Tornike Kadeishvili

WEEK 5
Reading [SB], 4.1-4.2, pp. 70-81

1 Chain Rule

1.1 Composition of Functions

Suppose f: X — Y and g : Y — Z. The the composition g- f : X — Z is
defined by ¢ - f(x) = g(f(x)). In this composition g - f the function f is the
inside function, and the function g is the outside function.

Examples

1. Let f(z) = 2% and g(z) = 22 + 3, then f-g(z) = (2z+3)? and g - f(z) =
227 + 3.

2. Let f(z) = 2° and g(z) = ¥/, then f - g(z) = (Vz)’ =z and g - f(z) =

V23 = x, so the compositions both are identity functions f-g = id, g-f = id.

3. Let f(z) = ¢® and g(x) = Inz, then f-g(x) = e®* =z and g - f(z) =
In e” = x, so the compositions both are identity functions f-g = id, g¢-f = id.

Exercise

For the composite function f - g(z) = 5e** + 3e* + 1, what are the inside and
outside functions?

Solution. 5e%**+3e”+1 = 5(e%)?+3e”+1, so the inside function is g(z) = €”
and the outside function is f(z) = 5% + 3z + 1.

1.2 Differentiating of Composite Functions: the Chain
Rule

Theorem. The derivative of composite function (hog)(z) can be calculated
as

(hog)(x) = h'(g(x)) - g'(x)
(the chain rule).
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Proof*.
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Well, this proof has small gap, but forget it!

In particular
d

T (g(a)" = k(g(@)* - (@),

Examples
1. Find the derivative of f(z) = (2z + 3)".

Solution. The function f(x) is a composition f(z) = h(g(z)) with g(z) =
2z + 3 and h(z) = 27. Thus, by chain rule

fl(x) =N (g(x)-¢(x) =72x +3)°- (20 +3) = 7(2x + 3) - 2 = 14(2x + 3)°.

2. A firm computes that at the present moment its output is increasing at
the rate of 2 units per hour and that its marginal cost is 12. At what rate is
its cost increasing per hour?

Solution. Let z(t) be the production function (output = depends on time t)
and in this moment ¢ = t, we have 2/(ty) = 2. Let C(z) be the cost function,
so we have C'(zg) = 12, where zy = x(ty). Then

dcC dc dz

7 (o) = ——(a(t)) - = (o) =12-2=24.

Exercises 4.1-4.6

2 Again About Functions

A function (map, transformation) from the set X (domain, or source) to the
set Y (codomain, or target)
f: X—=Y
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is a rule that assigns to each element z € X one element f(z) € Y.
The image of f is the set of all elements y € Y that correspond to some
x:

Im f={yeY,y= f(z)}

For an element y € Y its preimage f~1(y) is the set of all elements z € X
such that f(z) =y:

fy)={ze X flz) =y}

2.1 Again About Surjections, Injections, Bijections

A function f: X — Y is called surjective (onto) if
VyeY JaxeX st f(z)=uy.

A function f: X — Y is called injective (one-to-one) if

f(z1) = f(x2) = a1 =

A function is called bijection if it is a surjection and injection simultane-
ously.
In other words:
f is a surjection if the equation f(x) =y has at least one solution;
f is an injection if the equation f(z) = y has at most one solution.
f is bijection if the equation f(z) =y has ezactly one solution.

2.2 Inverse Function

When f: X — Y is bijective, there is an inverse function g : Y — X which
assigns to y € Y the unique element g(y) = = such that f(z) =y.
Definition Function g is the inverse of f if g(f(z)) = x and f(g(y)) = y for
arbitrary x € X and y € Y. In other words

f-g=1d, ¢g-f=1id.
If f is invertible, then its inverse function often is denoted as f~!.
Theorem 1 If f: X — Y is invertible then it is a bijection.

Proof.
(1) Surjectivity. For any y € Y we must find z € X s.t. f(z) =y. Let us
take x := ¢g(y). Then

f(x) = flg(y)) =y since fog=idy, QED.

(1) Injectivity. Suppose f(z1) = f(x2), we must show that 1 = x. Indeed,

flz) = f(x2) = g(f(z1)) = g(f(x2)) = x1 =29 since gof =idx, QFED.



Theorem 2 If f : X — Y is invertible then its inverse is uniquely deter-
mined.

Proof. Suppose g,h: Y — X are two inverses of f:
fog=idy, gof=1idx and foh=1idy, hof =1dx.

Then g = h, i.e. g(y) = h(y) for arbitrary y € Y, indeed, since of bijectivity
(in fact by surjectivity) of f

dzeX st f(r)=y

9(y) = g(f(x)) =2 and h(y) = h(f)x)) =z since go f=ho f=id,
thus g(y) = h(y), QED.

Theorem 3 A continuous function f defined on an interval I C R is in-
vertible if and only if it is monotonically increasing or or monotonically de-
creasing.

Examples

1. The function f: R — R given by f(z) = 22 is not invertible (why?), but
the function f : [0,00) — [0, 00) is: The inverse function g = f~!: [0, 00) —
[0,00) is g(y) = /¥ = y"/2. Indeed,

flaw) = (Vo) =y, g(f(x)=Va2=uz.

Remark. This example shows that in the definition of inverse function both
conditions

frg=1id, g-f=
are essential: here we have f( ( )) (Vx)? = z, i.e. the first condition
f - g =id is satisfied, but g(f (=3)2 =9 =3 # —3, that is the

second condition g - f = id is not satlsﬁed for f: R — [0, 00).

RLR
neither inj. nor surj.
0,+00) L R R-L[0,+00)
inyj. but not surj. not inj. but surj.
0, +00) % [0, +00)
mnyg. and surj.
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2. The function f: R — R, given by f(z) = €” is invertible, and its inverse
is g : Ry — R given by f(y) = Iny (why?).

Exercise

Calculate an expression for the inverse of the function y = % specifying the

+1
domain.

‘ -

Solution. Solve z from the equation y = —+:

-+
1
y-(z+1)=1, z4+41=—-, z=—-—1
Y Y
So the inverse function for f(z) = x%rl is g(y) = % — 1, indeed
1 1
FeW) = a7 =1=Y
(b-D+1
and )
g(f(x)):i—lz(x-l—l)—l:x.
z+1

The domain of the inverse function is (—o0,0) J(0, c0).

Notice that just the condition f - g = id guarantees the surjectivity of f;
just the condition ¢ - f = id guarantees the injectivity of f; and only both
conditions f-g =1id, ¢-f = id guarantee the bijectivity of f, consequently
its invertibility.

2.2.1 Graph of Inverse Function

Suppose f is invertible and g is its inverse. This means that if f(a) = b then
g(b) = a.

Suppose a point (a,b) belongs to the graph of f (notation (a,b) € T'(f)),
i.e. f(a) =0b. Then we have g(b) = a, thus the point (b,a) belongs to the
graph of g. Shortly

(a,b) e T(f) = fla)=0b = g(b) =a = (b,a) €'(g).
Similarly,
(b,a) €T'(g9) = g(b)=a = f(a)=b = (a,b) € T(f).

This means that the graphs of f and g are symmetric with respect to the
bisectrix y = .
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2.2.2 The Derivative of the Inverse Function

Theorem 4 Let f be a C' function on an interval I C R and f'(x) # 0 for
allx € I. Then f is invertible on I, its inverse g is C* on the interval f(I)

and
1

I = 5wy




Proof. Invertibility of f on I follows from its monotonicity. Suppose g =
f7Y then f(g(y)) = y for each y € f(I). Differentiating this equality using
the chain rule we obtain

thus ¢'(y) = 5,07+

2.2.3 Application*

The formula
(xk>/ — kxk*l7
was proven only for natural k-s. The above theorem allows to generalize
this formula for arbitrary rational k:
1. The function g(y) = y# is the inverse of f(z) = 2™ (why?). This allows
to calculate the derivative of g(y) = y%:

Ly, _ 1 1
) =9 = 7y = Gayy =

1 1 l=n 19

1 N
wa@) 1 T n@Uor T ow Y T

2. Now take any arbitrary rational number ™ € Q). Let us proof that

m m
xn) = =g L
(@) = M

Indeed, first let us assume that m,n € N, i.e. ¢ = " is a positive rational

number. Since z% = (%)™ by the Chain Rule we have

(%) = ((z#)") = m(at)mt - (oh) = ma - Lat! =

1—n m—1, 1—n

_m m
n n

So we already have proved (z9) = gqz?~! for any positive rational ¢ € Q.
It remains to generalize this formula for negative rational numbers (z~%)" =
—qx 97!, indeed,

_ Lpd—1-(29) —gxd—1) g—
(@71 = (B = O — el g,
The further generalization of the formula (z") = rz"~! for a real r € R uses
approximation of a real number by a sequence of rational numbers.

Exercise

_ 1

= -7 at the point

Calculate the derivative of the inverse of the function f(z)

) =3



Solution.

1 1 1 1
/ ! 2
9(5)=9'(fQ1) = = = lo=1 = —(24+1) o= = —4.
2 ) FO) - 1
By the way, as we know the inverse for f(z) = ﬁ is g(y) = % — 1. The

direct calculation of ¢(3) gives the same result.
Exercises 4.7-4.10

Homework 4

Exercises 4.3 (c), 4.5 (e,g), 4.6, 4.8 (¢), 4.9 (¢)



