
WEEK 5
Reading [SB], 4.1-4.2, pp. 70-81

1 Chain Rule

1.1 Composition of Functions

Suppose f : X → Y and g : Y → Z. The the composition g · f : X → Z is
defined by g · f(x) = g(f(x)). In this composition g · f the function f is the
inside function, and the function g is the outside function.

Examples

1. Let f(x) = x2 and g(x) = 2x + 3, then f · g(x) = (2x + 3)2 and g · f(x) =
2x2 + 3.

2. Let f(x) = x3 and g(x) = 3
√

x, then f · g(x) = ( 3
√

x)3 = x and g · f(x) =
3
√

x3 = x, so the compositions both are identity functions f ·g = id, g ·f = id.

3. Let f(x) = ex and g(x) = ln x, then f · g(x) = eln x = x and g · f(x) =
ln ex = x, so the compositions both are identity functions f ·g = id, g·f = id.

Exercise

For the composite function f · g(x) = 5e2x + 3ex + 1, what are the inside and
outside functions?
Solution. 5e2x+3ex+1 = 5(ex)2+3ex+1, so the inside function is g(x) = ex

and the outside function is f(x) = 5x2 + 3x + 1.

1.2 Differentiating of Composite Functions: the Chain
Rule

Theorem. The derivative of composite function (h◦g)(x) can be calculated
as

(h ◦ g)′(x) = h′(g(x)) · g′(x)

(the chain rule).
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Proof*.

(h ◦ g)′(x0) = limx1→x0

(h◦g)(x1)−(h◦g)(x0)
x1−x0

= limx1→x0

h(g(x1))−h(g(x0))
x1−x0

=

= limx1→x0

h(g(x1))−h(g(x0))
g(x1)−g(x0)

· g(x1)−g(x0)
x1−x0

=

limx1→x0

h(g(x1))−h(g(x0))
g(x1)−g(x0)

· limx1→x0

g(x1)−g(x0)
x1−x0

=

limg(x1)→g(x0)
h(g(x1))−h(g(x0))

g(x1)−g(x0)
· limx1→x0

g(x1)−g(x0)
x1−x0

=

h′(g(x0) · g′(x0).

Well, this proof has small gap, but forget it!
In particular

d

dx
(g(x))k = k(g(x))k−1 · g′(x).

Examples

1. Find the derivative of f(x) = (2x + 3)7.

Solution. The function f(x) is a composition f(x) = h(g(x)) with g(x) =
2x + 3 and h(z) = z7. Thus, by chain rule

f ′(x) = h′(g(x) · g′(x) = 7(2x + 3)6 · (2x + 3)′ = 7(2x + 3) · 2 = 14(2x + 3)6.

2. A firm computes that at the present moment its output is increasing at
the rate of 2 units per hour and that its marginal cost is 12. At what rate is
its cost increasing per hour?

Solution. Let x(t) be the production function (output x depends on time t)
and in this moment t = t0 we have x′(t0) = 2. Let C(x) be the cost function,
so we have C ′(x0) = 12, where x0 = x(t0). Then

dC

dt
(t0) =

dC

dx
(x(t0)) · dx

dt
(t0) = 12 · 2 = 24.

Exercises 4.1-4.6

2 Again About Functions

A function (map, transformation) from the set X (domain, or source) to the
set Y (codomain, or target)

f : X → Y
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is a rule that assigns to each element x ∈ X one element f(x) ∈ Y .
The image of f is the set of all elements y ∈ Y that correspond to some

x:
Im f = {y ∈ Y, y = f(x)}.

For an element y ∈ Y its preimage f−1(y) is the set of all elements x ∈ X
such that f(x) = y:

f−1(y) = {x ∈ X, f(x) = y}.

2.1 Again About Surjections, Injections, Bijections

A function f : X → Y is called surjective (onto) if

∀ y ∈ Y ∃ x ∈ X s.t. f(x) = y.

A function f : X → Y is called injective (one-to-one) if

f(x1) = f(x2) ⇒ x1 = x2.

A function is called bijection if it is a surjection and injection simultane-
ously.

In other words:
f is a surjection if the equation f(x) = y has at least one solution;
f is an injection if the equation f(x) = y has at most one solution.
f is bijection if the equation f(x) = y has exactly one solution.

2.2 Inverse Function

When f : X → Y is bijective, there is an inverse function g : Y → X which
assigns to y ∈ Y the unique element g(y) = x such that f(x) = y.
Definition Function g is the inverse of f if g(f(x)) = x and f(g(y)) = y for
arbitrary x ∈ X and y ∈ Y . In other words

f · g = id, g · f = id.

If f is invertible, then its inverse function often is denoted as f−1.

Theorem 1 If f : X → Y is invertible then it is a bijection.

Proof.
(i) Surjectivity. For any y ∈ Y we must find x ∈ X s.t. f(x) = y. Let us
take x := g(y). Then

f(x) = f(g(y)) = y since f ◦ g = idY , QED.

(i) Injectivity. Suppose f(x1) = f(x2), we must show that x1 = x2. Indeed,

f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)) ⇒ x1 = x2 since g◦f = idX , QED.
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Theorem 2 If f : X → Y is invertible then its inverse is uniquely deter-
mined.

Proof. Suppose g, h : Y → X are two inverses of f :

f ◦ g = idY , g ◦ f = idX and f ◦ h = idY , h ◦ f = idX .

Then g = h, i.e. g(y) = h(y) for arbitrary y ∈ Y , indeed, since of bijectivity
(in fact by surjectivity) of f

∃ x ∈ X s.t. f(x) = y.

Then

g(y) = g(f(x)) = x and h(y) = h(f)x)) = x since g ◦ f = h ◦ f = idx,

thus g(y) = h(y), QED.

Theorem 3 A continuous function f defined on an interval I ⊂ R is in-
vertible if and only if it is monotonically increasing or or monotonically de-
creasing.

Examples

1. The function f : R → R given by f(x) = x2 is not invertible (why?), but
the function f : [0,∞) → [0,∞) is: The inverse function g = f−1 : [0,∞) →
[0,∞) is g(y) =

√
y = y1/2. Indeed,

f(g(y)) = (
√

y)2 = y, g(f(x)) =
√

x2 = x.

Remark. This example shows that in the definition of inverse function both
conditions

f · g = id, g · f = id.

are essential: here we have f(g(x)) = (
√

x)2 = x, i.e. the first condition

f · g = id is satisfied, but g(f(−3)) =
√

(−3)2 =
√

9 = 3 6= −3 , that is the

second condition g · f = id is not satisfied for f : R → [0,∞).

R
f→ R

neither inj. nor surj.

[0, +∞)
f→ R R

f→ [0, +∞)
inj. but not surj. not inj. but surj.

[0, +∞)
f→ [0, +∞)

inj. and surj.
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2. The function f : R → R+ given by f(x) = ex is invertible, and its inverse
is g : R+ → R given by f(y) = ln y (why?).

Exercise

Calculate an expression for the inverse of the function y = 1
x+1

specifying the
domain.

Solution. Solve x from the equation y = 1
x+1

:

y · (x + 1) = 1, x + 1 =
1

y
, x =

1

y
− 1.

So the inverse function for f(x) = 1
x+1

is g(y) = 1
y
− 1, indeed

f(g(y)) =
1

( 1
y
− 1) + 1

=
1
1
y

= y

and

g(f(x)) =
1
1

x+1

− 1 = (x + 1)− 1 = x.

The domain of the inverse function is (−∞, 0)
⋃

(0,∞).

Notice that just the condition f · g = id guarantees the surjectivity of f ;
just the condition g · f = id guarantees the injectivity of f ; and only both
conditions f · g = id, g · f = id guarantee the bijectivity of f , consequently
its invertibility.

2.2.1 Graph of Inverse Function

Suppose f is invertible and g is its inverse. This means that if f(a) = b then
g(b) = a.

Suppose a point (a, b) belongs to the graph of f (notation (a, b) ∈ Γ(f)),
i.e. f(a) = b. Then we have g(b) = a, thus the point (b, a) belongs to the
graph of g. Shortly

(a, b) ∈ Γ(f) ⇒ f(a) = b ⇒ g(b) = a ⇒ (b, a) ∈ Γ(g).

Similarly,

(b, a) ∈ Γ(g) ⇒ g(b) = a ⇒ f(a) = b ⇒ (a, b) ∈ Γ(f).

This means that the graphs of f and g are symmetric with respect to the
bisectrix y = x.
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f(x) = x2, g(x) =
√

(x)

f(x) = ex, g(x) = ln x

2.2.2 The Derivative of the Inverse Function

Theorem 4 Let f be a C1 function on an interval I ⊂ R and f ′(x) 6= 0 for
all x ∈ I. Then f is invertible on I, its inverse g is C1 on the interval f(I)
and

g′(y) =
1

f ′(g(y))
.
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Proof. Invertibility of f on I follows from its monotonicity. Suppose g =
f−1, then f(g(y)) = y for each y ∈ f(I). Differentiating this equality using
the chain rule we obtain

f ′(g(y)) · g′(y) = y′ = 1,

thus g′(y) = 1
f ′(g(y))

.

2.2.3 Application*

The formula
(xk)′ = kxk−1,

was proven only for natural k-s. The above theorem allows to generalize
this formula for arbitrary rational k:

1. The function g(y) = y
1
n is the inverse of f(x) = xn (why?). This allows

to calculate the derivative of g(y) = y
1
n :

(y
1
n )′ = g′(y) = 1

f ′(g(y))
= 1

((g(y))n)′ =

1
n·g(y))n−1 = 1

n·(y1/n)n−1 = 1
n
· y 1−n

n = 1
n
· y 1

n
−1.

2. Now take any arbitrary rational number m
n
∈ Q. Let us proof that

(x
m
n )′ =

m

n
x

m
n
−1.

Indeed, first let us assume that m,n ∈ N , i.e. q = m
n

is a positive rational

number. Since x
m
n = (x

1
n )m by the Chain Rule we have

(x
m
n )′ = ((x

1
n )m)′ = m(x

1
n )m−1 · (x 1

n )′ = mx
m−1

n · 1
n
x

1
n
−1 =

mx
m−1

n · 1
n
x

1−n
n = m

n
x

m−1
n

+ 1−n
n = m

n
x

m−1+1−n
n = m

n
x

m
n
−1.

So we already have proved (xq)′ = qxq−1 for any positive rational q ∈ Q.
It remains to generalize this formula for negative rational numbers (x−q)′ =
−qx−q−1, indeed,

(x−q)′ = ( 1
xq )

′ = 1′·xq−1·(xq)′
x2q = −qxq−1)

x2q = −qx−q−1.

The further generalization of the formula (xr)′ = rxr−1 for a real r ∈ R uses
approximation of a real number by a sequence of rational numbers.

Exercise

Calculate the derivative of the inverse of the function f(x) = 1
x+1

at the point

f(1) = 1
2
.
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Solution.

g′(
1

2
) = g′(f(1)) =

1

f ′(g(f(1)))
=

1

f ′(1)
=

1

− 1
(x+1)2

|x=1 = −(x+1)2|x=1 = −4.

By the way, as we know the inverse for f(x) = 1
x+1

is g(y) = 1
y
− 1. The

direct calculation of g′(1
2
) gives the same result.

Exercises 4.7-4.10

Homework 4

Exercises 4.3 (c), 4.5 (e,g), 4.6, 4.8 (c), 4.9 (c)
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