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Let (g,[—,—] : g® g — g) be a finite-dimensional Lie
algebra over, say, the field of complex numbers C.

Denote by g* the space of all C-linear forms ¢ : g — C.

Using the bracket, one may assign to every ¢ € g* an
operator, “the coboundary of ¢”,

de:g—g", do(a) = pla, —].

The index of g is the smallest possible dimension, for
various ¢, of the null space of the operator de.

If there is a ¢ such that dy is invertible (i. e. index of g
is zero), g is called Frobenius.
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of view of representation theory and differential
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Why do we even care?

Frobenius Lie algebras are interesting from the point
of view of representation theory and differential
geometry, for various reasons.

For physicists, they are interesting because each such
algebra provides a constant solution of the classical
Yang-Baxter equation cYBe.

Suppose dy : g — g* is invertible. Choose a basis
(by,...,by) in g, and let (b!,...,b") be its dual basis in g*.

Then
n .
ri=> biA(de) ' (b)) =) ryb;Abj e Ag
i=1 ij
satisfies cYBe.
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So what?

Very roughly, if r as above satisfies cYBe, then it is a
linear term of an element R € U(g)[t] ® U(g)[t] of a
formal power series over the tensor square of the
universal enveloping algebra of g, which satisfies

Reo1D1®R)((R®1) =(12R)(Re1)(12R).
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Very roughly, if r as above satisfies cYBe, then it is a
linear term of an element R € U(g)[t] ® U(g)[t] of a
formal power series over the tensor square of the
universal enveloping algebra of g, which satisfies

Reo1D1®R)((R®1) =(12R)(Re1)(12R).

Such an element (R-matrix) can be used to construct
representations of braid groups on tensor powers of
U(g)[t] that are not in general reducible to
representations of symmetric groups.

This in turn can be used to construct, among other
things, invariants of knots and links with values in
g-modules.

4/49



So what?

Even more sketchily, R:A®A — A®A as above can be
used to describe “a pair of particles that exchange
places”.
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Even more sketchily, R:A®A — A®A as above can be
used to describe “a pair of particles that exchange
places”.

And, if the composite R o R is not identity, this can be
used to “store information about ongoing place
exchanges”. That is, to upgrade representations of
symmetric groups to representations of braid groups.
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An unexplored generalization

Side note: dy is indeed the coboundary of ¢, in the
Chevalley-Eilenberg complex

C*(g;9") = (Hom(A%g,g%),d)

of g with coefficients in the g-module g*.
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Side note: dy is indeed the coboundary of ¢, in the
Chevalley-Eilenberg complex

C*(g;9") = (Hom(A%g,g%),d)

of g with coefficients in the g-module g*.

As Drinfeld noted back in 80ies, all of the above works
more generally with, in place of dy, any d-cocycle in
Hom(g, g*) which happens to be an invertible linear
map. This is a generalization of the Frobenius
condition, don’t know if anybody has studied it.
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Index — examples

Trivial example: if g is abelian, i. e. the bracket is
identically zero, then index = dimension.
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Trivial example: if g is abelian, i. e. the bracket is
identically zero, then index = dimension.

On the other hand, if g is semisimple, i. e. its Killing
form is nonsingular, then we get a dictionary between
g and g*. Under this dictionary, to generic forms ¢ € g*
correspond generic elements h € g which are regular
semisimple - that is, [h,—| : g — g is diagonalizable and
of maximal possible rank, and to the null spaces of the
dy correspond centralizers of these h.

But centralizers of regular semisimple elements are
precisely Cartan subalgebras, so that for semisimple g,
index = rank.
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So where are Frobenius Lie algebras?

Thus the Frobenius Lie algebras, if they exist, must lie
somewhere between these two extremes — abelian vs
semisimple, none of which can be Frobenius.
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So where are Frobenius Lie algebras?

Thus the Frobenius Lie algebras, if they exist, must lie
somewhere between these two extremes — abelian vs
semisimple, none of which can be Frobenius.

In fact, a Lie algebra g with nonzero center also cannot
be Frobenius, since the center is included in the null
space of dy for any ¢ € g*.
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The smallest Frobenius Lie algebra

The 2-dimensional solvable Lie algebra g with the basis
h, n and bracket [h, n] = n is Frobenius.

9/49



The smallest Frobenius Lie algebra

The 2-dimensional solvable Lie algebra g with the basis
h, n and bracket [h, n] = n is Frobenius.

Indeed take ¢ € g* with p(h) =0, ¢(n) = 1. Then,
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The smallest Frobenius Lie algebra

The 2-dimensional solvable Lie algebra g with the basis
h, n and bracket [h, n] = n is Frobenius.

Indeed take ¢ € g* with ¢(h) =0, ¢(n) = 1. Then,

do(h) = ¢, while dp(n) = ¢’ is given by ¢'(h) = —1,

¢'(n) = 0. Clearly then the image of dy spans the whole
g*, i. e. dy has zero null space.

9/49



Index of a Lie algebra, conceptually

Fact: index = corank of the bracket table.
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Index of a Lie algebra, conceptually
Fact: index = corank of the bracket table.

More precisely — choose any basis (b, ...,b,) of g; the
bracket acquires structure constants in this basis,

[bi, bj] = 3= clibi.

Form a matrix over the field of rational functions
C(X1, ..., Xn), With >, cg.xk at the (i,j)-th place.

The index of g is n minus rank of this matrix.
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Example: sl,

For the algebra sl, of traceless 2 x 2-matrices, choose
this basis: e, f, h with [e,f] = h, [h,e] = 2e, [h,f] = —2f.
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Example: sl,

For the algebra sl, of traceless 2 x 2-matrices, choose
this basis: e, f, h with [e,f] = h, [h,e] = 2e, [h,f] = —2f.

The corresponding matrix over C(xe, X¢, Xp) is

[ e )

@] 0  xp

f) | —xn 0
(h) | 2xe —2x¢

Rank of this matrix is 2, so the indexis 3 -2 =1.
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Example: sp,
This approach is conceptually brilliant, but impractical.

Another example - the simple Lie algebra sp, of type
C,, of symplectic 4 x 4-matrices, is 10-dimensional.
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Example: sp,

This approach is conceptually brilliant, but impractical.

Another example - the simple Lie algebra sp, of type
C,, of symplectic 4 x 4-matrices, is 10-dimensional.

Choosing a basis, we get the matrix

0 X3 0 0 Xg 0 —X¢ 0 —2x;
—X3 0 —2Xy 0 0 X10 2X5 X7 X3
0 2X4 0 0 —X2 2X1  2X9 + X190 —Xe —X3

0 0 0 0 0 X3 —X2 X9 + X10 0
—Xg 0 X2 0 0 —X7 0 0 2X5
0 —Xi1o —2X1 —X3 X7 0 2Xg 0 —Xe6

X6 —2X5 —2X9 — X0 X3 0 —2xg 0 0 X7

0 —X7 X6 —Xg9 — X10 0 0 0 0 0

2X1 —X2 X3 0 —2x5 X6 —X7 0 0
—2X1 2Xo 0 2X4 2X5 —2Xg 0 —2Xg 0

Its rank is 8, so index is 2, but...

To compute the index this way, we sort of need to
already know everything about our algebra.
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Random approach

Fact: those ¢ which achieve the index form a Zariski
dense subset of g*.

This means that if we pick some ¢ at random, then
dimension of the null space of dy : g — g* will be equal
to the index of g.
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Fact: those ¢ which achieve the index form a Zariski
dense subset of g*.

This means that if we pick some ¢ at random, then
dimension of the null space of dy : g — g* will be equal
to the index of g.

It actually works: Willem de Graaf gave us a small
program in GAP, very efficient, even for very large
algebras, which does just this. It picks random ¢ five
times, and everytime we used the program, all five
results are equal. Hopefully they always give correct
answer.

But who knows? Besides, this is a typical black box,
you cannot prove any theorems with it.
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Paradox of canonical forms

This is a typical situation in this kind of science: the
objects that we seek are ubiquitous — any randomly
chosen one has the properties that we need.
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Paradox of canonical forms

This is a typical situation in this kind of science: the

objects that we seek are ubiquitous — any randomly

chosen one has the properties that we need. That is,

for any randomly chosen ¢ € g*, dimension of the null
space of dy is equal to the index of g.

This very fact makes it difficult to find at least one such
explicitly described . What we actually need is a ¢
which is at the same time generic and very special
(most economic) among all generic ones!
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Paradox of canonical forms

Such paradoxical combination of properties has been
realized by Dergachyov and Kirillov in 2000 on a
particularly interesting class of Lie algebras — the so
called seaweed Lie algebras, or biparabolic
subalgebras of standard simple Lie algebras.
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Paradox of canonical forms

Such paradoxical combination of properties has been
realized by Dergachyov and Kirillov in 2000 on a
particularly interesting class of Lie algebras — the so
called seaweed Lie algebras, or biparabolic
subalgebras of standard simple Lie algebras.

The story seems to originate with an earlier result by
Elashvili.
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Frobenius Lie algebras — examples

The maximal parabolic subalgebras pz;7q), Pip.a) in sly,

p + q = n, are made of traceless matrices with the zero
lower left p x q (resp. upper right q x p) corner.
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Frobenius Lie algebras — examples

Elashvili computed the index of pfb o 1tis ged(p. q) - 1.

We so get a Frobenius algebra when p and q are
mutually coprime.

For example, p(z 3) consists of matrices of the form

* ok ok k% Kk
* ok ok ok %k ok
¥ ok ok ok % %k ok
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Frobenius Lie algebras — examples

What about more general parabolic subalgebras

+ ?
p(01,027---,ak) ’

For example, p(+4 3) consists of matrices of the form
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Frobenius Lie algebras — examples

What about more general parabolic subalgebras

+ ?
p(01,027---,ak) ’

It turns out that gcd(a,, as, ...,ax) = 1 is necessary but
not sufficient; while gcd(a;,aj) =1, 1 <i<j<Kkis
neither necessary nor sufficient.

a;
as
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Theorem of Dergachyov and Kirillov

Dergachyov and Kirillov gave beautiful expression for
the index of p?zl
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Dergachyov and Kirillov gave beautiful expression for
the index of pa ) and, more generally, of biparabolic
subalgebras by, q.b,.. b, = p&l a) " Pbr by

----------

x % x *x % 0 0 O
* % % % % 0 0 O
0 0 % % % 0 0 O
0 0 x x x 0 0 O
0 0 % «x—% 0 0 O
0 0 % % x % *x x
0 00 00 0 K =«
0 00 0 0 0 %

The obtained picture consists of 3 cycles
= the algebra b; 42,5 3 has index 3.
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Proof idea — genericity paradox at work

It turns out that, for a form to be generic, it suffices for
it to detect values at some crucial spots in the matrix.
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Proof idea — genericity paradox at work

It turns out that, for a form to be generic, it suffices for
it to detect values at some crucial spots in the matrix.

OO*****@
OO ¥ OO O OO
@**ooooo
**®ooooo

oooooo@*
oo*@* *@*

cCooc o oo ¥ %
OO@*****

So the needed form ¢ just picks the matrix entry values
at these spots.

18/49



Switching to meanders
Instead of angular lines, one can also work with
meanders of special kind:
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Which of these two graphs is connected?

R
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Which of these two graphs is connected?

Y
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Meanders

375

SUR UN THEOREME DE GEOMETRIE.

Par M. H. Poincaré (Paris).

Adunanza del 10 marzo 1912.

§r
INnTrRODUCTION.
Je n’ai jamais présenté au public un travail aussi inachevé; je crois donc nécessaire

d’expliquer en quelques mots les raisons qui m’ont déterminé & le publier, et d’abord
celles qui m’avaient engagé A lentreprendre. J’ai démontré, il y a longtemps déja,
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Rendiconti del Circolo matematico di Palermo, 33, 1912, 375-407
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Meanders

390 H. POINCARE

nous rencontrons successivement en parcourant I'horizontale x = ¢ depuis y = — «
jusqud y = -} o0,

Si dans cette suite prolongée nous considérons les numéros qui correspondent aux
extrémités des arcs primaires extérieurs, ces numéros se suivront dans l'ordre numéri-
que croissant.

5° La différence des numéros des deux extrémités d’un arc primaire (et a fortiori
d’un arc quelconque) est au plus égale 4 m — 1.

Le rang d’un point d’intersection sera par définition la place qu’occupe son numéro
dans Ja suite (1). Ce qui caractérise un arc ultime, c’est que les rangs de ses deux
extrémités sont constcutifs, ainsi que leurs numéros. Ce qui caractérise la distribution
normale, c’est que les rangs se suivent dans le méme ordre que les numiros, et que
Pon peut toujours s’arranger pour que le rang d’un point soit égal & son numéro.

(Fig. 1).
On se rendra mieux compte de ce qui précéde ea se reportant 4 la figure 1; sur
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Meanders

A BRANCHED COVERING OF CP®—§* , HYPERROLICITY AND PROJECTIVITY TOPOLOGY

V. I. Arnol'd UDC 514.755

In a 1971 paper on the topology of real algebraic curves [1], I used as a known and
obvious fact that the quotient space of the complex projective plane CP* with respect to the
involution of complex conjugation is diffeomorphic to the four-dimensional sphere S*.

From Kreck's report at the topology conference in Baku (1987), I learned that this fact,
used in the contemporary differential topology of four-dimensional manifolds, is now known
as the Kuiper —Massey theorem, since the proof mentioned by Kuiper in [2] establishes only a
homeomorphism and piecewise-linear equivalence of the quotient to the four-dimensional sphere,
whereas the proof of a diffeomorphism "is considerably more complex and relies on the general
theory of smoothing of four dimensional manifolds."

Since my original proof is completely elementary and establishes at once a diffeomor-
phism of the quotient to the four-dimensional sphere, I decided to publish it here. The proof
is based on a quite unexpected connection between the involution of complex conjugation and
the geometry of hyperbolic polynomials, i.e., the principal symbols of hyperbolic equations
with partial derivatives.

And, specifically, the sphericity of the quotient is a particular case of a more gen-
eral fact: the components of the intersection of the characteristic cone of a hyperbolic equa-
tion with a sphere centered at the origin which correspond to successive waves, first, sec-
ond, etc., are homeomorphic to spheres and possess specific characteristics of convexity. In
particular, the first wave corresponds to the convex component, and this simple general fact
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B. H. Apronbp, “Pa3BeTBIIeHHOE HAaKPHITHE CcP? - S4, TUNepOOIUYHOCTE ¥ IPOEKTUBHAS
Tomomorusi”, Cub. mat. %., 29:5 (1988), 36-47
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Meanders

N

—H~

N

42345

Fig. 1. Signs of the
arcs of a meander in
the plane.

ﬁ,

D

o

—_—
- ~—

Ms=8

Meandering permutations on five elements.

Fig. 2.

Now consider a meander in the projective plane RP* with a fixed oriented line RP*
define the sign of an arc, we pass to a covering sphere.

To

The line is doubly covered by an
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Meanders

not allowed in our case!

not allowed in our case!
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Enumeration, asymptotics

n M,
1 1
2 2
3 8
4 42
5 262
6 1828
7 1380
8 110954
9 933458
10 8152860
11 73424650

12 678390116
13 6405031050
14 61606881612
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Enumeration, asymptotics

n Mj, L,
1 1 1
2 2 2
3 8 6
4 42 14
5 262 34
6 1828 68
7 1380 150
8 110954 296
9 933458 586
10 8152860 1140
11 73424650 2182

12 678390116 4130
13 6405031050 7678
14 61606881612 14368
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Enumeration, asymptotics

n Mj, L,
1 1 1
2 2 2
3 8 6
4 42 14
5 262 34
6 1828 68
7 1380 150
8 110954 296
9 933458 586
10 8152860 1140
11 73424650 2182

12 678390116 4130
13 6405031050 7678
14 61606881612 14368

My ~ (12.26..)" Ly ~ (1.748648...)"
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Enumeration, asymptotics

n=4:

G ™ Gv an
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Enumeration, asymptotics

n=4:

G ™ Gv an

n=>s:

@@ B 6V R v ev O an

105
106
107
108
109
110
111

248742274995715373879042070
434962771573005719770576034
760597063369550445571334010
1330016842349701088401439208
2325732108141510145312701272
4066887817970878716400628884
7111557640719424745330990326
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Enumeration — Panyushev’s algorithm
Number of connected components for
(ay,...,ax; b1, ...,b;) is the same as for

(d—-r,r,as,...,ax; bs,...,b;), where d = a; — b, and r is the
residue of b; modulo d
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Enumeration — Panyushev’s algorithm
Number of connected components for
(ay,...,ax; b1, ...,b;) is the same as for

(d—-r,r,as,...,ax; bs,...,b;), where d = a; — b, and r is the
residue of b; modulo d:

a;=3d+r=3(d-r)+4r

by=2d+r=2(d-r)+3r
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Step zero - indecomposability
Number of all pairs (ay, ..., ax; by, ..., by) with
a+..+ax=bi+..+b,=nisA(n) =271 x 2"t =4n-1,

SO q
n__ .
n>1
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0-decomposition:
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Number of all pairs (ay, ..., ax; by, ..., by) with
a+..+ax=bi+..+b,=nisA(n) =271 x 2"t =4n-1,

SO q
n__ .
n>1

0-decomposition:
A pair (ay, ...,ax; by, ...,by) is 0-indecomposable iff

a + ...+ a; = by + ... + b; implies eitheri =j=0ori =k,
j=".
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Step zero - indecomposability
Number of all pairs (ay, ..., ax; by, ..., by) with
a+..+ax=bi+..+b,=nisA(n) =271 x 2"t =4n-1,

SO q
n__ .
n>1

0-decomposition:
A pair (ay, ...,ax; by, ...,by) is 0-indecomposable iff
a + ...+ a; = by + ... + b; implies eitheri =j=0ori =k,

j=".
Number of 0-indecomposable pairs Iy(n) = 3", so

q
n__
En Iy(n)q" = —3q"
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Step one - irreducibility

oo
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Step one - irreducibility

A pair (ay, ...,ax; by, ...,by) is irreducible iff

by +..+bj—(ai+..+aj_)
= bjij+1+ b2+ .+ b — (Qip1 + Qip2 + .. +ax) 20

=j =0

Let I;(n) be the number of irreducible pairs with sum
n.
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Step one — irreducibility

Selecta Mathematica Sovietica 0272-9903/92/020117--28 $1.50 + 0.20{0
Vol. 11, Ne. 2 (1992) © 1992 Birkhauser Verlag, Basel

Meanders*

S. K. Lando and A. K. Zvonkin

Five miles meandering with a mazy
motion

S. T. Coleridge. Kubla Khan
By slow Meander’s margent green

And in the violet-embroidered vale.
John Milton, Comus

1. Introduction. Formulation of the problem

L1. Definition. Let us fix a straight line on the plane and 2» points on it.
Consider a simple connected not self-intersecting closed curve intersecting
the line in exactly those points. The equivalence class of such curves with
respect to isotopies of the plane leaving the line fixed is called a (closed)
meander of order n.

For the generating function of the analog of
irreducibility for general meanders, Lando and
Zvonkin have a simpler functional equation but no
explicit identification of the solution
33/49



Step one — irreducibility

MEANDERS 129

5.7. Functional equation for generating functions
Let B(x) be the generating function for the number of systems of meanders, i.e.
for the squares of Catalan numbers:

B(x) = i (Cat,)?x".

Theorem. The functions B(x) and N(x) satisfy the functional equation
B(x) = N(xB*(x)). (5.3)

Proof. Replace each of the letters a, b, ¢, d in equality (5.2) by the same formal
variable . We obtain the relation

B(t?) = 1 4 2B*(1?) + 21*B4(t?) + 81°B5(1?) + 461*B(r?)
+ 0+ NLPBP(Y) + - - - = N(£2B(t?)).
Replacing ¢? by x we obtain (5.3).
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Step one — irreducibility
Let I, (b, n) be the number of those irreducible
(611, wy i bl, ...,bl) with a; > b1 =b;
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Step one — irreducibility
Let I, (b, n) be the number of those irreducible
(611, wy i bl, ...,bl) with a; > b1 =b;

i

Then
Ii(b,n)=> P(b-b'|,n-b-b)
b/
+ > _P(b-b|,n—b-n)(bn),
b’,n’

where P(d, m) is the number of irreducible pairs of the
form (b; + m + by; by, ..., b;) with |b; — b;| =d.
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Step one — irreducibility

This gives the following functional equation for
f(z,q) = > I(b,n)z’q":

f(z,q) = Ro +R:f (1, q) — Rof (g2, q),

where
R, — Q*’(1 —q—4¢>+2¢°> — ¢*>z2+ ¢®z + 4q*2)z(1 — 2)
(1-q)(1-3¢*)(2-2)(1—-qz)(1-2q°2)
R — (1+q—2qz2)z
1 — )
(2-2)(1—-qz)

R, - 41+2q)(1-2)(1-q°2)
(1-3¢%)(2-2)(1-2¢°2)
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Step one — irreducibility

We obtain the following expression for
F(q)=f(1,q) = > 1L(n)q"
B 1-2q 1
F(q)_ 2¢1(272q' - 1_q7
4q2 14,92
1+q—-4q

2.2
2¢1(4qg;q72)

_ (1429
where z = 503 and

b. ._ \oo  (1—a)(1-b)(1-aq)(1-bq)--(1—aq"~")(1-bq""!)
201 (%54:2) = 2nl0 —— fi=o)(1—cq)-(—ea™ N-ar-(—a) 2

is the basic hypergeometric series.
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Step one — irreducibility

More recently Don Zagier derived a formula for our
two-variable generating function too:

f(z.4) = A(@)7%; + B(a) (Ro(@) 7255 + Ro(@) 1255 + )

where A(q), B(q) are explicit rational functions of g and
of F(q) from the previous slide, while Ry(q), R3(q), ...
are explicitly given rational functions of q.
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Step one — irreducibility
One would hope for a connection of f(z, q) with some
kind of Jacobi forms; unfortunately f(z, q) itself is not
one. As a function of z with fixed q it is something ugly.
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Step one — irreducibility

Your typical Jacobi form looks way much nicer:
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Further steps - higher irreducibilities
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Other classical types

We just described meander graphs corresponding to
classical Lie algebras of type A. For other classical
types the corresponding graphs have been introduced
by Panyushev and Yakimova.
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Lieanders - the Kac-Moody case
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Lieanders - billiards
Each pair (ay, ...,ax; b1, ...,by) determines a billiard.

8
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Lieanders - billiards
Each pair (ay, ...,ax; b1, ...,by) determines a billiard.
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——simple poles

1
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Lieanders - billiards

Pillowcases and quasimodular forms

Alex Eskin* and Andrei Okounkov"

* Department of Mathematics
University of Chicago
5734 South University Avenue
Chicago, IL 60637
USA
eskin@math.uchicago.edu
© Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544
USA
okounkov@math.princeton.edu

To Viadimir Drinfeld on his 50th birthday.

Summary. We prove that natural generating functions for enumeration of branched coverings
of the pillowcase orbifold are level 2 quasimodular forms. This gives a way to compute the
volumes of the strata of the moduli space of quadratic differentials.
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Lieanders - billiards

In “Algebraic geometry and number theory”, pp. 1-25. Birkhauser Boston, 2006.
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Lieanders - billiards
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Liouville quantum gravity

https://youtu.be/HHnJVkPIlaMY
“On the geometry of uniform meandric systems” —
Ewain Gwynne with collaborators
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Liouville quantum gravity

https://youtu.be/HHnJVkPIlaMY
“On the geometry of uniform meandric systems” —
Ewain Gwynne with collaborators

Meander graphs can be used to encode on a surface of
genus zero, a metric in which all edges have
approximately equal arclengths.
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Liouville quantum gravity

It seems that doing that to Lieander graphs gives some
special kinds of metrics.
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Thank you for having
listened!



