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1 Derivatives

1.1 The Slope of Nonlinear Function

If we want approximate a nonlinear function y = f(x) by a linear one around
some point x0, the best approximation is the line tangent to the graph of the
function y = f(x) at the point (x0, f(x0)). The slope of this tangent line is
the derivative of y = f(x) at x0 and is denoted as

f ′(x0) or
df

dx
(x0).

More precisely:
The tangent line of the function y = f(x) at a point x0 is the limit of

secant which passes trough two points (x0, f(x0)) and (x, f(x)), when x → x0.
What is the slope of this secant? This is

f(x)− f(x0)

x− x0

.

Thus the slope of the tangent line is

lim
x→x0

f(x)− f(x0)

x− x0

.

Definition 1 The derivative of a function y = f(x) at x0 is

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

,

equivalently

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.
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Example. Let us calculate using the definition the derivative of quadratic
function f(x) = x2 at a point x0:

f ′(x0) = limh→0
f(x0+h)−f(x0)

h
=

limh→0
(x0+h)2−x2

0

h
= limh→0

x2
0+2x0h+h2−x2

0

h
=

limh→0
2x0h+h2

h
= limh→0(2x0 + h) = 2x0.

Example. In previous proof we have used the formula

(a+ b)2 = a2 + 2ab+ b2.

This is a particular case of general Newton Binom formula

(a+ b)k =
C0

ka
k + C1

ka
k−1b+ C2

ka
k−2b2 + ... + Ck−1

k abk−1 + Ck
k b

k

where Ci
k =

k!
i!(k−i)!

are binomial coefficients given by

Ci
k =

k!

i!(k − i)!
,
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that is

C0
k = 1, C1

k = k, C2
k =

(k − 1) · k
2

, ... , Ck−1
k = k, Ck

k = 1.

In particular
C0

1 = 1, C1
1 = 1,

thus (a+ b)1 = a+ b (wow!)
Furthermore

C0
2 = 1, C1

2 = 2, C2
2 = 1,

thus (a+ b)2 = a2 + 2ab+ b2.
And furthermore

C0
3 = 1, C1

3 = 3, C2
3 = 3, C3

3 = 1,

thus (a+ b)3 = a3 + 3a2b+ 3ab2 + b3.
The binomial coefficients Cj

k form Pascal’s triangle

1 1
1 2 1

1 3 3 1
1 4 6 4 1

... ... ... ... ... ...

where each number is the sum of the two directly above it.
We use this formula to find the derivative of the function f(x) = xk:

f ′(x0) = limh→0
f(x0+h)−f(x0)

h
= limh→0

(x0+h)k−xk
0

h
=

limh→0
xk
0+kxk−1

0 h+C2
kx

k−2
0 h2+ ... +kx0hk−1+hk−xk

0

h
=

limh→0
kxk−1

0 h+C2
kx

k−2
0 h2+ ... +kx0hk−1+hk

h
=

limh→0(kx
k−1
0 + C2

kx
k−2
0 h+ ... + kx0h

k−2 + hk−1) = kxk−1
0 .

1.1.1 Rules for Computing Derivatives

(a) (f ± g)′(x0) = f ′(x0)± g′(x0),

(b) (kf)′(x0) = kf ′(x0),

(c) (f · g)′(x0) = f ′(x0) · g(x0) + f(x0) · g′(x0),

(d) (f
g
)′(x0) =

f ′(x0)·g(x0)−f(x0)·g′(x0)
g(x0)2

,

(e) (xk)′ = kxk−1,

(f) ((f(x)n)′ = n(f(x))n−1 · f ′(x),
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1.2 Tangent line

There are infinitely many lines which pass trogh given ONE point. But two
different points determine a line uniquely.
Example. Write the equation of the line which passes trough points A =
(1, 3) and B = (5, 11).
Solution. This is y = ax + b, a =?, b =?. Since A when x = 1 => y = 3
and since B when x = 5 => y = 11, so we have the system

{ 3 = a · 1 + b
11 = a · 5 + b

,

solution gives a = 2, b = 1, so this line is y = 2x+ 1.
Example. Write the equation of the tangent line to the graph of the function
y = x2 at the point with x = 2.
Solution. This is y = ax + b, a =?, b =?. But a = f ′(2) = 2 · 2 = 4,
so we need only b. Substitution in y = 4x + b of x = 2, y = 22 = 4 gives
4 = 4 · 2 + b, b = −4, so the tangent line is y = 4x− 4.

If you prefare generally the equation of the tangent line to f(x) at x0 is
y = f(x0) + f ′(x0) · (x− x0) (try to prove!).

1.3 Continuous Functions

A function is continuous if its graph has no brakes.
Precise definition: a function y = f(x) is continuous at x if for any

sequence
{x1, x2, ... , xn, ...}

which converges to x the sequence

{f(x1), f(x2), ... , f(xn), ...}

converges to f(x), that is

lim
n→∞

xn = x ⇒ lim
n→∞

f(xn) = f(x).

Example. The function

f(x) =

{
−x, x ≤ 0
x+ 1, x > 0

is discontinuous at x = 0: for a sequence

{xn = − 1

n
} = {−1,−1

2
,−1

3
, ...,− 1

n
, ...},

which converges to x = 0 from the left, the sequence

{f(xn) =
1

n
} = {1, 1

2
,
1

3
, ...,

1

n
, ...}
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converges to 0 = f(0), but for the sequence

{xn =
1

n
} = {1, 1

2
,
1

3
, ...,

1

n
, ...}

which converges to x = 0 from the right, the sequence

{f(xn) =
1

n
+ 1} = {1 + 1,

1

2
+ 1,

1

3
+ 1, ...,

1

n
+ 1, ...}

converges to 1 ̸= f(0). We write in this case

lim
x→0−

f(x) = 0 = f(0) ̸= 1 = lim
x→0+

f(x).

> plots[multiple](plot, [−x, x = −2..0], [x+ 1, x = 0..2]);
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Example. The function

f(x) =

{
1
x
, x ̸= 0

0, x = 0

is discontinuous at x = 0:

lim
x→0−

1

x
= −∞, f(0) = 0, lim

x→0+

1

x
= ∞.

The function 1
x
is continuous at each point of its domain (−∞, 0)

∪
(0,∞)

but not at x = 0.

1.4 Differentiability

A function y = f(x) is called differentiable if it has the derivative at every
point of its domain. The graph of such function has tangent everywhere,
that is its graph is a smooth curve.
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A function y = f(x) is called continually differentiable function (a C1

function in short) if
(a) f(x) is continuous, (b) f(x) is differentiable, (c) f ′(x) is continuous.

Example. The function y = |x| has no tangent at x = 0, so it has no
derivative at this point, it is not differentiable, it is not smooth.
Example. The function

f(x) =

{
−x2, x ≤ 0
x, x > 0

is continuous at x = 0: the left limit at x = 0 is

lim
x→0−

f(x) = lim
x→0−

(−x2) = 0

as well as the right limit

lim
x→0+

f(x) = lim
x→0+

x = 0.

But it is not differentiable at x = 0: the left derivative is

limx→0−f
′(x) = (−x2)′|x=0 = −2x|x=0 = 0

and the right derivative is

limx→0+f
′(x) = (x)′|x=0 = 1|x=0 = 1.

> plots[multiple](plot, [−x2, x = −2..0], [x, x = 0..2]);

–4

–3

–2

–1

0

1

2

–2 –1 1 2
x

f(x)

6



0

1

2

3

4

–2 –1 1 2

x

f’(x)

Example. The function

f(x) =

{
−x2, x ≤ 0
x3, x > 0

is differentiable at x = 0: the left derivative is

limx→0−f
′(x) = (−x2)′|x=0 = −2x|x=0 = 0

and the right derivative is

limx→0+f
′(x) = (x3)′|x=0 = 3x2|x=0 = 0.
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Remark. Here is an example of differentiable but not C1 function:

f(x) =

{
x2sin(1/x), x ̸= 0
0, x = 0

.

Exercises

1. Check the continuity and the differentiability of

f(x) =

{
x3 x < 1
x x ≥ 1.

Solution. Check the continuity at x = 1:

lim
x→1−

f(x) = lim
x→1−

x3 = 13 = 1, lim
x→1+

f(x) = lim
x→1+

x = 1,

so the function is continuous.
The derivative of our function is

f ′(x) =

{
3x2 x < 1
1 x ≥ 1.

,

thus limx→1− f ′(x) = limx→1− 3x2 = 3, and limx→1+ f ′(x) = limx→1+ f ′x = 1,
so f ′(x) does not exist at x = 1, the function is not C1.

2. Check the continuity and the differentiability of

f(x) =

{
x3 x < 1
3x− 2 x ≥ 1.
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Solution. Check the continuity at x = 1:

lim
x→1−

f(x) = lim
x→1−

x3 = 13 = 1, lim
x→1+

f(x) = lim
x→1+

(3x− 2) = 3 · 1− 2 = 1,

so the function is continuous.
The derivative of our function is

f ′(x) =

{
3x2 x < 1
3 x ≥ 1.

,

thus limx→1− f ′(x) = limx→1− 3x2 = 3, and limx→1+ f ′(x) = limx→1+ 3 = 3,
so f ′(x) is continuous, the function is C1.

3. Check the continuity and the differentiability of f(x) = x
1
3 .

1.5 Higher order derivatives

The second derivative of a function y = f(x) is the derivative of the
derivative f ′(x). Notation

f ′′(x) or
d

dx
(
df

dx
(x)) =

d2f

dx2
(x).

For example (x3)′′ = ((x3)′)′ = (2x2)′ = 4x.
A C2 function is a twice continuously differentiable function.
The k-th derivative of f is denoted by

f [k] =
dkf

dxk
(x).

If this k-th derivative is continuous, then we say f is Ck. If f has continuous
f [k]-s for all k, then we say f is C∞. All polynomials are C∞.

Exercises
4. Check the continuity and the differentiability of

f(x) =

{
x2 x ≤ 0
−x2 x > 0.

Solution. The derivative of our function is

f ′(x) =

{
2x x ≤ 0
−2x x > 0.

= −2|x|,
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thus the function is continuous, differentiable, but the second derivative does
not exists at x = 0. So this function is C1 but not C2.
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5. We have already checked that the function

f(x) =

{
x3 x < 1
3x− 2 x ≥ 1.

is C1. But is it C2? The second derivative of our function is

f ′′(x) =

{
6x x < 1
0 x ≥ 1.

,

so at x = 1 the left second derivative is

limx→1−f
′′(x) = 6x|x=1 = 6 · 1 = 6

and the right second derivative is

limx→1+f
′′(x) = 0|x=1 = 0

thus f ′′(1) does not exists, i.e. this function is not C2.
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6. We have already checked that the function

f(x) =

{
−x2, x ≤ 0
x3, x > 0

is C1, but is it C2?
7. Construct a function which is C2 but not C3.

12



1.6 Approximation by Differential

By definition of the derivative

f ′(x0) ≈
f(x0 + h)− f(x0)

h
,

thus
f(x0 + h) ≈ f ′(x0) · h+ f(x0).

Equivalently, taking x = x0 + h we obtain

f(x) ≈ f(x0) + f ′(x0) · (x− x0).

This allows to approximate f(x) by the linear function f(x0)+f ′(x0)·(x−x0)
around a point x0, for which f(x0) and f ′(x0) are easy to calculate.

Denote f(x) − f(x0) = ∆f and x − x0 = ∆x, then the above can be
rewritten as

∆f ≈ f ′(x0) ·∆x.

Write df instead of ∆f and dx instead of ∆x. Then

df = f ′(x0) · dx,

df is called differential of f .

Example. Estimate
√
920.

Solution. Consider the function f(x) =
√
x. The point nearest to 920 for

which we can calculate f(x) (and f ′(x)) is x = 900: f(900) =
√
900 = 30,

furthermore, the derivative of f(x) =
√
x is f ′(x) = 1

2
x− 1

2 = 1
2
√
x
, thus

f ′(900) = 1
60
.

So f(920) can be approximated as

f(920) ≈ f(900) + f ′(900) · 20 =

√
920 = 30 +

1

60
· 20 = 30 +

1

3
= 30.333... .

> f(x) := sqrt(x); df(x) := diff(f(x), x);
> x0 := 900.; k := eval(df(x), x = x0); f(x0) := eval(f(x), x = x0);
> g(x) := k ∗ (x− x0) + f(x0);
> eval(f(x), x = 920.); eval(g(x), x = 920);
> plot(f(x), g(x), x = 0..1000);
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1.7 Taylor Formula

The linear approximation

f(x) ≈ f(x0) + f ′(x0) · (x− x0).

is a particular case of more general approximation of a function with Taylor
polynomials Pn(x)

f(x) ≈ Pn(x) =

f(x0) + f ′(x0) · (x− x0) +
f ′′(x0)

2!
· (x− x0)

2 + ... + f [n](x0)
n!

· (x− x0)
n

where n! is the factorial n! = 1 · 2 · 3 · ... · n. The Taylor series of f is
”infinite” Taylor polynomial

P∞(x) = f(x0) + f ′(x0) · (x− x0) +
f ′′(x0)

2!
· (x− x0)

2 + ...

+f [n](x0)
n!

· (x− x0)
n + ... .

Equivalent form

P∞(x0 + h) = f(x0) + f ′(x0) · h+ f ′′(x0)
2!

· h2 + ...

+f [n](x0)
n!

· hn + ...

The particular case of this series when x0 = 0

P∞(x) = f(0) + f ′(0) · x+
f ′′(0)

2!
· x2 + ... +

f [n](0)

n!
· xn + ...

is called MacLaurin series.
Example. Estimate

√
920 now using the second order Taylor polynomial.
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Solution.

f(x) ≈ f(900) + f ′(900) · (x− 900) +
f ′′(900)

2!
· (x− 900)2.

f ′(x) = 1
2
√
x
, f ′(900) = 1

2·30 = 1
60
.

f ′′(x) = − 1

4
√
x
3 , f ′′(900) = − 1

4·303 = − 1
108000

.

Thus

f(920) = 30+
1

60
·20− 1

2
· 1

108000
·202 = 30 + 0.33... − 0.001852 = 30.33148.

Compare this by 30.333... obtained by linear approximation and the value√
920 = 30.33150178 given by calculator.

By MAPLE
> f := sqrt(x); √

x
> T2 := taylor(f, x = 900, 3);

T2 := 30 + 1
60
(x− 900)− 1

216000
(x− 900)2 +O((x− 900)3)

> P2 := convert(T2, polynom);

P2 := 15 + x
60

− (x−900)2

216000

> t := eval(P2, x = 920);
16379
540

> evalf(t);
30.33148148

Exercises

8. Find the MacLaurin polynomial P4(x) for the functions f(x) = 1
1+x

and f(x) = 1
1−x

.

9. Estimate ex using the MacLaurin polynomials P1(x), P2(x), P3(x).

10. Estimate ln x using Taylor polynomials P1(x), P2(x), P3(x) at x = 1.

11. Find the MacLaurin polynomials P1(x), P2(x), P3(x), P4(x)) for the
a polynomial f(x) = ax3 + bx2 + cx+ d.
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