
Systems of Linear Equations
Introduction

1 Linear Equation

a · x = b.

Solution:
Case 1. a 6= 0, then x = b

a
(one solution).

Case 2. a = 0, b 6= 0, then x ∈ ∅ (no solutions).
Case 3. a = 0, b = 0, then x ∈ R (infinitely many solutions, moreover, any
x ∈ R is a solution).

1.1 Geometrical Interpretation

Solution is the x-intercept of the graph of the function y = a · x− b.
Case 1. Slope = a 6= 0 - one intersection.
Case 2. Slope = a = 0, b 6= 0 - the graph is parallel to x axes - no
intersection.
Case 3. Slope = a = 0, b = 0 - the graph coincides with x axes - infinitely
many intersections.

2 System of Linear Equations

{
a1x + b1y = c1

a2x + b2y = c2

2.1 Substitution Method

Suppose b1 6= 0, then from the first equation y = c1−a1x
b1

.
Substituting to the second we obtain one variable equation

a2x + b2 · c1 − a1x

b1

= c2.
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2.2 Elimination Method

Multiply the first equation by −a2

a1
and add to the second

{
a1x + b1y = c1 | a1x + b1y = c1

a2x + b2y = c2 | (a2 − a2

a1
· a1) · x + (b2 − a2

a1
· b1)y = c2 − a2

a1
· c1,

{
a1x + b1y = c1

(b2 − a2

a1
· b1)y = c2 − a2

a1
· c1.

Thus

y =
c2 − a2c1

a1

b2 − a2b1
a1

=
a1c2 − a2c1

a1b2 − a2b1

and the back substitution gives

x =
c1b2 − c2b1

a1b2 − a2b1

.

2.3 Determinant Method

Assign to a system {
a1x + b1y = c1

a2x + b2y = c2

three DETERMINANTS

∆ =

∣∣∣∣∣
a1 b1

a2 b2

∣∣∣∣∣ = a1b2 − a2b1,

∆x =

∣∣∣∣∣
c1 b1

c2 b2

∣∣∣∣∣ = c1b2 − c2b1, ∆y =

∣∣∣∣∣
a1 c1

a2 c2

∣∣∣∣∣ = a1c2 − a2c1.

2.3.1 Cramer’s Rule

Case 1. If ∆ 6= 0 then

x =
∆x

∆
, y =

∆y

∆
.

Case 2. If ∆ = 0 and either ∆x 6= 0 or ∆y 6= 0 then the system has NO
SOLUTIONS.
Case 3. If ∆ = 0 and ∆x = 0, ∆y = 0 then the system has INFINITELY
MANY SOLUTIONS.

Example. Try to solve the system
{

x + 0 · y = c1

x + 0 · y = c2

for various c1 and c2.
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2.4 Geometrical Interpretation

Each equation of the system defines linear function

y = −a1

b1

x +
c1

b1

, y = −a2

b2

x +
c2

b2

.

A solution of the system is the intersection point of their graphs.
Case 1. These two graphs have different slopes thus they have one intersec-
tion point:

∆ = a1b2 − a2b1 6= 0 ⇒ a1b2 6= a2b1 ⇒ −a1

b1

6= −a2

b2

.

Case 2. These two graphs have equal slopes but different y-intercepts thus
they are parallel:

∆ = a1b2 − a2b1 = 0 ⇒ a1b2 = a2b1 ⇒ −a1

b1

= −a2

b2

,

but
∆x = c1b2 − c2b1 6= 0 ⇒ c1b2 6= c2b1 ⇒ −c1

b1

6= −c2

b2

.

Case 3. These two graphs have equal slopes and the same y-intercepts thus
they coincide:

∆ = a1b2 − a2b1 = 0 ⇒ a1b2 = a2b1 ⇒ a1

b1

=
a2

b2

,

but
∆x = c1b2 − c2b1 = 0 ⇒ c1b2 = c2b1 ⇒ c1

b1

=
c2

b2

.

2.5 More About the Case 3

In this case the system has infinitely many solution but not all the couples
(x, y) form a solution!

∆ = a1b2 − a2b1 = 0, means that a1b2 = a2b1 thus a1

a2
= b1

b2
.

Similarly ∆x = c1b2 − c2b1 = 0 ⇒ c1b2 = c2b1 ⇒ c1
c2

= b1
b2

.

So in this case a1

a2
= b1

b2
= c1

c2
i.e. the equations are proportional

{
a1x + b1y = c1

ka1x + kb1y = kc1

and any solution of the first equation satisfies the second one.
The couples (x, y = c1−a1x

b1
) form all the solutions.
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3 General form of m linear equations with n

variables





a11x1 + a12x2 + ... + a1nxn = c1

a21x1 + a22x2 + ... + a2nxn = c2

.......................................
am1x1 + am2x2 + ... + amnxn = cm.

Three ingredients of the system

A =




a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn


 x =




x1

x2

...
xn


 c =




c1

c2

...
cm




A coefficient matrix of the system of order m × n, x vector of variables of
order n× 1, c vector of constants of order m× 1.

A and C together form so called augmented matrix

A =




a11 a12 ... a1n c1

a21 a22 ... a2n c2

... ... ... ... ...
am1 am2 ... amn cm


 .

The method of elimination of variables described bellow uses the following
elementary equation operations:

1. Adding a multiple of one equation to another.
2. Multiplying both sides of an equation by nonzero scalar.
3. Interchanging of two equations.

If a system is obtained from another one by these operations, they are
equivalent, that is they have same solutions.

To these three elementary equation operations correspond three el-
ementary row operations on the augmented matrix:

1. Adding a multiple of one row to another.
2. Multiplying each element of a row by the same nonzero

scalar.
3. Interchanging of two rows.

Definition. A row of a matrix is said to have k leading zeros if first k
elements of the row are all zeros.
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Definition. A matrix is in row echelon form if each row has more leading
zeros that the row preceding it.

The first non-zero entry in each row is called a pivot.

Definition. A row echelon matrix is in reduced row echelon form if each
pivot is 1 and each column containing a pivot has no other nonzero entries.

Example. The matrix A is in row echelon form, and B is in reduced row
echelon form

A =




1 0 0 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 1 1


 , B =




1 0 0 0 0
0 1 0 0 0
0 0 1 2 0
0 0 0 0 1


 .

Every non-zero matrix can be reduced to an infinite number of row echelon
forms (they can all be multiples of each other, for example) via elementary
matrix transformations.

3.1 Gaussian Elimination

Step 1. Forward elimination:

Choose a pivot element on the main diagonal (start at top left corner)

Eliminate (set to zero) all elements below the main diagonal

Move to the next column

Repeat until matrix is in row echelon form.

Step 2. Solve the unknowns using backward substitution. If necessary
introduce free variables and solve basic variables.

3.2 Gaussian-Jordan Elimination

This method reduces the matrix even further to reduced row echelon form.
For this:

Choose a pivot element on the main diagonal (start at top left corner)

Eliminate (set to zero) all elements above and below the main diagonal

Move to the next column
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Another way: suppose we have a matrix already in row echelon form.
Then first convert each pivot a to 1 multiplying its row by 1

a
, then use these

pivots (starting with the 1 in the last row) to kill all the entries above it.

3.2.1 Example of a system with one solution.

Consider the system





2x + y − z = 8
−3x − y + 2z = −11
−2x + y + 2z = −3

The augmented matrix of this system is




2 1 −1 8
−3 −1 2 −11
−2 1 2 −3


 .

The Gauss elimination algorithm gives




2 1 −1 8
−3 −1 2 −11
−2 1 2 −3




⇓ 3

2
· I + II




2 1 −1 8
0 1

2
1
2

1
−2 1 2 −3


 .

⇓ I + III



2 1 −1 8
0 1

2
1
2

1
0 2 −1 5


 .

⇓ −4 · II + III



2 1 −1 8
0 1

2
1
2

1
0 0 −1 1


 .

This is the row echelon form.
So our system is equivalent to the following system





2x + y − z = 8
1
2
· y + 1

2
· z = 1
−z = 1
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and x, y, z can be found by back substitution:

x = 2, y = 3, z = −1.

The Gauss-Jordan elimination algorithm gives the reduced row echelon
form 


1 0 0 2
0 1 0 3
0 0 1 −1


 .

So the solution is the last column

x = 2, y = 3, z = −1.

3.2.2 Example of a system with many solutions.

Consider the system





x + 2y + 0 · z + 3t = 5
2x + 3y + 2z + 5t = 4

0 · x + 2y + z + 5t = 2

The augmented matrix of this system is




1 2 0 3 5
−2 3 2 5 4
0 2 1 5 2


 .

The Gauss elimination algorithm gives the following row echelon form




1 2 0 3 5
0 −1 2 −1 −6
0 0 5 3 −10


 .

Corresponding system looks as





x + 2y + 0 · z + 3t = 5
−y + 2z − t = −6

5z + 3t = −10

Take free variable t. Then the back substitution gives

z = −3

5
t− 2, y = −11

5
t + 2, x =

7

5
t + 1.
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3.2.3 Example of a system with no solutions.

Consider the system





2x + 3y + z = 1
x + y + 2z = 2
3x + 4y + 3z = 4

The augmented matrix of this system is




2 3 1 1
1 1 2 2
3 4 3 4


 .

The Gauss elimination algorithm gives the following row echelon form




2 3 1 1
0 −1 3 3
0 0 0 1


 .

Corresponding system looks as





2x + 3y + z = 1
0 · x − y + 23z = 3
0 · x + 0 · y + 0 · z = 4

so the system has no solutions, that is it is non consistent.

4 Economical Examples

4.1 One-commodity market equilibrium

Qd - demand of commodity, Qs - supply of commodity, P - price per unit.
Linear model
Qd(P ) = −kP + b (decreasing function),
Qs(P ) = lP + c (increasing function).
Equilibrium condition Qd(P ) = Qs(P ).
Equilibrium price

−k · P + b = l · P + c, (l + k) · P = b− c,

P =
b− c

l + k
.
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4.2 Two-commodity market equilibrium

Qd1 demand of commodity 1; Qs1 supply of commodity 1;
Qd2 demand of commodity 2, Qs2 supply of commodity 2;
P1 price per unit of commodity 1; P2 price per unit of commodity 2.
Demand function for commodity 1:

Qd1(P1, P2) = a0 + a1P1 + a2P2.

Demand function for commodity 2:

Qd2(P1, P2) = α0 + α1P1 + α2P2.

Supply function for commodity 1:

Qs1(P1, P2) = b0 + b1P1 + b2P2.

Supply function for commodity 2:

Qs2(P1, P2) = β0 + β1P1 + β2P2.

Equilibrium conditions Qd1 = Qs1 , Qd2 = Qs2 :

{
a0 + a1P1 + a2P2 = b0 + b1P1 + b2P2

α0 + α1P1 + α2P2 = β0 + β1P1 + β2P2

∣∣∣∣∣ ⇒
{

(a1 − b1) · P1 + (a2 − b2) · P2 = b0 − a0

(α1 − β1) · P1 + (α2 − β2) · P2 = β0 − α0

∣∣∣∣∣.

Equilibrium prices P1 and P2 can be solved from this system.

4.3 Equilibrium in National Income

I investment, G spending by government, a autonomous consumption, b
marginal propensity to consumption, Y National Income, C consumption.

Equilibrium condition

{
Y = C + I + G
C = a + bY

∣∣∣∣∣
Y − C = I + G
bY − C = −a

∣∣∣∣∣
Y = I+G+a

1−b

C = a+b·(I+G)
1−b

.
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Exercises

Solve these systems using all 3 methods (Gauss, Gauss-Jordan, determi-
nant), and give the suitable graphical interpretation for

1.

{
2x− y = 5
x + y = 4

2.

{
2x− y = 5
4x− 2y = 4

3.

{
2x− y = 5
4x− 2y = 10

2. Give examples of systems 2× 2 and 3× 3 with (a) one solution, (b) no
solutions, (c) infinitely many solutions.

3. Find the values of k and c for which the system

{
2x + ky = 8
4x + 8y = c

is (a)

consistent (i.e. it has solutions), (b) inconsistent (i.e. it has no solutions).

Exercises 7.1-7.3, 7.7-7.18 from SB.
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