Reading [SB] Ch. 11, p. 237-250, Ch. 27, p. 750-77L.

1 Basis

1.1 Linear Combinations

A linear combination of vectors vy, vs, ... ,v, € R"™ with scalar coefficients
a1, Qg, ...,y € R is the vector

a1 -V + Qg Vg4 ...+ QU

The set of all linear combinations of vectors vy, v, ... ,v,, € R"is denoted
as
Llvi,ve, . sy ={a1-v1+ag- v+ ... + @y - 0, @ € R}
It is evident that Llvy, v, ... ,v,] C R™is a subspace.

Example. For a one single nonzero vector v € R"
Liv] ={t-v, t € R}

is the line generated or spanned by v: it passes trough the origin and has
direction of v.

Example. For any two nonzero vectors v, w € R"
Liv,w]={s-v+t-w, s,t € R}

is either:

the line generated (or spanned) by v if v and w are collinear, that is if
w=k-v, k€R,

or is the plane generated (or spanned) by v and w, which passes trough the
origin, if v and w are non-collinear.

Example. For any two non-collinear vectors v, w € R?
Liv,w]={s-v+t-w, s,t € R}

is whole R2.

Example. For any three nonzero vectors u,v,w € R? st. v and w are

non-collinear
L[v,w] = L[u,v,w] = R*.



1.2 Linear Dependence and Independence

Definition 1. A sequence of vectors vy, va, ..., v, is called linearly dependent
if one of these vectors is linear combination of others. That is

di, v; € L(Ul, R VI ,Un).
Definition 1’. A sequence of vectors vy, vs, ... ,v,, is linearly dependent if
there exist oy, ..., a,, with at last one nonzero a4 s.t.

QU1+ Qg U+ F Qs Uy = 0.

Why these definitions are equivalent?

Example. Any sequence of vectors which contains the zero vector is linearly
dependent. (Why?)

Example. Any sequence of vectors which contains two collinear vectors is
linearly dependent. (Why?)

Example. Any sequence of vectors of R? which consists of more then two
vectors is linearly dependent. (Why?)

Example. A sequence consisting of two vectors vy, vs is linearly dependent if
and only if these vectors are collinear (proportional), i.e. vy = k-v;. (Why?)

Definition 2. A sequence of vectors vy, vs, ... ,v, is called linearly indepen-
dent if it is not linearly dependent.

Definition 2’. A sequence of vectors vy, vy, ... ,v, is called linearly inde-
pendent if non of these vectors is a linear combination of others.

Definition 2”. A sequence of vectors vy, vs, ... ,v, is called linearly inde-
pendent if
a1V F oy vty Uy, =0

is possible only if all a;-s are zero.
Why these definitions are equivalent?

Example. The vectors e; = (1,0,0), e; = (0,1,0), e3 = (0,0,1) € R? are
linearly independent.
Indeed, suppose aje; + ases + azes = 0, this means

ar-(1,0,0) + as - (0,1,0) + as - (0,0,1) =
(Oél,0,0) + (0,(){2,0) + (0,0,0ég) = (0[17062,043) = 0)070)7

thus ay =0, as =0, a3 =0.



1.2.1 Linear Independence and Systems of Linear Equations

How to check wether a given sequence of vectors vy, vg, ..., v, € R" is
linear dependent or independent?
Let
Vi1 V21 ... Umi
V12 V22 ... Umi
A= m ,
Vin V2, ... Umn

be the matrix whose columns are v;’s.

Theorem 1 A sequence of vectors vy, va, ..., Uy 1S linear independent iff
the homogenous system Aa = 0 has only zero solution o = (0, ... ,0).

Example. Determine whether the sequence of vectors is linearly dependent
1 1 0
v = 0 vy = 0 vy = 0
1 — 1 ) 2 — 0 ) 3 — 1
0 1 1
Solution. We must check whether the equation
61'711+CQ'U2+63'U3:0

has non-all-zero solution for ¢, ¢o, c3. In coordinates this equation looks as
a system

1'01 + 1'02 + O'C3 =0
O-ci + 0-cg + 0'03 =0
1'01 + O'CQ + 1'03 = O
O'Cl + 1'02 + 1'03 =0

The matrix of the system
1 10
0 0 0
1 01
011

has maximal rank 3. So there are no free variables, and the system has only
zero solution. Thus this sequence of vectors is linearly independent.

Example. Determine whether the sequence of vectors is linearly dependent

V1 =

1
0 | o
1
0

o O O



Solution. We must check whether the equation
Cl'U1+CQ'U2+Cg'U3:0

has non-all-zero solution for ¢y, co, c3. In coordinates this equation looks as
a system

l-c;z + 1-cg + 1-¢cg5 = 0
O'Cl + O'CQ + 0'03 =0
1'01 — 1'02 + 0'03 = 0
0’01 + 0'02 + 0'03 =0
The matrix of the system

1 1 1

0 0 O

1 -1 0

0 0 O

has the rank 2. So there is free variable, and the system has non-zero solutions
too. Thus this sequence of vectors is linearly dependent.

Theorem 2 A set of vectors vi,vs, ... ,up in R™ with k > n is linearly
dependent.
Proof. We look at a nonzero solution ¢y, ..., ¢, of the equation

c1-v1+ ... +cp-vp=0,

or, equivalently, of the system

V1€ + ...+ Vg Cp = 0
Vg€ + ... + Vi2 - C, — 0
Vip-C + ...+ Upp-c, = 0

This homogenous system has k variables and n equations. Then rank <
n < k, so there definitely are free variables, consequently there exists nonzero
solution ¢y, ... ,c.

Theorem 3 A set of vectors vy, v, ... ,v, in R™ is linearly independent iff
det(vy v ... vy) # 0.
Proof. We look at a nonzero solution for ¢y, ... , ¢, of the equation
- v+ ... +¢,-v,=0.

The system which corresponds to this equation has n variables and n equa-
tions and is homogenous. So it has a non-all-zero solutions iff its determinant
is zero.



1.3 Span

Let vy, ... , v be a sequence of m vectors from R".
The set of all linear combinations of these vectors

Livi, ... v ={ay-v1+as-vy+ ... +ag v, ai, ...,ar € R}

is called the set generated (or spanned) by the vectors vy, ..., vg.

Example. The vectors v; = (1,0,0), vo = (0,1,0) span the zy plane (the
plane given by the non-parameterized equation z = 0) of R3. Indeed, any
point p = (a, b, 0) of this plane is the following linear combination

avy + bvg = a(1,0,0) + b(0,1,0) = (a,0,0) + (0,b,0) = (a,b,0).

Example. The vectors v; = (1,2), vy = (3,4) span whole R%. Indeed, let’s
take any vector v = (a,b). Our aim is to find ¢, ¢ s.t.

C1-V1+Cy-Vy = 0.
In coordinates this equation looks as a system

ci-1l + -3 = a
61'2 + C2'4 = b

The determinant of this system # 0, so this system has a solution for each a
and b.

Example. Different sequences of vectors can span the same sets. For exam-
ple R? is spanned by each of the following sequences:

(a) v1 = (1,0), vg = (0,1);

(b) vy = (_170)a Vg = (07 1)7
(C) vy = (17 1)7 Uy = (07 1)a
(d) vy = (1,2), ve = (2,1);
(e) v1 = (1,0), va = (0,1), v3 = (2,3)
Check this!
For a given sequence of vectors vy, ... ,v, € R" form the n x k matrix
whose columns are v;’s:
Vi1 V21 ... VUp1
A _ Vi2 V29 ... Ukl
Uin V2n - Vkn
here v, = (Ui17vi2, 7Uin)-



Theorem 4 Let vy, ... ,vp € R" be a sequence of vectors. A vector b € R™

lies in the space L(vy, ... ,vy) if and only if the system A-c = b has a solution.
Proof. Evident: A-c¢= b means c;v; + ... +cpvp = b.
Corollary 1 A sequence of vectors vy, ... ,vx € R"™ spans R" if and only if

the system A -c = b has a solution for any vector b € R™.

Corollary 2 A sequence of vectors vy, ... ,vx € R™ with k < n can not span
R".

Proof. In this case the matrix A has less columns than rows. Choosing
appropriate b we can make rank(A|b) > rank(A) (how?), this makes the
system A - ¢ = b non consistent for this b.

1.4 Basis and Dimension

A sequence of vectors vy, ... ,v, € R" forms a basis of R" if
(1) they are linearly independent;
(2) they span R".

Example. The vectors
er = (1,0, ... ,0), e =(0,1, ... ,0), ... ,e, = (0,0, ..., 1)

form a basis of R".
Indeed, firstly they are linearly independent since the n x n matrix

(e1 €3 ... en)

is the identity, thus it’s determinant is 1 # 0.
Secondly, they span R?: any vector v = (zy, ... ,x,) is the following linear
combination
V=2x1-€1+ ... +X,-"¢€,.

A basis vy, ... ,v, € R" is called orthogonal if v; - v; = 0 for i # j. This
means that all vectors are perpendicular to each other: v; - v; = 0 for i # j.

An orthogonal basis vy, ... ,v, € R" is called orthonormal if v; - v; = 1.
This means that each vector of this basis has the length 1. In other words:
v; - vj = 0;; where ¢;; is famous Kroneker’s symbol

5 — 1 of 1=
YO0 Aif i#]
The basis eq, ... ,e, is orthonormal.



Theorem 5 Any two non-collinear vectors of R? form a basis.

For example e; = (1,0), e; = (0,1) is a basis. Another basis is, say
6/1 = (170)7 612 = (17 )

Theorem 6 Any basis of R™ contains exactly n vectors.

Why? Because more than n vectors are linearly dependent, and less than n
vectors can not span R".

The dimension of a vector space is defined as the number of vectors in its
basis. Thus

dim R" = n.
Theorem 7 Let vy, ... ,up € R" and A be the matriz whose columns are
o
?}j S.
V11 V21 ... Upi
A= Vi2 V29 ... Upi
VUin UV2pn ... Upn

Then the following statements are equivalent

(a) v1, ... ,v, are linearly independent;
(b) vi, ... ,v, span R";

(c) v, ... ,v, is a basis of R™;

(d) det A # 0.

Example. R? is & dimensional: we have here a basis consisting of 3 vectors
V1 = (1,070), Vg = (0, 1,0), V3 = (0,0, 1)
Generally, the dimension of R™ is n: it has a basis consisting of n elements

e = (1,0, ... ,0), e2= (0,1, ... ,0), ... ,e, = (0,0, ... ,1).

1.5 Subspace

A subset V' € R" is called subspace if V' is closed under vector operations -
summation and scalar multiplication, that is:

vyweV, ceR = v+weV, c-veV.

Example. The line z(t) = ¢ - (2,1), that is all multiples of the vector
v = (2, 1) which passes trough the origin is a subspace. But the line z(t) =
(1,1) +¢t-(2,1) is not.



Theorem 8 Let wy, ... ,wp € R" be a sequence of vectors. Then the set of
all linear combinations
Ljwy, ... ,w,] C R"

1s a subspace.

Why?
Example. The subspace of R?

{(a,b,0), a,b € R},
which is the xy plane, has dimension 2:
v1 = (1,0,0), vy = (0,1,0)

is its basis.
Example. Similarly, the subspace of R?

{(a,0,0), a € R},
which is the y line, has dimension 1:
V1 = (1, 0, 0)

is its basis.

1.5.1 How to find the dimension and the basis of L(vy, ... ,v)?

Let vq, ... ,vx € R" be a sequence of vectors from R", and L(vy, ... ,vx) C R"
be the corresponding subspace. How can we find the dimension and basis of
this subspace?

Let
Vi1 V21 ... Ukl
V12 V29 ... VUp1
A= ,
Vin V2n ... Ukn

be the matrix whose columns are v;’s. Let r be the rank of this matrix and
M be a corresponding main r x r minor. Then the dimension of L(vq, ... ,vy)
is 7 and its basis consists of those v;-s, who intersect M (why?).

1.6 Conclusion

Let vy, v, ... , v, be a sequence of vectors from R"™ and let
V11 V21 ... VR
V12 V29 ... VUk1
A= ,
Vin V2n ... Ukn
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be the matrix whose columns are v;’s. Let r be the rank of this matrix. The
following table shows when this sequence is linearly independent or spans R™
depending on value of k:

k<n k=mn n <k
independent r==k r=mn no
spans R" no r=mn r=mn

2 Spaces Attached to a Matrix

Let
ai;p ... Qip
A=
A1 - Qmp
be an m x n matrix. There are three vector spaces attached to A: the
column space Col(A) C R™, the row space Row(A) C R™ and the null space
Null(A) C R".

2.1 Column Space

The column space C'ol(A) is defined as a subspace of R™ spanned by column
vectors of A, that is

aii Q12 anl
Col(Ay==r(| ™ [, | |, ...|“ .
am1 Am2 Anm

Theorem 9
dim Col(A) = rank A.

2.1.1 How to Find a Basis of Col(A)

Just find a basic minor of A. Then all the columns that intersect this minor
form a basis of Col(A).

Example. Find a basis of Col(A) for
2 3 1 4
A=|2 3 7 9
2 3 13 14
Solution. Calculation shows that a basic minor here can be chosen as
; ;l . So the basis of Col(A) consists of last two columns
1 4
71, 9
13 14



) ) 3 7 ) )
Of course we can choose as a basic minor ( . In this case we obtain

3 13
3 1
a basis of Col(A) consisting of second and third columns | 3 |, 7
3 1

2.1.2 The Role of Column Space
(a) The system A -x = b has a solution for a particular b € R™ if b belongs
to column space Col(A).

(b) The system A-x = b has a solution for every b € R™ if and only if rank A
equals of number of equations m.
(c) If A-x =D has a solution for every b, then

number of equations = rank A < number of variables.

2.2 Row Space

The row space Row(A) is defined as a subspace of R™ spanned by row vectors
of A, that is
Row(A) = L(wy, wa, ... ;W)

where wy, ... ,w,, are the row vectors of A:
wy, = (an, ,CLML)
W = (amh 7amn)~
Theorem 10

dim Row(A) = rankA.

So the dimensions of the column space Col(A) and the row space Row(A)
both equal to rank A.

2.2.1 How to Find a Basis of Row(A)

Just find a basic minor of A. Then all the rows that intersect this minor

form a basis of Row(A)
1 4
79 |.
13 14

Example. Find a basis of Row(A) for
Calculation shows that a basic minor here can be chosen as

N DN DN
w W w

¥

—_

1 4
79 So
the basis of Row(A) consists of first two rows (2,3,1,4), (2,3,7,9).
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2.3 Null-space

Previous two attached spaces Col(A) and Row(A) are defined as subspaces

generated by some vectors.
The third attached space Null(A) is defined as the set of all solutions of
the system A-x =0, i.e.

Null(A) = {z = (21, ... ,z,) € R", A-z=0}.

But is this set a subspace? Yes, yes! But why?

Theorem 11 A subset Null(A) is a subspace.

Proof. We must show that Null(A) is closed with respect to addition and
scalar multiplication. Indeed, suppose z,z’ € Null(A), that is A -z =
0, A-2/ =0. Then

Az +a') = A(x) + A(2") =0+ 0=0.
Furthermore, let © € Null(A) and ¢ € R. Then
A-(c-z)=c-(A-z)=c-0=0.

2.3.1 How to Find a Basis of Null(A)

To find a basis of null-space Null(A)) just solve a system A-x = 0, that
is express basic variables in terms of free variables. As we know there are
r = rank(A) basic variables, say

L1, T2y v s Lpy
and consequently n — r free variables, in this case
Tr+1y Lr42y, -+ ) Tn-

Express the basic variables in terms of free variables, and find n —r following
particular solutions particular solutions which form a basis of Null(A)

1 2 n—r—1 n—r
Ty x] xy 1 xy
1 2 n—r— n—r
Lg ) L Ty
1 2 n—r—1 n—r
x, x; x, x,
U1 = 1 y U2 = 0 y o5 Un—r—1 = 0 y Un—r = 0
0 1 0 0
0 0 1 0
0 0 1

11



Example. Find a basis for the null-space of the matrix

1 -1 3 -1
1 4 -1 1
A= 3 7 1 1
3 2 5 ~-1

Solution. First solve the homogenous system

r1 — X2 + 3xs3 — lxy = 0

r1 + 4dxy — 3 + x4 = 0
3ry + Tz + x3 + x4 = 0 °
3r1 + 229 4+ 523 — x4 = 0

Computation gives rank A =2, so dim Null(A) =4 —rank A=4—-2 =2,
and the solution gives

T = —22l‘3 + 0.6I4, To = 08l‘3 - O.4ZE4, T3 = T3, Ty4 = T4

So the general solution is

T —2.2x3 4 0.624
i) o 08.CB3 — 04.174
T3 - T3
Ty Ty

Substituting x3 = 1, 4 = 0 we obtain the first basis vector of null space

—0.22
o 0.8
b 1
0
Now substituting x3 = 0, x4 = 1 we obtain the second basis vector of
0.6
—-0.4
null space vy = 0
1
—0.22 0.6
So the basis of Null(A) is Oi8 , Vg = _8'4
0 1

2.4 Fundamental Theorem of Linear Algebra

The column space of A, spanned by n column vectors, and the row space of
A, spanned by m row vectors, have the same dimension equal to rankA.

The Fundamental Theorem of Linear Algebra describes the dimension of
the third subspace attached to A:

Theorem 12 dim Null(A)+rank A=n.

12



2.5 Solutions of Systems of Linear Equations

We already know how to express all solutions of homogenous system A-z = 0:

just find a basis of Null(A)
V1, V2, - ;Un—r,
then any solution, since it is an element of Null(A), is a linear combination

=V + ... +0n_rUn_r.

Now turn to non-homogenous systems.
Let A-xz =0, x € R", b € R™ be a system of linear equations and
A -z = 0 be the corresponding homogenous system.

Theorem 13 Let ¢ be a particular solution of A-x =b. Then, every other
solution ¢ of A-x = b can be written as ¢ = ¢+ w where w is a vector from
Null(A), that is a solution of homogenous system A - x = 0.

Proof. Since ¢ and ¢ are solutions, we have A-c=0b, A-¢ = b. Let’s define
w = c —c. Then

Aw=A-(d—c)=A-d—A-c=b-b=0,
sow = ¢ —cis asolution of A-z =0. Thus ¢ = ¢+ w.
According to this theorem in order to know all solutions of A-xz = b it

is enough to know one particular solution of A-x = b and all solutions of
A-x =0. Then any solution is given by

{C + o1V + o+ Qe Unrank A}'

But how to find one particular solution of A -z = b? Just take (for
example) the following free variables z, ;3 = 0, x,42 =0, ... , ©, = 0 and
solve x1, ... ,x,.

Example. Express general solution of the system

T — X9 + 3[E3 — 1(E4 = 1
1 + 4xy — w3 + mmy = 6
3v17 + Tz + 23 + x4 = 13 °
3.771 + 2513'2 + 5$3 - X4 = 8

Solution. We already know general solution of corresponding homogenous
system A -z = 0: a basis of Null(A) is

—0.22 0.6
0.8 —-0.4
V1 = 1 ; Vg = 0 )
0 1

13



so the general solution of homogenous system is given by

1 —0.22 0.6
v _ |08 | 04
T3 -t 1 2 0
T4 0 1

Now we need one particular solution of non-homogenous system. Take
r3 =0, x4 =0, we obtain

1’1—I2:1
131+4.T2:6'

This gives 1 = 2, x5 = 1. So a particular solution is

I 2
) . 1
I3 N 0
T4 0

Finally, the general solution of nonhomogenous system is given by

71 2 ~0.22 0.6
| |1 0.8 —0.4
T3 - 0 + o 1 + a9 0
T4 0 0 1

2.6 Orthogonal Complement

For a subspace V' C R" its orthogonal complement V+ C R" is defined as
the set of all vectors w € R"™ that are orthogonal to every vector from V| i.e.

Vi={weR" v-w=0 forVveV}

Proposition 1 For any subspace V C R"

(a) V* is a subspace.

(b)) VNOV+E=1{0}.

(c) dim V +dim V+ =n.

(d) (V)= =V.

(e) Suppose V, W € R™ are subspaces, din V + din W = n and for each
veEV, weW onehasv-w=0. Then W =V,

Proof of (a). 1. Suppose w € V4, ie. w-v =0 for Vv € V. Let us show
that kw € V+. Indeed

kw-v=Fk(w-v)=k-0=0.

2. Suppose w,w’ € V4 ie. w-v =0, w-v =0 for Yv € V. Let us show
that w + w’ € V+. Indeed

(w+w) - v=w-v+w-v=0+0=0.

14



Theorem 14 For a matriz A
(a) Row(A)*+ = Null(A).
(b) Col* = Null A"

Example. In R3, the orthogonal complement to zy plane is the z-axes. Prove
it!

15



Exercises

Exercises from [SB]

11.2, 11.3, 11.9, 11.10, 11.12, 11.13, 11.14
97.1,27.2,27.3,27.4,27.5, 27.6, 27.7, 27.8, 27.10
97.12,27.13,27.14, 27.17

Homework

1. Exercise 11.12.

2. Show that the vectors from 11.14 (b) do not span R3: present at last
one vector which is NOT their linear combination.

3. Show that the vectors from 11.14 (b) are linearly dependent: find their
linear combination with non-all-zero coefficients which gives the zero vector.

4. Show that if v € Row(A), w € Null(A) then v-w = 0. Actually this
proofs Row(A)t = Null(A).

5. Exercise 27.10 (d).
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Summary

Vi1 V21 ... Umi
Let vy, vg, ..., v,, € R" and A = be the matrix

Uin U2n -~ Umn
whose columns are v;’s.

Linear Combinations: L[vy,vq, ... ,v5,] = {aq - v1 4+ .. + Q- Uy

Linearly dependent: 3i, v; € L(vy, ... ,0;, ... ,Up) 0r 3 (Qq, .., Q) #
(0, ... ,0) st. g v+ Vg + ... + Q- Uy = 0.

Linearly independent: a;-v; +as-vo+ ... +p -0, =0 = YV ap =0,
or Aa = 0 has only zero solution.

(v1, ... ,vx) € R" spans R" if L[vy, vy, ... ,u,,] = R™ or Ao = b has a
solution for V b = (by, ... ,by).
(v1, ... ,ux) € R" is a basis if it is lin. indep. and spans R".

n lin. indep. vectors span R", so they form a basis. n vectors spanning
R™ are lin. indep., so they form a basis.

Subspace V C R v,weV,ce R = v+weV, c-vel.

Dimension and basis of L[vj, vy, ... ,v,]: dimension is rank A, basis
- the columns intersecting main minor.

Spaces Attached to a Matrix

aip ... Qip
Let A =
Am1 - Qmn
a1 12 Qn1
Column space: Col(A) = L[| .. |, T e |-
Am1 Am2 Apm

b e Col(A) iff Ax = b has a solution.

dim Col(A) = rank A, basis - columns that intersect main minor.

Row Space: Row(A) = L{(all, ..., a1p), ..., (aml, ... amy,)]. dim Row(A) =
rank A, basis - rows that intersect main minor.

Null-space: Null(A) = {z € R*, A-x =0}.dim Null(A) = n—rank A.
Basis of Null(A) - the following solutions of Az =0

1 a? zy )"
:ci z? x;‘:;_l T
U1 = L , U2 = 0 y v s Un—p—1 = 0 y Un—pr = 0
0 1 0 0
0 0 1 0
0 0 0 1

Orthogonal complement: V+ ={w € R*, v-w =0 forVveV}.
Row(A)* = Null(A), Col+ = NullAT.
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