
1 Determinants

[SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739.
Bellow w’ll study the central question: which additional conditions must

satisfy a quadratic matrix A to be invertible, that is to have A−1? This
question is DETERMINED by DETERMINANT.

1.1 Determinant

There is a function which assigns to an n× n matrix

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann




the real number denoted as

|A| =

∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣

or det A, called determinant of A which has the properties described bellow.
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1.1.1 Properties of Determinant

1. ∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n

... ... ... ...
ai1 + bi1 ai2 + bi2 ... ain + bin

... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n

... ... ... ...
ai1 ai2 ... ain

... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n

... ... ... ...
bi1 bi2 ... bin

... ... ... ...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣

.

2. If B is obtained from A by multiplying of each entry of row i by a scalar
r then |B| = r · |A|.
3. If a matrix B is obtained by interchanging two rows of A then |B| = −|A|.
4. |I| = 1;

5. If two rows of A equal then |A| = 0 (prove it using 3).

6. If a matrix A has an all-zero row then |A| = 0 (prove it using 2).

7. Transform matrix A to matrix B by performing the elementary row op-
eration of adding r times row i to row j of A to form row j of B (the other
rows remain the same), then |B| = |A| (prove it using 1,2,5).

8. |A ·B| = |A| · |B|;
9. |A−1| = |A|−1 (prove it using 4,8).

10. |AT | = |A|.

Remark 1. Since of the property 10 all the properties remain correct if we
replace row by column.

Remark 2. The properties 1,2,3,4 are very essential. They define determi-
nant uniquely: using these properties, and their consequences 5,6,7, we can
transform a matrix to reduced row echelon form and trace the evolution of
the determinant during this transformation, the final reduced row echelon
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form is either identity matrix with determinant 1, or a matrix with zero row,
with determinant 0.

The inductive definition of determinant will be given bellow.

1.2 Minors and Cofactors

For an n × n matrix A let Aij be the (n − 1) × (n − 1) submatrix obtained
by deleting the i-th row and j-th column. The determinant of this matrix
Mij = |aij| is called (i, j)-th minor of A.

Cij = (−1)i+jMij is called (i, j)-th cofactor of A.

For example for A =




1 2 3
4 5 6
7 8 9


 we have

A21 =

(
2 3
8 9

)
, M21 = 2 · 9− 8 · 3 = −6,

C21 = (−1)2+1(−6) = (−1)3(−6) = −(−6) = 6.

1.3 Laplas Expansion - Inductive Definition of Deter-
minant

For a matrix A =




a11 ... a1j ... a1n

... ... ... ...
ai1 ... aij ... ain

... ... ... ... ...
an1 ... anj ... ann




the determinant |A| can be

calculated by i-th row expansion

|A| = ai1 · Ci1 + ai2 · Ci2 + ... + ain · Cin =
n∑

k=1

aik · Cik,

or by j-th column expansion

|A| = a1j · C1j + a2j · C2j + ... + anj · Cnj =
n∑

k=1

akj · Ckj.

All row expansions as well as all column expansions give the same result,
so Laplas expansion can be used as an inductive definition of determinant.
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1.3.1 Expansion by Alien Cofactors

For a matrix

A =




a11 ... ... a1n

... ... ...
ai1 ... ... ain

... ... ... ...
ak1 ... ... akn

... ... ... ...
an1 ... ... ann




the i-th row expansion gives the determinant of A:

|A| = ai1 · Ci1 + ai2 · Ci2 + ... + ain · Cin =
n∑

k=1

aik · Cik.

Here the entries of the i-th row

ai1, ai2, ... , ain

are multiplied by cofactors of the same i-th row

Ci1, Ci2, ... , Cin.

What happens if we multiply these cofactors by the entries of an alien,
say k-th, row

ak1, ak2, ... , akn?

Theorem. The expansion of a determinant by alien cofactors gives zero.
Proof. Consider the alien expansion which uses the entries of k-th row
ak1, ..., akn and cofactors of i-th row Ci1, ..., Cin

ak1 · Ci1 + ak2 · Ci2 + ... + ain · Cin.

This is Laplas expansion of the matrix

A′ =




a11 ... ... a1n

... ... ...
ak1 ... ... akn

... ... ... ...
ak1 ... ... akn

... ... ... ...
an1 ... ... ann




with two equal rows, thus |A′| = 0.
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1.3.2 Determinant of a 3× 3 matrix

|A| =
∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

a11 ·
∣∣∣∣∣

a22 a23

a32 a33

∣∣∣∣∣− a12 ·
∣∣∣∣∣

a21 a23

a31 a33

∣∣∣∣∣ + a13 ·
∣∣∣∣∣

a21 a22

a31 a33

∣∣∣∣∣ =

(a11 · a22 · a33 − a11 · a23 · a32)−
(a12 · a21 · a33 − a12 · a23 · a31)+
(a13 · a21 · a33 − a13 · a22 · a31) =
(a11 · a22 · a33 + a12 · a23 · a31 + a13 · a21 · a32)−
(a13 · a22 · a31 + a11 · a23 · a32 + a12 · a21 · a33).

1.4 Inverse Matrix

1.4.1 Adjoint Matrix

For a matrix

A =




a11 ... ... a1n

... ... ... ...
ai1 ... ... ain

... ... ... ...
an1 ... ... ann




The adjoint matrix adj A is defined is the matrix

adj A =




C11 ... ... Cn1

... ... ... ...
C1i ... ... Cni

... ... ... ...
C1n ... ... Cnn




This is the transpose of the matrix which consists of cofactors Cij of the
elements aij of A.

Theorem.

A · adj A =




|A| 0 ... 0
0 |A| ... 0
... ... ... ...
0 0 ... |A|



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Proof. Suppose A · adj A = B = (bij). Let us calculate these bij-s. First
calculate the diagonal elements bii:

bii =
n∑

k+1

aik · Cik,

but this is the Laplas expansion by the i-th row, so bii = |A|.
Now calculate bij for i 6= j:

bij =
n∑

k+1

aik · Cjk,

and this is the expansion by alien row, so bij = 0. This completes the proof.

1.4.2 Inverse Matrix

From this theorem follows that the inverse A−1 of a matrix A exits if and
only if A is nonsingular, that is |A| 6= 0, and it is defined as

A−1 =
1

|A| · adj A =




C11

|A| ... ... Cn1

|A|
... ... ...
C1i

|A| ... ... Cni

|A|
... ... ... ... ...
C1n

|A| ... ... Cnn

|A|




1.5 Cramer’s rule

For a system of n linear equations with n variables





a11x1 + a12x2 + ... + a1nxn = c1

....................................

....................................

....................................
an1x1 + an2x2 + ... + annxn = cn

we define n + 1 matrixes A, A1, A2, ..., , An:

A =




a11 a12 ... a1n

... ... ... ...
an1 an2 ... ann


 , Ak =




a11 ... c1 ... a1n

... ... ... ... ...
an1 ... cn ... ann



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here Ak is obtained by replacing in A the k-th column by the column of
constants c.

Bellow we’ll use the k-th column expansion of |Ak|:
|Ak| = c1 · C1k + ... + cn · Cnk.

Theorem. (Cramer’s Rule) Let A be a nonsingular matrix i.e. |A| 6= 0.
Then the system A · x = c has unique solution given by

xk =
|Ak|
|A| , k = 1, 2, ..., n .

Proof. The solution in vector form is given by x = A−1c, that is




x1

...
xn


 = 1

|A| ·



C11 C21 ... Cn1

... ... ... ...
C1n C2n ... Cnn


 ·




c1

...
cn


 =

1
|A| ·




c1 · C11 + c2 · C21 + ... + cn · Cn1

...
cn · C1n + c2 · C2n + ... + cn · Cnn


 = 1

|A| ·


|A1|
...
|An|


 =




|A1|
|A|
...
|An|
|A|


 ,

this completes the proof.
What happens if the matrix A is singular that is if |A| = 0? This will be

answered latter.

1.5.1 Homogenous System

Homogenous system is a system with all ci = 0:





a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
.......................................
an1x1 + an2x2 + ... + annxn = 0.

,

in matrix form A ·x = 0. Such a system is always consistent: x1 = 0, ..., xn =
0 is a solution.

But are there nontrivial solutions too?

Theorem. A homogeneous system has nontrivial solution if and only if
∆ = 0.
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Now turn to the nonhomogenous system A · x = c. If |A| 6= 0, then this
system has unique solution given by Cramer formula.

If |A| = 0, then, as we know, the system has no, or infinitely many
solutions.

Theorem. Suppose x is one particular solution of A ·x = c. Then any other
solution looks as x+x0 where x is a solution of homogenous system A ·x = 0.

2 Rank of a Matrix

2.1 Definition of the Rank

The rank of a matrix is maximum order of nonzero determinant that can be
constructed from the rows and columns of that matrix.

2.2 How to Calculate the Rank

2.2.1 Calculating Minors

By definition the rank of a matrix A is r if there exists nonzero minor of
degree r but all minors of higher degrees are zero.

In fact there is no need to check all higher minors :

Theorem. If in a matrix A there exists nonzero minor M of degree r and
all minors bordering it (that is, minors of order r + 1 and containing M) are
equal to zero then rank A=r.

2.2.2 Rank and Row Echelon Form

Theorem. If B is a row echelon form of a matrix A then rank A = rank B.

Theorem. The rank of a matrix in row echelon form coincides with the
number of it’s nonzero rows.
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2.3 Solution of Systems of Linear Equations

2.3.1 Criterion of Consistence

Theorem. A linear system A ·X = c is consistent if and only if the rank of
the matrix A equals to the rank of augmented matrix A|c:

rank




a11 ... a1n

a21 ... a2n

... ... ...
am1 ... amn


 = rank




a11 ... a1n|c1

a21 ... a2n|c2

... ... ...
am1 ... amn|cm


 .

2.3.2 Solution of Consistent Systems

Suppose rank(A) = rank(A|c) = r. We can assume that the nonzero minor
of degree r (the basic minor) is M(1,2,...,r);(1,2,...,r) (left upper corner).

In this case the (r + 1)-th, (r + 2)-th, ... , m-th equations are linear
combinations of first r equations, so they can be ignored.

The first r equations we write in the form




a11x1 + ... + a1rxr = c1 − (a1r+1xr+1 + ... + a1nxn)
a21x1 + ... + a2rxr = c1 − (a2r+1xr+1 + ... + a2nxn)
.......................................
ar1x1 + ... + arrxr = c1 − (ar+1xr+1 + ... + anxn).

The determinant of this system M(1,2,...,r);(1,2,...,r) is nonzero, thus for each
values of free (or independent, or exogenous) variables xr+1, xr+2, ..., xn we
can find by Cramer’s rule unique basic (or dependent, or endogenous) vari-
ables x1, x2, ..., xn.

Then x1, x2, ..., xn, xr+1, xr+2, ..., xn is a solution of our system.

2.3.3 Example

We want to solve the system




x + 4y + 17z + 4t = 38
2x + 12y + 46z + 10t = 98
3x + 18y + 69z + 17t = 153

.

Write the augmented matrix (A|c) of this system



1 4 17 4 | 38
2 12 46 10 | 98
3 18 69 17 | 153


 .
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Let us start to calculate the rank of

A =




1 4 17 4
2 12 46 10
3 18 69 17


 .

The minor |a11| = 1 is nonzero, so the rank A is at last 1. Now take the
2× 2 minor ∣∣∣∣∣

1 4
2 12

∣∣∣∣∣

bordering the previous nonzero minor. It is equal to 1 · 12− 2 · 4 = 8 6= 0, so
rank A is at last 2.

Next we take the 3× 3 minor
∣∣∣∣∣∣∣

1 4 17
2 12 46
3 18 69

∣∣∣∣∣∣∣
.

bordering the previous one. Calculation shows that it is zero, so this is bad
choice. Let us try another 3 × 3 minor bordering previous nonzero 2 × 2
minor ∣∣∣∣∣∣∣

1 4 4
2 12 10
3 18 17

∣∣∣∣∣∣∣
.

Calculation shows that this minor is equal to 8. There are no larger minors
in A, so this is a basic minor and rank A = 3.

Augmentation of A by c can not increase the rank, so the rank of (A|c)
is also 3, thus the system is consistent.

So we have one free variable z and 3 basic variables x, y, t.
Next we rewrite the system so that the basic minor becomes the deter-

minant of system





x + 4y + 4t = 38 − 17z
2x + 12y + 10t = 98 − 46z
3x + 18y + 17t = 153 − 69z
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and solve it by Cramer’s rule:

x =
∆x

∆
=

∣∣∣∣∣∣∣

38− 17z 4 4
98− 46z 12 410
153− 69z 18 17

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 4 4
2 12 10
3 18 17

∣∣∣∣∣∣∣

=
80− 40z

8
= 10− 5z,

y =
∆x

∆
=

∣∣∣∣∣∣∣

1 38− 17z 4
2 98− 46z 410
3 153− 69z 17

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 4 4
2 12 10
3 18 17

∣∣∣∣∣∣∣

=
32− 24z

8
= 4− 3z,

t =
∆x

∆
=

∣∣∣∣∣∣∣

1 4 38− 17z
2 12 98− 46z
3 18 153− 69z

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 4 4
2 12 10
3 18 17

∣∣∣∣∣∣∣

=
24

8
= 3.

So the solution is

x = 15− 5z, y = 4− 3z, z, t = 3.
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Exercises

1. Evaluate the following determinants

(a)




8 1 3
4 0 1
6 0 3


 . (b)




1 2 3
4 7 5
3 6 9


 . (c)




a b c
b c a
c a b


 .

(d)




1 2 0 9
2 3 4 6
1 6 0 −1
0 −5 0 8


 . (e)




1 2 1 0
2 3 6 −5
0 4 0 0
9 6 −1 8


 .

2. Calculate the determinant of lower-triangular 4× 4 matrix




a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44


 .

3. Calculate the determinant of upper-triangular 4× 4 matrix.

4. Check that

(
2 1
1 1

)−1

=

(
1 −1
−1 2

)
.

5. Find A−1 for (a) A =

(
4 5
4 2

)
. (b) A =




2 4 0
4 6 3
−6 −10 0


 .

6. Invert the coefficient matrix to solve the following systems

(a)

{
2x1 + x2 = 5
x1 + x2 = 3

(b)





2x1+ 4x2 = 2
4x1+ 6x2+ 3x3 = 1
−6x1− 10x2 = 60

7. What is the inverse of the 3× 3 diagonal matrix




d1 0 0
0 d2 0
0 0 d3


 .

8. Show that the inverse of 2 × 2 upper-triangular matrix is upper-
triangular.

9. Show that the inverse of 2 × 2 lower-triangular matrix is lower-
triangular.

10. Show that the inverse of 2× 2 symmetric matrix is symmetric.
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11. Calculate the rank of each of the following matrixes

(a)

(
2 −4
−1 2

)
. (b)

(
2 −4 2
−1 2 1

)
. (c)




1 6 −7 3
1 9 −6 4
1 3 −8 4


 .

(d)




1 6 −7 3 5
1 9 −6 4 9
1 3 −8 4 2
2 15 −13 11 16


 . (e)




1 6 −7 3 1
1 9 −6 4 2
1 3 −8 4 5


 .

12. Solve the system whose augmented matrix is

(
2 −4 2
−1 2 1

)
.

13. Solve the system whose augmented matrix is




1 6 −7 3 1
1 9 −6 4 2
1 3 −8 4 5


 .

14. For the system
{

x+ 2y+ z− w = 3 1
3x+ 6y− z− 3w = 2

(a) determine how many variables can be endogenous, (b) determine a suc-
cessful separation into exogenous and endogenous variables, (c) find an ex-
plicit formula for the endogenous variables in terms of exogenous variables.

15. Find numbers a and b that make A the inverse of B when

A =




2 −1 −1
a 1

4
b

1
8

1
8

−1
8


 , B =




1 2 4
0 1 6
1 3 2


 .

Homework
1. For 



w − x + 3y − z = 0
w + 4x− y + z = 3
3w + 7x + y + z = 6
3w + 2x + 5y − z = 3

(a) Check the consistence;
(b) Separate free and basic variables;
(c) Solve the system.
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2. Solve the system




2x + 3y + 3z = 2
2x + 2y + z = 5
x + y + z = 14

inverting the coefficient matrix.

3. Compose a system with 3 variables and 4 equations with
(a) No solution;
(b) One solution;
(c) Infinitely many solutions depending on one free variable;
(d) Infinitely many solutions depending on two free variables.

4. (a) Suppose |A| = a. Find | − A|.
(b) Prove that if all entries of A are all integers and det A = ±1 then the

entries of A−1 are also integers.

(c) What can you say about the product of two symmetric matrices?

5. (a) There are only two 2 × 2 permutation matrices and both are
symmetric. Is it true that any 3× 3 permutation matrix is also symmetric?

(b) What can you say about the determinant of a permutation matrix?

(c) What can you say about the product of two permutation matrices?

(d) Find the inverse of various 2×2 and 3×3 permutation matrices. If you
get some idea, prove the general theorem about the inverse of a permutation
matrix.
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