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Département de Mathématique
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Introduction

In this thesis we are investigating possibility of assigning homotopical
invariants to toposes in an alternative way.

The 2-category of (Grothendieck) toposes, geometric morphisms and
their natural transformations (which we will denote by Top) has been
used by many authors to model homotopy types particularly efficiently.
Thus for example a topological space X can be represented in Top via
its category of set-valued sheaves Shv(X). Moreover a small category
C can be represented, according to convenience, either via the category
Shv(BC) of sheaves on the geometric realization of its nerve, or just
by the category SetCop

of set-valued presheaves on C. There are well
known ways to read off homotopical and homological invariants, such
as the fundamental group or (co)homology with various coefficients,
from these representations.

However approximately one half of Top stays apparently useless from
this point of view. It is well known, for example, that as soon as a small
category is filtered or cofiltered, its classifying space is homotopically
trivial (see e. g. [29]). This seemingly rules out all toposes of presheaves
on, say, categories with finite limits. In fact, there is a problem of in-
terpretation here. Usually one approximates the notion of the set of
homotopy classes of maps [X,Y] between toposes by the set of con-
nected components of the category Top(X,Y). But how to interpret
the situations when this category is not small? And in Top this is by no
means an exception. There is in fact a distinctive dichotomy between
s. c. “petit” and “gros” toposes, pointed out from the very beginning
of topos theory. Unfortunately there still does not exist a precise def-
inition of these classes, but there are lots of definite examples of both
kinds, and it is generally agreed that Top(X,Y) cannot be expected
small for “gros” Y.

A leading example for us will be this: any finitary algebraic theory
T has a classifying topos [T] which represents the 2-functor

T-mod( ) : Topop → Cat

to (large) categories which sends a topos X to the category of T-models
in X. Thus Top(X, [T]) is not a small category for most X and T. In
fact, [T] can be taken to be the category of set-valued functors on the
category of finitely presented T-models (in sets), so in any case it must
be considered “contractible” from the traditional point of view.
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On the other hand, there is a growing evidence that one can as-
sign meaningful cohomological invariants to toposes such as [T]. In
fact there are concrete classification problems which lead to such co-
homology groups. To the author’s knowledge, first such problems were
explicitly described in [4], where the s. c. Hochschild-Mitchell coho-
mology was pointed out as the appropriate cohomology theory, and
its extension to more general coefficients called natural systems was
constructed.

To authors of [4], the main interest was in describing various subcat-
egories of the homotopy category. Soon afterwards T. Pirashvili and
the author performed some calculations in a number of purely algebraic
situations (see [7]) where this approach also gives interesting results. In
[15], the starting point of investigation has been a cohomology theory
for associative rings introduced by MacLane in late fifties (see [24] and
[23]).

As for many other cohomology theories for algebraic systems, one
of the main motivations for introducing MacLane cohomology was
classification of certain extensions of associative rings. For algebras
over a field, such classification problems are successfully dealt with by
Hochschild cohomology. In particular, for an algebra A and an A-
A-bimodule B, elements of the second Hochschild cohomology group
H2

Hoch(A; B) are in one-to-one correspondence with isomorphism classes
of extensions of the form B � X � A where X � A is a surjective
homomorphism of algebras with kernel a square zero ideal, isomorphic
to B when equipped with the A-A-bimodule structure induced by the
extension. In a sense, success of this classification of extensions by H2

depends crucially on the fact that the category of vector spaces over
the field is semisimple, i. e. every short exact sequence splits. Extend-
ing Hochschild cohomology to algebras over more general commutative
rings K in a straightforward way yields less satisfactory cohomologies,
in the sense that they can only classify these extensions of algebras
which split as extensions of K-modules. On the other hand, the appro-
priate cohomology theory for the classification of non-split extensions
of K-modules is provided by Ext groups ExtK ; for any K-modules M
and N , elements of the group Extn

K(M, N) correspond bijectively to
equivalence classes of exact sequences of K-modules of the form

N � X1 → · · · → Xn � M,

for each n > 1. Thus a more appropriate cohomology theory of K-
algebras should somehow combine Hochschild cohomology with ExtK .

MacLane approached this problem using the so called cubical con-
struction Q∗ introduced previously by Eilenberg and MacLane in [9] for
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calculation of stable homologies of Eilenberg-MacLane spaces K(A, n)
(topological spaces with a single nontrivial homotopy group A in di-
mension n). More precisely, Eilenberg and MacLane assign to any
abelian group A a chain complex Q∗(A) which satisfies

Hm(K(A, n)) ∼= Hm−n(Q∗(A)) for any n 6 m < 2n.

The construction Q∗ is functorial and lax monoidal with respect to
tensor products, i. e. there are well-behaved maps of complexes

Q∗(A)⊗Q∗(B)→ Q∗(A⊗B);

in particular, for a bimodule B over a ring A, there is a natural differen-
tial graded (DG) ring structure on Q∗(A), and moreover Q∗(B) is a DG-
bimodule over it. Moreover there is an augmentation Q∗(A)→ A which
is a DG-ring homomorphism when A is a ring considered as a DG ring
concentrated in degree 0. Equipping A with a Q∗(A)-Q∗(A)-bimodule
structure via this augmentation, MacLane considers the corresponding
two-sided bar construction, i. e. the total complex B(A, Q∗(A), A) of
the bicomplex

Bm,n(A, Q∗(A), A) =

A⊗Q∗(A)⊗ ...⊗Q∗(A)︸ ︷︷ ︸
n times

⊗A


m

.

MacLane cohomology of the ring A with coefficients in the A-A-bimo-
dule B is then defined by

Hn
ML(A; B) ∼= Hn(HomA⊗A◦(B(A, Q∗(A), A), B)).

This yielded satisfactory results for classification of extensions. In
particular, MacLane has been able to prove that elements of H2

ML(A; B)
are in a natural one-to-one correspondence with equivalence classes of
arbitrary, i. e., not necessarily split, extensions B � X � A, given
by embedding B into a ring X as a square zero ideal with quotient
A and matching bimodule structure. Soon afterwards Shukla in [34]
proposed an alternative approach to cohomology of rings, with more
clear motivation with respect to existing general principles of approach
to cohomology known by that time. Namely the Shukla cohomology
H∗

Sh(A; B) of a ring A with coefficients in an A-A-bimodule B is an
instance of the cotriple cohomology of Barr and Beck [1] applied to
the free ring cotriple induced by the monadic forgetful functor from
rings to sets. Moreover the general approach of Quillen from [28] to
the construction of cohomology in “sufficiently nice” categories also
yields Shukla cohomology when applied to the category of rings. The
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groups H∗
Sh(A; B) are in general different from the MacLane cohomol-

ogy groups; however there is an isomorphism up to dimension 2, so
that in particular H2

Sh classifies extensions just as well as H2
ML.

There is however one important feature of the Hochschild cohomol-
ogy which was seemingly lost in both MacLane and Shukla’s general-
izations: since for algebras over a field one has

H∗
Hoch(A; B) ∼= Ext∗A⊗A◦(A, B),

Hochschild cohomology groups in this particular case can be char-
acterized by a certain universal property with respect to the second
argument. Namely, they form a universal exact connected sequence
of functors. It seems impossible to retain this property in the gen-
eral case, since for algebras over general commutative rings the groups
Ext∗A⊗A◦(A, B) do not seem to be related to algebra extensions in any
evident way; in particular they are not isomorphic to either of H∗

Sh or
H∗

ML.
It was T. Pirashvili who first observed that calculations from [7]

suggest a possibility to express MacLane cohomology groups using co-
homology of categories introduced by Baues and Wirsching in [4] in
such a way that they also will form a universal connected sequence of
functors. Namely, Pirashvili has been able to construct, for each ring A,
a naturally defined abelian category F (A) containing the category of
A-A-bimodules as a full subcategory, and prove that there are natural
isomorphisms

H∗
ML(A; B) ∼= Ext∗F (A)(A, B).

In fact F (A) can be taken to be the category A-modMA of all func-
tors from the category MA of finitely generated free A-modules to the
category A-mod of all A-modules. One might identify the full sub-
category of F (A) consisting of additive functors with the category of
A-A-bimodules, as any such additive functor F is canonically isomor-
phic to the functor B⊗A , where B is F (A), equipped with the evident
A-A-bimodule structure. In particular, A itself, considered as an A-A-
bimodule, corresponds in this way to the inclusion MA → A-mod of
finitely generated free modules into all modules.

Later it turned out (see [27]) that this approach yields, in particular,
an alternative definition of topological Hochschild homology for discrete
rings, which is quite useful as the latter homology is quite difficult to
calculate in general.

It has been pointed out in [15] that this approach can be also used
to provide a natural generalization of MacLane cohomology, retaining
all the desirable properties one should ask of a “decent” cohomology
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theory. First, evidently one might define, for a ring A and any functor
F : MA → A-mod, cohomology groups of A with coefficients in F by
the same formula as above,

H∗(A; F ) := Ext∗F (A)(A, F ).

Thus in these terms one has

H∗
ML(A; B) = H∗(A; B⊗

A
),

for an A-A-bimodule B. A natural question then arises: one knows
that elements of H2

ML(A; B) correspond to ring extensions of A by B;
is there a corresponding notion of extension which would be similarly
classified by elements of H2(A; F ), for an arbitrary object of F (A)?
To answer this question, one is led to a generalization of second kind.

Each ring A gives rise to a certain algebraic theory, namely, the
theory TA of (say, left) A-modules. Basically, this is just the category
which is opposite to the category of finitely generated free A-modules.
It has been proved in [15] that to an object F of F (A) one might assign
a certain natural system, in the sense of [4], on TA, F̃ , in such a way
that there is an isomorphism

Ext∗F (A)(A, F ) ∼= H∗(TA; F̃ ),

the groups on the right being the cohomology groups of the category
TA studied in [4]. In particular, results of [4] yield an interpretation of
elements of H2(TA; F̃ ) as equivalence classes of linear extensions

F̃
�_ // C

p // TA,

in the sense of [4], of TA by F̃ . And moreover it turns out that for
these particular natural systems F̃ , in all linear extensions as above
C is also an algebraic theory, and p is a morphism of theories, up to
equivalence of extensions.

It thus becomes apparent that there must be a natural notion of
cohomology for algebraic theories, with coefficients such as F above,
which yields the MacLane cohomology of a ring A with coefficients in a
bimodule B when the theory is TA and F is B⊗A . Such cohomology
groups H∗(T; F ) have been constructed in [15], where T is an alge-
braic theory and F is a contravariant functor from T to the category
Ab(T-mod) of internal abelian groups in the category of models of T.
The definition was

H∗(T; F ) := ExtAb(T-mod)Top (( )ab, F ),
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where ( )ab denotes the composite of the Yoneda embedding (which
identifies Top with the full subcategory of free finitely generated T-
models in T-mod) with the abelianization functor, i. e. with the left
adjoint to the forgetful functor Ab(T-mod)→ T-mod. This choice of
coefficients is natural in view of the fact that for a ring A the category
MA is equivalent to Top

A , so that for T = TA for a ring A, the cate-
gory of these coefficients is equivalent to F (A) above. Moreover this
cohomology turned out to combine nice features of both Shukla and
Hochschild cohomology. With respect of the first argument it can be
obtained, similarly to the Shukla cohomology, as a Barr-Beck cotriple
cohomology, this time for the free theory cotriple (recall that algebraic
theories are monadic over the category SetN of sequences of sets, the
forgetful functor sending a theory T to the sequence whose n-th set is
the set of all n-ary operations of T). Moreover it was pointed out in [15]
that the proposed categories of coefficients are probably too restrictive.
Indeed for many interesting theories T – for example, for the theory
of rings with unit – cohomology with such coefficients is trivial simply
because the category Ab(T-mod) is trivial. It was suggested instead
to consider the so called cartesian natural systems of abelian groups on
T as coefficients. This conforms with the general approach of Quillen
in [28] since the category of such natural systems is equivalent to the

category Ab(Th /T) of internal abelian groups in the slice category of
theories over T. In this thesis, we adopt that point of view too.

It has been already apparent in [15] that one is dealing with some
kind of homotopy type of an algebraic theory. Recently S. Schwede in
[31] gave most clear evidence to this by assigning to an algebraic theory
a stable homotopy invariant in form of a certain Γ-ring.

The present thesis is aimed at giving some further glimpses of that
homotopy type. Using methods of [20] we formulate our results in
terms of algebraic theories over a given base topos. This is important
since it allows to simplify some aspects of [31] just by choosing the base
topos to be the category of simplicial sets.

We will thus work over a base topos S and will be mostly dealing
with the classifying toposes [T] → S of S-algebraic theories. Our pro-
posed model for the homotopy type of such [T] is the comma category
F (T) := EndTop/S([T])/Id[T]. Thus objects of F (T) are natural trans-
formations e→ Id[T], where e : [T]→ [T] is a geometric morphism. In
particular, we will show that standard cohomological constructions ap-
plied to internal abelian groups in F (T) yield as a particular case the
cohomologies introduced in [15]. Accordingly, results of that paper will
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be reviewed from this point of view. We also indicate how to construct
the analog of the Γ-ring introduced in [31] in terms of F (T).

Now of course the above choice of F (T) looks rather ad hoc and
obscure. Below we will give some motivation and examples, along with

the detailed definition. Using the closely related topos T̂ of presheaves
on T, which classifies flat models of the theory T, we introduce a variant
of F (T) which will be denoted F̂ (T). It will be shown that in the
particular important case of the theory TA of modules over a ring A,
our F̂ (TA) is equivalent to the category F (A) introduced in [15]. In
particular the cohomology groups of TA with coefficients in internal
abelian groups of F̂ (TA) agree with those from [15]. We will also
reproduce from [14] description of low dimensional cohomology groups
for more general “abelian” theories T.

One additional feature of the categories like F (T) or, more gener-
ally, F (X) = EndTop/S(X)/IdX for an S-topos X is that they have an
obvious monoidal structure induced by composition of geometric mor-
phisms. This is useful e. g. for using well-known “bar-construction”-
like resolutions for calculating various invariants of homotopical nature
in F (X). The monoidal structure is rather specific in that it is non-
symmetric, and its unit is a terminal object. Observe that for a theory
T, any object of F (T) can be viewed as a “natural” endofunctor of
the category of T-models. A part of such functors, namely those which
have adjoints, sometimes tend to explicit description. It is well known
that they correspond to bimodels of the theory, i. e. to its models in
the category which is opposite to the category of models. In a sepa-
rate section we will give some exemplary calculations of such categories
of bimodels, with the monoidal structure arising from composition of
endoadjunctions, which can be interesting in their own right.

Here is the contents of the thesis in some more detail. In the first
section, we define the category F (X) for a general Grothendieck topos
X, which we propose to consider as representing the “gros” homotopy
type of X. We give several equivalent views of this category when
X is the classifying topos [T] of an algebraic theory T. One of these
views expresses F ([T]) in terms of the Eilenberg-Moore object for the
monad on the object classifier in the 2-category of Grothendieck toposes
which corresponds to T. In this particular case we also introduce an
alternative version of F ([T]) which we denote F̂ (T); it combines the
Kleisli and Eilenberg-Moore categories of the aforementioned monad.

In the second section we review some results from [31], notably the
construction of the Γ-ring corresponding to an algebraic theory over
the topos of simplicial sets. We show how one could simplify some
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aspects of this construction by employing the classifying properties of
the object classifier. The reason of appearance of the object classifier
is simply that the category of Γ-objects in a topos S is equivalent to
the slice of its object classifier over the generic object.

In the third section we investigate, for an algebraic theory T, cat-
egories of bimodels of T, which, as was mentioned above, are closely
related to F ([T]) and F̂ (T) but tend to more explicit description.
Along with some well known classical examples corresponding to the-
ories of sets, pointed sets, groups, abelian groups and modules over
a ring, we give explicit descriptions of bimodel categories and their
monoidal structures for theories generated by constants, and for theo-
ries of nilpotent rings, Lie rings and groups of class two.

In the fourth section we introduce “gros” cohomology groups of a
topos X, with coefficients in an internal abelian group in F (X). We
show that these cohomology groups, for the classifying topos of an al-
gebraic theory, give as a particular case the groups from [15], and give
some examples of their new features. We also present a simplification
of coefficients for cohomology and an explicit complex which calcu-
lates it. We then give interpretations of elements of low-dimensional
cohomology groups.

In the last fifth section we provide more detailed information for
the case of classifying toposes of abelian Maltsev theories. These are
theories related to theories of modules over a ring in the same way as
affine spaces relate to vector spaces. We give an explicit presentation of
any such theory in terms of defining operations and relations. We show
that such theories are in one-to-one correspondence with R-module
homomorphisms M → R, for arbitrary ring R and a left R-module
M . Moreover we give explicit description of those cartesian natural
systems on abelian Maltsev theories giving rise to extensions which are
again abelian Maltsev. Also low dimensional cohomology groups are
described in a more explicit way than for general theories. Finally we
give an alternative description of the category of models of an abelian
Maltsev theory, as certain factorizations of the homomorphism M → R
corresponding to it.

Acknowledgement. The author is deeply grateful to the Department
of Mathematics of the Université Catholique de Louvain, and in partic-
ular to Enrico Vitale and Francis Borceux for providing the uniquely
excellent working conditions. He also gratefully acknowledges the con-
stant generous flow of ideas and suggestions from Teimuraz Pirashvili,
on the topics considered in the thesis and many others.
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1. Gros homotopy type of a topos

Most of the time we will assume fixed a base topos S, and by an S-
topos will be meant a bounded geometric morphism f : X→ S. Recall
(see e. g. [17]) that this means that X has a generating family as an S-
indexed category, or, equivalently, that there exists an internal category
C in S and a Grothendieck-Lawvere-Tierney topology J on C such
that X is equivalent over S to the topos of internal sheaves Shv(C, J).
With Top/S will be denoted the 2-category of such bounded S-toposes,
geometric morphisms over S, and natural transformations (between
inverse image parts). Standard references for basic facts about this
2-category are [17] and [25].

Usually for an S-topos X its homotopy type is represented via X
itself, considered as a category. For example, coefficients for cohomol-
ogy of X can be taken to be internal abelian groups of X, defining
Hn(X; A) = Rn(f∗)(A), where Rn(f∗) denotes right derived functors
of the direct image functor of f . This means that X will have trivial
cohomology as soon as, for example, f∗ has a right adjoint – as is the
case with most “gros” toposes. As a substitute we propose to replace
X with the following category F (X).

1.1. Definition. For an S-topos p : X→ S, let

F (X) = EndTop/S(X)/IdX.

Thus objects of F (X) are geometric morphisms e : X → X with
pe = p, together with a natural transformation ε : e → IdX such
that pε is the identity of p; morphisms (e, ε) → (e′, ε′) are natural
transformations ϕ : e→ e′ with ε′ϕ = ε.

We will write also FS(X) if several bases can be suggested from the
context.

Motivation for this definition will be apparent after we give some
examples. But let us begin with a disappointingly negative example.

1.2. Proposition. If X is the topos of sheaves on a Hausdorff space
in S = Set then F (X) is the trivial category with unique morphism.
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Proof. Simply observe that TopS(Y,X) is a discrete category for all
Y.

Thus most of the “usual” homotopy types are excluded at once! To
describe a more reassuring example, let us recall the notion of algebraic
theory.

Let T be a finitary algebraic theory in the sense of Lawvere, i. e. a cat-
egory with objects Xn, n > 0, and distinguished projection morphisms
x1, ..., xn : Xn → X turning each Xn into the n-fold cartesian power of
X1 = X. Elements of homT(Xn, X) are called n-ary operations of T.
A model of T in a category X is a product preserving functor T→ X;
usually one identifies a model with its underlying object M ∈ X – value
on X, together with the maps Mn →M for each n-ary operation, mak-
ing appropriate diagrams commute. The category of models of T in X
and their natural transformations will be denoted by T-mod(X). For
example, T(n) := homT(Xn, ) is a model of T in Set, the free model
on n generators ; its underlying object is the set of all n-ary operations
of T. A T-model in Set is finitely presentable if it is isomorphic to a
coequalizer of a pair of maps u, v : T(m)→ T(n) between free finitely
generated models. The category of finitely presentable models of T
is equivalent to the opposite of the equalizer completion of T whose
objects are explicit finite presentations as u, v above, morphisms be-
ing those of the corresponding quotient models. This category will be
denoted Tfp. One then has

1.3. Definition. (see [17]). The classifying topos of a theory T is the
category

[T] := SetTfp

.

The generic model UT of T is the model whose value on Xn is the
functor Tfp → Set sending a finitely presentable model to its value on
Xn.

Recall from [17] that [T] represents the 2-functor Top/Set→ Cat
taking X to T-mod(X). That is, for any Grothendieck topos X, the
functor

TopSet(X, [T])→ T-mod(X)

which takes f : X→ [T] to f ∗UT, is an equivalence. This readily gives
a description of F ([T]), which we will denote simply F (T).

1.4. Proposition. For an algebraic theory T one has an equivalence

F (T) ' T-mod([T])/UT.
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This proposition shows the idea behind our definition. One may re-
gard UT as a “most representative” model of T. On the other hand, as
noticed many times, (see especially [28]) homotopical and cohomologi-
cal invariants of a universal algebra A in some variety of algebras such
as T-mod “live” in the category T-mod/A. Thus it looks plausible
that such invariants for the “most typical” such algebra UT will reflect
general homotopical properties of T.

But in fact it is well known that more generally any Grothendieck
topos X can be viewed as the classifying topos of an appropriate in-
finitary geometric theory (see [17]), so that TopSet(Y,X) is equivalent
to the category of models of that theory in Y. From this point of view,
the identity of X can be viewed as the generic model of the theory.
This gives some supporting motivation for our definition 1.1. Below
we’ll try to give some further evidence for its usefulness.

Note that alternatively, one might view the above description 1.4 as
follows:

1.5. Proposition. For an algebraic theory T one has an equivalence

F (T) ' (T-mod(Set))Tfp

/IT,

where IT is the full embedding of finitely presentable models into all
models.

Proof. One has

T-mod(EC) ' (T-mod(E))C

for any E with finite limits and any C. Taking E = Set and C = Tfp

gives the proof since obviously UT corresponds to IT under the above
equivalence in this particular case.

To describe F (X) for some more general X we will need to recall
some definitions.

1.6. Definition. For a small category C, let C# denote the category
called twisted arrow category of C in [26], and the category of fac-
torizations of C in [4]. Objects of C# are morphisms of C, whereas
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homC#(γ, γ′) consists of pairs (ϕ1, ϕ2) with ϕ1γϕ2 = γ′, like this:

•

γ

��

•
ϕ2

oo

γ′

��

• ϕ1 // •

A natural system on C with values in some category S is a functor
D : C# → S. It is thus a collection of S-objects (Dγ)γ:X1→X2 of S,
indexed by morphisms of C, together with S-morphisms

γ1( ) : Dγ → Dγ1γ

and

( )γ2 : Dγ → Dγγ2 ,

for all composable morphisms γ1, γ, γ2 in C, such that certain evident
diagrams commute. In other words, one must have

(γ1γ2)x3 = γ1(γ2x3),

(γ1x2)γ3 = γ1(x2γ3),

(x1γ2)γ3 = x1(γ2γ3)

for any composable γ1, γ2, γ3 in C and any xi : X → Dγi
in S.

These definitions have immediate extension to the case of internal
categories in a topos (in fact, in any category with finite limits). A
simplest way to see this is to pass from an internal category to its
nerve (simplicial object whose n-simplices are given by the object of
composable n-tuples of morphisms), and then perform the subdivision
of the obtained simplicial object: recall from [32]

1.7. Definition. Let sub : ∆ → ∆ be the functor from the category
of nonempty finite linear orders to itself carrying a monotone map
f : I → J to f+f op : I+Iop → J+Jop, where + denotes concatenation.
For a simplicial object X in any category let Sub(X) = X ◦ sub.

One then sees easily that if X is the nerve NC of an internal category
C in a category with finite limits S, then Sub(X) is the nerve of C#.
One thus can define an internal natural system on C as a discrete
fibration (see [17]) over Sub(NC). With this definition one then has
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1.8. Proposition. (cf. [14]) The category of S-valued natural systems
on an internal category C is equivalent to

SCop×C/ homC .

Proof. For any internal category D and any internal presheaf P on it
SDop

/P is well known to be equivalent to STot(P )op , where Tot(P ) is the
total category of the discrete fibration corresponding to P . Now one
sees easily that for D = Cop × C, NTot(homC) is exactly Sub(NC).

1.9. Definition. (cf. [15, 14]) A natural system D on a category C
with finite limits, with values in a category with finite limits S is called
cartesian if for any finite limiting cone (fi : c → ci)i∈I and any mor-
phism f : c′ → c in C, the cone ((x 7→ fix) : Df → Dfif )i∈I is a limiting
cone in S.

Once again it is straightforward to internalize this definition – for
example, by reducing consideration of all finite limiting cones to only
pullbacks and terminal objects (or, say, equalizers, binary products and
terminal objects). One thus arrives at the notion of internal cartesian
natural system on an internal category C in S.

With this notion one then has

1.10. Proposition. For an internal category C with finite limits in S,
the category F (SCop

) is equivalent to the category of S-valued cartesian
natural systems on C.

Proof. By Diaconescu’s theorem (see [17]), TopS(X,SCop
) is equivalent

to the category of finite limit preserving internal functors C → X, for
any X. Taking X = SCop

we see that EndTop/S(SCop
) is equivalent to

the full subcategory of SCop×C whose objects preserve finite limits in
the second variable, with the identity endofunctor corresponding to the
bifunctor homC. One then sees easily that under the equivalence of 1.8,
bifunctors preserving finite limits with respect to the second variable
correspond precisely to cartesian natural systems.

Returning to the case of theories, let us introduce a relative notion,
suitable for working over base toposes other than Set.

1.11. Definition. A geometric monad is a monad in the 2-category
Top. It is thus a geometric morphism T : X → X together with

13



natural transformations e : IdX → T ∗ and m : T ∗T ∗ → T ∗ turning the
inverse image functor T ∗ into a monad on X.

By the well known observation, going back to Bénabou, a geometric
monad is the same as a lax functor from the terminal 2-category to
Top.

Then as usually for 2-categories, one defines

1.12. Definition. An algebra over a geometric monad T = (T, e, m)
on a topos X is a geometric morphism A : Y → X together with a
natural transformation a : A∗T ∗ → A∗ satisfying a ◦ A∗e = IdA∗ and
a ◦A∗m = a ◦ aT ∗. For such an algebra (A, a), its base change along a
geometric morphism F : Z→ Y is (AF, aF ).

An Eilenberg-Moore topos or classifying topos UT : [T] → X for
(T, e, m) is a universal such algebra, i. e. such that for any Y, base
change of UT induces an equivalence from Top(Y, [T]) to T-algebras
with domain Y. Thus it is the lax limit of the corresponding lax
functor.

A right algebra over T is a geometric morphism A : X→ Y together
with a transformation AT → T with properties dual to the above. The
universal such, i. e. the lax colimit of the corresponding lax functor, is

called Kleisli topos of T, denoted UT : X→ T̂.

Kleisli toposes are much easier to construct than Eilenberg-Moore
toposes. In fact, one has

1.13. Proposition. For a geometric monad T = (T, e, m) on a topos
X, let m̃ : T ∗T∗ → T∗ be the composite natural transformation in

T ∗T∗
ιT ∗T∗−−−→ T∗T

∗T ∗T∗
T∗mT∗−−−−→ T∗T

∗T∗
T∗ε−−→ T∗,

where ι and ε are, respectively, the unit and counit of T ∗ a T∗. Then,
m̃ defines a (T ∗, e, m)-algebra structure on T∗ (in the 2-category of
categories); moreover the corresponding functor (T∗, m̃) : X → XT ∗

has a left exact left adjoint and thus determines a geometric morphism,
which yields a Kleisli topos for T.

Proof. It is well known that whenever a monad such as T ∗ has a right
adjoint, that adjoint acquires a comonad structure such that the cor-
responding categories of algebras and coalgebras are naturally isomor-
phic. Moreover it is a standard fact in topos theory that the category of
coalgebras over a left exact monad on a topos is also a topos, with the
(forgetful)a(cofree) adjunction forming a geometric morphism. Now in
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our case, to a cofree coalgebra with the coaction T∗X → T∗T∗X corre-
sponds under this isomorphism a T ∗-algebra with the adjoint transpose
action T ∗T∗X → T∗X. Unfolding the comultiplication T∗ → T∗T∗ in
terms of (T ∗, e, m) then shows that this algebra structure is exactly
m̃X above.

Next observe that for a geometric surjection q : X→ Y determined
by a left exact comonad q∗q∗, and for any geometric morphism f :
X→ Z, factorizations of f through q are in one-to-one correspondence
with q∗q∗-coalgebra structures on f ∗. In our case, q∗q∗ = T∗ has a left
adjoint T ∗, so that T∗-coalgebra structures are the same as T ∗-algebra
structures. Thus XT∗

∼= XT ∗
has the universal property of a Kleisli

topos for T.

Remark. Alternatively, one could use the fact that this is a particular
case of the Wraith glueing, which gives explicit construction of any lax
colimits in Top.

Also observe that when both the Kleisli topos UT : X→ T̂ and the
Eilenberg-Moore topos UT : [T] → X for a monad T exist, there is a

canonical geometric morphism I(T) : T̂ → [T] from the former to the
latter, such that

UTI(T)UT = T.

Indeed, the T-algebra structure m on T induces a factorization of T :
X → X through UT, via, say, U ′ : X → [T], so that UTU ′ = T ; then
there is also a right T -algebra structure on this functor,

UTU ′T = TT
m−→ T = UTU ′;

and since this is in fact a homomorphism of (left) T -algebras, by univer-
sality of UT it must have form UTm′, for some right T-algebra structure
m′ : U ′T → T . Then by universality of UT this gives I(T) as required.

As for Eilenberg-Moore objects, they have been constructed, general-
izing 1.3, in a particularly important case in [17, 20], starting from any
topos S with a natural numbers object. The method is based on the
celebrated object classifier R(S)→ S of S, which is the topos SSfp

of in-
ternal functors on the internal full subcategory Sfp of finite cardinals in
S. The object classifier represents the 2-functor (Top/S)op → Cat
taking X → S to X considered as a category, and taking geometric
morphisms to their inverse image parts. Thus R(S) contains a generic
object, US, namely the inclusion of the full subcategory Sfp into S, such
that any object of any S-topos X is the inverse image of US under some
geometric morphism X → R(S) over S, defined up to canonical iso-
morphism. One thus can say that R(S) is an internal topos in Top/S
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in an obvious sense that TopS(X, R(S)) is a topos for any X. One then
defines

1.14. Definition. ([20]). A finitary monad over S is a geometric mo-
nad T = (T, e, m) on the object classifier R(S) → S in Top/S. Its
classifying topos UT : [T]→ R(S) is the Eilenberg-Moore topos of this
monad.

The main point of the definition is that, since R(S) is the object
classifier, one has

• for each X→ S in Top/S, the functor

TopS(X, T ) : TopS(X, R(S))→ TopS(X, R(S))

gives rise to a monad on TopS(X, R(S)), hence a monad TX on
X (considered as a mere category);
• for an object X ∈ X classified by the geometric morphism U :

X → R(S), i. e. such that U∗(US) = X, there is a one-to-one
correspondence between T-algebra structures on U and TX-
algebra structures on X.

Thus [T]→ R(S)→ S represents the 2-functor Top/S→ Cat which
sends X→ S to the category XTX of TX-algebras in X.

Moreover in this case the Kleisli topos is in fact equivalent to the

topos T̂ = STop
of internal presheaves on an internal category T in S.

Indeed, since R(S) = SSfp
, the explicit description of this category T

is available from that of Sfp. The object of objects of T can be identi-
fied with the object of natural numbers N, while morphisms, in terms
of generalized elements, are given by homT(n1, n2) = TS(n1)

n2 . Here
the functor TS : S → S corresponds to TopS(S, T ) : TopS(S, R(S)) →
TopS(S, R(S)) under the identification of TopS(S, R(S)) with S (con-
sidered as a mere category). It follows that in T, the object n is an
n-fold cartesian power of 1, in the appropriate internal sense. Thus
such T can be viewed as analogs of finitary algebraic theories and in-
deed coincide with them when S = Set. Indeed, as shown in [20,
Lemmas 5.18, 5.19], T-algebras in X for any f : X→ S can be identi-
fied with internal finite product preserving functors from f ∗(T) to X,
i. e. with T-models in X, and moreover one can construct the internal
category Tfp of finitely presented T-models such that [T] is equivalent

to [T] = STfp
.

In particular, one has obvious generalizations of 1.4 and 1.5, with
Set replaced by any topos S with natural numbers.
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Besides being the Kleisli topos for T, the topos T̂ also has an-
other universal property: by [20, 5.22], for any X → S, the category

TopS(X, T̂) is equivalent to the category of flat T-models in X, i. e.
those expressible as colimits of free T-models in XC, for some filtered
internal category C in S. Here a T-model is free if the corresponding
T-algebra is. One then has

1.15. Proposition. For an algebraic theory T over a topos S,

TopS(T̂, [T]) ' (T-mod(S))Top

.

Proof. This is just a particular case of the obvious equivalence

TopS(SCop

, [T]) ' T-mod(SCop

) ' (T-mod(S))Cop

.

There is an obvious geometric morphism FT : T̂ → [T] classifying
the generic flat model viewed just as a T-model. It is induced by the
functor Top → Tfp which embeds free T-models into finitely presented
ones. It is easy to see that FT is canonically isomorphic to the geometric
morphism I(T) defined above. We then define

1.16. Definition. F̂ (T) = TopS(T̂, [T])/FT.

Note that, similarly to 1.4, one has

1.17. Proposition. For any theory T there is an equivalence

F̂ (T) ' T-mod(T̂)/UT.

There is another naturally defined category for T which embeds fully
both in F (T) and F̂ (T). Namely, one has

1.18. Proposition. The following categories are equivalent:

• the category of endofunctors T-mod→ T-mod which preserve
colimits;
• the category of functors Tfp → T-mod which preserve finite

colimits;
• the category of functors Top → T-mod which preserve finite

coproducts;
• the category of T-bimodels in S, i. e. opposite of the category

of T-models in (T-mod)op.
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These are well known standard facts for S = Set. Generalizing to
arbitrary S with natural numbers is trivial except for the first item; it
can be easily handled invoking indexed category theory to view T-mod
as an S-indexed category. It is straightforward to generalize to the
indexed setting the fact that colimit preserving indexed functors on
T-mod are uniquely determined by their values on the subcategory
Tfp.

Denoting the category of T-bimodels by E (T), we thus see immedi-
ately from 1.18 that it is a monoidal category, and that there are full
embeddings

E (T)→ TopS(T̂, [T]), E (T)→ EndTop/S([T])

which carries the unit I of this monoidal structure to respectively, the
geometric morphism FT = I(T) and the identity of [T]. So trivially
there are full embeddings

E (T)/I → F̂ (T), E (T)/I → F (T).

18



2. Stable homotopy

In [31], a certain ring spectrum Ts is assigned to any algebraic theory
T over the topos Set∆op

of simplicial sets. Among other things, it allows
to extend homological invariants of T previously introduced in [15] only
for discrete T, i. e. those coming from Set. After recalling relevant
notions from [31] we will show how to construct an analog of Ts for an
algebraic theory over a general topos S.

Recall from [5] that a spectrum is a sequence

X = (S1 ∧Xn → Xn+1)n>0

of maps between pointed simplicial sets, S1 being the standard simpli-
cial circle. To a pointed simplicial set X0 corresponds its suspension
spectrum with Xn+1 = S1 ∧Xn and maps identities. In particular, the
sphere spectrum S0 with (S1∧Sn → Sn+1)n is the suspension spectrum
of S0, discrete simplicial set with two vertices. A morphism of spectra
f : X → Y is a sequence of maps fn : Xn → Yn compatible with the
structure in the obvious sense. Homotopy groups πn(X), n ∈ Z, of a
spectrum X are defined by

πn(X) =

lim
i→∞

(...→ [Sn+i, Xi]→ [S1 ∧ Sn+i, S1 ∧Xi]→ [Sn+i+1, Xi+1]→ ...),

where [ , ] denotes sets of homotopy classes of pointed maps between
geometric realizations. A spectrum X is connective if its negative ho-
motopy groups are trivial. Homotopy groups are functorial, and a
morphism of spectra is called a stable equivalence if it induces isomor-
phisms of all homotopy groups. The stable homotopy category is the
localization of the category of spectra with respect to stable equiva-
lences.

Connective spectra can be accessed via the category ΓS of Γ-spaces
of Segal (see [33]). This is just the category of functors from the cat-
egory Γop of finite pointed sets to simplicial sets which preserve the
terminal object. To assign a spectrum to a Γ-space S one uses left Kan
extension along the embedding of finite pointed sets into all pointed
sets, thus obtaining a functor from pointed sets to pointed simplicial
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sets; next, composing this functor with functors from ∆op to pointed
sets yields a functor from pointed simplicial sets to bisimplicial sets;
and finally taking diagonals of bisimplicial sets yields an endofunctor
FS of the category of pointed simplicial sets. One then shows that this
endofunctor has strength with respect to the smash product, i. e. can
be equipped with maps σK,L : K ∧ FS(L)→ FS(K ∧ L) satisfying cer-
tain naturality conditions (see e. g. [21]). This finally gives a spectrum
X with Xn = FS(Sn) and maps σS1,Sn : S1 ∧ FS(Sn) → FS(Sn+1). As
explained in [5], Γ-spaces can be viewed as connective reduced homol-
ogy theories corresponding to connective spectra. A typical example of
a Γ-space is produced from an arbitrary abelian group A and is given
by

Ã(n+) = A[n] := A⊕ ...⊕ A︸ ︷︷ ︸
ntimes

.

The corresponding endofunctor of pointed simplicial sets assigns to a
pointed simplicial set K the simplicial abelian group such that the
chain complex C̃∗(K; A) corresponding to it under the Dold-Kan cor-
respondence is none other than the reduced chain complex of K with
coefficients in A.

There is in fact a more straightforward way to define FS(K) for a
Γ-space S and a simplicial set K. For this one notes that

2.1. Proposition. There is a full embedding

ΓS ↪→ FSet∆
op (R(Set∆op

)).

Proof. Clearly ΓS is a full subcategory of the category of pointed
functors from pointed finite cardinals to simplicial sets. On the other
hand one has for any topos S

FS(R(S)) = Top/S(R(S), R(S))/IdR(S)

' R(S)/US

= SSfp

/I

' STot(I),

where I is the internal full embedding of finite cardinals into S and
“Tot” has the same meaning as in the proof of 1.8 above. Thus Tot(I)
is equivalent to the internal category of pointed finite cardinals of S,
which for S = Set∆op

is the same as the category of ordinary pointed
finite cardinals, considered as discrete simplicial sets.
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We thus see that each Γ-space S gives rise to a geometric morphism
FS from R(Set∆op

) to itself. On the other hand for any topos S what-
soever every such geometric morphism F : R(S) → R(S) induces a
natural transformation from the corresponding representable 2-functor
to itself. The latter functor, as we know, sends an S-topos X→ S to X;
so F gives rise to functors FX : X→ X. More explicitly, these functors
can be described as follows: since TopS(R(S), R(S)) ' R(S), to spec-
ify F as above is the same as to specify an object E0 = E∗(US) of R(S).
Similarly for any X→ S objects geometric morphisms X : X→ R(S)
over S correspond to objects X0 = X∗(US) of X. Under this corre-
spondence one then has FX(X0) = X∗(E0). We thus can give

2.2. Definition. For a topos S and an object F of R(S), we call the
value of F at an object X0 of an S-topos X → S, the object X∗(F ),
defined up to isomorphism, where X : X→ R(S) classifies X0, i. e. it
is such that X0 = X∗(US). Notation will be simply F (X0).

With this notation we then have

2.3. Theorem. For a Γ-space S, the endofunctor FS of the category
of pointed simplicial sets corresponding to S by [5] carries a simplicial
set K to S̄(K), where S̄ is the object of R(Set∆op

) classified by the
geometric morphism from R(Set∆op

) to itself corresponding to S by
2.1.

Proof. For any object X0 of any S-topos f : X→ S, in [20] is given an
explicit formula for the corresponding geometric morphism X→ R(S).
In particular, its direct image is given by

X1 7→ f∗(X
Xn

0
1 ).

The induced functor Top/S(X, R(S)/US) → Top/S(X, R(S)/US) is
then given by a similar expression except that X0 and X1 are now

pointed and X
Xn

0
1 is replaced by the subobject of pointed maps. Cal-

culating then value of the left adjoint of this functor on a pointed
simplicial set K gives precisely the coend formula from [31, page 4],
namely ∫ n+∈Γop

S(n+) ∧Kn

(note that there is a misprint in [31] at that place).

It is clear that there is a monoidal structure on Γ-spaces correspond-
ing to the composition of associated endofunctors of the category of
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pointed simplicial sets. Explicitly, it is given by

(X ◦ Y )(n+) = X(Y (n+)) =

∫ m+∈Γop

X(m+) ∧ Y (n+)m,

and the unit object, corresponding to the identity endofunctor, is the
Γ-space S given by S(n+) = n+. There is another, symmetric monoidal
structure, recently exploited by Lydakis in [22], which is obtained by
convolution of the smash product on Γop. Explicitly, one has

(X ∧ Y )(n+) = lim
x+∧y+→n+

X(x+) ∧ Y (y+).

The unit object is, remarkably, the same S; moreover this symmetric
monoidal structure is closed, with the internal hom given by

Hom(X, Y )(n+) = hom(X, Y (n+ ∧ )).

The two structures are related by the s. c. assembly maps X ∧ Y →
X ◦ Y , providing a structure of a lax monoidal functor from ∧ to ◦ on
the identity functor of ΓS. It is obtained from the canonical strength
transformation maps

X(x+) ∧ Y (y+)→ X(x+ ∧ Y (y+))→ X(Y (x+ ∧ y+))

using the convolution universality for ∧. In [22], a remarkable fact
is proved: the assembly map is a stable equivalence whenever any of
the X or Y is cofibrant in the sense of the model structure on ΓS
constructed in [5].

Now monoids with respect to ◦ correspond to arbitrary finitary mon-
ads on simplicial sets, and the latter property of the assembly map
suggests that such monads can be, up to stable homotopy, profitably
studied using monoids with respect to ∧. The latter are called Γ-rings
in [31]:

2.4. Definition. A Γ-ring is a Γ-space R equipped with maps e :
S → R and m : R ∧ R → R turning it into a monoid with respect
to the monoidal structure ∧, i. e. making appropriate unitality and
associativity diagrams commute in ΓS. A module over a Γ-ring R is a
Γ-space equipped with an action R ∧M →M of the monoid R.

Importance of Γ-rings lies in the fact that under the correspondence
between Γ-spaces and homology theories outlined above, Γ-rings cor-
respond to multiplicative homology theories. For example, the Γ space
Ã above which corresponds to an abelian group A has a Γ-ring struc-
ture whenever A has a ring structure in the usual sense. More general
important examples are provided by various connective K-homology
theories and bordisms.
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We then can, following [31], assign a Γ-ring Ts to any finitary monad
T over Set∆op

, in the sense of 1.14. Namely, Ts is defined to be the free
T-algebra functor restricted to finite pointed sets. The Γ-ring structure
is defined via the assembly map

Ts ∧ Ts → Ts ◦ Ts → Ts.

Homotopy groups of the corresponding spectrum are then called stable
homotopy groups of T.

In [31], stable homotopy groups of T are interpreted as groups of
stable homotopy operations between T-algebras. A homotopy operation
of T-algebras is a natural transformation πn → πm for some n, m, where

πn, πm : T-mod→ Set

are given by homotopy groups of geometric realizations of simplicial
sets underlying T-models. Since these functors are represented, in the
homotopy category, by free T-models on spheres,

πn(M) = [FT(Sn), M ],

the set of homotopy operations from πn to πm is bijective to the set
[FT(Sm), FT(Sn)] of homotopy classes of maps between geometric re-
alizations of underlying simplicial sets of free T-models. One then
defines suspension Σ of homotopy operations carrying an operation
τ : πn → πm to Στ : πn+1 → πm+1, via the corresponding suspension
map

Σ : [FT(Sm), FT(Sn)]→ [FT(Sm+1), FT(Sn+1)].

A stable homotopy operation of degree n is then a sequence (τi) of ho-
motopy operations τi : πi → πn+i with τi+1 = Στi, two such said to be
equivalent if there is an i0 such that they have the same components
for i > i0. As proved in [31], for each n the set of equivalence classes
of stable homotopy operations on T is bijective to the n-th stable ho-
motopy group of Ts. In fact this follows easily from the ”Yoneda-like”
considerations, as equivalence classes of stable homotopy operations of
degree n on T are clearly given by

lim
i→∞

[FT(Sn+i), FT(Si)],

whereas the n-th stable homotopy group of Ts is by definition given by

lim
i→∞

πn+iF
T(Si).

According to the explication after 1.14, in our terms Ts is nothing but
the generic model UT of the corresponding theory, situated in the clas-
sifying topos [T] equipped with the canonical functor [T]→ R(Set∆op

).
Moreover as explained in [20], a monad T on R(S), for any topos S,
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gives rise, in a compatible way, to monads TX on all S-toposes X→ S,
such that for any X0 in any X, one has TX(X0) = UT(X0), i. e. the
value on X0, in the sense of 2.2, of UT, considered as the object of R(S)
classified by T : R(S) → R(S). Putting this together with 2.3 thus
gives

2.5. Corollary. For a finitary monad T on Set∆op

, the spectrum X
corresponding to the Γ-space Ts by [31] has Xn = TSet∆

op (Sn).

This moreover enables us to read off geometric realizations of con-
stituent simplicial sets Xn of the spectrum X. Indeed there are sev-
eral toposes containing as full subcategories sufficiently large parts of
the category of topological spaces. See e. g. the topological topos
T from [18] which contains the category of sequential spaces. It is
known that the topos Set∆op

classifies linear orders with endpoints,
thus the standard unit interval equips T with a geometric morphism
I : T → Set∆op

. Then similarly to 2.5 one sees that for a finitary
monad T on Set∆op

, the realization of the n-th space of the spectrum
corresponding to Ts is TT (Sn).

Finally, let us briefly mention another possibility of assigning Γ-
spaces to general Grothendieck toposes. It is shown in [19] that for an
object G in a topos X over S, the following conditions are equivalent:

• there is a generating family for X over S consisting of subobjects
of finite cartesian powers of G;
• the geometric morphism pGq : X→ R(S) which classifies G is

localic, so that X is equivalent, over R(S), to the category of
sheaves on an internal complete Heyting algebra HG in R(S).

Thus each bounded S-topos X can be represented as a localic topos
over R(S); conversely, internal locales in R(S) capture all possible
bounded S-toposes. In fact, that complete Heyting algebra can be de-
scribed explicitly – one has HG = pGq∗ (ΩX), where ΩX is the subobject

classifier of X. On the other hand, recall from 1 that R(S) is SSfp
and

for any object G in X direct image of the corresponding classifying
morphism pGq : X→ R(S) is given by

pGq∗ (X)(n) = hom(Gn, X);

thus for HG this means that HG(n) is equal to the Heyting algebra of
subobjects of Gn.

This means that once HG, considered as an internal locale, has
enough points, it will be the lattice of open sets of an internal topo-
logical space in SSfp

. Moreover choices of a basepoint ∗ : 1 → G for
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the generator G are in one-to-one correspondence with liftings of the
classifying geometric morphism pGq : X→ R(S) to R(S)/US, i. e. to
the topos of Γ-sets. Thus such a basepointed generator will assign to
X a Γ-space in this case. But also in general, one sees that bounded
S-toposes with pointed generators are essentially the same thing as
“Γ-locales” over S. It is easy to describe explicitly the corresponding
locale; the result can be summarized as follows:

2.6. Proposition. For any bounded Grothendieck topos X, there is
a Γ-locale H, i. e. a functor from finite pointed sets to locales, which
determines X up to equivalence. Explicitly, given any pointed genera-
tor ∗ : 1 → G of X, the lattice of open sets of H(n+) is the lattice of
subobjects of Gn. Here n+ = {0, 1, ..., n}. The topos X can be then
recovered as the topos of internal H-sheaves in Γ-sets.
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3. Examples of bimodel monoidal structures

Note that for any topos X, the category F (X) has a monoidal struc-
ture given by composition. We saw in 2 that for X = R(S), another
monoidal structure becomes important – that of smash product ∧. In
fact it has been proved by Lydakis in [22] that there is a s. c. assembly
map from smash product to composition product of Γ-spaces which
induces a stable equivalence of corresponding spectra. Thus one might
say that composition of endofunctors of simplicial sets corresponding
to Γ-spaces is “commutative up to stable equivalence”.

Although we do not know about such commutativity phenomena
for general F (X), we would like to give examples of closely related

monoidal structures arising from full subcategories E (T)/I(T) of F̂ (T)
introduced in the end of 1. These have been investigated in [13].

In fact monoidal categories of bimodels have been studied by many
authors (for one of the earliest investigations see e. g. [11]).

3.1. Examples.

3.1.1. A bimodel of the theory of sets S is, clearly, the same as just
a set, and E (S) is equivalent to the category of sets with monoidal
structure given by cartesian product.

3.1.2. For the theory A of abelian groups E (A) is equivalent to the
category of abelian groups Ab with tensor product as the monoidal
operation.

3.1.3. In fact, more generally, for any ring R, the category E (TR) for
the theory TR of (left) R-modules is well known to be equivalent to the
category of R-R-bimodules, with unit R and the monoidal structure
given by ⊗R .

3.1.4. Another widely known fact is that for the theory G of groups
one has

E (G) ' Set,
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with the cartesian product monoidal structure. Indeed, it is proved in
[8] that any comultiplication

G→ G ∗G

on a group G which has a two-sided counit, is isomorphic to

F (S)
F (diagonal)−−−−−−→ F (S × S) ⊂ F (S) ∗ F (S),

where the rightmost inclusion corresponds to the kernel of the canonical
homomorphism F (S) ∗ F (S)→ F (S)× F (S). In other words, for any
adjunction L a R in E (G), the right adjoint is isomorphic to the functor
G 7→ GS for some set S.

Closer to our theme is the case when T is the theory generated by a
single constant, i. e. such that T-mod is the category of pointed sets.
It is equally well known that the result is again the category of pointed
sets, with the smash product as monoidal structure. More generally,
for a set I, let TI be the theory generated by the set of constants I.
Thus homTI

(Xn, X) = {x1, ..., xn}t I, and T-mod is equivalent to the
coslice I/Set. One then has

3.2. Theorem. For a set I, the monoidal category E (TI) is equivalent
to the category of factorizations of the map

const : I → II

assigning to i ∈ I the constant self-map with value i. In detail, the
objects of the latter category are pairs

I
f−→ X

e−→ II

with e(f(i))(i′) = i for all i, i′ ∈ I. Morphisms from (e, f) to (e′, f ′) are
maps x with xf = f ′, e′x = e. The monoidal operation corresponding
to composition is given by(

I
fX−→ X

eX−→ II
)
◦

(
I

fY−→ Y
eY−→ II

)
=

(
I

f∧−→ X ∧I Y
e∧−→ II

)
,

where
X ∧I Y = (X × Y )/ 〈x, fY (i)〉 ∼ 〈fX(eX(x)i), y〉

for x ∈ X, i ∈ I, y ∈ Y ; the maps are given by

e∧(x ∧ y) = eX(x)eY (y) (composition),

f∧(i) = fX(i) ∧ fY (i),

where x ∧ y stands for the equivalence class of 〈x, y〉. Finally, the unit
for the monoidal structure is

II :=
(
I

const−−−→ const(I) ∪ {IdI}
⊂−→ II

)
,
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where const is the map assigning to i ∈ I the constant map with value
i while IdI denotes the identity map of I.

Proof. One assigns to an object (e, f) as above the functor

R(e,f) : I/Set→ I/Set

carrying s : I → S to R(e,f)(s) : I → { u | uf = s } with

R(e,f)(s)(i)(x) = s(e(x)i).

Then R(e,f) has a left adjoint L(e,f) given by

L(e,f)(fY : I → Y ) = (f∧ : I → X ∧I Y )

as above. Checking that composition of such functors corresponds to
the described monoidal structure is straightforward.

This gives immediately also a description of the slice of E (TI) over
the unit:

3.3. Corollary. For a set I, the monoidal category E (TI)/II has, up
to equivalence, the following description: objects are sets X equipped
with a disjoint sum decomposition

X = X0 t
∐
i∈I

Xi

and basepoints ∗i ∈ Xi, for i ∈ I. Morphisms are maps preserving
decomposition and basepoints. Unit of the monoidal structure is the
terminal, and the operation (X, Y ) 7→ X ∧ Y is given by

(X ∧ Y )0 = X0× Y0; (X ∧ Y )i = (X0× Yi tXi× Y )/ 〈x0, ∗i〉 ∼ 〈∗i, y〉

for any x0 ∈ X0, y ∈ Y .

3.4. Definition. Let n2A be the theory of class two nilpotent rings
without unit, i. e. rings with the identities

(xy)z = x(yz) = 0.

3.5. Theorem. The category E (n2A) is equivalent to the category
whose objects are triples (A, m0, m1) where A is an abelian group
and m0, m1 : A → A⊗A are homomorphisms. A morphism from
(A, m0, m1) to (A′, m′

0, m
′
1) is a homomorphism f : A → A′ satisfying
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m′
if = f(mi⊗mi), i = 0, 1. The monoidal structure corresponding to

the composition in E (n2A) is given by

(A, m0, m1) ◦ (B, n0, n1)

= (A⊗B, τ23(m0⊗n0 + (τm1)⊗n1), τ23((τm0)⊗n1 + m1⊗n0)),

where τ is the symmetry isomorphism and τ23 = Id⊗ τ ⊗ Id. The unit
object is (Z, 1, 0).

Proof. For any model X of n2A, let X2 ⊆ X be the image of the multi-
plication operation, and let Xab = X/X2. Thus up to isomorphism the
additive structure of X is determined by a symmetric 2-cocycle of Xab

with values in X2: given such a cocycle χ, one obtains an isomorphism
of X, as an abelian group, to the set X2 ×Xab with addition

(ξ, x) + (η, y) = (ξ + η + χ(x, y), x + y).

Multiplicative structure of X is determined by any surjective homo-
morphism Xab⊗Xab � X2.

Now suppose X carries structure of an internal abelian group in
(n2A-mod)op, i. e. X has coaddition

∆ : X → X ∗X

and cozero

0 : X → 0,

where ∗ denotes coproduct in n2A-mod. For any X, Y in n2A-mod
this coproduct fits in a short exact sequence

0→ Xab⊗Yab ⊕ Yab⊗Xab
ι−→ X ∗ Y → X × Y → 0

with ι(x̄⊗ ȳ) = ιX(x)ιY (y) and ι(ȳ⊗ x̄) = ιY (y)ιX(x), where ιX and
ιY are the coproduct embeddings. Since the coaddition has a two-sided
cozero, one sees that ∆(x) for x ∈ X may be uniquely written in the
form

∆(x) = ι`(x) + λ(x) + ρ(x) + ιr(x)

where ι`, ιr : X → X ∗ X are the coproduct embeddings and λ(x) ∈
Xab⊗Xab

∼= ι`(X)ιr(X), ρ(x) ∈ Xab⊗Xab
∼= ιr(X)ι`(X). Further-

more ∆ is a multiplicative homomorphism which implies

λ(xy) + ρ(xy) = ι`(x)ιr(y) + ιr(x)ι`(y) ∈ Xab⊗Xab ⊕ Xab⊗Xab,
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which means that the diagram

(D)

Xab⊗Xab

diagonal//

µ

��

Xab⊗Xab ⊕ Xab⊗Xab

ι

��

X
λ+ρ // X ∗X

commutes, where µ is the multiplication map. Since the diagonal and
ι are monos, this yields a short exact sequence

(S) 0→ Xab⊗Xab
µ−→ X → Xab → 0,

i. e. X2 ∼= Xab⊗Xab; let’s identify these groups from now on. Now
additivity of ∆ implies that both λ and ρ are additive, and composing
the diagonal in (D) with either of the projections

π`, πr : Xab⊗Xab ⊕ Xab⊗Xab → Xab⊗Xab

shows that both λ and ρ provide retractions for µ in (S). This means
that X is isomorphic to the “truncated tensor algebra” of Xab,

T (Xab) = Xab ⊕ Xab⊗Xab.

So up to isomorphism an adjoint pair between n2A-mod and abelian
groups is determined by a single abelian group.

Now let us add into consideration the comultiplication; suppose an
X as above, determined by Xab = A, is equipped with a morphism

T (A)→ T (A) ∗ T (A),

or equivalently

A→ U(T (A) ∗ T (A)),

where U is the forgetful functor right adjoint to T . If this has to define
a coring structure on X, comultiplying from either side by cozero must
give cozero, i. e. the above map lands in

Ker( T (A) ∗ T (A)→ T (A)× T (A)),

i. e. is determined by (m0, m1) : A → A⊗A ⊕ A⊗A. For a class
two nilpotent ring Z, multiplication on Hom(A, U(Z)) determined by
these data is given by

(f · g)a = (fg)(m0a) + (gf)(m1a),

in other words, for f, g ∈ Hom(A, U(Z)), their product is the composite

A
(m0,m1)−−−−−→ A⊗A ⊕ A⊗A

f ⊗ g+g⊗ f−−−−−−→ Z ⊗Z ⊕Z ⊗Z
µ⊕µ−−→ Z⊕Z

+−→ Z.
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It remains to calculate the effect of composing the adjunctions on the
corresponding corings, which is straightforward.

For the next example, let n2L be the theory of class two nilpotent
square zero rings, i. e. rings in which the identities

x2 = xyz = 0

hold. For these one has

3.6. Theorem. The category E (n2L) is equivalent to the category
with objects looking like

(δ : C → C, µ : C → C ⊗C)

where C is an abelian group, δ is an additive endomorphism with
2δ = 0, and µ is a cocommutative comultiplication, i. e. τµ = µ,
where τ is the symmetry. Morphisms from (δ, µ) to (δ′, µ′) are ho-
momorphisms f satisfying δ′f = fδ, µ′f = (f ⊗ f)µ. The monoidal
structure corresponding to the composition in E (n2L) is

(δC , µC) ◦ (δD, µD) = (δC ⊗D, µC ⊗D)

with

δC ⊗D(c⊗ d) = c⊗ δD(d) + δC(c)⊗µD(d),

where µD(d) denotes µD(d) modulo elements of the form d1⊗ d2 +
d2⊗ d1, and

µC ⊗D = (IdC ⊗ τ ⊗ IdD)(µC ⊗µD);

the unit object is (0 : Z→ Z, 1⊗ 1 : Z ∼= Z⊗Z).

Proof. Let X be any model of n2L. Up to isomorphism it is determined
by the exqact sequence of abelian groups

Λ2C
m−→ X → C → 0,

where C = X/X2 and m(x̄ ∧ x̄′) = xx′. Now suppose X carries a
coabelian cogroup structure in n2L-mod, with the coaddition

∆ : X → X tX.

Since X → 0 must be a two-sided cozero, one has

∆(x) = ι`(X) + ∆0(x) + ιr(x),

with ι`, ιr : X → X t X the coproduct embeddings, and im(∆0) ⊆
ι`(X)ιr(X) ∼= C ⊗C. But ∆ must be a multiplicative homomorphism,
which implies

∆0m(c ∧ c′) = c⊗ c′ − c′⊗ c.

32



Indeed one has

∆(x)∆(x′) = (ι`(x) + ∆0(x) + ιr(x))(ι`(x
′) + ∆0(x

′) + ιr(x
′))

= ι`(xx′) + ι`(x)ιr(x
′) + ιr(x)ι`(x

′) + ιr(xx′)

= ι`(xx′) + ι`(x)ιr(x
′) + ι`(x

′)ιr(x) + ιr(xx′).

Hence in particular we see that m is a monomorphism, since ∆0m
is. Furthermore mutativity (=cocommutativity) of ∆ implies that ∆0

takes values in the subgroup A2C ⊆ C ⊗C of antisymmetric tensors,
and hence induces

δ : C = X/Λ2C → A2C/Λ2C ∼= 2C = {x ∈ C|2x = 0}
where the latter isomorphism may be deduced from the short exact
sequence

0→ A2C/Λ2C → (C ⊗C)/Λ2C → (C ⊗C)/A2C → 0,

as (C ⊗C)/Λ2C ∼= S2C is the symmetric square and

(C ⊗C)/A2C = (C ⊗C)/Ker(IdC ⊗C + τ) ∼= Im(IdC ⊗C + τ).

It follows that there is a commutative square

X
∆0 //

��

A2C

��

C
δ ////

2C

and since the induced homomorphism on kernels of vertical surjections
is an isomorphism, a standard diagram-chasing shows that the square is
a pullback. Hence the whole coabelian cogroup X is up to isomorphism
determined by δ : C → 2C. Moreover any morphism f : X → Y
between coabelian cogroups which preserves coaddition is determined
by the induced map X/X2 → Y/Y 2 since the upper left corner map in
a morphism between pullback squares is determined by the remaining
maps.

Now let us turn to the comultiplication, which is another morphism
of n2L-models

M : X → X tX.

Since comultiplying by cozero must be cozero, it follows that

Im(M) ⊆ Ker(X tX → X ×X) = ι`(X)ιr(X),

hence X2 ⊆ Ker(M). So M factors as

X � C
µ−→ C ⊗C � X tX
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where µ may be any homomorphism. Moreover the comultiplication
must be coexterior, i. e. satisfy the coidentity dual to x2 = 0, which
means

Im(µ) ⊆ Ker(C ⊗C � X tX
∇−→ X)

where ∇ is the codiagonal. But the latter composition is easily seen to
coincide with

C ⊗C � Λ2C
m−→ X

so that Im(µ) ⊆ Ker(1− τ) which means comultiplication is cocommu-
tative.

It remains to check the effect of composition in E (n2L) on the corre-
sponding coexterior rings. This is straightforward and gives the result
claimed.

Our final example of “exotic” monoidal structures is given by the
category E (n2G) for the theory of class two nilpotent groups. For this
let us recall the notion of the universal degree 2 map.

3.7. Definition. For an abelian group A, let P 2(A) be the abelian
group generated by symbols p2(a) for a ∈ A, subject to the relations

p2(x+ y + z) = p2(x+ y)+p2(x+ z)+p2(y + z)−p2(x)−p2(y)−p2(z).

Thus the map p2 : A→ P 2(A) is universal among maps with domain
A which satisfy the above relations. There is a natural short exact
sequence

0→ S2(A)
ιA−→ P 2(A)

πA−→ A→ 0

with ιA(xy) = p2(x + y)− p2(x)− p2(y), xy ∈ S2(A), and πAp2(a) = a.

3.8. Theorem. The category E (n2G) has, up to equivalence, the fol-
lowing description: objects are homomorphisms

σ : A→ P 2(A)

for abelian groups A, satisfying

πA ◦ σ = IdA,

and morphisms from σ : A → P 2(A) to σ′ : A′ → P 2(A′) are homo-
morphisms f : A → A′ with σ′f = (P 2(f))σ. The monoidal structure
is given by

(A
σ−→ P 2A) ◦ (B

τ−→ P 2B)

= (A⊗B
σ⊗ τ−−−→ (P 2A)⊗(P 2B)

pA,B−−→ P 2(A⊗B)),
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where the natural transformation p is given by

pA,B(p2(a)⊗ p2(b)) = p2(a⊗ b).

The unit is (ι : Z→ P 2Z) with ι(n) = np2(1).

Proof. Let ∆ : G → G ∗2 G be a comultiplication homomorphism on
a class 2 nilpotent group G, where ∗2 denotes coproduct in n2G-mod.
If ∆ has a two-sided counit, then for all g ∈ G

∆(g) = ι`(g)∆0(g)ιr(g)

where ι`, ιr : G→ G ∗2 G are the coproduct embeddings and

Im(∆0) ⊆ Ker(G ∗2 G→ G×G) ∼= A⊗A

where A = Gab = G/[G, G]. The latter isomorphism relates ḡ⊗ ḡ′ to
[ι`g, ιrg

′]: more generally X ∗2 Y for any X,Y fits in a central extension
of groups

Xab⊗Yab � X ∗2 Y � X × Y.

Now ∆(xy) = ∆(x)∆(y) and ∆([x, y]) = [∆(x), ∆(y)] imply

∆0(xy) = [ι`x, ιry]∆0(x)∆0(y)

∆0([x, y]) = [ι`x, ιry][ι`y, ιrx]−1.

This means that ∆0 factors via δ : A→ S2A to fill in the diagram

G
∆0 //

��

[ι`(G), ιr(G)]
∼

A⊗A

π

��

A
δ // S2A

where π is the canonical map; moreover the composition

Λ2A
[ , ]−−→ G

∆0−→ [ι`(G), ιr(G)] ∼= A⊗A

is the canonical embedding given by

a ∧ a′ 7→ a⊗ a′ − a′⊗ a.

It follows that the diagram is a pullback of sets and G is up to isomor-
phism the set {(x, a) ∈ A⊗A|πx = δa} with multiplication

(x, a)(x′, a′) = (x + x′ + a⊗ a′, a + a′),

whilst δ must satisfy

δ(x + y)− δ(x)− δ(y) = xy,
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x, y ∈ A. This means that δ factors through p2 to give a homomorphism

δ′ : P 2(A)→ S2(A)

satisfying
δ′ ◦ ιA = Id,

and such homomorphisms are clearly in one-to-one correspondence with
sections of πA. Moreover given a homomorphism between such objects
which preserves comultiplication, it will determine a transformation of
corresponding pullback squares, and the upper left corner map of this
transformation will be determined by the remaining maps. Finally one
calculates the effect of the endofunctor composition on the representing
objects, which is tedious but straightforward.
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4. Cohomology

We now turn to cohomology groups of toposes corresponding to our
notion of homotopy type. Thus coefficients for cohomology of a topos X
will be internal abelian groups in F (X). (Note that the latter category
does not necessarily have any products; still observe that it has small
homs, so by an internal abelian group we can understand an object A
together with a lifting of the functor homF (X)( , A) : F (X) → Set to
abelian groups, along the forgetful functor Ab→ Set.)

When X is a classifying topos for an algebraic theory T, we will
produce explicit complexes for calculating these cohomologies, and will
give interpretations of elements in lower dimensions by certain exten-
sions. Exposition is mainly based on [15], with some generalizations
corresponding to switching from cohomology with coefficients in objects
of Ab(T-mod)Top

to our slightly more general coefficients in objects of
Ab(F (T)).

In particular, there is the global sections functor Γ : Ab(F (X)) →
Ab, Γ(A) = homF (X)(IdX, A). We then define

4.1. Definition. For a Grothendieck topos X and an internal abelian
group A in F (X), the cohomology groups Hn(X; A) of X with coef-
ficients in A, n > 0, are values on A of an universal exact connected
sequence of functors Hn(X; ) : Ab(F (X))→ Ab with H0(X; ) = Γ.

Thus for a general Grothendieck topos it is not clear whether these
cohomology groups exist. Situation is better when X is a classifying
topos for an algebraic theory, because of the following:

4.2. Proposition. For an algebraic theory T over a base topos S with
a natural numbers object and a model M of T in S, there exists an
internal ringoid U (M) in S (the enveloping ringoid of M) such that
the category Ab(T-mod(S)/M) is equivalent to the category of internal
left U (M)-modules in S.

Proof. The object of objects of U (M) will be M . Here as usual we
identify a model M with its underlying object in S, so that M is viewed
as a TS-algebra µ : TS(M)→M .
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In presence of the natural numbers object, we can present morphisms
of an internal ringoid such as U (M) by generators and relations. The
generating object for morphisms will be

G =
∑

n

T(n)×Mn × n.

Here we have used notation from [20], so that n stands for the generic
finite cardinal. In more detail, n is the object of S/N given by the
composite

N× N
+−→ N

s−→ N,

where s is the successor map of the object of natural numbers; and G
is given by

G =
∐
N

TS/N(n)× (N∗M)n × n,

where TS/N is the monad induced by T on S/N. In the internal lan-
guage, elements of G are of the form 〈u, m1, ...,mn, i〉 with an n-ary
operation u of T, an n-tuple of elements of M , and 1 6 i 6 n. This
element represents a morphism from mi to u(m1, ...,mn), thus the do-
main and codomain maps G ⇒ M are given, respectively, by∐

N

TS/N(n)× (N∗M)n × n
∐

N(projection)
−−−−−−−−→

∐
N

(N∗M)n × n
∐

N(evaluation)
−−−−−−−−→

∐
N

N∗M
counit−−−→M

and∐
N

TS/N(n)× (N∗M)n × n
∐

N(projection)
−−−−−−−−→

∐
N

TS/N(n)× (N∗M)n

∐
N(TS/N(n)×strength)
−−−−−−−−−−−−−→∐

N

TS/N(n)× TS/N(N∗M)TS/N(n) evaluation−−−−−→
∐
N

TS/N(N∗M)
∼=−→

∐
N

N∗TS(M)
∐

N N∗µ
−−−−→

∐
N

N∗M
counit−−−→M.

The object of relations is

R =
∑
n,k

T(n)× T(k)n ×Mk × k,

where n, k now stands for the generic pair of finite cardinals. We will
present relations in the internal language only; it is straightforward to
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convert them into the diagrammatic form. The relation corresponding
to 〈u, v1, ..., vn, m1, ...,mk, j〉 for u in T(n), v1, ..., vn in T(k), m1, ...,mk

in M and 1 6 j 6 k has the form

〈u(v1, ..., vn), m1, ...,mk, j〉 =
n∑

i=1

〈u, v1(m1, ...,mk), ..., vn(m1, ...,mk), i〉 ◦ 〈vi, m1, ...,mk, j〉 ,

with ◦ denoting the composition in the ringoid.
To construct a functor Φ from Ab(T-mod(S)/M) to U (M)-modu-

les, observe that any object of Ab(T-mod(S)/M) can be viewed in
particular as an internal abelian group A → M in S/M , i. e. as a
family (Am)m∈M of internal abelian groups indexed by M . The T-
model structure on this object results further in the family of maps of
the form

uA : Am1 × ...× Amn → Au(m1,...,mn),

where n varies over N and u over n-ary operations of T. Compatibility
between abelian group structure and T-model structure means that all
the uA’s are abelian group homomorphisms. Hence they are uniquely
determined by their composites with canonical inclusions

Ami
→ Am1 × ...× Amn , 1 6 i 6 n.

We then declare these composites to be actions on Φ(A → M) of
morphisms 〈u, m1, ...,mn, i〉 of U (M), values of Φ(A→M) on objects
m ∈ M of U (M) being Am. Conditions on A ensuring that it is a
T-model then amount precisely to satisfaction of relations from R by
Φ(A→M).

It is also clear how to construct the functor Ψ in the opposite direc-
tion: given an U (M)-module(

(Am)m∈M , (Ami
→ Au(m1,...,mn))〈u,m1,...,mn,i〉∈G

)
,

one obtains an internal abelian group
∐

m Am →M in S/M ; one then
defines maps uA as above by

uA(a1, ..., an) =
n∑

i=1

〈u, m1, ...,mn, i〉 ai.

These maps obviously combine to produce maps uA : An → A for
all operations of T, and conditions of U (M)-module structure mean
precisely that this indeed defines an object of Ab(T-mod(S)/M).

It is then straightforward to check that Φ and Ψ are mutually inverse
equivalences of categories.
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Remark. For S = Set this fact is well known; for the most general
case treated and relevant references see [30].

4.3. Corollary. For an algebraic theory T on a topos with natural

numbers there are internal ringoids U (T) in [T] and Û (T) in T̂ such

that Ab(F (T)) (resp., Ab(F̂ (T)) – see 1.16) is equivalent to the cat-

egory of U (T)-modules (resp., Û (T)-modules).

Proof. In view of 1.4 (resp. 1.17), this is just a particular case of 4.2,

with S = [T] (resp. T̂) and M = UT (resp. UT).

4.4. Corollary. For any algebraic theory T on a Grothendieck topos
S, and any T-model M in S, the category Ab(T-mod(S)/M) has
enough injectives. If S is a presheaf topos, then it also has enough
projectives. In particular, the categories Ab(FS(T)) and Ab(F̂S(T))
have enough injectives, and if moreover S is a presheaf topos, then they
also have enough projectives.

Proof. Composing the forgetful functor from Ab(T-mod(S)/M) to
Ab(S/M) with the above equivalence

U (M)-mod ' Ab(T-mod(S)/M)

obviously gives the forgetful functor from U (M)-mod to Ab(S/M).
The latter functor has both adjoints, hence U (M)-mod will have
enough injectives (resp., projectives) whenever Ab(S/M) does. But it
is well known that Ab(E) has enough injectives for any Grothendieck
topos E, and enough projectives when E is a presheaf topos. And
obviously S/M is a presheaf topos if S is.

For the second part, just note that both [T] and T̂ are Grothendieck
toposes for a Grothendieck topos S, and presheaf toposes for a presheaf
topos S.

Thus for the topos X = [T], where T is an algebraic theory over
a Grothendieck topos S, the cohomology groups Hn from 4.1 indeed
exist and coincide with right derived functors of H0 = Γ. We will write
simply Hn(T; A) instead of Hn([T]; A). In this case we also define, for

an internal abelian group D in F̂ (T),

Hn(T; D) = RnΓ(D),

with Γ : Ab(F̂ (T))→ Ab the global section functor hom(1FT , ).

4.5. Examples.
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4.5.1. Let M be a monoid, and consider the theory TM whose models
are objects with an action of M . Thus the classifying topos [TM ]
contains the generic M -object UM , whereas F (TM) is the category
[TM ]M/UM . Now for any category S with finite limits and any M -
object M × X → X in S, there is an internal category M o X in S
such that SM/X is equivalent to the category SMoX of internal functors
on M o X. Explicitly, the object of objects of M o X is X, the object
of morphisms is M × X, the source map is the projection, and the
target – the action.

On the other hand, [TM ] itself is the category of internal functors
from finitely presented M -objects to Set. Hence the internal category
M o UM of [TM ] can be identified with the functor M from finitely
presented M -objects to small categories, which assigns to the M -object
X the category M oX. We then obtain that [TM ]MoUM is equivalent to
the category of internal functors on the Grothendieck construction UM

of the functor M . Explicitly, we have F (TM) ' SetUM , where objects
of the category UM are elements x ∈ X of various finitely presented
M -sets; and morphisms from x ∈ X to y ∈ Y are pairs (f, m), where
f : X → Y is an M -equivariant homomorphism, and m ∈ M is such
that y = mf(x). Accordingly,

Ab(F (TM)) ' AbUM .

A similar but simpler description is available for F̂ (TM). In this case
one has to replace finitely presented M -sets by finitely generated free
ones. Now any such M -set is clearly isomorphic to the one of the form
{1, ..., n} ×M , with M acting on itself via multiplication and trivially
on the first factor. Thus UM gets replaced by its full subcategory on
elements of such objects. It is easy to see that this subcategory is in
fact equivalent to the product S· × (M o M), where S· denotes the
category of finite pointed sets. Hence we have

F̂ (TM) ' (R(Set)/USet)
MoM .

4.5.2. Let G be the theory of groups, considered over Set. Thus the
classifying topos [G] is the category of functors from finitely presented
groups Gfp to Set. So TopSet([G], [G]) is the category Gr([G]) of internal
groups in [G], and the generic group UG corresponds to the inclusion
of finitely presented groups into all groups. Thus

Ab(F ([G])) = Ab(Gr([G])/UG).

Now it is well known that for any group G in any category with finite
products S, the category Ab(Gr(S)/G) is equivalent to the category of
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G-modules in S. Thus also

Ab(F ([G])) ' UG-mod.

Identifying UG with the inclusion Gfp → Gr, we see that objects A
of Ab(F ([G])) can be identified with assignments, to each finitely
presented group G, of a G-module AG, and to each homomorphism
f : G → H between such groups, of an f -equivariant homomorphism
Af : AG → AH , in a functorial way.

Similar description is valid for rings, Lie algebras, ... in place of
groups. In particular, for commutative rings one can view this from
the point of view of algebraic geometry, as in the next example.

4.5.3. Let k be a commutative ring, and let Ak be the theory of com-
mutative k-algebras, i. e. commutative rings with the additional set of
nullary operations, one for each element of k, and equations ensuring
that these determine a homomorphism from k to the ring. Thus [Ak]
is the category of covariant functors from finitely presented k-algebras
to sets. Observe that there is a full embedding

Sch/Spec(k) ↪→ [Ak]

of k-schemes into [Ak], which sends a scheme X to the corresponding
functor of points, A 7→ homSch/Spec(k)(Spec(A), X).

Moreover the (underlying set-valued functor of the) generic k-algebra
UAk

is clearly in the image of this embedding – it is in fact repre-
sentable by the polynomial algebra k[t], so the corresponding scheme
is Spec(k[t]) → Spec(k), i. e. the projection Spec(k) × A1 → Spec(k).
Then the fact that UAk

carries an internal k-algebra structure in [Ak]
corresponds to the fact that the affine line A1 is a ring scheme, and
moreover Spec(k) × A1 → Spec(k) is a k-algebra scheme. Indeed k-
algebra scheme structure on a ring scheme R amounts to a point in the
k-fold cartesian power Rk of R which is a ring homomorphism in the
obvious sense. And in our case this is Spec(k)→ (A1)k sending x ∈ k
to x considered as a regular function Spec(k)→ A1.

Thus we see that any module scheme over the ring scheme Spec(k)×
A1 → Spec(k) in Sch/Spec(k) determines an object of Ab(F (Ak)).

For classifying toposes of algebraic theories, it is possible to make
coefficients for cohomology more explicit.

4.6. Definition. For an algebraic theory T, a coefficient system A
for T consists of a family of abelian groups (Au)u:Xn→X indexed by all
operations from T, and homomorphisms (v1, ..., vn) : Au → Au(v1,...,vn)
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and u(v1, ..., vi−1, , vi+1, ..., vn) : Avi
→ Au(v1,...,vn) for each n-ary oper-

ation u, each n-tuple of operations v1, ..., vn of equal arity, and each
1 6 i 6 n, which satisfy the following equalities

a(v1, ..., vn)(w1, ..., wm) = a(v1(w1, ..., wm), ..., vn(w1, ..., wm));

u(v1, ..., ai, ..., vn)(w1, ..., wm) =

u(v1(w1, ..., wm), ..., ai(w1, ..., wm), ..., vn(w1, ..., wm));

u(v1, ..., vn)(w1, ..., aj, ..., wm) =
n∑

i=1

u(v1(w1, ..., wm), ..., vi(w1, ..., aj, ..., wm), vn(w1, ..., wm))

for all u, vi, wj and all a ∈ Au, ai ∈ Avi
, aj ∈ Awj

, 1 6 i 6 n,
1 6 j 6 m.

With the obvious notion of morphism, coefficient systems form a
category, and one has

4.7. Proposition. For an algebraic theory T the category of coefficient
systems for T is equivalent to Ab(F̂ (T)).

Proof. To a coefficient system A in the above sense there corresponds
a natural system D = D(A ) on T given by

Df :Xn→Xk = Ax1f ⊕ ...⊕ Axkf ,

where x1, ..., xk : Xk → X are the projections, with the left actions
given by

(a1, ..., ak)(v1, ..., vn) = (a1(v1, ..., vn), ..., ak(v1, ..., vn))

and right actions given by

(u1, ..., uk)(a1, a2, ..., an) =

(u1(a1, v2, ..., vn) + u1(v1, a2, ..., vn) + ... + u1(v1, v2, ..., an), ...,

uk(a1, v2, ..., vn) + uk(v1, a2, ..., vn) + ... + uk(v1, v2, ..., an)).

On the other hand F̂ (T) = TopS(T̂, [T])/I(T) ' T-modTop

/IT, where
IT sends Xn to the free model on n generators. Thus we can identify
F̂ (T) with the full subcategory of SetTop×T/ homT consisting of those
p : B → homT for which the bifunctor B preserves finite products
in the second variable. One can produce from this a natural system
D with Df = p−1(f). Then clearly internal abelian groups in F̂ (T)
will correspond to those D which are natural systems of abelian groups.
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Moreover the finite product preservation condition corresponds exactly
to the requirement that the canonical map

Df :Xn→Xk → Dx1f ⊕ ...⊕Dxkf

is an isomorphism, just as in 1.9. Thus we can define a coefficient
system A with Au = Du for u : Xn → X in T. It is straightforward to
check that this gives an inverse equivalence for A 7→ D(A ) above.

In terms of coefficient systems, we have an explicit complex for cal-
culating cohomology.

4.8. Definition. For an algebraic theory T and a coefficient system
A , let C∗(T; A ) be the cochain complex with C0(T; A ) = A1X

and

Cn(T; A ) =
∏

X
u←−Xk1

u(1)←−−Xk2
u(2)←−−...

u(n−1)←−−−Xkn

Auu(1)u(2)...u(n−1)

for n > 0, with the differentials ∂ : Cn(T; A )→ Cn+1(T; A ) given for
f ∈ Cn(T; A ) by:

(∂f)(u, u(1), ..., u(n)) =

k1∑
i=1

u(x1u
(1) · · ·u(n), ..., f(xiu

(1), u(2), ..., u(n)), ..., xk1u
(1) · · ·u(n))

− f(uu(1), u(2), ..., u(n)) + f(u, u(1)u(2), ..., u(n))− ...

± f(u, u(1), ..., u(n−1)u(n))∓ f(u, u(1), ..., u(n−1))u(n)

for n > 0 and

(∂a)u =
n∑

i=1

u(x1, ..., axi, ..., xn)− au

for a ∈ A1X
= C0(T; A ), u ∈ homT(Xn, X).

One then has

4.9. Proposition. For a coefficient system A on an algebraic theory
T there are isomorphisms

Hn(T; D(A )) ∼= Hn(C∗(T; A )).

Proof. Recall from [4] the cochain complex for calculating cohomology
of any small category C with coefficients in any natural system D on
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C. It has

Cn(C; D) =
∏

c0
γ1←−c1

γ2←−...
γn←−cn

Dγ1···γn

and the “Hochschild-type” differential ∂ : Cn(C; D) → Cn+1(C; D)
with

(∂f)(γ1, ..., γn+1) = γ1f(γ2, ..., γn+1)− f(γ1γ2, ..., γn+1) + ...

± f(γ1, ..., γnγn+1)∓ f(γ1, ..., γn)γn+1.

Comparing this with C = T, D = D(A ) to our complex shows that
there is a natural surjective map of complexes

π : C∗(T; D(A ))→ C∗(T; A )

given by projecting onto those components Xk0 ← Xk1 ← ... ← Xkn

with k0 = 1. This situation thus falls into the scope of [3], namely,
C∗(T; A ) is the sum normalized complex for D(A ) in terms of that
paper.

Moreover one has

4.10. Proposition. Let D be an internal abelian group in F̂ (T), for
an algebraic theory T, and let A(D) be the coefficient system corre-
sponding to it by 4.7. Then there are isomorphisms

H∗(T; D) ∼= H∗(C∗(T; A(D) )).

Proof. First note that the forgetful functor from Ab(T-mod(S)/M)
to T-mod(S)/M has a left adjoint LM for any algebraic theory T and
any T-model M . This follows, e. g., from the adjoint lifting theorem
of [16]: one has the commutative diagram

Ab(T-mod(S)/M) // T-mod(S)/M

��

U (M)-mod

'
nnnnnnnnnnnn

��

Ab(S/M) // S/M
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with vertical functors monadic, and the lower horizontal one having a
left adjoint; since all categories in sight are cocomplete, the aforemen-
tioned lifting theorem from [16] applies to produce the required left
adjoint LM to the upper horizontal functor.

Recall further that the Barr-Beck cotriple resolution T∗(M) of M
is an augmented simplicial object in T-mod(S), with n-th component
Tn+1

S (M) and augmentation TS(M) → M , where TS is the finitary
monad on S induced by T. Thus it can be considered as a simpli-
cial object in T-mod(S)/M which yields a simplicial object LMT∗(M)
in Ab(T-mod(S)/M). Now it is a standard fact that T∗(M), when
viewed as a simplicial object of S/M , is contractible (there are extra
degeneracy maps e(Tn

S(M)) : Tn
S(M) → Tn+1

S (M), although they are
not TS-algebra homomorphisms; here e is the unit of the monad TS). It
thus follows that both T∗(M) and LMT∗(M) are homotopically trivial
simplicial objects; hence the chain complex CLMT∗(M), obtained from
LMT∗(M) by taking alternating sums of face operators in the standard
way, provides an acyclic resolution for LM(1M) in Ab(T-mod(S)/M).

Next observe that for any A→M in Ab(T-mod(S)/M), one has

HomAb(T-mod(S)/M)(LMTn+1(M), A) ∼= homT-mod(S)/M(Tn+1(M), A)
∼= homS/M(Tn(M), A).

Recall also the explicit formula for TS from [20]; it is given by co-
equalizer ∐

k1→k0

T(k1)×Xk0 ⇒
∐

k

T(k)×Xk � TS(X),

where T(k) = homT(k, 1). Since obviously also TS(k) = T(k), one eas-
ily obtains all the iterates Tn

S(X), n > 2, in a similar way, as quotients
of ∐

k1,k2,...,kn

T(k1)× T(k2)
k1 × · · · × T(kn)kn−1 ×Xkn

by equivalence relations which, in the internal language, can be stated
as

(u, u(1), ..., u(i−1)ui, u(i+1), ..., u(n), (xj))

∼ (u, u(1), ..., u(i−1), uiu(i+1), ..., u(n), (xj))

for all 1 6 i < n and

(u, u(1), ..., u(n)T(ϕ), (xj)) ∼ (u, u(1), ..., u(n), (xϕ(j)))

for all ϕ in Sfp, where T(ϕ) stands for the image of ϕ under the canonical
functor Sfp → T.

46



Let us now turn to the case S = T̂, with M = UT. Then by 4.7,
abelian groups in T-mod(S)/M can be identified with coefficient sys-
tems for T. It is then straightforward to check, using the above formula
for Tn

S, that there are isomorphisms

Cn(T; A) ∼= homT̂/UT(T
n
T̂(UT), A),

for all n and any coefficient system A, where Cn(T; A) is the n-th com-
ponent of the complex from 4.8. Moreover the differentials in C∗(T; A)
correspond under these isomorphisms precisely with the differentials
induced on

HomAb(F̂ (T))(CLUTT∗
T̂(UT), A).

Finally observe that all functors

Cn(T; ) : Ab(F̂ (T))→ Ab, n > 0,

are obviously exact; since we have shown that these functors are rep-
resented by LUTTn+1

T̂
(UT), the latter object of Ab(F̂ (T)) is projective.

It follows that, on one hand, CLUTT∗
T̂(UT) is a projective resolution

of LUT(1UT) and, on the other hand, applying to this resolution the
functor HomAb(F̂ (T))( , A) yields C∗(T; A) for any coefficient system A.
This implies our proposition.

The complex 4.8 enables one to describe the cohomology groups in
low dimensions. For H0 one immediately obtains

H0(T; D(A )) =

{ a ∈ Ax | ∀n∀u ∈ homT(Xn, X) au =
n∑

i=1

u(x1, ..., axi, ..., xn) }

To deal with H1 we introduce

4.11. Definition. For a coefficient system A on a theory T, a deriva-
tion d of T with values in A is an assignment, to each operation
u : Xn → X of T, of an element d(u) ∈ Au, in such a way that
the following equality holds

d(u(v1, ..., vn)) = (du)(v1, ..., vn) +
n∑

i=1

u(v1, ..., dvi, ..., vn)
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for all n-ary u and all v1, ..., vn of same arity. Derivations form an
abelian subgroup Der(T; A ) of

∏
u Au. Its subgroup Ider(T; A ) con-

sists of derivations of the form

da(u) = au−
n∑

i=1

u(x1, ..., axi, ..., xn)

for a ∈ Ax, called inner derivations. Here as before xi : Xn → X are
the projections in T, and x : X → X the identity.

One then has

4.12. Proposition. For a coefficient system A on a theory T, with
the corresponding object D(A ) of Ab(F (T)), one has

H1(T; D(A )) ∼= Der(T; A )/ Ider(T; A ).

Proof. This is clear from 4.9.

The second cohomology group turns out to be related to extensions
of theories. To introduce them, consider the category Th (S) over the
base topos S, i. e., according to 1.14, the category of finitary monads
on the object R(S) of the 2-category Top/S. Recall that R(S) is an
internal topos, in the suitable sense, in that category; in particular, the
(strict) monoidal category of its endomorphisms has all finite limits.

This implies that Th (S) has finite limits too. In fact one has (cf. [2,
Lemma 1.3]):

4.13. Proposition. For any monoidal category (V ,⊗, I), the forgetful
functor Mon(V )→ V from monoids of V reflects limits.

Proof. Consider any diagram

((Mi)i∈I , (fι : Mi →Mi′)ι:i→i′)

in Mon(V ), where Mi are monoids with units ηi and multiplication
µi. Suppose we are given a limiting cone (fi : M → Mi)i∈I over this
diagram, considered as a diagram in V . Since(

M ⊗M
fi◦fi−−−→Mi⊗Mi

µi−→Mi

)
i∈I

and (
I

ηi−→Mi

)
i∈I
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are cones in V , they determine maps µ : M ⊗M →M and η : I →M ,
respectively. It is straightforward to show that this is a limiting cone
in Mon(V ).

We are going to introduce extensions of a theory T as torsors (princi-

pal homogeneous objects) under internal abelian groups in Th (S)/T.
Now concerning these abelian groups, one in fact has

4.14. Proposition. For a monoid (M, µ, η) in a monoidal category
with finite limits (V ,⊗, I), there is an equivalence of categories

Ab(Mon(V )/M) ' Ab(MV M/M),

where MV M is the category of M -M -biobjects in V .

For a proof, see [2, Prop. 1.5].

To apply this to the monoidal category EndTop/S(R(S)), note that
the latter category is equivalent to R(S) itself. To describe the induced

monoidal structure on R(S) = SSfp
, recall from [17] that composition of

geometric morphisms between presheaf toposes can be described using
tensor product of corresponding bifunctors. The theory of sets S is
equivalent to the opposite of the category of finite sets, so that Sop =

Sfp, and any F ∈ SSfp
determines uniquely a bifunctor F̃ : S×Sop → S

which preserves finite limits in the first argument, namely

F̃ (Xm, Xn) = F (n)m.

Then the monoidal operation ⊗ on R(S) corresponding to composition
under the identification of R(S) with EndTop/S(R(S)) is determined by

F̃ ⊗G = F̃ ⊗
S

G̃.

Now for a theory T corresponding to a finitary monad T = (T,m, e)

the bifunctor T̃ is easily seen to be given by

T̃ (m,n) = homT(Xn, Xm),

with the ⊗-monoid structure on T corresponding to composition in
T. Thus T -T -biobjects with respect to ⊗ correspond to bifunctors
Top×T→ S, and biobjects with a morphism to T – to natural systems

on T. Moreover since bifunctors of the form F̃ must preserve finite
limits in the first variable, taking into account 1.10 and 1.15 gives
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4.15. Theorem. For a theory T, there is an equivalence

Ab(Th (S)/T) ' Ab(F̂ (T)).

We next recall the notion of linear extension from [4].

4.16. Definition. For a natural system D on a category C with values
in abelian groups, a linear extension of C by D is a functor P : E→ C
that is identity on objects, together with transitive and effective actions
Dγ × P−1(γ) → P−1(γ), (x, e) 7→ x + e, for all γ : c → c′ in C, such
that for any composable morphisms e1, e2 in E and any xi ∈ DP (ei),
i = 1, 2, one has

(x1 + e1)(x2 + e2) = (x1P (e2) + P (e1)x2) + e1e2.

Two linear extensions are equivalent if there is a functor between them
over C which is equivariant with respect to actions.

An example of a linear extension by a natural system D is given by
the trivial linear extension C o D with

homCoD(c, c′) =
∐

γ:c→c′

Dγ,

composition x1x2 = x1γ2 + γ1x2 for x1 ∈ Dγ1 , x2 ∈ Dγ2 , identities 0 ∈
D1c , c ∈ C, and the actions Dγ×Dγ → Dγ given by the group law in Dγ.
As noticed in [14], the trivial extension CoD → C has the structure of

an internal abelian group in Cat /C, and moreover linear extensions
of C by D are in one-to-one correspondence with torsors (principal
homogeneous objects) under this abelian group. More precisely, one
has

4.17. Proposition. (cf. [14]) For a linear extension E→ C of a small
category C by a natural system D there is an action

E×C (C o D)→ E
such that the induced functor

E×C (C o D)
(projection, action)−−−−−−−−−−→ E×C E

is an equivalence; conversely, any such action on a functor E → C
which is bijective on objects and surjective on morphisms, turns it into
a linear extension of C by D.

It is proved in [4] that equivalence classes of linear extensions of
C by D are in one-to-one correspondence with elements of the group
H2(C; D), i. e. the second cohomology group of the complex C∗(C; D)
from 4.9.
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On the other hand one has (cf. [15, (6.1)], [14, 2.5])

4.18. Proposition. A natural system of abelian groups D on a cat-
egory with finite products T is cartesian iff for any linear extension
P : T′ → T of T by D, the category T′ also has finite products, and P
preserves them.

In particular, for a cartesian natural system D on a theory T, the
trivial extension T o D → T is an internal abelian group in Th /T.
Moreover by 4.15 and 4.17 one has

4.19. Corollary. For a cartesian natural system D on a theory T,
the group of equivalence classes of (T o D → T)-torsors in Th /T is
isomorphic to H2(T; D).

There are lots of examples of linear extensions of theories in [15].
Let us mention just some of them.

4.20. Examples.

4.20.1. Consider the functor from theories to monoids given by T 7→
homT(X,X). This functor has a full and faithful right adjoint assign-
ing to a monoid M , the theory TM of M -sets. Thus the category of
monoids can be identified with a full subcategory of Th closed un-
der limits there. In particular, groups, torsors, herds, natural systems,
linear extensions, etc. of monoids (considered as categories with one
object) can be identified with those of the corresponding theories. In
other words, a morphism of theories P : TN → TM induced by a homo-
morphism of monoids p : N →M is a linear extension iff p, considered
as a functor between categories with one object, is a linear extension
– i. e. p is an abelian extension in the category of monoids. The cor-
responding natural system on M consists of abelian groups Dx, for x
in M , and actions x(−) : Dy → Dxy, (−)y : Dx → Dxy. It can be
also considered as an “M -graded M -M -bimodule”. The corresponding
extensions of theories are simple iff all the Dx are equal.

4.20.2. Any homomorphism of rings p : S → R gives rise to a mor-
phism P : TS → TR from the theory of (left) S-modules to that of
R-modules. This morphism is a linear extension iff p is a singular
extension, i. e. Ker(p) = B is a square zero ideal in S. In [15], an
isomorphism is obtained

H2(TR; DB) ∼= H2(R; B)
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from the group of (simple) linear extensions of TR by the bifunctor
given by

DB(Xn, Xk) = HomR-mod(TR(k), B⊗
R

TR(n)) ∼= (B⊕n)k,

to the second MacLane cohomology group of R with coefficients in B.

4.20.3. It is proved in [15] that for each n there is a linear extension
from the theory of (n+1)-nilpotent groups to that of n-nilpotent ones;
similarly for groups replaced by Lie rings, associative rings without
unit, or associative commutative rings without unit.

4.20.4. For a left module M over a ring R, let M/(R-mod) be the
coslice category of modules under M , with objects of the form M → N
and obvious commutative triangles as morphisms. Consider the functor
P : M/(R-mod) → R-mod sending f : M → N to Coker(f). It
has a right adjoint UP given by UP (N) = 0 : M → N . It is then
easy to see that this adjoint pair is induced by a morphism of theories
P : TR;M → TR, where TR;M is the opposite of the full subcategory of
M/(R-mod) on objects of the form (1, 0) : M → M ⊕Rn for n > 0.
In particular, M/(R-mod) is equivalent to TR;M -mod.

Now this P in fact presents TR;M as a trivial linear extension of TR,
by the bifunctor HM given by composition

Top
R × TR

projection−−−−−→ TR

Iop
TR−−→ (R-mod)op HomR(−,M)−−−−−−−→ Ab,

that is,
HM(Xn, Xk) = HomR(Rk, M) ∼= Mk.

Indeed, the trivial extension P : TR o HM → TR can be easily calcu-
lated; one has

homTRoHM
(Xn, Xk) = HomR(Rk, M ⊕Rn).

One can represent the latter group also as

homM/(R-mod)(M
(1,0)−−→M ⊕Rk, M

(1,0)−−→M ⊕Rn),

which is precisely homTR;M
(Xn, Xk).
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5. Abelian theories

For theories TR of modules over a ring R, the category F (TR) sim-
plifies. One has

5.1. Proposition. For a ring R, the category Ab(F (TR)) is equivalent
to the category of functors from finitely presented R-modules to all R-
modules.

Similarly, Ab(F̂ (TR)) is equivalent to the category of functors from
finitely generated free R-modules to R-modules.

Proof. By 1.5 one has

Ab(F (TR)) ' Ab((R-mod(Set))Tfp

/IT).

But for any object I of any additive category A , the category Ab(A /I)

is equivalent to A . Similarly for F̂ .

Similar simplifications are possible for some more general “abelian”
theories.

5.2. Definition. An abelian Maltsev theory is a finitary algebraic the-
ory such that among its operations there is a ternary operation m which
satisfies identities

m(x, x, y) = y

m(x, y, z) = m(z, x, y)

m(x, y, m(z, t, u)) = m(m(x, y, z), t, u)

For such theories, we will give more detailed description of low dimen-
sional cohomology and its interpretation by derivations and extensions.
We will first deal with abelian theories without constants, i. e. nullary
operations. Abelian theories with constants are much simpler and will
be treated in the end.

It follows from [14, Prop. 3.2] that for a model A of an abelian
Maltsev theory the operation m : A3 → A is actually a homomorphism,
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and that any two such operations coincide. It will be convenient to fix
such an operation throughout and denote it by

m(x, y, z) = x +y z.

Thus all models of an abelian theory are abelian herds, and all of their
operations are homomorphisms of abelian herds. To describe such the-
ories, we need the following notions.

5.3. Definition. A left linear form consists of an associative ring R
with unit, a left R-module M , and a homomorphism ∂ : M → R of left
R-modules.

In fact usually we will omit the word “left”, as it is customary with
modules.

5.4. Definition. An affinity over a linear form ∂ : M → R is an
abelian herd A together with maps R×A×A→ A and M ×A→ A,
denoted, respectively, (r, a, b) 7→ rab and (x, a) 7→ ϕa(x), such that the
following identities hold:

• For each a ∈ A, the operations (−) +a (−) and (−)a(−) turn
A into a left R-module (with zero a), and ϕa into a module
homomorphism. In other words, for any a, b, c, d ∈ A, r, s ∈ R,
x, y ∈M one has

b +a (c +a d) = (b +a c) +a d,

a +a b = b,

b +a c = c +a b,

b−a b = a,

ra(b +a c) = rab +a rac,

(r + s)ab = rab +a sab,

1ab = b,

ra(sab) = (rs)ab,

ϕa(x + y) = ϕa(x) +a ϕa(y),

ϕa(rx) = raϕa(x),

where we have denoted b−a c = b +a ((−1)ac).
• (“Coordinate change”.) These structures are related by the

identities

b +a′ c = ((b−a a′) +a (c−a a′)) +a a′,

ra′b = ra(b−a a′) +a a′,

ϕa′(x) = ϕa(x) +a (1− ∂x)aa
′.(∗)
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A homomorphism between affinities A, A′ is a map f : A → A′ pre-
serving all this, i. e. satisfying

f(a +b c) = f(a) +f(b) f(c),

f(rab) = rf(a)f(b),

f(ϕa(x)) = ϕf(a)(x).

Obviously the category ∂-aff of affinities over a linear form ∂ is the
category of models of a suitable abelian theory T∂. Here is an explicit
description of this theory.

5.5. Proposition. The theory T∂ of affinities over ∂ : M → R can be
described as follows:

homT∂
(Xn, X) =

{
∅, n = 0;

M ×Rn−1, n > 0.

The projections a0, a1, a2, ... : Xn → X are given, respectively, by the
elements 〈0, 0, 0, ...〉, 〈0, 1, 0, ...〉, 〈0, 0, 1, ...〉, ...; and, composition is
given by

〈x, r1, r2, ...〉 (〈x0, s0, t0, ...〉 , 〈x1, s1, t1, ...〉 , 〈x2, s2, t2, ...〉 , ...)
= 〈x′, s′, t′, ...〉 ,

where

x′ = x + (1− ∂(x))x0 + r1(x1 − x0) + r2(x2 − x0) + ...,

s′ = (1− ∂(x))s0 + r1(s1 − s0) + r2(s2 − s0) + ...,

t′ = (1− ∂(x))t0 + r1(t1 − t0) + r2(t2 − t0) + ...,

...

Proof. Take as basic operations the ternary (−) +(−) (−), the family
of binaries r(−)(−) indexed by r ∈ R, and unaries ϕ(−)(x) indexed by
x ∈ M . Using the affinity identities 5.4, one can write any composite
of these operations in the form

〈x, r, s, ...〉 (a, b, c, ...) = ϕa(x) +a rab +a sac +a · · ·
in a unique way. The rest is straightforward verification.

Define now a morphism of left linear forms from ∂ : M → R to
∂′ : M ′ → R′ to be an equivariant homomorphism, i. e. a pair (f :
R → R′, g : M → M ′) of additive maps such that the obvious square
commutes, that f is a unital ring homomorphism, and that g(rx) =
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f(r)g(x) holds for any r ∈ R, x ∈M . This clearly defines the category
Lf of left linear forms. We then have

5.6. Theorem. The category of abelian Maltsev theories without con-
stants is equivalent to the category Lf of left linear forms.

Proof. Define the functor T(−) from Lf to algebraic theories by sending
an object ∂ of Lf to the corresponding theory T∂ described above in 5.5.
It is clear from that description that any morphism in Lf determines
a morphism of the corresponding theories.

Conversely, given an abelian Maltsev theory T, define the left linear
form ∂T : MT → RT as follows: let MT be the set of all unary oper-
ations of T, with the abelian group structure given by (x + y)(a) =
m(x(a), a, y(a)), where m is the Maltsev operation of T. Let RT be
the set of convex binary operations of T, i. e. those binary operations
r satisfying the identity r(a, a) = a. Define the ring structure on it
by taking zero 0 to be 0(a, b) = a, unit 1 to be 1(a, b) = b, addition
to be (r + s)(a, b) = m(r(a, b), a, s(a, b)), additive inverse (−r)(a, b) =
m(a, r(a, b), a), and multiplication (rs)(a, b) = r(a, s(a, b)). Let RT act
on MT via (rx)(a) = r(a, x(a)), and let the crossing MT → RT be
(∂Tx)(a, b) = m(x(a), x(b), b). It is then straightforward to check that
this defines a left linear form, that any morphism of theories gives rise
to a morphism in Lf in a functorial way, and that if one starts from a
theory of the form T∂, then one recovers the original ∂ back. Finally
for the second way round, observe that for any operation u : Xn → X
in an abelian theory, with n > 0, one has

u(a, b, c, ...) = u(a+aa+aa+a· · · , a+ab+aa+a· · · , a+aa+ac+a· · · , ...)
= u(a, a, a, ...)+u(a,a,a,...)u(a, b, a, ...)+u(a,a,a,...)u(a, a, c, ...)+u(a,a,a,...) · · ·

= u(a, a, a, ...) +a (a +u(a,a,a,...) u(a, b, a, ...))

+a (a +u(a,a,a,...) u(a, a, c, ...)) +a · · ·
= x(a) +a r(a, b) +a s(a, c) +a · · · ,

with x in MT and r, s, ... in RT. This implies easily that including MT
and RT in T extends to an isomorphism of theories from T∂T to T.

Remark. Construction of the ring RT from an abelian Maltsev theory
T is obviously well known to universal algebraists, in a slightly different
context – see e. g. [6]. It is in fact closely related to the classical co-
ordinatization construction for geometries. The reader might consult,
e. g. [12] or [10] for that.
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Using our description, we can now find out what kind of linear ex-
tensions exist between abelian theories. Indeed, since the Maltsev op-
eration in abelian theories is unique, they are clearly closed under arbi-
trary finite limits, hence 5.6 together with [14, Prop. 1.6] implies that
abelian linear extensions of an abelian theory T can be identified with
torsors under internal abelian groups in Lf/∂T. Thus we just have to
describe torsors under a linear form ∂ : M → R. Consider one such,
given by

(E)

K // j //

δ
��

N
q // //

∂′

��

M

∂
��

B // i // S
p // // R.

Now by [14, Prop. 1.3] we know that this torsor is equipped with
a herd structure in Lf/∂. Thus we have a Maltsev homomorphism
m : ∂′ ×∂ ∂′ ×∂ ∂′ → ∂′ over ∂; then, by an argument just as in [14,
Prop. 3.2], both in N and S one has

m(x, y, z) = m(x− y + y, y − y + y, y − y + z)

= m(x, y, y)−m(y, y, y) + m(y, y, z) = x− y + z.

Thus it follows that (p, q) above is a torsor iff this map is a homo-
morphism. One sees easily that this happens iff B2 = BK = 0. In
such case, B becomes naturally an R-R-bimodule, K a left R-module,
and restriction δ of ∂′ to it – a module homomorphism, via rb = sb,
br = bs, rk = sk, for any b ∈ B, k ∈ K, r ∈ R and s ∈ S with p(s) = r.
Moreover there is an R-module homomorphism B⊗R M → K, denoted
(b, m) 7→ b ·m, given by b ·m = bn for any n ∈ N with q(n) = m. It
clearly satisfies δ(b ·m) = b∂(m). On the whole, one gets a structure
which can be described by

5.7. Definition. For a left linear form ∂ : M → R, a ∂-bimodule
consists of an R-R-bimodule B, a left R-module K, and R-linear maps
δ : K → B and · : B⊗R M → K satisfying δ(b · m) = b∂m for any
b ∈ B, m ∈M . It will be denoted δ· = (B⊗R M → K → B).

Examples of such ∂-bimodules include R⊗R M ∼= M → R, i. e. ∂
itself, (B⊗R M → B⊗R R ∼= B = B), for any R-R-bimodule B, which
we denote C (B), and 0→ K → 0 for any left R-module K, which we
denote K[1].
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It is easy to show that also conversely, internal groups in Lf/∂ are
determined by ∂-bimodules δ· as above, and that as soon as the map
(x, y, z) 7→ x− y + z is a homomorphism from ∂′ ×∂ ∂′ ×∂ ∂′ to ∂′ over
∂, then there is a torsor structure on ∂′ under the corresponding group.
We summarize this as follows:

5.8. Proposition. For a left linear form ∂ : M → R, internal groups
in Lf/∂ are in one-to-one correspondence with ∂-bimodules. More-
over the underlying linear form of the corresponding group is δ⊕ ∂ :
K ⊕M → B⊕R, with multiplicative structure (b, r)(b′, r′) = (br′ +
rb′, rr′), (b, r)(k,m) = (b ·m + rk, rm). Torsors under this group are
in one-to-one correspondence with diagrams such as (E) above, where
B � S � R is a singular extension, i. e. the ideal i(B) has zero multi-
plication in S and the induced R-R-bimodule structure coincides with
the original one, and moreover i(B)j(K) = 0, the induced R-module
structure on K is the original one, i. e. j(p(s)k) = sj(k), and finally,
the induced action B⊗R M → K coincides with the original one, i. e.
j(b · q(n)) = i(b)n. �

Translating now all of the above from Lf to abelian theories, in view
of 4.7 we conclude

5.9. Proposition. For a left linear form ∂ : M → R, each internal
group A = (δ⊕ ∂ → ∂) in Lf/∂ corresponding to the ∂-bimodule
δ· = (B⊗R M → K → B) as above, gives rise to a coefficient system
AA on the corresponding abelian theory T∂. Explicitly, one has

AA
〈x,r1,...,rn−1〉 = K ⊕Bn−1,

with actions given by restricting those in 5.5 for Tδ⊕ ∂ to K ⊕Bn−1 ⊆
(K ⊕M)× (B⊕R)n−1.

In view of this, we will in what follows identify internal groups A
in Lf/∂ with ∂-bimodules and with the corresponding natural systems
DA on T∂. In particular, equivalence classes of extensions of T∂ by
DA form, by 4.19, an abelian group isomorphic to H2(T∂; D

A ), which
we can as well denote H2(M → R; B⊗R M → K → B), or just by
H2(∂; δ·).

Now from [15] we know that any short exact sequence δ′ � δ· � δ′′

induces the exact sequence

0→ H0(∂; δ′)→ ...

→ H1(∂; δ′′)→ H2(∂; δ′)→ H2(∂; δ·)→ H2(∂; δ′′)→ ...
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which one can use to reduce investigation of cohomologies, in particular
linear extensions by a ∂-bimodule, to those by more “elementary” ones.
In particular, observing the diagrams

Ker(δ) // //

��

K // //

δ

��

Im(δ)
��
ι

��

0 // B B,

and

Im(δ) // ι //

��

��

B // // Coker(δ)

��

B B // 0,

one sees that there are short exact sequences of ∂-bimodules of the form
K ′[1] � δ· � ι· and ι· � C (B) � K ′′[1], so that linear extensions by
any δ can be described in terms of those by bimodules of the form K[1]
and C (B).

Before dealing with these, just let us make a note about lower coho-
mologies – they can be expressed using derivations similarly to Hoch-
schild cohomology.

5.10. Definition. The group Der(∂; δ·) of derivations of a linear form
∂ : M → R with values in a ∂-bimodule δ· = (B⊗R M → K → B)
consists of pairs of abelian group homomorphisms (d : R → B,∇ :
M → K) satisfying

d∂ = δ∇,

d(rs) = d(r)s + rd(s),

∇(rm) = d(r)m + r∇(m),

under pointwise addition. Its subgroup Ider(∂; δ·) consists of inner
derivations ad(k) = (dk,∇k) for k ∈ K, defined by

dk(r) = rδ(k)− δ(k)r, ∇k(m) = ∂(m)k − δ(k) ·m.

Then by analogy with well known classical facts, 4.11 and 4.12 readily
give
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5.11. Proposition. For a linear form ∂ : M → R and a ∂-bimodule
δ· = (B⊗R M → K → B), one has an exact sequence

0→ H0(∂; δ·)→ K
ad−→ Der(∂; δ·)→ H1(∂; δ·)→ 0.

In other words, there are isomorphisms

H0(T∂; δ
·) ∼= {c ∈ K |∀m ∈M (∂m)c = (δc) ·m}

and

H1(T∂; δ
·) ∼= Der(∂; δ·)/ Ider(∂; δ·).

�

Now for C (B), one has

5.12. Proposition. For a linear form ∂ : M → R and an R-R-bimo-
dule B, there is an isomorphism

H2(T∂; C (B)) ∼= H2(R; B),

the latter being the MacLane cohomology group.

Proof. Observe the diagram

B // // N // //

��

M

∂
��

B // // S // // R.

It shows that the right hand square is pullback, so that the upper row is
completely determined by the lower one. Thus forgetting the upper row
defines an isomorphism, with the inverse which assigns to a singular
extension of R by B the pullback as above.

Thus one arrives at a well studied situation here. As for the K[1]
case, we have

5.13. Proposition. For a linear form ∂ : M → R and a left R-module
K, there is an isomorphism

H2(T∂; K[1]) ∼= Ext1
R(M, K).
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Proof. This is obvious from the diagram

K // //

��

∗ p // //

∂p

��

M

∂
��

0 // R R.

But moreover the diagram

Ker(∂) // //

��

M // //

∂

��

Im(∂)
��

��

0 // R R

shows that T∂ is itself a linear extension of a theory corresponding to
the linear form of type a � R, where a is a left ideal in R, by a natural
system corresponding to an (a � R)-bimodule of the form K[1]. And
this is clearly the end: one obviously has

5.14. Proposition. An abelian theory without constants cannot be
represented nontrivially as a linear extension of another theory if and
only if it is of the type Ta�R, for the left linear form determined by a
left ideal a in a ring R which does not have any nontrivial square zero
two-sided ideals.

Proof. The only nontrivial remark to make here is that for any square
zero two-sided ideal b � R, one gets an extension

k // //

��

��

a // //

��

��

a/k

��

b // // R // // R/b

for any left ideal k with ba ⊆ k ⊆ b ∩ a.

Finally, consider an abelian theory T with constants. It has a largest
subtheory T0 without constants, obtained from T by removing all mor-
phisms 1 → Xn for n > 0. The constants of T will then reappear
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in T0 as pseudoconstants, that is, those unary operations p : X → X
satisfying the identity p(a) = p(b). Conversely, if a theory without
constants is obtained nontrivially in such way, it must have some pseu-
doconstants.

We know by 5.6 that T0 = T∂ for some linear form ∂ : M → R.
Now pseudoconstants in T∂ correspond to elements p of M satisfying
the identity ϕa(p) = ϕb(p) (with a, b as variables). Using the identity
(∗) from 5.4 this gives (1 − ∂p)ab = a, i. e. (∂p)ab = b for any a,
b in any affinity. Then taking a = 〈0, 0〉, b = 〈0, 1〉 in M × R gives
∂p = 1. Now clearly there is a p ∈ M with ∂p = 1 if and only if ∂
is surjective, in which case it is split by σ(r) = rp. Thus in this case
our linear form is isomorphic to (projection): Ker(∂)⊕R→ R. Let us
fix one such p. We then may declare {p + t0 | t0 ∈ K} to be the set of
pseudoconstants corresponding to nullary operations, where K is either
empty or any R-submodule of Ker(∂). All choices will give equivalent
categories of models, the only difference being that for K = ∅ the
empty set is also allowed as a model. Each other model A shall then
have at least one element a, and value of the unary operation p on A
at a will then be ϕa(p), which does not depend on a as we just saw.
Denoting this element by 0A fixes a canonical R-module structure on
each non-empty model. Moreover each element of M becomes uniquely
written as m = k+rp with r ∈ R and k ∈ Ker(∂), so ϕa(m) = ϕa(k)+r,
i. e. ϕa is completely determined by its restriction to Ker(∂). Moreover
by (∗) of 5.4 it is determined by ϕ0A

alone. We see that, ignoring the
possible empty model, the category T∂-mod is equivalent to the coslice
(Ker ∂)/R-mod. We thus have proved:

5.15. Proposition. An abelian theory has at least one pseudoconstant
if and only if the category of its models is equivalent to the category
K/(R-mod) of left R-modules under K, for some ring R and an R-
module K, with the possible difference that the empty set is another
model. �

Now observing 4.20.4 we conclude

5.16. Corollary. Any abelian theory with constants is isomorphic to
TR;K (defined in 4.20.4) for some ring R and left R-module K. �

Concerning linear extensions one observes that by 4.20.4, any theory
with constants TR;K is a trivial linear extension of TR by the bifunctor
constructed there. Also observe that in any linear extension T′ → T of
abelian theories one has constants if and only if the other does.
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On the other hand, a description similar to 5.15 is in fact possible
for categories of models of abelian theories without constants too. For
any left linear form ∂ : M → R, denote (temporarily) by ∂-aff ′ the
following category: objects are R-module homomorphisms f : M → N ;
a morphism from f ′ : M → N ′ to f : M → N is a pair (g, n), where
g : N ′ → N is an R-module homomorphism and n ∈ N is an element
such that f(x) − gf ′(x) = ∂(x)n holds for all x ∈ M . Composition is
given by (g, n)(g′, n′) = (gg′, n+g(n′)), and identities have form (Id, 0).
Equivalently, one might define objects as commutative triangles

M

""EE
EE

EE
EE

E

∂

��

R⊕N

projection
||yy

yy
yy

yy
y

R

and morphisms as commutative diagrams

M

||xx
xx

xx
xx

x

""EE
EE

EE
EE

E

R⊕N ′

""FFFFFFFFF

// R⊕N

||yy
yy

yy
yy

y

R

in R-mod. One then has

5.17. Proposition. The category T∂-mod is equivalent to ∂-aff ′ with
an extra initial object added.

Proof. Define a functor ∂-aff ′ → ∂-aff as follows: for f : M → N ,
define an affinity structure on N by a +b c = a − b + c, rab = (1 −
r)a + rb, and ϕa(x) = f(x) + (1 − ∂x)a. And to a morphism (g, n)
assign the homomorphism of affinities N ′ → N given by n′ 7→ n +
g(n′). It is straightforward to check that this defines a full and faithful
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functor. Moreover any nonempty affinity is isomorphic to one in the
image of this functor – just choose an element and use it as zero to
define a module structure and a homomorphism from M according to
the affinity identities.

This allows to give an example, which looks pleasantly familiar:

Example. Fix a field k, and let the category of cycles be defined as
follows. Objects are pairs ((V, d), c), where (V, d) is a differential k-
vector space and c ∈ V is a cycle, i. e. dc = 0. A morphism from
((V, d), c) to ((V ′, d′), c′) is a pair (ϕ, x), where ϕ : V → V ′ is a k-linear
differential map and x ∈ V ′ an element with c′ − ϕ(c) = dx. With
the evident identities and composition this forms a category which is
clearly of the form T∂-mod, for the linear form ∂ : εk[ε] � k[ε], where
ε is an indeterminate element with ε2 = 0.

Now obviously this example admits a linear extension structure over
Tk, since εk[ε] is a square zero ideal. But of course 5.14 provides lots
of similar (less cute) examples without this property.
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6. B. Csákány, Varieties of affine modules, Acta Sci. Math. (Szeged) 37 (1975),
3–10.

7. M. A. Dzhibladze and T. I. Pirashvili, Some linear extensions of a category of
finitely generated free modules, Soobshch. Akad. Nauk Gruzin. SSR 123 (1986),
no. 3, 481–484.

8. B. Eckmann and P. J. Hilton, Structure maps in group theory, Fund. Math. 50
(1961/1962), 207–221.

9. Samuel Eilenberg and Saunders Mac Lane, On the groups H(π, n). II. Methods
of computation, Ann. of Math. (2) 60 (1954), 49–139.

10. Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular
varieties, Cambridge University Press, Cambridge, 1987.

11. P. Freyd, Algebra valued functors in general and tensor products in particular,
Colloq. Math. 14 (1966), 89–106.

12. H. Peter Gumm, Geometrical methods in congruence modular algebras, Mem.
Amer. Math. Soc. 45 (1983), no. 286, viii+79.

13. M. Jibladze, Some strange monoidal categories, Proc. A. Razmadze Math. Inst.
113 (1995), 83–93.

14. Mamuka Jibladze and Teimuraz Pirashvili, Linear extensions and nilpotence of
Maltsev theories, in preparation.

15. , Cohomology of algebraic theories, J. Algebra 137 (1991), no. 2, 253–
296.

16. P. T. Johnstone, Adjoint lifting theorems for categories of algebras, Bull. London
Math. Soc. 7 (1975), no. 3, 294–297.

65



17. P. T. Johnstone, Topos theory, Academic Press [Harcourt Brace Jovanovich
Publishers], London, 1977, London Mathematical Society Monographs, Vol.
10.

18. , On a topological topos, Proc. London Math. Soc. (3) 38 (1979), no. 2,
237–271.

19. Peter T. Johnstone, Quotients of decidable objects in a topos, Math. Proc.
Cambridge Philos. Soc. 93 (1983), no. 3, 409–419.

20. Peter T. Johnstone and Gavin C. Wraith, Algebraic theories in toposes, Indexed
categories and their applications, Springer, Berlin, 1978, pp. 141–242.

21. Anders Kock, Strong functors and monoidal monads, Arch. Math. (Basel) 23
(1972), 113–120.

22. Manos Lydakis, Smash products and Γ-spaces, Math. Proc. Cambridge Philos.
Soc. 126 (1999), no. 2, 311–328.

23. Saunders Mac Lane, Homologie des anneaux et des modules, Colloque de topolo-
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