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Derivative

Slope of secant N = 2=

Derivative of y = f(x) at x, = f'(x,)=slope of tangent MP = ]%1111\14 (slope of secant MN) =
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Example. For f(x)=x"

f'(x()) = lim f(xo +h)_f(x0) = lim (xo +h)2 _x02 _
h—0 h h—0 h
xS +2xh+h" —x,’
lim 2= 0~ lim(2x, + /) = 2x,.
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Differentiation Rules

Bule 1 If & is a constant then if&' = (.
T

Rule 2 If n is any number then

—a" = nx" L
dx
Examples
1 _1 I 4
If f(z) = = then f'(z) = —3¢ e
1 di 3
Ify= — 273 then =4 = _ 2573,
/T dx 2

Rule 3 If f(x) = eg(z), where ¢ is a constant, then f'(z) = eg'(x).

Rule 4 If f(x) = g(x) x h{x) then f'(z) = ¢'(x) £ h'(x).



Examples If f(z) = 32% then f'(x) =3 x r;—f.-nz = Bz,
M

If glt) = 3t* + 2t72 then ¢'(1) = i,‘}r? + 4

272 = 6t — 4172,
@t T =

B
(S

Ify= ?‘; — 2r¥r = 3z~% — 223 then % = —f—_:x'

o

T

Rule 5 (The product rule) If f(z) = u(z)v(x) then

fl(z) = u(@x)W (z) + o (x)v(x).

Examples

If y = (z +2)(2% + 3) then ¢/ = (x +2)22 + 1(z% + 3).

If f(z) = a(2* —32% +7) then f'(x) = Vo (32 — 62) + %x_%(ﬁ — 322 + 7).

If 2 = (2 + 3)(VE + ) then % = (#2 + 3)(1t7% 4 3¢%) + 2 (VI + ).

Rule 6 (The quotient rule)

L ulx)
f‘x’} - I'{.E‘}
. v{xz)u'(x) — ulz)'(x)
r) = =
o NOE
B vt — ur'
Examples
_ 22% 4 3 dy  (x* 4+ 1)(dx + 3) = (22* 4 3x)32*
Hy= e = @11y '
2 +3t+1 (VE+ 1)(2f +3) — (£ 4 3t + 1)(3t73)

If git) = il then g'(t) = ST



Rule 7 (The composite function rule (also known as the chain rule)}
It flz) = higl(z)) then f'{z) =K {g(x)) = o'(=).

Example
(3 2 —5)3 2 ] a2 a2
w = 3(32% - 5) x 62 = 182(32° — 5)°.
dx
Example
I 1 5 1
For Y = | ¥ = 5(3”4 + ].:] 7 x 2w,

Derivatives of Exponential and Logarithmic Functions

Example

d . .
o log, (z* +3z+1) = (log, u) (where © = 22 + 3z + 1)
x

(log, u) x d—; (by the chain rule)

d
— %X —(x 3r+1
2 +3zx+1 dﬁ:(ﬁ’—'—i—'—)
1
= — % (2 3
2+ 3x+1 (22 +3)
20+ 3
2 4+3r+1

Example



d

d—(egfz) = where u = 322
de* du
= diz X ﬁ by the chain rule
_ ety du
T dx
2 d
— 3r — (3 2
e X d:z:( z°)
= G
Example
d 3 de"
— (et = where v = z* + 2x
s ) o ( )
. du _
= e“x g (by the chain rule)
i
E,.£3-|-2_r X i(ﬂf?’ _|_ 21:)
' dx
= (327 +2) x e T
Example
d

— In (22* +52% — 3
dx1($+$ )

1 d 03, 2
= B yo 3 (gt T =)

1 .
= % (622 + 10z
203 + 512 —3 ( + )
_ 622 + 10z
273 4522 -3

Chain Rule



d

() = f(@)e!®
d N - (@)
a(]l]f(l,)jl = o

(¢*) =¢*, but what is (a")?
(ax)' — ((elna)X)y — (elna~x)v — elna~x _(lna_x)v — elna~x -lna — ax -lna.
(In x)" = 1/x, but what is (log, x)"?

logex)':( 1 .lnx)':L.(lnx)': 1 .
log, a Ina Ina x-Ina

(log, x)' = (

Just for fun

d .

—sinxr = coszx
dx

d .
—cosT = —sinz.
dx

Implicit Function
Sometimes a function y(x) is hidden in an equation F(x,y)=0:
the equation 2y + 6x — 8 =0 determines the function y =-3x +4.

But often it is impossible to solve y from the equation, for example for
x>+ y2 =1.
Nevertheless sometimes, it is possible to calculate the derivative of this implicit function.



Implicit Function

Example. Find the derivative of the function y(x)
defined by the equation y3 —x%y + 6 =0.

Solution. Let us differentiate both sides of the given
equation with respect to x, using the chain rule:

d d
g(ﬁ—xﬁws):g(o)

3y? d—y—xz jx—y—ny: 0

solving for dy/dx we obtain

ay 2.2
— {3y —x")=2x
el Ul R
dy _ Zxy
dr 3yt —x?

Suppose y = f(x) and z = g(x). Sometimes one needs the derivative

dy
dz

Example.
If u = (x>+9)? and v = 3x2-2x, then what is du/dv as a function of x?

Solution.

a1 ! x _ x
E:E(xz—i@) {2x)= (x2+9) : e (x2+9)dx

bl :>

ézﬁx—z dv=2(3x-1)dx

thus au _ V(XQJFQ) - *



Optimization

If f'(x,)>0 the function increases in some neighborhood (x, —¢,x,+¢) of x,.

If f'(x,) <0 the function decreases in some neighborhood (x, —&,x, +¢) of x,.

Definition. A stationary point for a function y = f(x) is a point where the derivative f'(x)
equals to zero (tangent has zero slope = tangent is horizontal).

Definition. A critical point for a function y = f(x) is a point where the derivative f'(x) equals

to zero or does not exist.

Types of stationary points
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."-\.
1" =y L -

.
"

'R B
'\.'.-'
1"=0
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sRationary paint of inflection



Example Find the stationary points of the function f(z) = 20° + 3% — 122 + 17.

Solution f'z) =62? + Gz — 12, Setting f'{x) = 0 and =olving we obtain

Gt +Gr—12 = 0

H4r—2 =10

(z—1){z+2) = 0
r = 1,-2

This gives us the values of & for which the funetion f is stationary, The corresponding
values of the function are found by substituting 1 and —2 into the function.

They are f{l) =2 = 1* 4+ 3= 1 — 12 = L+ 17 = 10 and
=2 =2% (-2 +3 % (-2 — 122 (—2) +17 = 37, The stationary points are therefore

(1, 10} and (-2,37).

2

Example Find the stationary points of the function g(¢) =e'".

Solution Differentiating and setting the derivative equal to zero we obtain the equa-
tion g'(t) = 2tet” = 0. Since e is never zero, the only solution to this equation is
where 2t = 0, ie £ = 0. Substituting into the formula for g we obtain the function value
g(0) = ¢” = 1. Thus the stationary point is (0, 1).

First Derivative Test

Example. Locate minimums and maximums of f(x)=x"—6x+9x+1.

Solution

1. Derivative f'(x)=3x>—12x+9.

2. Critical point points f'(x)=0, 3x’-12x+9=0, x’-4x+3=0, x, =1, x, =3.
3 Sign chart

First some calculations:

JH=5 f3)=L

Take any test point from the interval (—oo,1), say x=0, then f'(0)=9>0, so put+and ,/* in
corresponding boxes.

Take any test point from the interval (1,3), say x =2, then f'(2)=3<0,so put-and \ in
corresponding boxes.

Take any test point from the interval (3,+0), say x =4, then f'(4)=9>0,soput+and ./ in

corresponding boxes.
Finally we get the chart

X (—OO, 1) 1 (17 3) 3 (3a +OO)
y' + 0 - 0 +
y

/ SN [ /
max min

5. y-intercept: substitute in y = f(x) the value x=0, then y= f(0)=1.

6 x-intercept: substitute in y = f(x) the value y =0, and solve 0= f(x): x’ —6x"+9x+1=0,

well, not easy, using maple you obtain x =-0.104




Now you are ready to plot the graph

The Location of Maxima and Minima

1. At the endpoints (if they exist) of the region under consideration.
2. Inside the region at a stationary point.

3. Inside the region at a point where the derivative does not exist.

Procedure for finding the maxinonnmm or mininmun values of a function.

1. Find the endpoints of the region under consideration (if there are any).

b

. Find all the stationary points in the region.

-

. Find all points in the region where the derivative does not exist,

=

smallest) function value,

Example Find the maximum and minimum values of the function g(t) = {1t — ¢ + 2 for
0-=<t<3

Solution The endpoints are + = 0 and + = 3. Differentiating and equating to zero
we get g'(t) =% = 1= (t = 1)(f + 1) = 0 so the stationary points are at t = =1, 1, Since
—1 iz not in the region, the possible locations of the maximom and the minimum are
t =10,1,3. Substituting into g we obtain g(0) = 2, g(l1) = { and g(3) = 8. The maximum
is therefore ¢(3) = 8 and the minimum is g(1) = 2.

" HLIllﬂTiTutq- E'!'I.I']i nf TI]{*M' 'L||Tu Tiu' fl]m'tin]l nmi B 11']|'L|:'|;1 gi‘-’l‘h Thv Freatest I:ul'
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Example Find the minimum value and the maximum value of the function f(x) = 22"
for -4 <z < 1.

Solution We will follow the procedure outlined above. The endpoints are —4 and 1.
Differentiating we obtain f'(z) = 2%e® + 2ze® = z(x +2)e*. Setting f'(z) = 0 and solving
we get stationary points at = 0 and x = —2. There are no points where the derivative
does not exist. Therefore the maximum and minimum values will be found at one of the
points & = —4, —2.0,1. Substituting we obtain f(—4) =~ 0.29, f(—2) = 0.54, f(0) =0
and f(1) = e = 2.7. therefore the maximum value oceurs at 22 = 1 and is equal to e, and
the minimum value occurs at z = 0 and is 0.

Example A farmer is to make a rectangular paddock. The farmer has 100 metres of fenc-
ing and wants to make the rectangle that will enclose the greatest area. What dimensions

should the rectangle be?

Solution There are many rectangular paddocks that can be made with 100 metres of
fencing. If we call one side of the rectangle x, then because the perimeter is 100, the other
side of the rectangle is 50 — z. The area of the paddock is then A(x) = (50 — z). We
must maximise the function A(z) for 0 < x < 50 (since the sides of the rectangle cannot

Assume that f(z) is differentiable in a neighborhood of x¢ and it has a stationary

point at xq, Le. f'(xg) = 0.

The First-Derivative Test for Local Extremmum

a) changes its sign from T local ; -
If at a stationary| positive to negative, then the value @) a loca mc.u-.smum,
. . R b) a lacal minimum;
point xq the first| b) changes its sign from |of the func- ther a local
derivative of a| negative to positive, tion at @xp, C/] neither a f‘f“gm?f‘
function f ¢c) does mot change its | f(xq), wil be | MU TIOT 4 tocab T
sign. iman.
5 e \\
®
. \\ Y \\
/ o 7
/ . .
Iy -
case a case b case ¢
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Recall the meaning of the first and the second derivatives of a function f. The sign
of the first derivative tells us whether the value of the function increases (f' = 0) or
decreases (f' < 0), whereas the sign of the second derivative tells us whether the slope of
the function increases (f” = 0) or decreases ( f” < (). This gives ns an insight into how
to verify that at a stationary point we have a maximum or minimum.

12



Concave and convex functions

L

Concave f"(x)<0 Convex f'“(x)>0

slope of tangent decreases slope of tangent increases

Concave and convex functions

The function f(x) =x?—x is concave on (-0,0) and is convex on
(0,+0) : f'(x)=3x%, f"(x)=6x. x=0 is an inflection point.

05 v 05

02

04
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Optimization

Second-Derivative Test for Local Extremum’

A stationary point xo of f(x) will be a local mavimum if f"(xa) < 0 and a local
minimum if f"(xg) = 0.

Example |

fix)=x3-3x, f'(x)=3x>-3x, f"(x)=6x

Stationary points f'(x)=0, 3x2-3=0,x>-1=0, x,=-1, x,=1
Second derivative test:

f''(-1)=-6<0,s0x, =-1is a local max,

f''(1)=6>0,sox,=11is alocal min

However, it may happen that f"{xq) = 0, therefore the second-derivative test is not
applicable.  To compensate for this, we can extend the latter result and to apply the
following general test:

If fiire) = el =... = f["_”{.rﬂ} = 0, fi"hq.i'u] # 0 and _,f"':' s confimuous af Iy
then at paint rg flx) has

a) an inflection point if 0 is odd;

b) a lecal marimum if n s even and f':"][.e'u:l < [

¢) a local minimum if n is even and f™{xy) = 0.

Example. Find marimum of f(x) = 2% — 3¢ in [-2.3].

The first-derivative test gives two stationary points: f{r) =3 =3 =0atx =1 and
r = —1. The second-derivative test guarantees that v = —1 is a local marimum. However,
fl=1) =2 = f{3}) = 18, Therefore the global marimum of f in |-‘2.3| is reached al the
border point x = 2.

14



How to sketch the graph of a function

N N W AW

. Determine the domain of f.
. Find the x and y intercepts.
. End behavior (lim

f(x) and lim ,_,_ f(x))

X—>00

. Find the stationary points f ‘(x) =0.
. Determine the intervals where f(x) is increasing or decreasing.
. Find local minimums and maximums.

. Determine the intervals of concavity and convexity, and inflections

points.

. Sketch the graph.

Graphing Strategy
Step 1. Analyze f(x).

(A) Find the domain of f.

(B) Find intercepts.

Step 2. Analyze f'(X).

(A) Find all critical points for f(x).
(B) Construct a sign chart for f'(x).
(C) Determine the intervals where f is increasing and decreasing.
(D) Find local minima and maxima.

Step 3. Analyze f”(x).

(A) Find all critical points for f'(x).
(B) Construct a sign chart for f”(x).
(C) Determine where the graph of f is concave up and concave down.

Step 4. Sketch the graph.

15



Example. fix)=x"- 3z

Domain: {-eo).

y-ntercept f{0) = 0. z-ntercepts =0 — 3z =0, x = 3, 2x=0, x =43,
f'{x)=3x? -3 Crtical (stationery) points

3xf -3 =), x=-1, z=1

Chart

X (-o0,-1) | -1 -1LI) | 1| (1,0)
f'(x) + 0 -
f(x) 1 2 ! -2 7

min max
f"(x) = 6x. 2
Inflection points: 6x =0, x =0.
X (-0,0) 0 (0,00) !
f"(x) - 0 +
f(x) conc inf conv ? 4 i :

Taglor series: If f is continnously differentiable

it can be expanded around a point xg, 1.e. this function can be transformed

mtor i IHII_'r'I]l:PEJIiill. I.Il T 11k "|"|']|.Ill']| 'I]l' l'fH'jtil'i.l'lll I-l't. ll.ll“r'-i'lr]l'rllh Lorms are l‘.\.l"f' 'H‘-I“I i.II Lerms:
1.-{ rlu- -:l.|~| 'i'\.";l.'.l’.'l‘.-\. 1.':L|1|_|v.-~ ||f _ir. .'-||| |~“|]I|.'|11-:|. at I:||.|~ o ri||l 1:-!‘ 1'}:]::L:|hi1 M T, l’llri' ||-[’|l1'j:--|l|_'.'.

fey =3 0 i where M =12 -k, 0= 1, fO(xe) = f(zo)
i=0 L

The Maclaurin series is the special case of the Taylor series when we set -y = (.

Example. Expand f(x) =e" around x = 0.

x

12 ;l’.'3

o0
.. n , T T
b-z-ncef?erzerforaﬂn and ¥ = 1, er=l+—+—+—+...=z_—l.

120 3!
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