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Over an algebraically closed field, every linear operator T: V — V ona
finite-dimensional vector space V has a most pleasant normal form:

there is a direct sum decomposition V.=V, & --- @ V; such that T = (well,
~) Ty @ - ® Ty, and each T; is a sum of a scalar and a regular (for V;)
nilpotent.

A nilpotent operator N : V — V is regular iff in some basis (ei, ..., e,) it acts
via
ep—=ey— e =0

(equivalently, there is a vector v such that v, Nv, NNv, .., N"~'v form a
basis, and N"v = 0).
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A “diletant’s thought”: the Weyl group is in this case a symmetric group,
and its conjugacy classes are also indexed by partitions! Coincidence or...?
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Idea in the simplest case is straightforward: assign to the regular nilpotent
e e o> e — 0
the regular semisimple element
N e R Ao
In a “nice” (semisimple or, more generally, reductive) Lie algebra g, an
element h is semisimple if the operator ad, = [h, —] is diagonalizable; it then

follows that for any representation g of g on a space V the operator
o(h) : V — V is diagonalizable.

The centralizer
39(h) = Ker(ad;) = {x € g |[h,x] = 0}

of such elements contains a Cartan subalgebra of g — a maximal
commutative subalgebra consisting of semisimple elements.

A semisimple element is regular if this centralizer does not contain anything
else.
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An “unusual” one (centralizer of a cyclic element)
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1952 MATEMATHMECKHF CBOPHHK T. 30 (72), Ne 2

MNonynpocteie noxanre6psl moaynpoctbix anre6p Jiu

E. B. binkun (Mocksa)

HOAYMpOCTEIX MOxaATE6p poctsix anre6p Jln* (nan,
YTO PABHOCHALHO, CBASHBIX NOMYNPOCTHIX HOATPY I OMYNPOCTHIX rpynm JIu)
BaXHO KaK AJst airebpbl, Tak W aas reomerpuu. Kak mokasaa A. H. Maab-
ues [11], k sToMy Bompocy cBoAMTCA Gosee obilas 3anaya H3YYEHUS MOLY-
NPOCTHIX Toxanre6p B Mio6kX aare6pax Jlu, 3asada O MOCTPOEHHH BCEX
anre6p Jln ¢ nanmnM pagukanom # ap. C apyroit CTOPOHHI, H3yuYeHHe

rpymm mpeo6p HO H3YUYEHHIO MIAp «CPyINa,
CTalHOHAPHAS NOATPYINNAY, OTKYJAa BHIHO 3HAYCHHe YKAa3aHHON 3amayu
JUIsl TEOMETPHH.

HccaienoBanye moAynpoCTHX NOAAATeGp B NPOH3BOALHBIX MOYTPOCTHIX
anrebpax JIn Jerko CBOAHTCH K HCCJEJOBAHHIO MOJYNPOCTHIX MOZaAretp
B mpocThx axre6pax (cm. [11]). [IpocTwie aare6pei JIn WcyepmBBaloTCs
YeTHIPbMs KMacCHyeckuMn cepuamu Ay By, Co D,** um 0ATBIO 0COGHIMH
anreGpami Eq, Eyy Eq Fyy G, Mayucnne noaympoctsix moxaarep aareops A,
PABHOCHJIBHO it TpeaCTaBaAeHUi 1Oy~
npocTsix aare6p Jlu. OCHOBHbiE pe3yJsbTaThl B STOM HANPABJEHHH GBIIH
nosyuenst . Kaprawom [16] u T. Beiiem [21]. Onucanne noxynpocthix
noxaare6p s aare6pax B,, C, u D, 66110 nano A. M. Mansuessim [11]. Yro e
Kacaetcs 0coGux anredp, To cpexn mux A. M. MaabuesbiM GhuTH H3yueHs!
amuis npocrefiman anrepa G, 1, actruno, Fy##% Mexay Tew, He ToBops
yxe 06 obuieii TEOPHH, KOTOpasd, TaAKHM 0GPA3OM, OCTAaeTCs HEe3aBePUICH-
HOfi, PemleHHE pfAA BAXHMX BOUPOCOB, OTHOCALMXCA K KJACCHYCCKHM
rpynnam JIu, Takxe 3aBHCHT OT MOCTPOEHHS MOJNHOM KiacCHbHKAlHH MOJTy-
TPOCTHX MOArPYNI OCOOGBIX TPyl
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simple Lie algebras, up to conjugacy (action of the adjoint group).

In particular, he obtained classification of subalgebras isomorphic to s((2).

“The most important Lie algebra”: basis e, f, h, brackets [e, f] = h,
[h,e] = 2e, [h,f] = —2f.

The Jacobson-Morozov theorem: for any nilpotent e € g one can find f and h
as above!

This makes classification of nilpotents up to conjugacy equivalent to the
classification of s((2)-subalgebras.



One of the many things Dynkin did

The element h corresponding to e in the s[(2)-triple (e, f,h) is called the
Dynkin characteristic of e. Eigenvalues of ad, are integers, and one obtains
the ad;-eigenspace decomposition

a= P o“,

—d<k<d

withe € g®, f € g2, h € ¢'”, and d called depth of e.

Fixing a Cartan subalgebra t, and a system of positive roots such that e is a
linear combination of positive root vectors, one can choose h from t in such
a way that values of all simple roots on it are nonnegative.
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the ad;-eigenspace decomposition

a= P o“,
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withe € g®, f € g2, h € ¢'”, and d called depth of e.

Fixing a Cartan subalgebra t, and a system of positive roots such that e is a
linear combination of positive root vectors, one can choose h from t in such
a way that values of all simple roots on it are nonnegative. It is then
determined by these values, which can only be 0, 1 or 2.



Reminder

Brief recall — roots of a semisimple Lie algebra g with chosen Cartan
subalgebra t are elements of the dual space t*, i. e. linear forms « on t such
that there is an x € g with
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For each root «, the space g, of all x as above is 1-dimensional, and its
nonzero elements are called root vectors.
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Brief recall — roots of a semisimple Lie algebra g with chosen Cartan
subalgebra t are elements of the dual space t*, i. e. linear forms « on t such
that there is an x € g with

Vh et [h,x] = a(h)x.

For each root «, the space g, of all x as above is 1-dimensional, and its
nonzero elements are called root vectors.

In other words, ad restricted to t splits g into the sum of 1-dimensional
representations g, and t itself.

The Killing form
(x,y) = trace(ady o ady)

pairs g with g_,, all other ga, gs being mutually orthogonal.
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positive roots is positive — determines simple roots, those positive ones
which are not sums of other positives.



Reminder

The Killing form is nonsingular on t, so induces an isomorphism t = t*, and
a nonsingular bilinear form on t*.

The Weyl group W, originally defined as the quotient N(T)/T of the
normalizer of the maximal torus T C G of the adjoint group G by T, or as
well as the quotient N(t)/Z(t) of the normalizer of t in G by its centralizer,
is isomorphic to the subgroup of the isometries of the root system
generated by all reflections in the roots, s, (8) = 8 — 2422 o

(a,0) 7

Choice of positive roots — one half of the roots, in such a way that a sum of
positive roots is positive — determines simple roots, those positive ones
which are not sums of other positives.

Simple roots form a basis of t*, and W is already generated by reflections in
them only. Their Gram matrix with respect to (—, —) is encoded in the
famous Dynkin diagram which determines the isomorphism type of g.
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One of the many things Dynkin did

The weighted Dynkin diagram of e is the Dynkin diagram of g, with values
of simple roots on its characteristic indicated. It determines uniquely the
conjugacy class of ¢, as well as of the corresponding s[(2)-subalgebra of g.
The weighted Dynkin diagram of a regular nilpotent has all 2-s on it.

For example, is the wDd of a regular nilpotent in so(11)
(type Bs).

The “next general” after the regular ones are the subregular nilpotents;

@
e.g. is the wDd for the subregular nilpotent in the

simple algebra of type Es.

The “least general” (or “most degenerate”) nilpotents are the single root
vectors:

©
e g is the wDd of a root vector in so(12) (type D).
©
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THE PRINCIPAL THREE.-DIMENSIONAL SUBGROUP AND THE
BETTI NUMBERS OF A COMPLEX SIMPLE LIE GROUP.**

By BErTRAM KOSTANT.

1. Introduction.

1. Let g be a complex simple Lie algebra and let G be the adjoint group
of g. It is by now classical that the Poincaré polynomial pg(¢) of G factors
into the form,

@11 po(t) =11 (1 + ),

where ! is the rank of g and the d; are odd integers. In this paper the
integers m; (elsewhere, sometimes m; -+ 1) defined by d;=2m;+ 1 will be
called the exponents of 8. No doubt one of the reasons the problem of finding
the exponents turned out to be as difficult as it was, is that there was no way
known by which these numbers could be determined from a direct examina-
tion of the structure of g, particularly the root structure. The first procedure
for extracting the exponents from the root structure of g was found by R.
Bott. The proof of the validity of this procedure depends upon Morse
theory.? A second and much simpler way, which we shall presently describe,
of “reading off ” the exponents from the root structure of g was discovered
by Arnold Shapiro. (It is interesting that Shapiro discovered the procedure
by misinterpreting the method of Bott.) However, even though one verifies
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Kostant was first to introduce and use cyclic elements. He showed that if e is
regular nilpotent in a simple g then e + F is regular semisimple for any
nonzero F € g(f"”.

Grading, as above, is with respect to the characteristic of ¢; in this case g("”
is one-dimensional.
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Kostant was first to introduce and use cyclic elements. He showed that if e is
regular nilpotent in a simple g then e + F is regular semisimple for any
nonzero F € g(f"”.

Grading, as above, is with respect to the characteristic of ¢; in this case g("”
is one-dimensional.

Studying the corresponding SL(2)-subgroup in the adjoint group G he found
a transparent description of fundamental invariants for the adjoint action; in
particular, of their degrees, which coincide with the Betti numbers of G.

A simple G has the same cohomology as a product of odd-dimensional
spheres, but is not in general homotopy equivalent to it; note that SL(2)
(over C) is homotopy equivalent to the 3-dimensional sphere. Its maximal
compact subgroup SU(2) is a 3-sphere.
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Inventiones math. 25, 159 —198 (1974)
© by Springer-Verlag 1974

Regular Elements of Finite Reflection Groups
T.A.Springer (Utrecht)

Introduction

If G is a finite reflection group in a finite dimensional vector space V
then veV is called regular if no nonidentity element of G fixes v. An
element geG is regular if it has a regular eigenvector (a familiar example
of such an element is a Coxeter element in a Weyl group). The main
theme of this paper is the study of the properties and applications of the
regular elements. A review of the contents follows.
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The space g~ is also one-dimensional for subregular nilpotents.

Springer proved that, and exhibited several further examples of
distinguished nilpotents e with regular semisimple cyclic elements e + F.

A nilpotent is distinguished if its centralizer in g only contains nilpotent
elements, no semisimple ones.

These might already have more than one-dimensional g%, in general.

Both Kostant and Springer provided a way to assign to a nilpotent a
conjugacy class in the Weyl group W.
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CEPUS
MATEMATHYECKAS
“TOM 40, Ne 3, 1976

VIIK 519.4

3. b. BUHBEPT
TPYNNA BEHJISI TPALYUPOBAHHON AJITEBPbI JIH

Poan rpynnst Beiias B Teopru noaynpoctsix anre6p Jlu cocTont B TOM,
WTO OHA ONHCHIBAeT SKBHBAJEHTHOCTb 3/1€MEHTOB KapTaHOBCKOMH mojanreG-
DBl OTHOCHTEbHO NPHCOCTHHEHHOM TPYNNEL. (3aMeTHM, 4T ANPHOPH Hesc-
HO, UTO 372 SKBHBANCHTHOCTb AOJIKHA ONKCHBATHCA KAKOH-TO rpyNmOf, Aeit-
creyioweli B Kapranosckofi nomaareGpe.) [Ipymna Beins noaynpoctoi
anreSpst Jn Ghiaa Bnepsbie pacesotpena I'. Beitiem () B 1925 1. 3. Kap-
TaH B nocaeaylomux pagorax (%), (*) ycraHoBua ee BaxHefiune cBoilcTBa.

r. 3. Kapran (*) pacnpocrpanun nomstie rpymmst Beiuis na
CHMMeTpHUECKHE TIpoCTpaHCTBa. KOMIIEKCHOE CHMMETDHYECKOE MpOCTpaH-
crB0 noaynpoctoit rpynnet JIn G ¢ JIOKAJAbHOM TOYKH 3PEHHS €CTb HE 4TO
nuoe, Kak aare6pa JIu g, rPajyHpOBAHHAA TO MOAYMO 2: g=g,+g, (rae
0,1 — Bruets 1o Mozymo 2). Ero Kapranosckas nojanre6pa ectb nompo-
CTPAHCTBO (Cg,, COCTORLEE H3 KOMMYTHPYIOLIHX MEXKIY COGOH NOMYNPOCTHIX
saeMeNToB 1 067IajaoNee TeM CBOMCTBOM, UTO BCAKHMI NOAYNPOCTOf aJe-
MEHT 43 , SKBUBAIEHTEH S/IEMEHTY U3 € OTHOCHTEABHO TOATPYNMH Go=G,
cooTBeTcTBYlOUlel nofanreGpe §,.C-g W AeAcTBylOUleli B §, €CTECTBEHHBIM
o6pasom. (Onpeseasiemast STHM AefCTBHeM JuHelHas rpynna ectb «rpynna
H3OTPONHK» CHMMETpHUECKOro npocTpanctsa.) I'pynna Beitas cuvverpiie-
CKOFO npoCTpalCTBA CCTh KoHeunas ameitias rpynma W, feiicrsyiomas B
¢ 1 obJrajaioutas TeM CBOMICTBOM, UTO JBA JEMEHTA H3 ¢ SKBHBAJEHTHH OT-
HocHTebHo G, TOLAA H TOALKO TOTAA, KOIAA OKH SKBHBAJCHTHH OTHOCH-

TebHO

B nacrosiueli paGoTe TOHATHS KapTaHOBCKO! MOXAAreGpH W rpymmei
Beitis pacnp Ha TIOMYNpOCTHI aareGpt JIn, rpa-
AyMpoBAKNHE TO MOGOMY MOYIO m:g=guteit .. +oms (0 1, ...



Vinberg, 1976
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The Z-grading (g")_s<i<q can be, for each natural m, wrapped around to
obtain a Z/mZ-grading, with

(1 mod m) @ g

j=imodm

More generally, any cyclic grading defines an automorphism of finite order
0 of g; such automorphisms have been classified by Kac, shortly before
Vinberg’s paper.

Vinberg investigated representations of the algebra g ™™ and the
G(o mod m)

(i mod m)

corresponding group on the spaces g

He discovered that these representations share many of the pleasant
properties with the adjoint representations. This is the content of his theory
of theta-groups.
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Vinberg, 1976

Vinberg in particular showed that for each g ™™ there is a Cartan
subspace t' ™4™ and the small Weyl group W ™4™ acting on it, obeying
the analog of the Chevalley restriction theorem: just as the restriction map

Clg]® — C["

provides an isomorphism between G-invariants of g and W-invariants of t,
the same is true for the theta-group:

. (0 mod m) : i mod m
(C[g(z modm)]G 0 N C[t(t mod m)]W( )

is an isomorphism.

The Cartan subspaces /™4™ C glimedm) a55emble together into a Cartan
subalgebra of g, of the “unusual” kind I showed before for the sl case.

In “our” situation, if we choose to wrap modulo m = d + 2 so that
2 mod m = —d mod m, then e and F fall into the same Z/mZ-graded piece; if
e + F is semisimple, it belongs to a Cartan subspace there.
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ABSTRACT

We study the space of Iwahori subalgebras containing a given element of a

semisimple Lie algebra over €((e)). We also define and study a map from
inasemisimple L inthe

Weyl group.
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§0. Introduction

Let G be a semisimple, simply connected algebraic group over C with Lic
algebra g. We denotc by 4 the variety of Borel subalgebras of g, For any
nilpotent element Ny € g, we consider the closcd subvariety @y, of # consisting
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Kazhdan and Lusztig assigned a conjugacy class in W to any nilpotent e.
(Source: CIITYMETY)
The case g = sl(n):

For a nilpotent e € g, generic a,,a,, ... € g and a scalar ¢,
ei=et+aetae +---

is a regular semisimple element of g.
Finding eigenvalues of ad; one will encounter roots of various degrees /.

Clearly one such degree k (LCM of all degrees encountered) will suffice.


https://archives.ust.hk/dspace/handle/9999/36219

David Kazhdan and George Lusztig, 1988

Eigenvalues of ad; will be certain (rational) functions X;({/¢) of this root.

If we would pick another one, i. e. multiply /z by some kth root of unity
¢ = ¥1, this would produce these ); in a different order, i. e. there is a
permutation o with

Ai(CVe) = Aoy (Ve).

This o determines the element of the Weyl group that Kazhdan and Lusztig
assign to e.
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CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
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Abstract. We develop a theory of cyclic elements in semisimple Lie alzebras. This
notion was introduced by Kestant, who associated a cyclic clement with the principal
nilpotent and proved that it is regular semisimple. In particular, we classfiy all nilpotents
giving rise to semisimple and regular semisimple cyclic elements. As an application, we
obtain an explicit construction of all regular clements in Weyl groups.

0. Introduction

Let g be  senisimple fntc-dimensional Liealgebea overan algcbraielly cosed
field F of characteristic 0 and let e be a non-zero nilpotent element of g
the Morozov-Jacobson theorem, the element e can be included in an e anle
5= {e,h, f}, 5o that [e, f] = h, [h,¢] = 2e, [k, f] = ~2f. Then the eigenspace
decomposition of g with respect to ad A is a Z-grading of g
a

9= G) o (0.1)

whee g4 # 0. The positiv nteger d s cnled the deptof s Z-gradin, and of
the nilpotent element e. This notion was previously studied, e.g. in [P1].

An element of g of the form ¢-+ F, where F' is a non-zero clement ufﬂ,ﬂ, is called
a cyclic element, associated to . In [K1] Kostant proved that any cyclic element,
associated to a principal (= regular) nilpotent element e, is regular semisimple,
and in [S] Springer proved that any cyclic element, associated to a subregular
nilpotent element of a simple exceptional Lie algebra, is regular semisimple as
well, and, moreover, found two more distinguished nilpotent conjugacy classes in
Es with the same property. Both Kostant and Springer use this property in order
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Cyclic elements - so(4k), partition [2k + 1,2k — 1]

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
Ko —— Xy ——> — X ——— Xg —> X| ——> — X1 ——> Xk
Pkttt Yl > Yo s Pl > ——s Y
e e e e e e



Cyclic elements - so(4k), partition [2k + 1,2k — 1]

The cyclic element e + A\ F1 + A\.F, loses semisimplicity when either A, = 0 or A\, = £A;:

F
[ \ .
Ve b & & & & FP L TP Y AV A A A
L LS S SN S L SN AL ¥ \ \ \
t oy < t t
RN U P S A
Pkttt Yl > Yo s Pl > ——s Y ko k= ’
e e e e e e







Cyclic elements - semisimplicity loss

THE CASE Cy, PARTITION [4,4)

Y0l T T semisimple
mized
X=0
e nilpotent
. oemsemst (principal)
- ) s semisimple
mived Y? = X7 i ssems- (not regular)
semem—- nilpotent
s> (principal)
Z=0
mived ¥



Algebra structure on g(~%)

Given x,y € g"=%, define

xxy = [ad(x),y].



Algebra structure on g(~%)

Given x,y € g"=%, define

xxy = [ad(x),y].

As it turns out, if there are semisimple cyclic elements at all, then d must be
even, and then e + F loses semisimplicity iff F belongs to some proper
subalgebra of (g(=% #).



Irreducible nilpotent elements of semisimple type

For all irreducible nilpotent elements, (g%, ) is a commutative algebra
“6x(n) generated by pu, ..., p» with defining relations p} = p;, i = 1, ...,n, and

pivi=ANpi+p), i#]

The singular set of g~% coincides with the union of all proper subalgebras
of this algebra.

For classical algebras:

g partition \ depth \ rank \ Z(s)|g<*d) ‘ (g(fd)j %)
sl(2k + 1) [2k 4 1] 4k 1 1 )
sp(2k) 2 [s-2] 1 1
s0(2k +1) 2k +1] | 4k —2 1 1 1
so(4k +4)  [2k+3,2k+1] | 4k +2 2 1 € _(2)




Irreducible nilpotent elements of semisimple type

For exceptional algebras:

g weighted Dynkin diagram | label depth | rank Z(s)|g"? | (gD, %)
E¢ O-0 g ®-® | Es(a:) 16 1 1 1
E; E; 34 1 1 1
E7 E;(a1) 26 1 1 1
E7 E7(as) 10 3 o3®1 | 6..(3)
Es Es 58 1 1 1
Es Eg(a1) 46 1 1 1
Eg Eg(az) 38 1 1 1
Es Es(ay) 28 1 1 1
Es Es(as) 22 2 0, D1 (67%(2)
Es Es(as) 18 2 o3 6-1(2)
Es Eg(az7) 10 4 o5 | 61 (4)
F, F, 22 1 1 1
F, F,(az) 10 2 o, ®1 &67%(2)
G, O=0 G, 10 1 1 1




Irreducible nilpotent elements of semisimple type — examples

©
E;, diagram , dim(g(~?) = 3, algebra 6 _

2-dimensional subalgebras.

(3) has six

1
3

Image of the singular set in the projective plane: union of six lines.

X2 = X1 +X3

X1 = X3

X, = WX1 +LUX3

X7 = WX1 +(DX3




Irreducible nilpotent elements of semisimple type — examples

©
Es, diagram , dim(g(~%) = 4, algebra 6_1(4) has ten

3-dimensional subalgebras.
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©
Es, diagram , dim(g(~?) = 4, algebra 6_1(4) has ten

3-dimensional subalgebras.

Image of the singular set in the projective 3-space: union of ten planes.




Irreducible nilpotent elements of semisimple type — examples

©
Es, diagram , dim(g(~%) = 4, algebra 6_1(4) has ten

3-dimensional subalgebras.

Image of the singular set in the projective 3-space: union of ten planes.
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The identity
((ab)c — a(bc))d — ((ad)c — a(dc))b = (ab)(cd) — (ad)(bc)

is satisfied. It implies



The algebra structure on g(~% for irreducible nilpotents

This structure is very strange. It resembles Jordan algebra structure but is
different.

The identity
(ab)c — a(be))d — ((ad)c — a(de))b = (ab)(cd) — (ad)(b)
is satisfied. It implies
[La,Lp]Lc + [Lp,Lc]La + [Le, La]Ly, = 0
where L,(b) := a x b. Whereas the Jordan identity is

[LH,L;,C] + [Lh,Lm] + [L,;,Lah] = 0.
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With Kac, we constructed a decomposition of each nilpotent e as follows:
first, replace g with the even part of the grading g* := @, g'*;
generate subalgebra q by e and some Cartan subspace ¢ of g*;

represent e as e° + ¢" with e° € [q, q] and e" in the center of g; (as it happens,
this center is in fact 1-dimensional).

put e° aside;
replace e with e" and g with the derived subalgebra of the centralizer of q in
9

repeat.



Our map vs. Kazhdan-Lusztig

With Kac, we constructed a decomposition of each nilpotent e as follows:
first, replace g with the even part of the grading g* := @, g'*;
generate subalgebra q by e and some Cartan subspace ¢ of g*;

represent e as e° + ¢" with e° € [q, q] and e" in the center of g; (as it happens,
this center is in fact 1-dimensional).

put e° aside;

replace e with e" and g with the derived subalgebra of the centralizer of q in
9

repeat.

On each stage, ¢’ is irreducible in its [q, q], and we know that assigning to it

the conjugacy class of W determined by its cyclic element agrees with the
Kazhdan-Lusztig map.




Our map vs.

Kazhdan-Lusztig: the E; case

Orbit Spaltentein our map Lusztig map
Bala-Carter (Dynkin) _d__normal form | embedding Carter char. pol. | Carter char. pol. fibre
A 2 ]C, regular A 6265 B B
2A, 2 2C, regular 2A, EHE “ 7
GA) 2 | (3C) regular GBA) B 7
(3A))" 3 | (3¢)" regular 1 (3A1)" oot (4A))", (3A1)"
4A 3 | 4G regular [¢7] (4A1) o101 7As, 6A1, 54y, (4A1)
A A Tegular 6367 B A 7
At A +C, | regular 626204 “ L
A; +2A, +2C, | regular 6102067 “ L
+3C, | regular 610301 “ L
AES regular o7 [— 7
5 [2A;, 1 C | regular 5700 28, T A 3A;, 2R T A
§C Tolding of A, 5 610207 [—
+Cy wregular || (As+2A)" | 04000} (A +A) (A5 +2A)", (As +A)"
+Cy wregular || (As+A) | du0i0} [ (As+A)
+2C, «regular || A +3A, 040800 (As+2A) | dudiel As + 345, (A +2A)
§ | Dalan) Tegular Da(ar) 07 - - 7
+Cy | regular Dya) + A | 7661 “ “ »
(=Dy) +24) +2C, | regular Bidi “ N Dy(ay) + 21, A +
A+ Ax + Au(= Dylar) + 3A) +(3C.)" | regular 010} “ | ” 285 + A, A+ As A
A 5 A Tegular G507 ™ i
Ayt A +C, | regular Gy6267 “ »
At A + A, | regular f56361 [
D, 0 ]G, Tolding of D; G630 v
Dy + A +Ci + regular [#se3] P63t Dy +3A:, D, + 24, D, + Ay
Ds(as) (=D, +2A) +2C, + regular dotutnd} Gedi Ds(a)
Ds(a;) + A (=D, +3A) +(3C1)" + regular Dedsdin D603 Ds(a) + A
A7 0] C Tolding of A; Ge0 0301 Fobrr0 BT AT
A7 0] G Tolding of A; Gors0207 B 7
A5+ A, (=(As+A) +Cy + regular [p603¢21 Deb305 61 As + Az, (As +A)'
Ds(az) 10 | De(az) Tegular BEi BE) Ds(az) + Ar, De(az)
Eola;) (B +A)) | 10 | Fa(a) Tolding of Es bt E E §
E:(as) De(az) + A7) | 10 | Er(as) Tegular 5302 = i —
A 7 [ A Tegular B3 E i —
D, % | B Tolding of D G50207 B ”
Ds + A +C + regular dadidn “ ”
De(ay) +C +1V; Dadudn Ds
E7(a;) (= Ds(a) + A1) +Cl+Cy | +IVi,cE, + regular Padudz Ds + Ar
) 16 | Eola) Tegular Go0r = ”
3 8| B; Tolding of Ds B10dd D5 Frodion Ds + A, Ds
E;(as) (=Ds +A) +C + regular dudes: || Ds+ A Hr063
Es 22 | folding of Eg D120301 T
Er(az) +Cy <1V Sr2dede « P—
(@) 76 | E(a) Tegular Gudn “ —
Er 3% | Er regular P10z —




Thank you for your patience!



