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Linear algebra freshman stuff

Over an algebraically closed field, every linear operator T : V → V on a

finite-dimensional vector space V has a most pleasant normal form:

there is a direct sum decomposition V = V1 ⊕ · · · ⊕ Vk such that T = (well,

∼) T1 ⊕ · · · ⊕ Tk, and each Ti is a sum of a scalar and a regular (for Vi)

nilpotent.

A nilpotent operator N : V → V is regular iff in some basis 〈e1, ..., en〉 it acts
via

e1 7→ e2 7→ · · · 7→ en 7→ 0

(equivalently, there is a vector v such that v, Nv, NNv, ..., Nn−1v form a

basis, and Nnv = 0).
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What happens in sl(V)

In the Lie algebra sl(V) of all operators V → V with trace 0, under the

adjoint action of the group SL(V) of all operators of determinant 1:

there are only finitely many conjugacy classes of nilpotents, indexed by

partitions of dim(V).

To a partition n1 > n2 > · · · > nk, n1 + · · ·+ nk = dim(V) corresponds the

class of

• 7→ • 7→ · · · 7→ •︸ ︷︷ ︸
n1

7→ 0, · · · • 7→ • 7→ · · · 7→ •︸ ︷︷ ︸
nk

7→ 0.

A “diletant’s thought”: the Weyl group is in this case a symmetric group,

and its conjugacy classes are also indexed by partitions! Coincidence or...?
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Cyclic elements

Idea in the simplest case is straightforward: assign to the regular nilpotent

e1 7→ e2 7→ · · · 7→ en 7→ 0

the regular semisimple element

e1 7→ e2 7→ · · · 7→ en 7→ e1.

In a “nice” (semisimple or, more generally, reductive) Lie algebra g, an

element h is semisimple if the operator adh = [h,−] is diagonalizable; it then

follows that for any representation % of g on a space V the operator

%(h) : V → V is diagonalizable.

The centralizer

zg(h) = Ker(adh) = {x ∈ g |[h, x] = 0}

of such elements contains a Cartan subalgebra of g — a maximal

commutative subalgebra consisting of semisimple elements.

A semisimple element is regular if this centralizer does not contain anything

else.
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“Unusual” Cartan subalgebras

The “usual” Cartan subalgebra for sl(7)

a1 0 0 0 0 0 0
0 a2 0 0 0 0 0
0 0 a3 0 0 0 0
0 0 0 a4 0 0 0
0 0 0 0 a5 0 0
0 0 0 0 0 a6 0
0 0 0 0 0 0 a7


, with

∑
i

ai = 0

An “unusual” one (centralizer of a cyclic element)

0 a1 a2 a3 a4 a5 a6
a6 0 a1 a2 a3 a4 a5
a5 a6 0 a1 a2 a3 a4
a4 a5 a6 0 a1 a2 a3
a3 a4 a5 a6 0 a1 a2
a2 a3 a4 a5 a6 0 a1
a1 a2 a3 a4 a5 a6 0
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“Unexpected” nilpotents

What about other (semi)simple algebras? For example, so(n) is the algebra

of skew-symmetric matrices A (those with

〈v,Aw〉+ 〈Av,w〉 = 0

for all vectors v, w).

An “unexpected” nilpotent in so(3):

N =

 0 λ 0
−λ 0 −µ
0 µ 0



N3 = −(λ2 + µ2)N
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Евгений Борисович Дынкин



Евгений Борисович Дынкин, 1952



One of the many things Dynkin did

Dynkin was preoccupied with the classification of semisimple subalgebras in

simple Lie algebras, up to conjugacy (action of the adjoint group).

In particular, he obtained classification of subalgebras isomorphic to sl(2).

“The most important Lie algebra”: basis e, f , h, brackets [e, f ] = h,

[h, e] = 2e, [h, f ] = −2f .

The Jacobson-Morozov theorem: for any nilpotent e ∈ g one can find f and h

as above!

This makes classification of nilpotents up to conjugacy equivalent to the

classification of sl(2)-subalgebras.
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One of the many things Dynkin did

The element h corresponding to e in the sl(2)-triple (e, f , h) is called the

Dynkin characteristic of e. Eigenvalues of adh are integers, and one obtains

the adh-eigenspace decomposition

g =
⊕

−d6k6d

g(k),

with e ∈ g(2), f ∈ g(−2), h ∈ g(0), and d called depth of e.

Fixing a Cartan subalgebra t, and a system of positive roots such that e is a

linear combination of positive root vectors, one can choose h from t in such

a way that values of all simple roots on it are nonnegative.

It is then

determined by these values, which can only be 0, 1 or 2.
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Reminder

Brief recall — roots of a semisimple Lie algebra g with chosen Cartan

subalgebra t are elements of the dual space t∗, i. e. linear forms α on t such

that there is an x ∈ g with

∀h ∈ t [h, x] = α(h)x.

For each root α, the space gα of all x as above is 1-dimensional, and its

nonzero elements are called root vectors.

In other words, ad restricted to t splits g into the sum of 1-dimensional

representations gα and t itself.

The Killing form

〈x, y〉 = trace(adx ◦ ady)

pairs gα with g−α, all other gα, gβ being mutually orthogonal.
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Reminder

The Killing form is nonsingular on t, so induces an isomorphism t ∼= t∗, and

a nonsingular bilinear form on t∗.

The Weyl group W , originally defined as the quotient N(T)/T of the

normalizer of the maximal torus T ⊂ G of the adjoint group G by T, or as

well as the quotient N(t)/Z(t) of the normalizer of t in G by its centralizer,

is isomorphic to the subgroup of the isometries of the root system

generated by all reflections in the roots, sα(β) = β − 2 〈α,β〉
〈α,α〉α.

Choice of positive roots – one half of the roots, in such a way that a sum of

positive roots is positive – determines simple roots, those positive ones

which are not sums of other positives.

Simple roots form a basis of t∗, and W is already generated by reflections in

them only. Their Gram matrix with respect to 〈−,−〉 is encoded in the

famous Dynkin diagram which determines the isomorphism type of g.
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One of the many things Dynkin did

The weighted Dynkin diagram of e is the Dynkin diagram of g, with values

of simple roots on its characteristic indicated. It determines uniquely the

conjugacy class of e, as well as of the corresponding sl(2)-subalgebra of g.

The weighted Dynkin diagram of a regular nilpotent has all 2-s on it.

For example, 2 2 2 2 2 is the wDd of a regular nilpotent in so(11)

(type B5).

The “next general” after the regular ones are the subregular nilpotents;

e. g.
2

22220022222222 is the wDd for the subregular nilpotent in the

simple algebra of type E8.

The “least general” (or “most degenerate”) nilpotents are the single root

vectors:

e. g. 0 1 0 0

0

0

is the wDd of a root vector in so(12) (type D6).
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Bertram Kostant, 1959

Kostant was first to introduce and use cyclic elements. He showed that if e is

regular nilpotent in a simple g then e+ F is regular semisimple for any

nonzero F ∈ g(−d).

Grading, as above, is with respect to the characteristic of e; in this case g(−d)

is one-dimensional.

Studying the corresponding SL(2)-subgroup in the adjoint group G he found

a transparent description of fundamental invariants for the adjoint action; in

particular, of their degrees, which coincide with the Betti numbers of G.

A simple G has the same cohomology as a product of odd-dimensional

spheres, but is not in general homotopy equivalent to it; note that SL(2)

(over C) is homotopy equivalent to the 3-dimensional sphere. Its maximal

compact subgroup SU(2) is a 3-sphere.
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compact subgroup SU(2) is a 3-sphere.



Bertram Kostant, 1959

Kostant was first to introduce and use cyclic elements. He showed that if e is

regular nilpotent in a simple g then e+ F is regular semisimple for any
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Tonny A. Springer, 1974

The space g(−d) is also one-dimensional for subregular nilpotents.

Springer proved that, and exhibited several further examples of

distinguished nilpotents e with regular semisimple cyclic elements e+ F.

A nilpotent is distinguished if its centralizer in g only contains nilpotent

elements, no semisimple ones.

These might already have more than one-dimensional g(−d), in general.

Both Kostant and Springer provided a way to assign to a nilpotent a

conjugacy class in the Weyl group W .
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Vinberg, 1976

The Z-grading (g(i))−d6i6d can be, for each natural m, wrapped around to

obtain a Z/mZ-grading, with

g(i mod m) =
⊕

j≡i mod m

g(j).

More generally, any cyclic grading defines an automorphism of finite order

θ of g; such automorphisms have been classified by Kac, shortly before

Vinberg’s paper.

Vinberg investigated representations of the algebra g(0 mod m) and the

corresponding group G(0 mod m) on the spaces g(i mod m).

He discovered that these representations share many of the pleasant

properties with the adjoint representations. This is the content of his theory

of theta-groups.
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Vinberg, 1976

Vinberg in particular showed that for each g(i mod m) there is a Cartan

subspace t(i mod m) and the small Weyl group W(i mod m) acting on it, obeying

the analog of the Chevalley restriction theorem:

just as the restriction map

C[g]G → C[t]W

provides an isomorphism between G-invariants of g and W-invariants of t,

the same is true for the theta-group:

C[g(i mod m)]G
(0 mod m)

→ C[t(i mod m)]W
(i mod m)

is an isomorphism.

The Cartan subspaces t(i mod m) ⊆ g(i mod m) assemble together into a Cartan

subalgebra of g, of the “unusual” kind I showed before for the sl case.

In “our” situation, if we choose to wrap modulo m = d+ 2 so that

2 mod m = −d mod m, then e and F fall into the same Z/mZ-graded piece; if

e+ F is semisimple, it belongs to a Cartan subspace there.
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David Kazhdan and George Lusztig, 1988

Kazhdan and Lusztig assigned a conjugacy class in W to any nilpotent e.

(Source: video of a talk by Lusztig, 2010 )

The case g = sl(n):

For a nilpotent e ∈ g, generic a1, a2, ... ∈ g and a scalar ε,

ẽ := e+ a1ε+ a2ε
2 + · · ·

is a regular semisimple element of g.

Finding eigenvalues of adẽ one will encounter roots of various degrees k
√
ε.

Clearly one such degree k (LCM of all degrees encountered) will suffice.

https://archives.ust.hk/dspace/handle/9999/36219


David Kazhdan and George Lusztig, 1988

Eigenvalues of adẽ will be certain (rational) functions λi( k
√
ε) of this root.

If we would pick another one, i. e. multiply k
√
ε by some kth root of unity

ζ = k
√
1, this would produce these λi in a different order, i. e. there is a

permutation σ with

λi(ζ
k
√
ε) = λσ(i)(

k
√
ε).

This σ determines the element of the Weyl group that Kazhdan and Lusztig

assign to e.



Victor Kac



Elashvili - Kac - Vinberg, 2013



Cyclic elements – so(4k), partition [2k+ 1, 2k− 1]

x0 x1 · · · xk−1 xkx−1· · ·x−k+1x−k

y0 y1 · · · yk−1y−1· · ·y−k+1

e e e e e e e e

e e e e e e

F1 F1

−F2F2

The cyclic element e+ λ1F1 + λ2F2 loses semisimplicity when either λ2 = 0

or λ2 = ±λ1:

x0 x1 · · · xk−1 xkx−1· · ·x−k+1x−k

y0 y1 · · · yk−1y−1· · ·y−k+1

es es es es es es es es

en en en en en en

F F

z−k z−k+1 . . . zk−2 zk−1

t−k+1 t−k+2 . . . tk−1 tk

es es es es

es es es es
en en en en

F

F
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Cyclic elements – one of the F4 cases



Cyclic elements – semisimplicity loss



Algebra structure on g(−2k)

Given x, y ∈ g(−2k), define

x ∗ y := [adke (x), y].

As it turns out, if there are semisimple cyclic elements at all, then d must be

even, and then e+ F loses semisimplicity iff F belongs to some proper

subalgebra of (g(−d), ∗).
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Irreducible nilpotent elements of semisimple type

For all irreducible nilpotent elements, (g(−d), ∗) is a commutative algebra

Cλ(n) generated by p1, ..., pn with defining relations p2i = pi, i = 1, ..., n, and

pipj = λ(pi + pj), i 6= j.

The singular set of g(−d) coincides with the union of all proper subalgebras

of this algebra.

For classical algebras:

g partition depth rank Z(s)|g(−d) (g(−d), ∗)
sl(2k+ 1) [2k+ 1] 4k 1 1 1

sp(2k) [2k] 4k− 2 1 1 1

so(2k+ 1) [2k+ 1] 4k− 2 1 1 1
so(4k+ 4) [2k+ 3, 2k+ 1] 4k+ 2 2 1 C−k(2)



Irreducible nilpotent elements of semisimple type

For exceptional algebras:

g weighted Dynkin diagram label depth rank Z(s)|g(−d) (g(−d), ∗)

E6

2

2222002222 E6(a1) 16 1 1 1

E7

2

222222222222 E7 34 1 1 1

E7

2

222200222222 E7(a1) 26 1 1 1

E7

0

000022000022 E7(a5) 10 3 σ3 ⊕ 1 C− 1
3
(3)

E8

2

22222222222222 E8 58 1 1 1

E8

2

22220022222222 E8(a1) 46 1 1 1

E8

2

22220022002222 E8(a2) 38 1 1 1

E8

0

22002200220022 E8(a4) 28 1 1 1

E8

0

22002200002200 E8(a5) 22 2 σ2 ⊕ 1 C− 2
7
(2)

E8

0

00002200002200 E8(a6) 18 2 σ3 C−1(2)

E8

0

00000022000000 E8(a7) 10 4 σ5 C− 1
3
(4)

F4 2 22 2 F4 22 1 1 1
F4 2 00 2 F4(a2) 10 2 σ2 ⊕ 1 C− 1

3
(2)

G2 22 G2 10 1 1 1



Irreducible nilpotent elements of semisimple type – examples

E7, diagram
0

000022000022 , dim(g(−d)) = 3, algebra C− 1
3
(3) has six

2-dimensional subalgebras.

Image of the singular set in the projective plane: union of six lines.

x1 = x3

x2 = ω̄x1 + ωx3

x2 = ωx1 + ω̄x3

x2 = x1 + x3

x1 = ω̄x3

x1 = ωx3



Irreducible nilpotent elements of semisimple type – examples

E8, diagram
0

00000022000000 , dim(g(−d)) = 4, algebra C− 1
3
(4) has ten

3-dimensional subalgebras.

Image of the singular set in the projective 3-space: union of ten planes.
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The algebra structure on g(−d) for irreducible nilpotents

This structure is very strange. It resembles Jordan algebra structure but is

different.

The identity

((ab)c− a(bc))d− ((ad)c− a(dc))b = (ab)(cd)− (ad)(bc)

is satisfied. It implies

[La,Lb]Lc + [Lb,Lc]La + [Lc,La]Lb = 0

where La(b) := a ∗ b. Whereas the Jordan identity is

[La,Lbc] + [Lb,Lca] + [Lc,Lab] = 0.
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Our map vs. Kazhdan-Lusztig

With Kac, we constructed a decomposition of each nilpotent e as follows:

first, replace g with the even part of the grading gev :=
⊕

k g
(2k);

generate subalgebra q by e and some Cartan subspace c of gev;

represent e as es + en with es ∈ [q, q] and en in the center of q; (as it happens,

this center is in fact 1-dimensional).

put es aside;

replace e with en and g with the derived subalgebra of the centralizer of q in

g;

repeat.

On each stage, es is irreducible in its [q, q], and we know that assigning to it

the conjugacy class of W determined by its cyclic element agrees with the

Kazhdan-Lusztig map.
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Our map vs. Kazhdan-Lusztig: the E7 case

Orbit Spaltenstein our map Lusztig map
Bala-Carter (Dynkin) d normal form embedding Carter char. pol. Carter char. pol. fibre
A1 2 C1 regular A1 φ2φ

6
1 “ ” “ ”

2A1 2 2C1 regular 2A1 φ2
2φ

5
1 “ ” “ ”

(3A1)
′′ 2 (3C1)

′′ regular (3A1)
′ φ3

2φ
4
1 “ ” “ ”

(3A1)
′ 3 (3C1)

′ regular (4A1)
′ φ4

2φ
3
1 (3A1)

′′ φ3
2φ

4
1 (4A1)

′′, (3A1)
′′

4A1 3 4C1 regular [7A1] [φ7
2] (4A1)

′ φ4
2φ

3
1 7A1, 6A1, 5A1, (4A1)

′

A2 4 A2 regular A2 φ3φ
5
1 “ ” “ ”

A2 + A1 + C1 regular A2 + A1 φ3φ2φ
4
1 “ ” “ ”

A2 + 2A1 + 2C1 regular A2 + 2A1 φ3φ
2
2φ

3
1 “ ” “ ”

A2 + 3A1 + 3C1 regular A2 + 3A1 φ3φ
3
2φ

2
1 “ ” “ ”

2A2 4 2A2 regular 2A2 φ2
3φ

3
1 “ ” “ ”

2A2 + A1 5 2A2 + C1 regular 3A2 φ3
3φ1 2A2 + A1 φ2

3φ2φ
2
1 3A2, 2A2 + A1

A3 6 C2 folding of A3 A3 φ4φ2φ
4
1 “ ” “ ”

(A3 + A1)
′ + C1 + regular (A3 + 2A1)

′′ φ4φ
3
2φ

2
1 (A3 + A1)

′′ φ4φ
2
2φ

3
1 (A3 + 2A1)

′′, (A3 + A1)
′′

(A3 + A1)
′′ + C1 + regular (A3 + A1)

′ φ4φ
2
2φ

3
1 “ ” “ ” (A3 + A1)

′

A3 + 2A1 + 2C1 + regular A3 + 3A1 φ4φ
4
2φ1 (A3 + 2A1)

′ φ4φ
3
2φ

2
1 A3 + 3A1, (A3 + 2A1)

′

D4(a1) 6 D4(a1) regular D4(a1) φ2
4φ

3
1 “ ” “ ”

D4(a1) + A1 + C1 regular D4(a1) + A1 φ2
4φ2φ

2
1 “ ” “ ”

A3 + A2 ( = D4(a1) + 2A1) + 2C1 regular 2A3 φ2
4φ

2
2φ1 “ ” “ ” D4(a1) + 2A1 , A3 + A2

A3 + A2 + A1( = D4(a1) + 3A1) + (3C1)
′′ regular 2A3 + A1 φ2

4φ
3
2 “ ” “ ” 2A3 + A1, A3 + A2 + A1

A4 8 A4 regular A4 φ5φ
3
1 “ ” “ ”

A4 + A1 + C1 regular A4 + A1 φ5φ2φ
2
1 “ ” “ ”

A4 + A2 + A2 regular A4 + A2 φ5φ3φ1 “ ” “ ”

D4 10 G2 folding of D4 D4 φ6φ
2
2φ

3
1 “ ” “ ”

D4 + A1 + C1 + regular [D4 + 3A1] [φ6φ
5
2] D4 + A1 φ6φ

3
2φ

2
1 D4 + 3A1, D4 + 2A1, D4 + A1

D5(a1) ( = D4 + 2A1) + 2C1 + regular D5(a1) φ6φ4φ2φ
2
1 D4 + 2A1 φ6φ

4
2φ1 D5(a1)

D5(a1) + A1 ( = D4 + 3A1) + (3C1)
′′ + regular D5(a1) + A1 φ6φ4φ

2
2φ1 D4 + 3A1 φ6φ

5
2 D5(a1) + A1

A′
5 10 C3 folding of A5 (A5 + A1)

′′ φ6φ3φ
2
2φ1 (A5)

′′ φ6φ3φ2φ
2
1 (A5 + A1)

′′, (A5)
′′

A′′
5 10 C3 folding of A5 (A5)

′ φ6φ3φ2φ
2
1 “ ” “ ”

A5 + A1 ( = (A5 + A1)
′′) + C1 + regular [A5 + A2] [φ6φ

2
3φ2] (A5 + A1)

′ φ6φ3φ
2
2φ1 A5 + A2, (A5 + A1)

′

D6(a2) 10 D6(a2) regular D6(a2) + A1 φ2
6φ

3
2 D6(a2) φ2

6φ
2
2φ1 D6(a2) + A1, D6(a2)

E6(a3) ( = (A5 + A1)
′) 10 F4(a2) folding of E6 E6(a2) φ2

6φ3φ1 “ ” “ ”

E7(a5) ( = D6(a2) + A1) 10 E7(a5) regular E7(a4) φ3
6φ2 “ ” “ ”

A6 12 A6 regular A6 φ7φ1 “ ” “ ”

D5 14 B4 folding of D5 D5 φ8φ2φ
2
1 “ ” “ ”

D5 + A1 + C1 + regular D5 + A1 φ8φ
2
2φ1 “ ” “ ”

D6(a1) + C′
1 + IVB4⊂E7 D6(a1) φ8φ4φ1 D5 φ8φ2φ

2
1

E7(a4) ( = D6(a1) + A1) + C′
1 + C1 + IVB4⊂E7 + regular A7 φ8φ4φ2 D5 + A1 φ8φ

2
2φ1

E6(a1) 16 E6(a1) regular E6(a1) φ9φ1 “ ” “ ”

D6 18 B5 folding of D6 D6 + A1 φ10φ
3
2 D6 φ10φ

2
2φ1 D6 + A1, D6

E7(a3) ( = D6 + A1) + C1 + regular E7(a3) φ10φ6φ2 D6 + A1 φ10φ
3
2

E6 22 F4 folding of E6 E6 φ12φ3φ1 “ ” “ ”
E7(a2) + C1 + IVF4⊂E7 E7(a2) φ12φ6φ2 “ ” “ ”

E7(a1) 26 E7(a1) regular E7(a1) φ14φ2 “ ” “ ”

E7 34 E7 regular E7 φ18φ2 “ ” “ ”



Thank you for your patience!


