Optimization Tornike Kadeishvili

Recall one variable case

Let $f: R \to R$ be one variable function. A point $x^* \in R$ is called stationary (critical) if $f'(x^*) = 0$. This condition is necessary condition for local maximality or minimality: x^* is max or min $\Rightarrow f'(x^*) = 0$. But of course not sufficient, recall $f(x) = x^3$.

The sufficient is the following second order condition

$$\begin{cases} f'(x^*) = 0 \\ f''(x^*) < 0 \end{cases} \Rightarrow x^* \text{ is local max,} \qquad \begin{cases} f'(x^*) = 0 \\ f''(x^*) > 0 \end{cases} \Rightarrow x^* \text{ is local min.} \end{cases}$$

Two variable case

Definitions

For function $F(x_1, x_2)$ a point $x^* = (x_1^*, x_2^*)$ is

1. a global max if $F(x_1^*, x_2^*) \ge F(x_1, x_2)$ for all (x_1, x_2) .

2. a local max if $F(x_1^*, x_2^*) \ge F(x_1, x_2)$ for all $(x_1, x_2) \in B_r(x_1^*, x_2^*)$ from some ball around (x_1^*, x_2^*) .

3. a strict global max if $F(x_1^*, x_2^*) > F(x_1, x_2)$ for all (x_1, x_2) .

4. a strict local max if $F(x_1^*, x_2^*) > F(x_1, x_2)$ for all $(x_1, x_2) \in B_r(x_1^*, x_2^*)$ from some ball around (x_1^*, x_2^*) .

Similarly are defined min-s.

Optimization

Two Variable Case

Examples

1. $F(x_1, x_2) = x_1^2 + x_2^2$ has strict global minimum at $x^* = (0, 0)$, check by plotting in MAPLE! 2. $F(x_1, x_2) = x_1^2$ has global minimums at each point $x^* = (0, x_2)$, check by plotting in MAPLE!

> plot3d(x^2+y^2,x=-2..2,y=-2..2);

> plot3d(x^2,x=-2..2,y=-2..2);

Saddle Point

> plot3d(x*y,x=-2..2, y=-2..2);

For a multivariable function $F(x) = F(x_1, x_2, ..., x_n)$ a point $x^* = (x_1^*, x_2^*, ..., x_n^*) \in \mathbb{R}^n$ is called stationary (well, critical) if all partial derivatives are zero at this point, i.e.

$$\frac{\partial F}{x_1}(x^*) = 0, \dots, \frac{\partial F}{x_n}(x^*) = 0,$$

in other words the gradient is 0-vector

$$Df(x^*) = (\frac{\partial F}{x_1}(x^*), \dots, \frac{\partial F}{x_n}(x^*)) = (0, \dots, 0) = \stackrel{\rightarrow}{0} \in \mathbb{R}^n.$$

First order conditions for optimality

Criticality is necessary condition for local maximality or minimality:

 x^* is max or min $\Rightarrow DF(x^*) = 0$.

Example. Find critical points for $F(x, y) = x^3 - y^3 - 9xy$. Solution.

$$\frac{\partial F}{\partial x}(x,y) = 3x^2 + 9y, \quad \frac{\partial F}{\partial y}(x,y) = -3y^2 + 9x.$$

To find critical points solve the system

$$\begin{cases} \frac{\partial F}{\partial y}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \end{cases} \begin{vmatrix} 3x^2 + 9y = 0 \\ -3y^2 + 9x = 0 \end{vmatrix} \begin{vmatrix} -\frac{1}{3}x^4 + 9x = 0 \end{vmatrix}$$

the solutions are (x = 0, y = 0), (x = 3, y = -3). To determine whether either of these critical points is min max or neither we need second order conditions which involve second derivatives of F.

Second order sufficient condition

We use the notation $\frac{\partial^2 F}{\partial x_i \partial x_j} = F_{x_i x_j}$. Let

$$HF(x^{*}) = \begin{pmatrix} F_{xy}(x^{*}) & F_{xy}(x^{*}) \\ F_{yy}(x^{*}) & F_{yy}(x^{*}) \end{pmatrix}$$

be the Hessian matrix of F at the critical point x^* .

This matrix has two leading principal minors

$$\boldsymbol{M}_{1}(\boldsymbol{x}^{\boldsymbol{\cdot}}) = \boldsymbol{F}_{\boldsymbol{x}_{1}\boldsymbol{x}_{1}}(\boldsymbol{x}^{\boldsymbol{\cdot}})$$

$$M_{2}(\mathbf{x}^{*}) = \begin{vmatrix} F_{x_{n}x_{1}}(\mathbf{x}^{*}) & F_{x_{n}x_{1}}(\mathbf{x}^{*}) \\ F_{x_{n}x_{1}}(\mathbf{x}^{*}) & F_{x_{n}x_{n}}(\mathbf{x}^{*}) \end{vmatrix} = F_{x_{n}x_{1}}(\mathbf{x}^{*}) \cdot F_{x_{n}x_{n}}(\mathbf{x}^{*}) - F_{x_{n}x_{n}}(\mathbf{x}^{*})^{2}$$

Suppose x^* is a critical point.

1. If $M_1(x^*) < 0$, $M_2(x) > 0$, then x^* is a strict local max. 2. If $M_1(x^*) > 0$, $M_2(x) > 0$, then x^* is a strict local min. 3. If either $M_1(x^*)$ or $M_1(x^*)$ violates this sign pattern, then x^* is a saddle point.

Optimization

Example. Now we can classify two critical points (0,0) and (3,-3) of the function $F(x,y) = x^3 - y^3 + 9xy$. The Hessian of F is

$$\left|\begin{array}{cc}F_{xx} & F_{yx}\\F_{xy} & F_{yy}\end{array}\right| = \left|\begin{array}{cc}6x & 9\\9 & -6y\end{array}\right|.$$

The first leading principal minor is $F_{xx} = 6x$ and the second order principal leading minor is -36xy - 81.

At (0, 0) these two minors are 0 and -81, this is the situation 3, so (0, 0) is a saddle point.

At (3, -3) these two minors are 18 and 24, this is the situation 2, so (3, -3) is a strict local min point.

Note that this local min is not global: F(0, y) decreases to $-\infty$ when y increases to ∞ .

n-variable case

1 Suppose

$$\frac{\partial F}{\partial x_i} = 0, \quad i = 1, 2, ..., n,$$

and n leading principal minors of $D^2F(x^*)$ alternate in sign

$$\left| \begin{array}{c} F_{x_{1}x_{1}} \end{array} \right| < 0, \quad \left| \begin{array}{c} F_{x_{1}x_{1}} & F_{x_{2}x_{1}} \\ F_{x_{1}x_{2}} & F_{x_{2}x_{2}} \end{array} \right| > 0, \quad \left| \begin{array}{c} F_{x_{1}x_{1}} & F_{x_{2}x_{1}} & F_{x_{3}x_{1}} \\ F_{x_{1}x_{2}} & F_{x_{2}x_{2}} & F_{x_{3}x_{2}} \\ F_{x_{1}x_{3}} & F_{x_{2}x_{3}} & F_{x_{3}x_{3}} \end{array} \right| < 0, \quad \dots$$

at x^* . Then x^* is a strict local max.

2 Suppose

$$\frac{\partial F}{\partial x_i} = 0, \quad i = 1, 2, ..., n$$

and n leading principal minors of $D^2F(x^*)$ are positive

at x^* . Then x^* is a strict local min.

3 Suppose

$$\frac{\partial F}{\partial x_i} = 0$$
, $i = 1, 2, ..., n$,

and some nonzero leading principal minors of $D^2F(x^*)$ violate the sign pattern of 1 and 2. Then x^* is a saddle point.

Example. A monopolist producing a single output has two types of customers. If it produces Q_1 units for customers of type 1, then these customers are willing to pay a price of $50 - 5Q_1$ dollars per unit. If it produces Q_2 units for customers of type 2, then these customers are willing to pay a price of $100 - 10Q_2$

Solution. The profit function is

 $F(Q_1,Q_2) = $Q_1(50-5Q_1)+Q_2(100-lOQ_2)-(90+20(Q_1+Q_2))$.$ The critical points of F satisfy}$

$$\frac{\partial F}{\partial Q_1} = 50 - 10Q_1 - 20 = 0, \quad Q_1 = 3, \\ \frac{\partial F}{\partial Q_2} = 100 - 20Q_2 - 20 = 0, \quad Q_2 = 4.$$

So the critical point is (3, 4).

Now check the second order conditions. Since

$$F_{Q_1Q_1} = -10, \quad F_{Q_2Q_2} = -20, \quad F_{Q_1Q_2} = 0,$$

the Hessian looks as

$$D^{2}(Q_{1}, Q_{2}) = \begin{pmatrix} F_{Q_{1}Q_{1}} & F_{Q_{2}Q_{1}} \\ F_{Q_{1}Q_{2}} & F_{Q_{2}Q_{2}} \end{pmatrix} = \begin{pmatrix} -10 & 0 \\ 0 & -20 \end{pmatrix}.$$

The first order leading principal minor of $D^2F(3,4)$ is -10 and the second leading principal minor is 200. Therefore (3,4) is strict local max.

Optimization

Exercises

1. For each of the following functions find the critical points and classify these as local max, local min, saddle point, or "can't tell":

(a) $F(x,y) = x^2 + xy + y^2 - 3x$, (b) $F(x,y) = xy - x^3 - y^2$; (c) $F(x,y) = xy^2 + x^3y - xy$, (d) $F(x,y) = 3x^4 + 3x^2y - y^3$.

2. A firm produces two kind of golf ball, one that sells for 3 and one for 2. The total cost, in thousands of dollars, of producing of x thousand balls at 3 each and y thousand balls at 2 each is given by

$$C(x,y) = 2x^{2} - 2xy + y^{2} - 9x + 6y + 7.$$

Find the amount of each type of ball that must be produced and sold in order to maximize profit.

3. A one-product company finds that its profit, in millions of dollars, is a function ${\cal P}$ given by

$$P(a, p) = 2ap + 80p - 15p^2 - 1/10 \cdot a^2p - 100,$$

where a is the amount spent on advertising, in millions of dollars, and p is the price charged per item of the product, in dollars. Find the maximum value of P and the values of a and p at which it is attained.

4. A one-product company finds that its profit, in millions of dollars, is a function P given by

$$P(a,n) = -5a^2 - 3n^2 + 48a - 4n + 2an + 300,$$

where a is the amount spent on advertising, in millions of dollars, and n is the number of items sold, in thousands. Find the maximum value of P and the values of a and n at which it is attained.

5. A trash company is designing an open-top, rectangular container that will have a volume of 320 ft^3 . The cost of making the bottom of the container is \$5 per square foot, and the cost of the sides is \$4 per square foot. Find the dimensions of the container that will minimize total cost. (Hint: Make a substitution using the formula for volume.)

6. A computer firm, markets two kinds of electronic calculator that compete with one another. Their demand functions are expressed by the following relationships:

$$q_1 = 78 - 6p_1 - 3p_2,$$

$$q_2 = 66 - 3p_1 - 6p_2,$$

where p_1 and p_2 are the price of each calculator, in multiples of \$10, and q_l and q_2 are the quantity of each calculator demanded, in hundreds of units.

a) Find a formula for the total-revenue function R in terms of the variables p_1 and p_2 .

b) What prices p_1 and p_2 should be charged for each product in order to maximize total revenue?

c) How many units will be demanded?

d) What is the maximum total revenue?