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LOWER BAGDOMAIN AS A GLUEING

M. JIBLADZE

Abstract. Recent generalization of Diaconesu’s theorem by Moerdijk
is further extended to a certain class of internal categories in the cate-
gory of toposes and geometric morphisms. The generalization is used
to construct the Lower Bagdomain topos of Vickers and Johnstone as
a glueing of a natural diagram of toposes indexed by the category of
finite cardinals.

One of the important tools for working with the classifying toposes
is Diaconescu’s theorem, describing geometric morphisms to the topos of
presheaves on a small category C in terms of flat functors on C. In [4], this
theorem is generalized from discrete categories to topological categories,
with the additional requirement that the map assigning to an arrow its
source is étale (a local homeomorphism). This generalization enables the
author of [4] to interpret geometric morphisms to many new interesting
toposes, e. g. those of sheaves on a simplicial space, in the sense of [1].

To deal with arbitrary Grothendieck toposes, we present a further gener-
alization of Diaconescu’s theorem, now from topological categories to “top-
ical categories”, i. e. internal categories in the category of toposes and
geometric morphisms. After extending suitably the notion of a principal
bundle to this case, we will show that for certain such categories C, called
here domain-étale, geometric morphisms to the classifying topos of C corre-
spond to principal C-bundles. As in [4], this in particular gives an interpre-
tation of geometric morphisms to a generalized glueing of a small diagram
of toposes D : C → TOP in terms of D-augmented principal C-bundles. It
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is hoped that this interpretation can be used to construct representing ob-
jects for many interesting functors on toposes. In this note we present just
one example of such an application of this generalized Diaconescu theorem.
It concerns a particular description of the lower bagdomain topos from [3]:
for a topos E, its lower bagdomain BL(E) will be expressed as glueing of a
certain diagram naturally associated with E.

Everywhere in the sequel, TOP is the category of Grothendieck toposes,
although most probably some of the toposes involved might be assumed
unbounded. Morphisms of toposes mean geometric morphisms. When pos-
sible, we avoid mentioning 2-categorical aspects of our constructions; e. g.
pullback of toposes really means bi-pullback, TOP-valued functors are re-
ally pseudofunctors, i. e. functors up to coherent canonical 2-isomorphisms,
etc.

This research has been completed during author’s visit to the University
of Utrecht, supported by the Netherlands Organization for Scientific Re-
search (NWO). The author is especially grateful to Ieke Moerdijk for much
help in various ways, for interest, and for patience.

1. Domain-étale Topical Categories

We will systematically consider internal categories in TOP; usually they
are called topical categories. Structure items of such a category C will be
denoted using the standard simplicial notations for its nerve. Thus, C looks
like

C2 d1−→ C1
d0−→
s0←−
−→

d1

C0,

where C2 = C1×C0 C1 is moreover projected onto C1 via d0, d2.

Definition 1.1. One says that a topical category C has étale domain, or,
is domain-étale, if the geometric morphism d0 : C1 → C0 is étale, i. e. a
local homeomorphism, or a slice, that is, d0 � (X∗ �∏

X) : C0/X → C0, for
some object X ∈ C0.

Example 1.1. For any internal category C in a topos X, its externalization

X/C = (X/C2 −→ X/C1

−→
←−
−→

X/C0) is evidently a domain-étale topical cate-

gory. For any domain-étale C and any C-diagram, i. e. an internal functor
q : D → C in TOP which is a discrete opfibration, that is, the square

D1
d0−−−−→ D0

q1

⏐⏐
� q0

⏐⏐
�

C1 d0−−−−→ C0
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is pullback, the category D is evidently also domain-étale. This is no longer
true for internal presheaves on C, i. e. for those internal functors p : P → C
for which the square

P1
d1−−−−→ P0

p1

⏐
⏐
� p0

⏐
⏐
�

C1 d1−−−−→ C0
is pullback. However if we additionally require that p0 is étale, then also p1

will be, hence also d0p1 = p0d0, and then also d0 : P1 −→ P0. So if p : P → C
is an étale presheaf in the sense of the definition to follow, then P is also
domain-étale.

Definition 1.2. An étale presheaf on a topical category C is a C-presheaf,
i. e., a discrete fibration p : P → C, such that p0 : P0 → C0 is étale. With
the evident notion of morphism, the étale C-presheaves form the category
|C|.

Proposition 1.1. For domain-étale C, the category |C| is a topos.

Proof. It is clear that to give an étale presheaf on C is the same as to give an
object P of C0 with an action a : d∗1P → d∗0P , satisfying certain conditions.
Since d0 is étale, the pullback square

C2 d2−−−−→ C1
d0

⏐⏐
� d0

⏐⏐
�

C1 d1−−−−→ C0
satisfies the Beck-Chevalley condition d∗0d1∗ ∼= d2∗d∗0. This enables one to
define a comonad structure on d1∗d∗0 in such a way that an action a as
above becomes equivalent to a coalgebra structure over this comonad. So
|C| � (C0)d1∗d∗

0
; since the comonad is evidently left exact, the proposition

follows. �

Remark 1.1. Actually, |C| is a topos, equipped with a surjection C0 → |C|,
for any topical category C – this is a very particular case of Theorem 2.5
from [5]. We only included the above sketchy argument to make explicit
the involved comonad.

One sees easily that for an internal functor f : C′ → C in TOP, the
induced functor f∗ : |C| → |C′| admits application of the standard adjoint
lifting argument to acquire a right adjoint, hence a geometric morphism
|f | : |C′| → |C|.

Example 1.2. Note that for any étale presheaf p : P → C one has |C|/(P , p)
� |P|. For a C-diagram q : D → C, relationship between |D| and |C| is more
complicated. We will describe the particular case we need: let C be exter-
nalization of a sma ll category C, i. e. of an internal category in the topos S
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of sets. Then one easily observes |S/C| � SC
op

(in fact this is equally true
for any topos X in place of S, i. e. for any internal category C in X one has
|X/C| � XC

op
). Now, S/C-diagrams as above are in one-to-one correspon-

dence with TOP/S-valued (pseudo)functors on C – this is a straightforward
generalization of the correspondence between set-valued functors on a small
category and discrete opfibrations over it. The S/C-diagram corresponding
to D : C → TOP/S will be denoted D̃. Thus, its topos of objects D̃0 is
the coproduct in TOP of the D(c), for all c ∈ C0, equipped with the evi-
dent projection q0 to S/C0. We recall the glueing construction Gl(D) for
a functor D as above: objects of Gl(D) are families ((Xc)c∈C0 , (xγ : γ∗Xc →
Xc′)

(c′
γ−→c)∈C1

) ∈∏
c∈C0

D(c)0×
∏

(c′
γ−→c)∈C1

D(c′)1 satisfying xs0(c) : s0(c)∗

Xc

∼=−→ Xc, and

γ∗
2γ∗

1Xc

∼=−−−−→ (γ1γ2)∗Xc

γ∗
2xγ1

⏐
⏐
� xγ1γ2

⏐
⏐
�

γ∗
2Xc′

xγ2−−−−→ Xc′′ ,

where the ∼=’s denote the canonical isomorphisms of the pseudofunctor D.
Then, Proposition 5.1 of [4] can be generalized in a straightforward way,

giving an equivalence |D̃| � Gl(D), which moreover relates |D̃| |q|−→ |S/C| �
SC

op
to Gl(D)→Gl(1)� SC

op
, where 1 is the constant functor with value S.

2. Generalized Diaconescu’s Theorem

Definition 2.1. For a topical category C, a principal C-bundle over a topos
X is a discrete opfibration e : X/E → C, where E is a cofiltered internal
category in X. For any geometric morphism f : Y → X, the composite
Y/f∗E → X/E → C is also a principal C-bundle, denoted f∗(E, e). A
morphism from e′ : X/E′ → C) to e : X/E → C) is an internal functor
g : E′ → E together with a transformation

X/E′
0

X/g0−−−→ X/E0

e′
0
↘ ⇒ ↙e0

C0
compatible with actions of the respective discrete opfibrations. With this
notion of morphism, principal C-bundles over X form a category which we
will denote Prin(X,C).

Remark 2.1. One might show that specifying a morphism of principal
bundles as above is equivalent to specifying a principal C-bundle f : X2/F→
C over the Sierpinski topos X2 of X, such that 0∗(F, f) = (E, e) and
1∗(F, f) = (E′, e′), for the points 0, 1 : X→ X2.
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Example 2.1. The generic example of a principal C-bundle lives in |C|.
Since C has étale domain, the diagram

∗ ↓ C =
(C3 d1−→ C2

d0−→
s0←−
−→

d1

C1
)

↘ ↙ d0

C0

represents externalization of an internal category in C0. Moreover each of
the C1, C2, C3 have compatible C-actions given by Ci×C0 C1 = Ci+1

di−→ Ci,
hence the above diagram determines an internal category EC in |C|; this
internal category is cofiltered – in fact, after forgetting the d1∗d∗0-coalgebra
structure it even has an initial object s0 : C0 → C1. There is a discrete
opfibration |C|/EC → C given by the geometric morphism

eC : |C|/(C1 d0−→ C0) �

∣
∣
∣∣
∣
∣
∣
C3 d2−→ C2

d1−→
s1←−
−→

d2

C1

∣
∣
∣∣
∣
∣
∣
→ C0

induced by C1 d1−→ C0. This is indeed a discrete opfibration as C1×C0(|C|/EC)0
� C1×C0(|C|/(C1 d0−→ C0)) � (|C|/(EC)0)/e∗C(∗ ↓ C)0 � (|C|/EC)1.

The following is a slight further extension of the generalization of Dia-
conescu’s theorem given in [4] (Chapter II, Theorem 4.1):

Theorem 2.1. The assignment f 
→ f∗(EC , eC) establishes an equivalence
of categories

TOP(X, |C|) f∗
−→ Prin(X, C),

for any domain-étale topical category C and any topos X.

Proof. One constructs a functor in the opposite direction by assigning to a

principal C-bundle (E, e) the composite X lE−→ XE
op � |X/E| |e|−→ |C|, where

lE = (lim−→ Eop � const) is the geometric morphism existing by cofilteredness
of E. To define it on morphisms of bundles, one just replaces the X above
by X2, according to Remark 2.1.

Starting from a principal bundle (E, e), one sees directly that the internal
category in XE

op
corresponding to |e|∗(EC , eC) has the presheaf of objects
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isomorphic to

E2

d0−→
s0←−
−→

d1

E1

↓d0 ↓d0

E1

d0−→
s0←−
−→

d1

E0

and the presheaf of morphisms isomorphic to

E3

d0−→
s0←−
−→

d1

E2

↓d0d0 ↓d0d0

E1

d0−→
s0←−
−→

d1

E0.

The upper horizontal pairs of these diagrams have split coequalizers equal
to E0 and E1 respectively and the corresponding morphisms between them
constitute precisely E; moreover one easily checks that the induced discrete
opfibration over C is just e. This shows that the composition

Prin(X, C)→ TOP(X, |C|)→ Prin(X, C)
is isomorphic to the identity. For the second composition, take any geomet-
ric morphism f : X→ |C| and consider the diagram

Xf∗
E
op
C

q−→ |C|Eop
C � ||C|/EC| b−→ |C|

l ↑↓p ↓g
X

f−→ |C|
where the square is pullback and b = |eC | is induced by the generic principal
bundle. Note that the Beck-Chevalley condition is satisfied for the square,
and the morphisms l and p form an adjoint pair, i. e. l∗ ∼= p∗. We have to
check that the composite bql is isomorphic to f . But (bql)∗ = b∗q∗l∗ ∼= b∗q∗p∗∼= b∗g∗f∗, so it remains to check that b∗g∗ is isomorphic to the identity, or,
equivalently, that g!b

∗ is (here g! � g∗). Now as before, one sees directly that,
given an étale presheaf on C, i. e. P ∈ C0 with a d1∗d∗0-coalgebra structure,
the functor b∗ = |eC |∗ carries it to one on |C|/EC which corresponds to
an EC-presheaf in |C| represented by P ×C0 C1 ⇔ P ×C0 C1×C0 C1, with the
compatible d1∗d∗0-coalgebra structures. Taking g! of it means passing to
the coequalizer; and that pair has a split coequalizer equal to P , with it’s
original action. �
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Remark 2.2. One should probably say more about defining f∗ above on
morphisms. We refer to [2] for the detailed analysis of the much more
general situation. Our case falls within the scope of Lemma 7.6 there.

For a small category C, a principal S/C-bundle over X is the same as
a flat functor C → X, and one recovers the original form of Diaconescu’s
theorem. Now suppose given a functor D : C → TOP as in Example 1.2
above. As we saw there, it gives rise to a discrete opfibration D̃ → S/C in
TOP with |D̃| �Gl(D). As in [4], one can describe principal D̃-bundles over
X in terms of D-augmented principal S/C-bundles, in the following sense:

Definition 2.2. A flat functor F : C → X augmented to D : C → TOP
is one equipped with a natural transformation X/F → D, where X/F is
F followed by the canonical functor X→ TOP, I 
→ X/I. A morphism of
augmented flat functors is a pair (f, ϕ) as in the diagram

X/F
X/f−−−→ X/F ′

↘ ϕ⇒ ↙
D

.

With the obvious identities and composition the D-augmented flat functors
form a category Flat(C,X) ⇓ D.

Thus an augmentation of F to D is a system of geometric morphisms
augc : X/F (c)→ D(c), natural in (γ : c→ c′) ∈ C.

Proposition 2.1. For any diagram D : C → TOP with small C, and any
topos X, there is an equivalence of categories

TOP(X, Gl(D)) � Flat(C,X) ⇓ D.

Proof. By the theorem above, the lhs is equivalent to Prin(X, D̃), so let
us construct an equivalence from the latter category to D-augmented flat
functors C → X. In one direction, given a principal D̃-bundle X/E → D̃,
the composite X/E → D̃ → S/C is clearly a discrete opfibration, hence
yields a principal S/C-bundle, i. e., a flat functor; moreover X/E→ D̃ yields
an augmentation of this flat f unctor. It is straightforward also to assign to a
morphism of principal D̃-bundles a morphism of corresponding augmented
flat functors. Conversely, given F : C → X with an augmentation (augc :
X/F (c)→ D(c))c, taking coproduct of all the augc in TOP yields X/E0 →∑

c D(c) = D̃0, whereas action of C on D and on X/F yields an obvious
D̃-action on X/E. �

3. Gluing Together the Bagdomain

We refer to [3] for the definition of the lower bagdomain topos BL(E) of
a topos E. One might equivalently determine it as follows: first, for a topos
X, define the category Fam(X,E) of X-valued families of points of E as
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the category whose objects are geometric morphisms X/I → E, for various
I ∈ X, and morphisms looking like

X/I
X/f−−−→ X/J

↘ ϕ⇒ ↙
E

.

This construction is obviously contravariantly functorial in X; moreover
any object p : X/I → E of Fam(X,E) determines a functor (−)∗p :
TOP(Y,X) →Fam(Y,E), assigning to f : Y → X the object Y/f∗I →
X/I → E. Then, BL(E) is defined as the topos equipped with an uni-
versal family of points of E, i. e., there is an object IE in BL(E) and a
geometric morphism pE : BL(E)/IE → E such that for any X, the functor
(−)∗pE : TOP(X,BL(E))→Fam(X,E) is an equivalence.

In fact, rigorous definition of the functor (−)∗p on morphisms requires
some more words. This is another particular case of the situation mentioned
in the Remark 2.2 above.

Example 3.1. Let C = S
op
fin be the opposite of the “standard” category

of finite sets (more precisely, it is the full subcategory on objects n =
{0, . . . , n− 1}, n ∈ N); so |S/C| = SSfin is the ce lebrated Object Classifier,
and all flat functors F : C→ X for any topos X are of the kind n 
→ In for
an object I ∈ X unique up to isomorphism. In other words, SSfin contains
the generic object U such that the functor (−)∗U : TOP(X,SSfin) → X is
an equivalence for any topos X. Since Fam(X,S) � X, this shows clearly
that SSfin can serve as BL(S).

Now any topos E determines a functor E• : S
op
fin → TOP sending n to

En (n-th power of E in TOP) and ϕ : n → m to Eϕ : Em → En. By
Proposition 2.1, we know that Gl(E•) classifies E•-augmented flat functors
on S

op
fin.

Given I ∈ X, an E•-augmentation of the corresponding flat functor is
a natural family (augn : X/In → En)n∈N; naturality requirement for the
map ιi : 1→ n that picks some element i forces the square

X/In augn−−−−→ En

X/πi

⏐
⏐
�

⏐
⏐
�πi

X/I
aug1−−−−→ E

to commute, πi denoting the corresponding product projections. Hence the
whole family is uniquely determined by aug1 : X/I → E which might be
arbitrary. Moreover a morphism of augmented flat functors is determined
by a diagram like

X/I
X/f−−−→ X/J

↘ ⇒ ↙
E

.
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This means that Gl(E•) has the same universal property as the lower bag-
domain BL(E) of E. Hence one obtains

Proposition 3.1. There is an equivalence

BL(E) � Gl(E•)

for any topos E.
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