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Null-cones

Let a reductive algebraic group 𝐺 act linearly on a (say, complex)

vector space 𝑉.

By the null-cone of this action is meant the set of common zeros of

all homogeneous invariants of positive degree for this action.

It will be denoted 𝔑𝐺(𝑉) (sometimes just 𝔑(𝑉), if 𝐺 is clear from

the context).

An element is in the null-cone if and only if the Zariski closure of its

orbit contains zero.
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The Hilbert-Mumford criterion

By the Hilbert-Mumford criterion, 𝑣 ∈ 𝑉 is in the nullcone if and

only if there exists a one-dimensional torus 𝑆 ⊂ 𝐺 such that 𝑆𝑣 ∋ 0.

Also equivalently, 𝑣 ∈ 𝑉 is in the nullcone iff there is a semisimple

element ℎ of the Lie algebra 𝔤 of 𝐺 such that 𝑣 is the sum of

ℎ-eigenvectors with strictly positive eigenvalues.

Developing the idea behind the Hilbert-Mumford criterion it is

possible to find among all one-dimensional tori 𝑆 satisfying 𝑆𝑣 ∋ 0
those that “drag 𝑣 to zero most quickly”.

To say what this means precisely, we need a norm on 𝔤. For that, let
us choose an Ad(𝐺)-invariant scalar product on 𝔤 that takes rational

values and is positive definite on the rational vector space 𝔱(ℚ) of
elements with rational eigenvalues of the Lie algebra 𝔱 for some

maximal torus 𝑇 ⊂ 𝐺.
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Characteristics

Having such a norm, for a nilpotent element 𝑣 ∈ 𝔑𝐺(𝑉) we may

consider the set Λ(𝑣) of all 1-parametric subgroups of 𝐺 such that

the corresponding 1-dimensional torus 𝑆 ⊂ 𝐺 satisfies 𝑆𝑣 ∋ 0 and

moreover its infinitesimal generator ℎ ∈ 𝔤, which is a semisimple

element of 𝔤 with rational eigenvalues, has smallest possible norm

among all semisimple elements of 𝔤 with the same properties. Such

ℎ is called a characteristic of the nilpotent element 𝑣.

Following Hesselink, we can now consider an equivalence relation

on 𝔑𝐺(𝑉): say that 𝑥 ∼ 𝑦 if Λ(𝑥) = Λ(𝑔𝑦) for some 𝑔 ∈ 𝐺.

Equivalence classes are the Hesselink strata of 𝔑𝐺(𝑉), they form a

finite partition of 𝔑𝐺(𝑉).

See his “Desingularizations of varieties of nullforms”, Invent. math.

55 (1979), 141–163.
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The adjoint case

and theta-groups

In the case of the adjoint representation Ad(𝐺), each Hesselink

stratum consists of a single 𝐺-orbit, so that one obtains just the

nilpotent orbits of 𝔤.

In this case the notion of characteristic was introduced and studied

by Dynkin in 1953 by classifying conjugacy classes of

𝔰𝔩2-subalgebras of 𝔤.

For representations “close” to the adjoint representation strata also

consist of single orbits. Namely, by the theory of theta-groups of

Vinberg, this is so for the representation of the algebraic group with

Lie algebra 𝔤 = 𝔞(0) on 𝑉 = 𝔞(1), for a cyclically graded Lie algebra

𝔞 = ⨁
𝑘∈ℤ/𝑛ℤ

𝔞(𝑘).

By analogy, in the general case elements of 𝑉 belonging to 𝔑(𝑉) are
also called nilpotent.
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General case

In general however, each stratum may consist of infinitely many

𝐺-orbits.

Even for visible representations, i. e. when the number of nilpotent

𝐺-orbits is finite, a stratum might consist of several orbits,

depending on the choice of the norm (when the group is not simple).

It seems to be an open question whether, in case 𝔑𝐺(𝑉) contains
only finitely many 𝐺-orbits, one can choose a scalar product in such

a way that each stratum would consist of a single orbit.
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Structure of strata

Note that each semisimple element ℎ of 𝔤 gives rise to eigenspace

decompositions 𝔤 = ⨁𝜆 𝔤𝜆(ℎ), 𝑉 = ⨁𝜆 𝑉𝜆(ℎ).

Namely,

𝔤𝜆 = {𝑥 ∈ 𝔤 ∣ [ℎ, 𝑥] = 𝜆𝑥} and 𝑉𝜆 = {𝑣 ∈ 𝑉 ∣ ℎ𝑣 = 𝜆𝑣} .

In particular, 𝔤⩾0(ℎ) = ⨁𝜆⩾0 𝔤𝜆(ℎ) is a parabolic subalgebra of 𝔤
acting on the subspace 𝑉⩾𝜆(ℎ) for each 𝜆, while 𝔤0(ℎ) is the
maximal reductive subalgebra (Levi subalgebra) of 𝔤⩾0(ℎ) acting on
each 𝑉𝜆. Clearly ℎ ∈ 𝔤0(ℎ); in what follows, of importance will be

the reductive subalgebra ̃𝔤0(ℎ) ⊂ 𝔤0(ℎ) consisting of elements

Killing orthogonal to ℎ.

These actions integrate to actions of a parabolic subgroup

𝐺⩾0(ℎ) ⊂ 𝐺, its Levi subgroup 𝐺0(ℎ), and the reductive subgroup
̃𝐺0(ℎ) of 𝐺0(ℎ) respectively.
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Structure of strata

Hesselink proved that each stratum 𝐻 is an irreducible subvariety

of 𝔑𝐺(𝑉), open in its Zariski closure 𝐻, and there exists an

isomorphism 𝜑 ∶ 𝐻 → 𝐸 onto an invariant open subset of the total

space of a homogeneous vector bundle 𝐸 over 𝐺/𝑃𝐻, where

𝑃𝐻 = 𝐺⩾0(ℎ) for a characteristic ℎ of an element of 𝐻.

In particular,

each stratum 𝐻 is a smooth rational variety.

Moreover there exists a morphism 𝜋 ∶ 𝐸 → 𝐻 which is resolution of

singularities of the variety 𝐻 such that 𝜋|𝜋−1𝐻 = 𝜑−1. In particular

this gives a resolution of singularities for each irreducible

component of the null-cone 𝔑𝐺(𝑉).
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Structure of strata – the gradient flow approach

Another approach to the stratification, employing the moment map,

was used in the works of Kirwan, Kempf and Ness in the eighties.

Let P𝑉 be the projective space of 1-dimensional subspaces of 𝑉.
Each ℓ ∈ P𝑉 gives rise to the function 𝜑ℓ on 𝐺 given by

𝜑ℓ(𝑔) = ||𝑔𝑣||2,

where || − || is the norm determined by a nonsingular Hermitian

form on 𝑉 invariant under the action of a maximal compact

subgroup 𝐾 ⊂ 𝐺, and 𝑣 is a unit vector in ℓ.

The moment map 𝑚 ∶ P𝑉 → 𝔨∗ to the dual space of the tangent

algebra 𝔨 of 𝐾 is in our case given by 𝑚(ℓ)(𝑘) = −1
4𝑑𝑒𝜑ℓ(𝑖𝑘)
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Structure of strata – the gradient flow approach

Linda Ness in “A Stratification of the Null Cone Via the Moment

Map” (Amer. J. Math. 106 (1984), 1281–1329) studied the gradient

flow of the map

||𝑚||2 ∶ P𝑉 → ℝ, ||𝑚||2(ℓ) = ||𝑚(ℓ)||2,

where now || − || is induced on 𝔨∗ by our chosen norm on 𝔤.

She showed that those critical points of ||𝑚||2 which are not minima

all lie in 𝔑𝐺(𝑉), and the Hesselink stratification corresponds to the

stratification of 𝔑𝐺(𝑉) into attraction basins of those critical points

under the gradient flow of ||𝑚||2.
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Structure of strata – nilpotent pieces of Lusztig

The condition 0 ∈ 𝑆𝑣 above can be viewed as stating that certain

morphism of schemes 𝑓 ∶ Gm → 𝑉 extends to a morphism ̃𝑓 ∶ Ga → 𝑉.
The coordinate ring of the fiber of this morphism is k[𝑡]/(𝑡𝑚) (k the

base field), and this 𝑚 gives a refined information about elements of

the nullcone.

There is a description of strata in terms of unipotent pieces of

Lusztig, which should work in positive characteristic too. This

should be described in the talk by Geck.

Clarke & Premet, “The Hesselink stratification of nullcones and

base change”, Invent. math. 191 (2013), pp. 631–669.
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The Popov algorithm

Popov in “The Cone of Hilbert Nullforms” (Proc. Steklov Math. Inst.

241 (2003), 177–194) solved the problem of a constructive

description of strata.

He gave an algorithm producing a finite subset 𝒳 ⊂ 𝔱 of the Lie
algebra of a maximal torus of 𝐺 with the following property.

For each ℎ ∈ 𝒳 consider the open subset of 𝑉⩾2(ℎ),

𝑉⩾2(ℎ)∘ ∶= 𝜋−1
2 (𝑉2(ℎ) ∖ 𝔑𝐺̃0(ℎ)(𝑉2(ℎ)))

consisting of vectors whose projection under 𝜋2 ∶ 𝑉⩾2(ℎ) → 𝑉2(ℎ)
does not belong to the null-cone for the action of ̃𝐺0(ℎ) on 𝑉2(ℎ).

Then the sets 𝐺 ⋅ 𝑉⩾2(ℎ)∘, with ℎ running through 𝒳, exhaust
without repetition the collection of all Hesselink strata of the

null-cone 𝔑𝐺(𝑉).
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The Popov algorithm

𝐸 𝐺 ×𝑃𝐻
𝑉⩾2(ℎ)

𝜌−1(𝐻)

𝐻

𝐻

𝐺 ⋅ 𝑉⩾2(ℎ)

𝐺 ⋅ 𝑉⩾2(ℎ)∘

𝐺/𝑃𝐻
𝜌(𝑔, 𝑣) = 𝑔𝑣

𝜌

≅

𝑉⩾2(ℎ)∘ = {𝑣2 + 𝑣>2 ∈ 𝑉2(ℎ) ⊕ 𝑉>2(ℎ) ∣ 𝑣2 ∉ 𝔑𝐺̃0(ℎ)(𝑉2(ℎ))}

For theta-groups and in some other cases “close” to them, each

𝐺-orbit has a representative in 𝑉2(ℎ). In general this is not true.
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The Popov algorithm

Given ℎ ∈ 𝒳, Popov computes dimension of the corresponding

stratum 𝐻 = 𝐺 ⋅ 𝑉⩾2(ℎ)∘ as

dim (𝑉⩾2(ℎ)) + dim (𝔤<0(ℎ)) .

Popov’s algorithm has been realized by Norbert A’Campo, at

http://www.geometrie.ch/HNC/hnc.html. We successfully

used his program to check the known cases for spinors up to

dimension 14 and in dimension 16. Unfortunately, for dimension 15
it ran out of memory for us even with 1 terabyte of RAM, on a

server of the Weizmann Institute.

http://www.geometrie.ch/HNC/hnc.html
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The Popov algorithm

More recently Willem de Graaf kindly provided us with another

implementation of the algorithm that uses the system GAP. Using his
version we successfully calculated the spin15 case, and checked its

agreement with the cases when we were able to run the A’Campo

program.

We also used his program to compute practically all cases of

classifications of nilpotent orbits that were known before, for ranks

up to 8, and checked agreement with them.
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The Popov algorithm

A semisimple element ℎ of 𝔤 can occur as a characteristic of some

stratum if and only if 𝑉2(ℎ) ∖ 𝔑𝐺̃0(ℎ) is not empty

, i. e. no stratum

for the action of ̃𝐺0(ℎ) on 𝑉2(ℎ) has dimension equal to the

dimension of 𝑉2(ℎ).

Willem’s version works by listing all possible candidates ℎ for

characteristics up to the action of the Weyl group of 𝐺 and then

calling itself for each action of the smaller reductive group ̃𝐺0(ℎ) on
the smaller space 𝑉2(ℎ).
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Spinors

In this talk, by spinors in dimension 𝑛 we mean elements from the

representation space of the complex algebraic group Spin(𝑛) called
the spin representation.

It is irreducible of dimension 2𝑘 for 𝑛 = 2𝑘 + 1, or direct sum of two

irreducibles each of dimension 2𝑘−1, called half-spinors, for 𝑛 = 2𝑘.
In what follows we will everywhere mean the latter.
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Spinors

Classification of Spin(𝑛)-orbits of the spin representation for 𝑛 ⩽ 12
has been carried out by J.-I. Igusa (Amer. J. Math. 92 (1970),

997–1028).



Spinors

The case 𝑛 = 13 was done by Gatti & Viniberghi (Kac and Vinberg,

actually),



Spinors

and 𝑛 = 14 by V. L. Popov, both in 1978.



Spinors

Classification for 𝑛 = 16 was done by Antonyan and Elashvili in 1982.



Spinors

More precisely, Igusa and Popov computed orbit stabilizers for all

orbits; Kac-Vinberg and Antonyan-Elashvili only found Lie algebras

of these stabilizers. We also only know how to compute Lie algebras

of stabilizers only.

These are all cases when the spin representation has finitely many

nilpotent orbits.

In fact, except for spin13 these are all theta-groups. As mentioned

before, for theta-groups each stratum consists of a single orbit and

has a representative in 𝑉2(ℎ).

This is so in particular for spin𝑛 with 𝑛 ⩽ 14 and 𝑛 = 16. Actually,
spin13 does not arise as a theta-group, but nevertheless it has this

property, as computed by Kac and Vinberg.

So the smallest dimension where infinite families of nilpotent orbits

occur is 𝑛 = 15.
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Spinors – computations

For the null-cone of spin15 the program of Willem gives us 169

strata.

We have been able to check for all these cases that

𝑉2(ℎ) ≠ 𝔑𝐺̃0(ℎ)(𝑉2(ℎ)) indeed holds, so that there indeed are 169

genuine strata.

Unfortunately so far we do not have an independent proof that

there are no other strata.

An important number associated to each stratum is its modality.

According to “Modality of Representations, and Packets for

𝜃-Groups” by Popov (Lie Groups, Geometry, and Representation

Theory, 2018, 459–479), modality of a stratum is the codimension

of orbits of maximal dimension in it.
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Spinors – computations

There is one circumstance that is very helpful for our computations,

stated concisely as inclusions spin15 ⊂ spin16 ⊂ Ad(E8).

Note that the group Spin(15) can be realized as a subgroup of

Spin(16), namely as the group of fixed points for the outer

automorphism of Spin(16) of order two, in such a way that the spin

representation of Spin(15) (of dimension 128) is the restriction of

one of the irreducible half-spin representations of Spin(16).

Moreover in its turn Spin(16) can be realized as the group of fixed

points of an inner automorphism of order two of the simple Lie

algebra of type E8, acting on the subspace of the Lie algebra 𝔢8
which is the eigenspace with eigenvalue −1 for the corresponding

inner automorphism of 𝔢8.
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Computations

This greatly helps in finding explicit representatives for nilpotents

inside strata of spin15.

For example, there are three strata having largest dimension of all,

namely 113, with characteristics (8, 4, 4, 4, 4, 4, 4), (8, 8, 4, 4, 4, 4, 4)
and (4, 4, 4, 4, 4, 4, 8). Of these, only the first possesses orbits of
maximal possible dimension, namely 105 (note that this is the

dimension of the group Spin(15)).

This is actually the only stratum possessing 105-dimensional orbits.

Moreover it turns out that if, using the above circumstance, we

realize a representative of such an orbit as an element of the

algebra 𝔢8, we obtain a principal nilpotent element of 𝔢8. The

remaining 113-dimensional strata have maximal dimensions of

orbits equal to 104; as nilpotents in 𝔢8 these orbits have labels

E6 + A1 and E7 respectively.
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maximal possible dimension, namely 105 (note that this is the

dimension of the group Spin(15)).

This is actually the only stratum possessing 105-dimensional orbits.

Moreover it turns out that if, using the above circumstance, we

realize a representative of such an orbit as an element of the

algebra 𝔢8, we obtain a principal nilpotent element of 𝔢8.

The

remaining 113-dimensional strata have maximal dimensions of

orbits equal to 104; as nilpotents in 𝔢8 these orbits have labels
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Representatives with small support

There is also exactly one stratum with representatives of orbits of

maximal dimension subregular in 𝔢8. It has characteristic

(4, 4, 4, 4, 0, 4, 4) and maximal dimension of orbit 104.

For each stratum we found representatives of orbits of maximal

dimensions which are linear combinations of as few weight vectors

as possible.

Realizing the corresponding weights in Spin(16) and E8 may provide

additional insight into the structure of the strata.
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Representatives with small support

As it happens, the largest number of weight vectors needed to

produce representatives of orbits of maximal dimension in each

stratum is 8, except for the stratum with characteristic

(4, 0, 4, 0, 4, 4, 0) where we could not find a representative with less

than 9 weight vectors.

A priori we do not have an explanation of these numbers.

Also, to achieve ⩽ 8 weight vectors, in some cases we had to pick a

representative with non-generic projection onto 𝑉2.

Actually we do not know whether in each stratum there is a vector

with orbit of maximal dimension that projects onto a vector in

general position with respect to the action of ̃𝐺0(ℎ) on 𝑉2.
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Distinguished nilpotents

For adjoint representations, the most important nilpotent orbits are

the distinguished ones: those with the property that centralizers of

their representatives have trivial reductive part.

Indeed

classification of nilpotent orbits in this case actually reduces to the

classification of distinguished orbits.

By analogy with the adjoint representation, it is interesting to study

a generalization of this notion: those orbits in the nullcone with the

property that stabilizers of their representatives have trivial

reductive part.

Our computations show that among 169 strata of spin15 precisely

105 possess orbits of maximal dimension with this property.

It is interesting that of these 105 “distinguished strata” only 12 have

an orbit open in it, for all others maximal dimensions of their orbits

are strictly smaller.



Distinguished nilpotents

For adjoint representations, the most important nilpotent orbits are

the distinguished ones: those with the property that centralizers of

their representatives have trivial reductive part. Indeed

classification of nilpotent orbits in this case actually reduces to the

classification of distinguished orbits.

By analogy with the adjoint representation, it is interesting to study

a generalization of this notion: those orbits in the nullcone with the

property that stabilizers of their representatives have trivial

reductive part.

Our computations show that among 169 strata of spin15 precisely

105 possess orbits of maximal dimension with this property.

It is interesting that of these 105 “distinguished strata” only 12 have

an orbit open in it, for all others maximal dimensions of their orbits

are strictly smaller.



Distinguished nilpotents

For adjoint representations, the most important nilpotent orbits are

the distinguished ones: those with the property that centralizers of

their representatives have trivial reductive part. Indeed

classification of nilpotent orbits in this case actually reduces to the

classification of distinguished orbits.

By analogy with the adjoint representation, it is interesting to study

a generalization of this notion: those orbits in the nullcone with the

property that stabilizers of their representatives have trivial

reductive part.

Our computations show that among 169 strata of spin15 precisely

105 possess orbits of maximal dimension with this property.

It is interesting that of these 105 “distinguished strata” only 12 have

an orbit open in it, for all others maximal dimensions of their orbits

are strictly smaller.



Distinguished nilpotents

For adjoint representations, the most important nilpotent orbits are

the distinguished ones: those with the property that centralizers of

their representatives have trivial reductive part. Indeed

classification of nilpotent orbits in this case actually reduces to the

classification of distinguished orbits.

By analogy with the adjoint representation, it is interesting to study

a generalization of this notion: those orbits in the nullcone with the

property that stabilizers of their representatives have trivial

reductive part.

Our computations show that among 169 strata of spin15 precisely

105 possess orbits of maximal dimension with this property.

It is interesting that of these 105 “distinguished strata” only 12 have

an orbit open in it, for all others maximal dimensions of their orbits

are strictly smaller.



Strata with Zariski dense orbits

On the other hand, the total number of strata possessing an orbit of

dimension equal to the dimension of the stratum is 57. In other

words, this is the number of strata with modality 0.

More generally, modalities of strata range from 0 to 9; numbers of

strata with respective modalities are as follows:

modality 0 1 2 3 4 5 6 7 8 9

quantity 57 29 21 8 14 12 12 7 7 2

Largest modality, 9, is achieved twice, on two of the three already

mentioned strata of largest dimension 113, with maximal dimension

of orbit 104. (The remaining 113-dimensional stratum, with orbits

of maximal dimension 105, has modality 8.)
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The rôle of 𝑉2

Recall that for adjoint representations and, more generally, for

Vinberg theta-groups, all strata consist of single orbits. Moreover in

these cases each characteristic ℎ has the property that 𝐺0(ℎ)
possesses an open orbit on 𝑉2(ℎ).

In spin15 only 84 of the 169 strata have a representative of an orbit

of maximal dimension in 𝑉2(ℎ). Of these, 37 have an open 𝐺-orbit.

On the other hand, only for 120 of the 169 strata 𝐺0(ℎ) has an open

orbit on 𝑉2(ℎ). These in particular include all 57 strata with an

open 𝐺-orbit.

The number of strata having both a representative of an orbit of

maximal dimension in 𝑉2(ℎ) and an open 𝐺0(ℎ)-orbit on 𝑉2(ℎ) is 48.
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Some computation stages

This is how we ensure that a vector from 𝑉2 has 𝐺0-orbit of

maximal possible dimension.



Some computation stages

These are the Dynkin schemes for some of the combinations of

weight vectors that GAP proposes as orbit representatives.



Possible simplifications?

One of the directions for spin7



Possible simplifications?

What is the largest class of representations 𝑉 with a generalized

Jacobson-Morozov theorem: for each 𝑣 in the nullcone, there is a

semisimple ℎ with ℎ𝑣 = 2𝑣 and 𝑣 not in the ̃𝔤0(ℎ)-nullcone of 𝑉2(ℎ)?

As already said, this is true for theta-groups. It is also true for

spin13, as shown by Kac and Vinberg.



Possible simplifications?

Recently such representations have been investigated by Holweck

and Oeding in https://arxiv.org/abs/2206.13662 (their

presentation few days ago: Jordan Decompositions of Tensors and

Applications to Quantum Information at the Joint Mathematics

Meeting in Boston). They observe examples, more general than

theta-groups, of pairs of representations 𝑉, 𝑉′ of a reductive 𝔤
admitting a 𝔤-equivariant map ⋅ ∶ 𝑉 ⊗ 𝑉′ → 𝔤 with certain properties

which for 𝑣 in the nullcone of 𝑉, provide something like an

𝔰𝔩2-triple: a 𝑣′ ∈ 𝑉′ with ℎ𝑣 = 2𝑣, ℎ𝑣′ = −2𝑣′ with semisimple

ℎ = 𝑣 ⋅ 𝑣′ ∈ 𝔤.

In some cases one can take 𝑉′ = 𝑉 – for example, action of the even

part of a reductive (?) Lie superalgebra on its odd part. In some

examples (including theta-groups) one needs 𝑉′ = 𝑉∗, but there are

others too.

https://arxiv.org/abs/2206.13662
https://meetings.ams.org/math/jmm2023/meetingapp.cgi/Paper/22205
https://meetings.ams.org/math/jmm2023/meetingapp.cgi/Paper/22205
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Some more computational experiments

Using Willem’s program we looked at the behaviour of strata for

direct sums of several copies of the same representation 𝑉 of a

reductive group 𝐺.

In the work of Hesselink, Draisma, Le Bruyn and others, there is

apparent certain kind of stabilization. After the direct sum is large

enough that multiplicity of each irreducible summand of 𝑉 exceeds

the rank of 𝐺, the number of strata remains the same.

In all cases that we have been able to compute we saw this happen.

Actually, in most cases even numbers of strata of the same

dimension stay the same.



Some more computational experiments

For example, here is the case of the irrep with highest weight

(1, 0, 1) for B3:

But there are cases, e. g. (1, 1, 1) for C3, when, although the total

number of strata remains the same (namely 1495), these

multiplicities change.



Thank you!


