1 Distance

Reading
[SB], Ch. 29.4, p. 811-816

A metric space is a set S with a given distance (or metric) function d(x,y)
which satisfies the conditions

(a) Positive definiteness d(z,y) >0, d(z,y) =0 & x=y;
(b) Symmetry d(z,y) = d(y, z);
(c) Triangle inequality d(z,y) + d(y, z) > d(z, z).

For a given metric function d(z,y):
A closed ball of radius r and center x € S is defined as
B.(x) ={y € R, d(z,y) <r}.
An open ball of radius r and center x € S is defined as
B.(z) ={y € R, d(x,y) <r}.
A sphere of radius r and center = € S is defined as
Sr(@) ={y € R, d(z,y) =r}.

Example. Metrics on R™:

1. Euclidian metric dg(z,y) = \/(xl —y1)2+ (T —Yn)2

2. Manhattan metric (or Taxi Cab metric) dy(x,y) = |1 — 1| + ... +
|0 = Ynl-

3. Mazimum metric dpa(z,y) = maz(|z1 — v, -, |Tn — Ynl)-

Some exotic metrics:
4. Discrete metric dgisc(z,y) =0 if x =y and dgs.(x,y) =1 if v #y
5. British Rail metric dgr(z,y) = ||z||+ ||y|| if © # y and dggr(z,z) = 0.

6. Hamming distance. Let S be the set of all 8 vertices of a cube, in
coordinates

S - {(07 07 0)’ (07 07 ]')7 (07 17 0)7 (17 07 0)’ (07 17 ]')7 (]‘7 07 1)7 (17 ]‘7 0)) (17 17 ]')}
Hamming distance between two vertices is defined as the number of positions

for which the corresponding symbols are different.
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2 Norm

Let V' be a vector space, say R". A norm is defined as a real valued function
| —1|:V — R, v —||v|]|, which satisfies the following conditions:

(i) positive definiteness |[v]| >0, |[v|]|=0 < v =0;
(ii) positive homogeneity or positive scalability ||r - v|| = |r| - ||v][;
(iii) triangle inequality or subadditivity ||v + w]|| < ||v]| + [|w]|-

Note that from (ii) follows that ||O|| = 0 (here O = (0, ... ,0)), indeed,
10]] =110~ z[| = [0] - [|z[| = 0.

There is the following general weighted FEuclidian norm on R™ which de-
pends on parameters aq, ..., a,:

[2]lagyan = Var - 23+ . +ap - a2,

If each a; = 1, then this norm coincides with ordinary Euclidian norm

l|lz|]| = a3 + ... +a2.

There is s series of norms which depend on parameter k:

lelle = ek + oo + |zt

The norm ||z||2 coincides with Euclidian norm.

2.0.1 From Norm to Metric

Theorem 1 Any norm ||z|| induces a metric by d(z,y) = ||l — y||.

Proof. The condition (i) implies the condition (a):
d(xz,y) = ||z — y|| > 0; besides, if x = y then z —y = O, thus d(z,y) =
||z —y|| = ||O|| = 0; conversely, suppose d(x,y) = 0, thus ||z —y|| = 0, then,
according to (i) we obtain z —y = O, so z = y.

The condition (ii) implies (b):

d(y,z) = |ly = =[| = [[(=1) - (z = )|[ = [(=D] - [Jx =yl = [lz — yl| = d(z,y).
The condition(iii) implies (c):

d(z,y) +dy, z) = |z =yl +|ly = 2|l = |lx =y +y = 2| = ||z = 2|| = d(z, 2).



2.0.2 From Metric to Norm

Conversely, some metrics on R", which fit with the vector space structure
determine a norm.

Theorem 2 Suppose a metric d(u,v) is given on a vector space V, and
assume that the following two additional conditions are satisfied
(d) translation invariance d(u,v) = d(u + w, v + w),
and
(e) homogeneity d(ku, kv) = |k| - d(u,v).
Then ||v|| :== d(v,O) is a norm.

Proof. The condition (a) implies the condition (i): ||v|| = d(v,0) > 0;
besides, suppose ||v|| = 0, then d(v, O) = 0, thus, according to (i) we obtain
v=0.

The condition (e) implies the condition (ii):

k- ol = d(k -v,0) = d(k - v, - O) = [&] - d(v,0) = K| - ]o].
The condition (d) implies the condition (iii):

]| + [Jw]] = d(v, 0) + d(w, O) = d(v +w, O + w) + d(w, 0) =
d(v +w,w) +dw,0) > dv+w,0) = |jv+w

Examples.
The above metrics 1,2,3 satisfy the properties (d) and (e) (prove this!),
thus they determine the following norms on R": for a vector x = (xy, ..., )

1’. Euclidian norm ||z||g = \/(x1)2 + o 4 (z)%

2’. Manhattan norm ||z||y = |z1] + ... + |2nl-

3’. Maximum norm ||z||me: = max(|z1], ..., |xa])-

Note that ||z||z = ||z|l]2, ||=||a = ||z|]1 and in some sense ||z||mae =
1] oo

4’. The discrete metric dg;,. does not induce a norm.

Indeed, take v # O, then ||2-v|| = d(2-v,0) =1 # 2 = 2-d(v, O) = 2-||v||.

2.1 Metric and Norm Induce Topology*

Any metric produces the notion of open ball. In its turn a notion of open
ball produces the notion of open set, i.e.induces a topology.
Since any norm determines a metric, so it induces a topology too.



2.1.1 Equivalence of Norms*

Two norms ||z|| and ||z||" are called equivalent if there exist two positive
scalars a and b such that

a-|lx]] < flz]] < b-[l=]].
This is an equivalence relation on the set of all possible norms on R™.

If two norms are equivalent, then they induce the same notions of open
sets (same topology). In particular, if a sequence {a,} converges to the limit
a with respect to the norm || — || then this sequence converges to the same
limit with respect to the equivalent norm || —||’.

The three metrics |[v|[mae, ||[v]|E, ||v]|a are equivalent. This is a result
of following geometrical inequalities

[0]lmae < [[0llz < ||v]|y;

HUHE < \/§||U||ma:c5
[ollar < 2[|v]]imae;
[v[lar < 2[v][ g

So all these three metrics induce the same topology.



3 Ordering

Reading
[Debreu], Ch.1.4, p.7-9

The set of real numbers R is ordered: x > y if the difference x — y is
positive.

But what about the ordering on the plane R*? Well, we can say that the
vector (5,7) € R™ is "bigger” than the vector (1, 2), but how can we compare
the vectors (1,2) and (2,1)7

Unfortunately (or fortunately) we do not have a canonical ordering on
R™ for n > 1. It is possible to consider various notions of ordering suitable
for each particular problem.

3.1 Preorderings and Orderings

A partial preordering on a set X is a relation x > y which satisfies the
following conditions

(i) reflexivity: Vo € X, = > x;

(ii) transitivity: Ve,y,z € X, x >y, y >z = x > 2.
A preordering is called total if additionally it satisfies
(iii) totality: Vax,y € X either x >y or y > x.

A (total) preordering is called (total) ordering if it satisfies additionally
the condition

(iv) antisymmetricity: © >y, y>x =z =1y.

The above defined four notions: partial (total) (pre)ordering can be ob-
served by the following diagram

i,11
partial preordering
1,141,111 / AN 1,11, 10
total preordering partial ordering
AN /
total ordering
1,11, 141, 10

where an arrow indicates implication.

Partially ordered sets are called posets.



3.1.1 Preorderings on R?

1. Norm preordering:

v=(z,y) 2v = (@y) if [l =2y 2 (V] = e+ oy

This is a total preordering. Why “pre”?

2. Product ordering: (a,b) < (¢,d) if a < c and b < d. This is a partial
ordering. Why “partial”?

3. Lexicographical ordering: (a,b) < (c,d) if and only if a < ¢, but if
a = c then b < d. This is a total ordering. Why “total”?

3.1.2 Other Examples

1. The set of natural numbers N of course is ordered by the usual ordering
"m > n if m —n is nonnegative”.

2. There exists on N also the following partial ordering "m > n if m is
divisible by n” ("n divides m”, notation n|b). For example 6 > 2, 6 > 3, but
6 and 4 are not comparable (thus ”partial”).

3. Let S be a set, the set of all its subsets is denoted by 2°. Let us
introduce on 2 the following relation: for arbitrary subsets A C S, B C S
we say B < Aif B C A. This is a partial ordering. Why “partial”?

4. Consider on R? the following relation:
(x,y,2) > (a,b,c)

if © > a and y > b. This is partial preordering. Why ”partial” and why
77p7,,6 77?

3.1.3 Indifference Relation
Each preordering > defines indifference relation:
r~y if v>y and y> .
Theorem 3 The relation x ~ y 1s an equivalence relation.
Proof. We show that the relation x ~ y satisfies the axioms of equivalence:

(1) Reflexivity x ~ x;
(2) Symmetricity t ~y = y ~ x;



(3) Transitivity z ~y, y ~ 2z = x ~ 2.
Indeed,
(1) Since of (i) x > z, thus = ~ z.
(2) Suppose x ~ y, then x >y and y > z, thus y ~ z.
(3) Suppose x ~ y, this implies z > y and y > z, and suppose y ~ z, this
implies y > z and z > y. Then since of (ii) we have

T>Y, Y2 =T >2

and
ZZZU; ?/>$ :>Z>Jf7

thus © ~ z.

The indifference set (or orbit) of an element x € X is defined as
Iz) ={ye X, v ~y}.

Since indifference relation is an equivalence, the indifference sets form a par-
tition of X.

Examples.

1. If the starting relation > is an ordering then x ~ vy if and only if
x =1y. So the indifference sets are one point sets: I(x) = {x}.

2. For the norm preordering indifference sets are spheres centered at the
origin: I(z) = Sj;(O).
3.1.4 Strict Preordering
Each preoredering > induces the strict preordering > defined by: x >y
if x > y but not y > x. Equivalently z > y if z > y and not x ~ y.

If a starting preoredering > is an ordering, then x > y is defined as
x>y and z # y.

3.2 Maximal and Greatest

Let S be a partially preordered set.
An element x € S is called mazimal if there exists no y € S such that
y >z

An element x € S is called minimal if there exists no y € S such that
y <.



An element x € S is called greatest if x > y for all y € S.
An element z € S is called least if x <y for all y € S.
Theorem 4 [f S is an ordered set, then a greatest (least) element is unique.

Proof. Suppose z and 2/ are greatest elements. Then x > 2’ since x is
greatest, and ' > x since 2’ is greatest. Thus, since S is an ordered set, we
get x = /.

Theorem 5 A greatest element is mazximal.

Proof. Suppose x € S is greatest, that is x > y for all y € S, but not
maximal, that is dJy s.t. y > x. By definition of > this means that y >
but not x > y. The last contradicts to x > y.

Theorem 6 If a preordering is total, then a mazximal element is greatest.

Proof. Suppose z € S is maximal, that is there exists no y € S such that
y > x. Let us show that x is greatest, that is x > z for each z. Indeed,
since of totality ether x > 2z or z > x. Suppose that x is not greatest, that is
x > z is not correct. Then z > x, but this, together with negation of = > z,
implies z > x, which contradicts to maximality of x.

So when the preordering is total, there is no difference between maximal
and greatest. Similarly for minimal and least.

Examples.
1. The set {1,2,3,4,5,6} ordered by the partial ordering ”divisible by”

has three maximal elements 4, 5, 6, no greatest element, one minimal element
1 and one least element 1:

5
/

/‘[\3—>A>
_— W——— O

2. Let S be the set of all 8 vertices of a cube, in coordinates

S = {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}.



Hamming ordering on S is defined as follows: v > w if v contains more 1-s
than w.

The least (minimal) element here is (0,0,0) and greatest (maximal) ele-
ment is (1,1,1).

3. In the partially ordered set 2° the least (minimal) element his the
empty set and greatest (maximal) element is S.

3.3 Utility Function
A real valued function U : X — R is said to represent a preordering > if
Ve,ye X, x 2y Ulx) 2 Uy).

In economics a preordering > is called preference preordering and a repre-
senting function U is called wtility function.

The norm preordering:

v=(z,y) 20" =("y) if |lvll= 22+ =[P =22+ g
is represented by the utility function

Uz,y) = /22 + 92,

or by the function 2U (z,y) = 2v/22 + y%, or by U?(x,y) = 2*+y?, etc. These
functions differ but all of them have the same indifference sets.

3.3.1 Equivalent Utility Functions

A given preordering can be represented by various functions. Two utility
functions are called equivalent if they have same indifferent sets.

A monotonic transformation of an utility function U is the composition
goU(z) = g(U(x)) where g is a strictly monotonic function.

It is clear that an utility function U and any its monotonic transformation
g o U represent the same or opposite preordering, so they are equivalent.

Example. The functions
3zy+2, (wvy), (vy)®+ay, %, Inx+iny

all are monotonic transformations of the function zy: the corresponding
monotonic transformations are respectively

3242, 22, 24z €, Inz



Exercises

1. Draw the balls B;((0,0)), Bi(1,1), Ba(1,1) and Bs(1,1) for each of
the following metrics

Euclidian metric dg(z,y) = \/(931 —11)% + (22 — y2)2.

Manhattan metric dys(z,y) = |21 — y1| + |22 — vol.

Maximum metric dpq.(x,y) = maz(|zy — 1|, |22 — ya|).

British Rail metric dgg(z,y) = ||z|] + [|y]|-

Discrete metric dgise(z,y) =0 if z=y and d(z,y)=1 if z#vy

2. Show that the discrete metric dgs. does not induce a norm.

3. For a vector v = (x,y) € R? let us define ||v||min = min(|z|, |y|). Is
this a norm?

4. Does the British rail metric dpg(z,y) satisfy the conditions
(d) translation invariance d(u,v) = d(u + w, v + w),
and
(e) homogeneity d(ku, kv) = |k| - d(u,v)?
Does dgg induce a norm ||z||gr = dpr(z,0)?

5. Give examples of (a) partial preordering, (b) total preordering, (c)
partial ordering, (d) total ordering.

6. Is the relation defined on R? by
(zy) 2 (@ y)erza, y=y

a (a) partial preordering? (b) total preordering? (c) partial ordering? (d)
total ordering?

7. What can you say about indifference sets of an ordering?

8. Draw indifference sets 1(0,0,0), I(1,1,1), I(2,2,2) in R® for the
preordering

(z,y,2) > (2, ¢, 2) & [|(z,y,2)|e = I« ¢, 2|

9. Draw indifference sets 1(0,0), 1(1,1), 1(2,2) in R? for the preordering
defined by Manhattan norm

(z,y) = (") < |z 9)llar 2 (1= 4|
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10. Draw indifference sets 7(0,0), I(1,1), I(2,2) in R? for the preordering
defined by maximum norm

(5E7y) > (x,:y,) And ||(x7y)||maa: > ||<x/ay/)||maa:

11. Suppose a set S has two greatest elements x and x’. Show that z ~ x’.

12. Find (draw) two sets

S={(z,y) € % (z,y) < (LD}, T={(x,y) € B* (1,1) < (z.9)}
where < assumes the product ordering of R?*: (z,y) < (2/,y/) ifz <2/, y <

/

Y.

13. Find (draw) two sets
S={(zy) e R’ (z,y) < (LD}, T={(xy) R (L1) < (2.9}

where < assumes the lezicographical ordering of R

14. Find maximal, minimal, greatest, least elements of the set S =
{2,3,4,5,6,12} with respect of the ordering "a < b if a|b” (a divides b).

15. Find maximal, minimal, greatest, least elements of the set S =
{(z,y), 0 < x <1, 0 <y < 1} with respect to the product ordering of
R%.

16. Find maximal, minimal, greatest, least elements of the set S =
{(x,y), 2* + y* < 1} with respect to the product ordering of R2.

17. Find maximal, minimal, greatest, least elements of the set S =
{(z,y), 2> +y* < 1,2 > 0, y > 0} with respect to the product ordering
of R%.

18. For each of the functions

(a) 3xy+2, (b) (zy)?, (¢) (wy)’+wy, (d) e, (e) Inz+iny

(which are equivalent to xy) identify the level sets which correspond to the
level sets xy = 1 and xy = 4. For example to the level set zy = 1 corresponds
the level set 3xy + 2 = 5 for the function (a).

19. Which of the following functions are equivalent to xy? For those

which are, what monotonic transformation provides this equivalence?
1 1
(a) Ta*y*+2,(b) Inx+iny+1,(c) 2%y, (d) x5y3.

Homework
Exercises 3, 10, 13, 17, 19.
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Short Summary
Metric and Norm

Axioms
Metric Norm
a d(z,y) >0 i |lv]| >0
d(z,y) =0 & z=y; ol =0 & v=0;
b d(z,y) = d(y,x); i |lr-ol[ = |r| - []l;
¢ d(z,y)+d(y,2) = d(z, 2); it v 4wl <ol + [[w]].

From Norm to Metric: d(z,y) = ||z — y||.

From Metric to Norm: |[v|| := d(v,0) if d(z,y) additionally satisfies
d(u,v) = d(u + w,v 4+ w) and d(ku, kv) = |k| - d(u,v).

Examples of Metrics.

1. Euclidian metric dg(x,y) = \/(xl — 1)+ o+ (T —yn)?

2. Manhattan metric (or Taxi Cab metric) dy(z,y) = |v1 — | + ... +
|Tn = Ynl-

3. Mazimum metric dpq(z,y) = mazx(|z1 — v, -, |Tn — Ynl)-

4. Discrete metric dgse(z,y) =0 if x =1y and dgs(r,y) =1 if v #y

5. British Rail metric dgr(z,y) = ||z|| + ||y|| if * # y and dpgr(z,z) = 0.
Examples of Norms

L [@llay,an = /a1 23+ oo+ an 22

If each a; = 1 this norm coincides with Euclidian norm

llz|le = 23+ ... +a2.
2. Manhattan norm ||z||[y = |z1| + ... + |2,].
3. Maximum norm ||z||mae = maz(|z1], ..., |z,]).
4. The k-norm ||z||, = (“/|:C1]k + ... + |z,|F. Particularly ||z||g = ||z||2, ||2||a =
||z||; and in some sense ||z||mae = ||Z|]|c0-
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Short Summary
Orderings

Axioms
(i) reflexivity: Vo € X, x > x;
(ii) transitivity: Vo,y,z € X, >y, y >z = x > 2.
(i) totality: Vx,y € X either x >y or y > x.
(iv) antisymmetricity: © >y, y>xr =z =7y.

1,11
partial preordering
1,141,111 /S AN 1,11, 10
total preordering partial ordering
N /
total ordering
1,11, 141, 10

Examples
1. Norm total preordering on R*:

v=(z,y) 20 =(@y) if [l =2+ 2 (V] = e+ oy

2. Product partial ordering on R*: (a,b) < (¢,d) if a < c and b < d.

3. Lexicographical total ordering on R?*: (a,b) < (c,d) if and only if
a < ¢, but if a = ¢ then b < d.

4. Standard total ordering on N: "m > n if m — n is nonnegative”.

5. Divisibility partial ordering on N: m > n if n|b.

6. Standard partial ordering on 2°: B < A if B C A.

7. Partial preordering on R?: (z,y,2) > (a,b,c) if x > a and y > b.

Indifference Relation: z ~y if x>y and y > x. The indifference set
(orbit) of x: I(x) = {y € X, = ~ y}. For an ordering x ~ y iff x = y and
I(x) = {x}.

Strict Preordering: = > y if z > y but not y > =.

Greatest and Maximal.

x € S is maximal if there exists no y € S s.t. y > x.

x € S is greatest if z > y for all y € S.

Greatest is always maximal.

If a preordering is total, then maximal is greatest.

If S is an ordered set, then a greatest element is unique.

A utility function f : S — R determines a total (pre) ordering x < y if
flx) < fy).
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