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Background

While there are several Kripke incomplete modal logics

known, all of those above S4 essentially reduce to the one

discovered by Kit Fine in 1972 ( “An incomplete logic containing S4” ).

https://doi.org/10.1111/j.1755-2567.1974.tb00076.x
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Background

In 1977 Valentin Shehtman found a superintuitionistic

counterpart of the Fine logic ( “О неполных логиках высказываний” ).

He managed to achieve incompleteness using a clever

combination of a certain two-variable axiom (which we

will callШ) with the three-variable formula bb2 by Dov
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Shehtman’s arguments (that part actually required a
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Kripke semantics can be viewed as a particular case of a

number of other semantics.

For topological semantics of both modal logics above S4

and of superintuitionistic logics, Kripke frames correspond

to topological spaces with the property that all points

possess smallest neighborhoods.

On the algebraic side, these correspond to S4-algebras of

the form (PX,�) where PX is a full powerset and � is

totally multiplicative, i. e. distributes over arbitrary
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In 1975 Gerson ( “The inadequacy of the neighbourhood semantics for modal logic” )
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In 2004 ( “Modal incompleteness revisited” ) Litak showed that even if

you replace PX with any complete Boolean algebra and
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well known reply to this question: this is related to the

Kuznetsov problem!
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Main result

Our aim is to show that there exists a variety of bi-Heyting

algebras that is not generated by complete bi-Heyting

algebras.

On the logical side, this implies the existence of an

extension of the Heyting-Brouwer calculus that is

topologically incomplete.

Bi-Heyting algebras and the Heyting-Brouwer calculus

appeared yesterday in the talk “Bi-Gödel algebras and co-trees” of Nick

Bezhanishvili, Miguel Martins and Tommaso Moraschini:

bi-Heyting algebras are Heyting algebras whose order

duals are Heyting too.

Thus we provide a negative solution of Kuznetsov’s

problem in the setting of Heyting-Brouwer logics.

https://math.nmsu.edu/blast-2021/volume/BLAST2021-Abstracts.pdf#section.0.86
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Esakia duality

Our approach (see arXiv:2104.05961 ) is based on Esakia duality,

mentioned in the yesterday’s talk “Toward choice-free Esakia duality” by

Wesley Holliday.

Recall that Esakia spaces are the Priestley spaces whose

Priestley dual distributive lattices happen to be Heyting

algebras.

A Priestley space (X,6) is an Esakia space if and only if for

any clopen subset C of X the 6-lower set ↓C of C is clopen

too.

Clearly then the dual distributive lattice of (X,6) is a

bi-Heyting algebra iff for any clopen C ⊆ X , both ↓C and ↑C
are clopen. We might call such (X,6) bi-Esakia spaces.

https://arxiv.org/abs/2104.05961
https://math.nmsu.edu/blast-2021/volume/BLAST2021-Abstracts.pdf#section.0.79
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Esakia duality – completeness

We require one more fact from duality theory:

characterization of those (X,6) whose dual (bi-)Heyting

algebras are complete.

This has been addressed by Guram Bezhanishvili and Nick

Bezhanishvili in “Profinite Heyting algebras” (2008): the algebra of

clopen upper sets of (X,6) is complete iff (X,6) is

extremally order disconnected, which means that closure

of each open upper set is (cl)open.
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Esakia duality – completeness

What is crucial for us is that if moreover (X,6) is a

bi-Esakia space, then it follows from the results of Guram

Bezhanishvili and John Harding in
“MacNeille completions of Heyting algebras” (2004) that we may calculate

arbitrary joins
∨

iDi in the lattice of clopen lower sets of

(X,6) by the formula∨
i

Di = closure of
⋃
i

Di

(if (X,6) were only an extremally order-disconnected

Esakia space rather than bi-Esakia space, we would

additionally need to take ↓ of that closure).

http://hjm.math.uzh.ch/restricted/pdf30(4)/02harding.pdf
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Consider the Fine algebra A – the Heyting subalgebra of

F+ generated by its two maximal singleton subsets:
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The Fine frame, algebraically

This fact allows us to prove that the Fine algebra A is a

bi-Heyting algebra, by observing that its dual Esakia space

is a bi-Esakia space.



The axioms

Now to tell you what we actually proved and how, we must

take a look at the actual axioms.

Let me begin with the Gabbay-De Jongh formula bb2. It is

the following formula in three propositional variables x, y,

z:

[(x → (y ∨ z)) → (y ∨ z)]

∧[(y → (x ∨ z)) → (x ∨ z)]

∧[(z → (x ∨ y)) → (x ∨ y)]

→ (x ∨ y ∨ z)



bb2

The meaning of bb2 is easiest to understand in the

topological semantics: a topological space validates bb2 if

and only if for any three closed sets C1, C2, C3 with

common intersection C = C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3, if C is

nowhere dense in all of the C1, C2, C3 then C = ∅.

In other words, bb2 forbids situations like this:

•C C1

C2

C3
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bb2

In the language of (bi-)Esakia spaces, closed sets get

replaced with clopen lower sets, while “nowhere dense”

becomes “nowhere cofinal”, in the following sense:

Definition

Given lower sets D, E in a poset, with D ⊂ E, we say that D

is nowhere cofinal in E, if ↓(E − D) = E.

For clopen downsets of an Esakia space, this is equivalent

to D ∩max(E) = ∅.



bb2

In the language of (bi-)Esakia spaces, closed sets get

replaced with clopen lower sets, while “nowhere dense”

becomes “nowhere cofinal”, in the following sense:

Definition

Given lower sets D, E in a poset, with D ⊂ E, we say that D

is nowhere cofinal in E, if ↓(E − D) = E.

For clopen downsets of an Esakia space, this is equivalent

to D ∩max(E) = ∅.



The axiomШ

Let us now turn to the Shehtman axiomШ.

To digest more easily the things that follow, let me also

introduce an alternative notation for implication: I will

denote

a¬b := b → a.

Let us fix two propositional variables p, q and denote

m := p ∧ q, u := p ∨ q.

We will need a uniform substitution σ determined by

σ(p) = p ∨ m¬p, σ(q) = q ∨ m¬q.
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The axiomШ

Let d := m¬u ∨ m¬m¬u. Then, the axiomШ is equivalent to

(σ2(d) → σ3(d)) → σ2(d).

We will try to explicate some of the semantical meaning of

this below. Here let me only mention that under a

valuation V in a topological space, a formula like p ∨ m¬p
can be interpreted as a certain boundary.

Namely,

−V(p ∨ m¬p) = ∂−V(m)(−V(p));

that is, −V(p ∨ m¬p) is the boundary of −V(p) as a subspace

of −V(m).

Probably the best way to explain the meaning ofШ is to see

what it does in a particular valuation on the Fine frame.
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In particular, the axiomШ effectively says that −V(σ2(d))

is nowhere cofinal in −V(σ3(d)) under any valuation V.

This implies that whenever −V(σ2(d)) 6= ∅, we in fact have

a strictly growing infinite chain

−V(σ2(d)) $ −V(σ3(d)) $ −V(σ4(d)) $ · · ·
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Theorem

Here is, finally, what we managed to prove:

Theorem

Suppose (X,6) is an extremally order-disconnected

bi-Esakia space validatingШ such that (X,6) 6|= σ2(d). Then

(X,6) 6|= bb2.

Dually, any complete bi-Heyting algebra which validates

Ш+ bb2 also validates σ
2(d).

But σ2(d) is not derivable fromШ+ bb2: we just saw a

valuation V on the Fine frame with −V(σ2(d)) 6= ∅.

ThusШ+ bb2 is incomplete with respect to complete

bi-Heyting algebras.
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How do we prove it

Here is the idea of the proof:

We consider some valuation V on an extremally

order-disconnected bi-Esakia space (X,6) with

−V(σ2(d)) 6= ∅; by assumption V (any valuation, in fact)

validatesШ.

It then turns out thatШ allows us to use the Fine frame as

a kind of blueprint to construct C1, C2, C3 required to refute

bb2, namely

C1 = −Vσ4(m¬m¬u) ∨ −Vσ7(m¬m¬u) ∨ −Vσ10(m¬m¬u) ∨ · · ·
C2 = −Vσ2(m¬m¬u) ∨ −Vσ5(m¬m¬u) ∨ −Vσ8(m¬m¬u) ∨ · · ·
C3 = −Vσ3(m¬m¬u) ∨ −Vσ6(m¬m¬u) ∨ −Vσ9(m¬m¬u) ∨ · · ·



How do we prove it

••
••
••
••
••

• • • • •

•
•
•
•
•

...· · ·

...

C2 C3 C1 C2 C3



Completely incomplete Heyting-Brouwer logics

In the paper of Litak that we cited above, he used the

technique of Jankov-Fine formulas to prove that there exist

continuum many Kripke-incomplete superintuitionistic

logics.

Adapting this technique allows us to prove that there are

continuum many completely incomplete Heyting-Brouwer

logics.
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Consequences for varieties of Heyting algebras

Corollary

There exist continuum many varieties of Heyting algebras

not generated by complete bi-Heyting algebras.

This implies that there are continuum many

superintuitionistic logics incomplete with respect to

complete bi-Heyting algebras.

This result was also obtained by Guillaume Massas using

the techniques related to the semantics of the Propositional

Lax Logic (the one that made appearance in the talk by

Sebastian Melzer “Canonical formulas for IK4” on Thursday).

https://math.nmsu.edu/blast-2021/volume/BLAST2021-Abstracts.pdf#section.0.36
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Obstacles towards Kuznetsov’s problem

Needless to say, we cannot get rid of that “bi-”. In showing

C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 we essentially use that infinite

(well, countable, but...) joins of clopen lower sets distribute

over their finite meets, which requires certain amount of

co-Heytingness.

Moreover in proving that C is nowhere cofinal in C1, C2, C3
we also use the fact that to compute infinite joins of clopen

lower sets one only needs to take closure of their union,

which is already a lower set, so that further generating

lower set from it is not needed.



Obstacles towards Kuznetsov’s problem

Needless to say, we cannot get rid of that “bi-”. In showing

C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 we essentially use that infinite

(well, countable, but...) joins of clopen lower sets distribute

over their finite meets, which requires certain amount of

co-Heytingness.

Moreover in proving that C is nowhere cofinal in C1, C2, C3
we also use the fact that to compute infinite joins of clopen

lower sets one only needs to take closure of their union,

which is already a lower set, so that further generating

lower set from it is not needed.



Thank you for your
patience!


