?

4. Does the British rail metric dBR(x, y) satisfy the conditions
(d) translation invariance d(u, v) = d(u + w, v + w),

and
(e) homogeneity d(ku, kv) = |k| · d(u, v)?
Does dBR induce a norm ||x||BR = dBR(x,O)?

5. Give examples of (a) partial preordering, (b) total preordering, (c)
partial ordering, (d) total ordering.

6. Is the relation defined on R2 by

(x, y) ≥ (x′, y′) ⇔ x ≥ x′, y ≥ y′

a (a) partial preordering? (b) total preordering? (c) partial ordering? (d)
total ordering?

7. What can you say about indifference sets of an ordering?

8. Draw indifference sets I(0, 0, 0), I(1, 1, 1), I(2, 2, 2) in R3 for the
preordering

(x, y, z) ≥ (x′, y′, z′) ⇔ ||(x, y, z)||E ≥ ||(x′, y′, z′)||E
.

9. Draw indifference sets I(0, 0), I(1, 1), I(2, 2) in R2 for the preordering
defined by Manhattan norm

(x, y) ≥ (x′, y′) ⇔ ||(x, y)||M ≥ ||(x′, y′)||M
.
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10. Draw indifference sets I(0, 0), I(1, 1), I(2, 2) in R2 for the preordering
defined by maximum norm

(x, y) ≥ (x′, y′) ⇔ ||(x, y)||max ≥ ||(x′, y′)||max

.
11. Suppose a set S has two greatest elements x and x′. Show that x ∼ x′.

12. Find (draw) two sets

S = {(x, y) ∈ R2, (x, y) ≤ (1, 1)}, T = {(x, y) ∈ R2, (1, 1) ≤ (x, y)}
where ≤ assumes the product ordering of R2: (x, y) ≤ (x′, y′) if x ≤ x′, y ≤
y′.

13. Find (draw) two sets

S = {(x, y) ∈ R2, (x, y) ≤ (1, 1)}, T = {(x, y) ∈ R2, (1, 1) ≤ (x, y)}
where ≤ assumes the lexicographical ordering of R2.

14. Find maximal, minimal, greatest, least elements of the set S =
{2, 3, 4, 5, 6, 12} with respect of the ordering ”a ≤ b if a|b” (a divides b).

15. Find maximal, minimal, greatest, least elements of the set S =
{(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with respect to the product ordering of
R2.

16. Find maximal, minimal, greatest, least elements of the set S =
{(x, y), x2 + y2 ≤ 1} with respect to the product ordering of R2.

17. Find maximal, minimal, greatest, least elements of the set S =
{(x, y), x2 + y2 ≤ 1, x ≥ 0, y ≥ 0} with respect to the product ordering
of R2.

18. For each of the functions

(a) 3xy + 2, (b) (xy)2, (c) (xy)3 + xy, (d) exy, (e) ln x + ln y

(which are equivalent to xy) identify the level sets which correspond to the
level sets xy = 1 and xy = 4. For example to the level set xy = 1 corresponds
the level set 3xy + 2 = 5 for the function (a).

19. Which of the following functions are equivalent to xy? For those
which are, what monotonic transformation provides this equivalence?

(a) 7x2y2 + 2, (b) ln x + ln y + 1, (c) x2y, (d) x
1
3 y

1
3 .

Homework
Exercises 3, 10, 13, 17, 19.
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Short Summary
Metric and Norm

Axioms

Metric Norm
a d(x, y) ≥ 0 i ||v|| ≥ 0

d(x, y) = 0 ⇔ x = y; ||v|| = 0 ⇔ v = 0;
b d(x, y) = d(y, x); ii ||r · v|| = |r| · ||v||;
c d(x, y) + d(y, z) ≥ d(x, z); iii ||v + w|| ≤ ||v||+ ||w||.

From Norm to Metric: d(x, y) = ||x− y||.
From Metric to Norm: ||v|| := d(v, O) if d(x, y) additionally satisfies
d(u, v) = d(u + w, v + w) and d(ku, kv) = |k| · d(u, v).
Examples of Metrics.

1. Euclidian metric dE(x, y) =
√

(x1 − y1)2 + ... + (xn − yn)2.

2. Manhattan metric (or Taxi Cab metric) dM(x, y) = |x1 − y1| + ... +
|xn − yn|.

3. Maximum metric dmax(x, y) = max(|x1 − y1|, ... , |xn − yn|).
4. Discrete metric ddisc(x, y) = 0 if x = y and ddisc(x, y) = 1 if x 6= y
5. British Rail metric dBR(x, y) = ||x||+ ||y|| if x 6= y and dBR(x, x) = 0.

Examples of Norms

1. ||x||a1,...,an =
√

a1 · x2
1 + ... + an · x2

n.
If each ai = 1 this norm coincides with Euclidian norm

||x||E =
√

x2
1 + ... + x2

n.

2. Manhattan norm ||x||M = |x1|+ ... + |xn|.
3. Maximum norm ||x||max = max(|x1|, ... , |xn|).
4. The k-norm ||x||k = k

√
|x1|k + ... + |xn|k. Particularly ||x||E = ||x||2, ||x||M =

||x||1 and in some sense ||x||max = ||x||∞.
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Short Summary
Orderings

Axioms
(i) reflexivity : ∀x ∈ X, x ≥ x;
(ii) transitivity : ∀x, y, z ∈ X, x ≥ y, y ≥ z ⇒ x ≥ z.
(iii) totality : ∀x, y ∈ X either x ≥ y or y ≥ x.
(iv) antisymmetricity : x ≥ y, y ≥ x ⇒ x = y.

i, ii
partial preordering

i, ii, iii ↗ ↖ i, ii, iv
total preordering partial ordering

↖ ↗
total ordering

i, ii, iii, iv

Examples
1. Norm total preordering on R2:

v = (x, y) ≥ v′ = (x′, y′) if ||v|| =
√

x2 + y2 ≥ ||v′|| =
√

x′2 + y′2.

2. Product partial ordering on R2: (a, b) ≤ (c, d) if a ≤ c and b ≤ d.
3. Lexicographical total ordering on R2: (a, b) ≤ (c, d) if and only if
a < c, but if a = c then b ≤ d.
4. Standard total ordering on N : ”m ≥ n if m− n is nonnegative”.
5. Divisibility partial ordering on N : m ≥ n if n|b.
6. Standard partial ordering on 2S: B ≤ A if B ⊆ A.
7. Partial preordering on R3: (x, y, z) ≥ (a, b, c) if x ≥ a and y ≥ b.

Indifference Relation: x ∼ y if x ≥ y and y ≥ x. The indifference set
(orbit) of x: I(x) = {y ∈ X, x ∼ y}. For an ordering x ∼ y iff x = y and
I(x) = {x}.
Strict Preordering: x > y if x ≥ y but not y ≥ x.

Greatest and Maximal.
x ∈ S is maximal if there exists no y ∈ S s.t. y > x.
x ∈ S is greatest if x ≥ y for all y ∈ S.
Greatest is always maximal.
If a preordering is total, then maximal is greatest.
If S is an ordered set, then a greatest element is unique.

A utility function f : S → R determines a total (pre) ordering x ≤ y if
f(x) ≤ f(y).
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