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Abstract. The aim of this paper is to develop the Wiener-Hopf
method for systems of pseudo–differential equations with ”non-
constant coefficients” and to apply it to the describtion of the as-
ymptotic behaviour of solutions to boundary integral equations for
crack problems when a crack occurs in a linear anisotropic elastic
medium. The method was suggested in [14] for scalar pseudo–
differential equations with ”constant coefficients” and applied in
[7] to the crack problems in the anisotropic case. The existence and
a-priori smoothness of such solutions has been proved in [11, 12],
while the isotropic case has been treated earlier in [7, 23, 39, 47].
Our results improve even those for the isotropic case obtained in
[7, 47]. Asymptotic estimates for the behaviour of solutions in the
anisotropic case have been obtained in [26] by a different method.

INTRODUCTION

The celebrated Wiener–Hopf method plays an essential rôle in in-
vestigations of pseudo–differential equations (PsDE) on the half–line
R+ and finds ample applications in boundary value problems (BVP)
of mathematical physics for two–dimensional domains (see e.g. [10,
21, 22, 35, 48]). In [14] this method was adopted to the investigation
of scalar multidimensional PsDEs on the half–space Rn

+. Such a gen-
eralization gives rise to a difficult problem: the method requires the
Wiener–Hopf factorization of a symbol, however, the factors of such a
factorization are not in proper classes (e.g. not in Hörmander’s class
Sr

γ,δ(Rn)), even for C∞−smooth symbols, except the cases when they
satisfy the celebrated transmission property (see [4, 17, 18, 19]). The
symbols which appear in problems of mathematical physics often do
not have the transmission property (see e.g. Section 3 below). The
arising difficulties were overcomen in [14] for p = 2 and in [9, 41, 44]
for 1 < p < ∞. There criterions have been found for granting the Fred-
holm property for a PsDE on a manifoldM with boundary ∂M 6= ∅, in
Bessel potential and Besov spaces, i.e. in H∼p (M) and B∼p,q(M), respec-
tively. These results find many applications to BVPs of mathematical
physics (see e.g. [7, 11, 12, 13, 21, 23, 39, 40, 47, 48, 51]).

The information on the existence, uniqueness and a–priori estimates
of solutions which is available by the above–mentioned methods is in-
complete if the boundary manifold is open as e.g. in crack problems
or if it has singular submanifolds (such as conical points and edges).
The solutions to such irregular BVPs are not anymore C∞–smooth in
the vicinity of singular submanifolds; there the asymptotic behaviour
of the solutions requires an additional investigation.
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The famous paper by V.Kondrat’ev [24] started the direct method
of investigation of such BVPs in domains with non–smooth boundaries
including cracks, and originated various interesting results (see e.g.
[6, 8, 16, 25, 26, 31, 32, 33, 34, 36, 37, 47]). The papers [6, 33] deal,
for example, with the full asymptotic expansion of the solution to the
Dirichlet BVP for a second order elliptic partial differential equation
(PDE) in a domain with an edge having variable opening angle 0 <
α(ω) < 2π.

Based on the results for two–dimensional elasticity obtained by M.Dauge
in [8], T. von Petersdorff applied in [36] V.Kondrat’ev’s technique and
found the full asymptotic expansion for isotropic elastic bodies with
polyhedral boundary admitting cracks and generalizing the results in
[7]. V.Kondrat’ev’s method for BVPs requires the solution of a cor-
responding Sturm–Liouville problem for some operator pencil. Such a
problem for the Neumann BVP with a polygonal crack was treated by
V.Kozlov and V.Maz’ya in [26] which can serve as a model problem.
According to [31], this result allows to obtain some estimates of the
stress singularities near to the boundary.

A different approach was suggested by G.Eskin in [14]. This proce-
dure is based on the Wiener–Hopf method and deals with scalar PsDEs
with ”constant coefficients”, i.e. their symbols are independent of the
domain variable. Due to the explicit factorization of the symbols of
some particular BVP, which seems to be rather tricky, the method was
applied in [7, 47, 51] to crack and Sommerfeld problems and to Stokes
flows. For applications to two–dimensional crack and Zaremba prob-
lems see [21, 22, 48]. However, this method cannot be directly applied
to the matrix and to the ”variable coefficients” cases.

For demonstration of our improvements we formulate here first the
main results on the asymptotic behaviour of solutions to crack problems
as obtained previously by Costabel and Stephan in [7]: for the Dirichlet

problem when the boundary data belong to H3/2+σ
2 (S) with −1/2 <

σ < 1/2, the solution has the form

ϕ(s, ρ) = ϕ0(s)ρ
− 1

2 χ(ρ) + ϕ1(s, ρ), (0.1)

where ϕ0 ∈ H1/2+σ
2 (∂S) and ϕ1 ∈ H1/2+σ′

2 (S) with any σ′ < σ, i.e.
less than optimal regularity. Here ρ denotes the distance to the crack
front ∂S and s is the arc length parameter on ∂S. The function χ is a
suitable cut–off function.

For the Neumann problem with given boundary data belonging to

H1/2+σ
2 (S) with −1/2 < σ < 1/2, the desired boundary traction can
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be represented by

ψ(s, ρ) = ψ0(s)ρ
1
2 χ(ρ) + ψ1(s, ρ), (0.2)

where ψ0 ∈ H3/2+σ
2 (∂S) and ψ1 ∈ H3/2+σ

2 (S).
As already mentioned, the proof in [7, 47] is based on explicit fac-

torizations of corresponding matrix symbols. In the anisotropic case,
however, the explicit factorization seems to be very difficult since the
symbols contain radicals1.

In our paper, however, we avoid the explicit factorizations, which in
[14] was also decisive for the scalar case. Instead, we use a refined but
implicit factorization result (see Lemma 2.3) based on a new version of
the factorization Theorem 2.1. The latter improves a similar result in
[9, 42]. What we get is the same asymptotic representations (0.1) and
(0.2) but with the following improvements (cf. Theorems 4.1-4.3):

(a) the medium is anisotropic with 21 different elastic moduli in the
most general case;

(b) if the boundary data in the Dirichlet problem belong to the

Bessel potential space H1+1/p+σ
p (S) with −1/2 < σ < 1/2 then in (0.1)

ϕ0 ∈ H1/2+σ
p (∂S) and ϕ1 ∈ H̃1/p+σ

p (S). If, in particular, p = ∞ then
ϕ0 ∈ C1/2+σ′(∂S) and ϕ1 ∈ Cσ′(S) for any σ′ with 0 < σ′ < σ;

(c) if the boundary data in the Neumann problem belong to the

Bessel potential space H1/p+σ
p (∂S), then in (0.2) ψ0 ∈ H3/2+σ

p (∂S) (be-

longing to C3/2+σ′(∂S) if p = ∞) and ψ1 ∈ H̃1+1/p+σ
p (S) (belonging to

C1+σ′(S) if p = ∞);
(d) for the canonical case when the crack coincides with the half–

space R2
+ and the symbol of the equation is modified, which corresponds

to a lower order perturbation of the basic PsDE (cf. subsection 3.3),
we find a full asymptotic expansion for the solution;

(e) asymptotic expansions similar to (0.1) and (0.2) can be obtained
for general but uniquely solvable systems of PsDEs

A(x, ∂)u = v for u ∈ H̃s
p(M) and given v ∈ Hs−r

p (∂M)
(0.3)

on a µ-smooth n-dimensional manifold M with smooth boundary ∂M
provided that the symbol a(x, ξ) belongs to the class Hr

T Cµ,m(M,Rn),
introduced in subsection 2.1, if 1 < p < ∞, −µ + 1 ≤ s, s − r ≤
µ, m > n/2 + 2.

This paper is organized as follows.

1Such an attempt has been made by M.Arzis in an unpublished paper where she
succeeded only in some special cases of transversely isotropic materials.
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Sections 1,2 and 4 deal with the Wiener–Hopf method. Subsections
1.4, 1.5 and 2.1, 2.2 contain results important for the applications of
this method. In subsection 1.4, for instance, we formulate some re-
cent results by E.Shargorodsky on boundedness and orders of pseudo–
differential operators. In subsection 1.5 we demonstrate the asymptotic
expansion for Poisson operators (see Lemmata 1.12 and 1.13), which
play an important rôle in Section 4. Two significant results on the
factorization of symbols (see Theorem 2.1 and Lemma 2.3) and their
modification (see Theorem 2.5) will be needed to derive the asymptotic
representations in Section 4.

In Section 3 we demonstrate the equivalent reduction of the Dirichlet
and the
Neumann boundary value problems for an anisotropic medium to the
boundary integral equations (see Theorems 3.1, 3.2 and cf. [7, 23, 27,
36, 39, 47]). We also present short proofs for solvability and regularity
results (see Theorems 3.3, 3.4 and cf. [11, 12]).

Finally, in Section 4, we present in Theorems 4.1–4.3 the asymptotic
behaviour of solutions to crack problems.
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1. CONVOLUTIONS AND POISSON OPERATORS

1.1. SPACES. S(Rn) denotes the Schwartz space of all fast decaying
functions and S′(Rn) the dual space of tempered distributions. Since
the Fourier transform and its inverse, given by

Fϕ(x) =

∫

Rn

eix·ξϕ(ξ) dξ and F−1ψ(ξ) =
1

(2π)n

∫

Rn

e−iξ·xψ(x) dx,

are bounded operators in both spaces S(Rn) and S′(Rn), the convolu-
tion operator

W 0
a ϕ = F−1aFϕ with a ∈ S′(Rn) for ϕ ∈ S(Rn)

(1.1)

is a bounded transformation from S(Rn) into S′(Rn) (cf. [9, 13]).
The Bessel potential space Hs

p(Rn) is defined as a subset of S′(Rn)
endowed with the norm [49, 50]

‖u |Hs
p(Rn)‖ = ‖Λs

0u |Lp(R)‖, (1.2)

where Λs
0 = W 0

λs
0

and λs
0(ξ) = (1 + |ξ|2)s/2.

For any compact closed µ–smooth n–dimensional manifold M (µ ∈
N or ∞), the space H∼p (M) can be defined by a partition of the unity
on M and local diffeomorphisms (cf. [49]) if we suppose for correctness
of definition that 1 − µ ≤ s ≤ µ. For definitions of the Besov spaces
Bs

p,q(Rn) and B∼p,q(M) (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ∈ R, 1− µ ≤ s ≤ µ)
see [49]. In particular, the space Bs

p,p(Rn) (1 < p < ∞, s > 0) coincides

with all traces γRnϕ = ϕ
∣∣
Rn of functions ϕ ∈ Hs+1/p

p (Rn+1).
If M has the boundary ∂M 6= ∅, then M can be extended to

some closed manifold M̃ ⊃ M of the same smoothness. The space

H̃s
p(M) is defined as the subspace of Hs

p(M̃) of those functions u ∈
Hs

p(M̃) for which supp u ⊂ M. Then H∼p (M) denotes the quotient

space H∼p (M) = H∼p (M̃)/H̃∼p (M̃Sl
◦
M) and can be identified with the

space of distributions u on M which admit an extension lu ∈ Hs
p(M̃).

Therefore if rMϕ = ϕ|M denotes the restriction for ϕ ∈ D′(M̃), the
tempered distributions, then H∼p (M) can be identified with the space

rMHs
p(M̃).

The spaces B̃s
p,q(M) and B∼p,q(M) for ∂M 6= ∅ are defined similarly

[49, 50].
If M has no boundary or ∂M is either a special or a general Lip-

schitz domain (i.e. the boundary is represented locally by a Lipschitz
6



function; for exact definitions see [46]) then there exist Bessel potential
operators

Λr
M : H∼p (M) −→ H∼−rp (M), Λ̃r

M : H̃s
p(M) −→ H̃s−r

p (M),

: B∼p,q(M) −→ B∼−rp,q (M), : B̃s
p,q(M) −→ B̃s−r

p,q (M),
(1.3)

where s, r ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞,

which2 define isomorphisms (see [14, 49] for a domain with smooth
boundary and [13, 40] for a Lipschitz domain). In particular (see [14,
49] and (1.2)),

Λr
Rn = W 0

λr
0
, Λr

Rn
−

= W 0
λr
−
, Λ̃r

Rn
+

= W 0
λr
+
, (1.4)

λr
0(ξ) = (1 + |ξ|2) r

2 , λr
±(ξ) = [ξn ± i(1 + |ξ′|2)1/2]r,

r ∈ R, ξ = (ξ′, ξn) ∈ Rn, ξ′ ∈ Rn−1

and moreover, W 0
λr
0
arranges the isometric isomorphism of spacesHs

p(Rn)→
Hs−r

p (Rn) (see (1.2)).
If C∗ denotes the dual space to the space C and ∂M 6= ∅, then the

following relations are valid (see e.g. [49]):

(H̃s
p(M))∗ = H−∼p′ (M), (B̃∼p,q(M))∗ = B−∼p′,q′(M),

where s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, p′ =
p

p− 1
, q′ =

q

q − 1(1.5)

and

(H∼p (M))∗ = H̃−∼p′ (M), (B∼p,q(M))∗ = B̃−∼p′,q′(M) ,

where s ≥ 1

p
, 1 < p < ∞, 1 ≤ q ≤ ∞.

(1.6)

Let Ω ⊂ Rn be an m–dimensional ω–smooth submanifold, m < n
and let γΩ = ϕ |Ω denote the trace operator for ϕ ∈ S(Rn). Then the
operators

γΩ : Hs
p(Rn) −→ B

s−n−m
p

p,p (Ω),

: Bs
p,q(Rn) −→ B

s−n−m
p

p,q (Ω),
(1.7)

for 1 < p < ∞, 1 ≤ q ≤ ∞,
n−m

p
< s < ω

are bouned (see [49, Section 3.6]).
The next lemma follows from (1.7), as noted in [18, (3.20)] and in

[43].

2Let us agree to ignore ∼ in H̃s
p(M) and B̃s

p,q(M) if ∂M = ∅ since then
the operators and spaces in (1.3) coincide.
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Lemma 1.1 (see [18, 43]). Let 0 ≤ dim Ω = m < n, ϕ ∈ Bs
p,p(Ω)

(ϕ ∈ Bs
p,q(Ω)) and 1 < p < ∞ (1 ≤ q ≤ ∞), 1−ω+(n−m)/p′ < s < 0.

Then ϕ⊗ δΩ ∈ H
s−n−m

p′
p (Rn) (ϕ⊗ δΩ ∈ B

s−n−m
p′

p,q (Rn)), where

< ϕ⊗ δΩ, ψ >=< ϕ, γΩψ > for ψ ∈ S(Rn). (1.8)

Let Xν denote a parameter–dependent family of Banach spaces with
ν ∈ R. If (·, ·)θ denotes the modified complex interpolation method
with 0 ≤ θ ≤ 1, then the equality (Xν1 , Xν2)θ = Xθ(ν1,ν2) implies
that if A : Xνj

→ Xνj+2
is a bounded operator for j = 1 and 2,

then A : Xθ(ν1,ν2) → Xθ(ν3,ν4) is bounded for every 0 ≤ θ ≤ 1 and
ν1, ν2, θ(ν1, ν2) ∈ R.

In the sequel, the following well–known interpolation properties will
be applied (see [49, Sections 2.4.7, 2.5.6, 3.3.6]):

(
B∼1p1,q1(M),B∼2p2,q2(M)

)
θ

= B∼p,q(M),
(
H∼1p1 (M),H∼2p2 (M)

)
θ

= H∼p (M),

1 < pj < ∞, 1 < qj < ∞, − 1

pj

< sj < ∞, sj ∈ R, 0 ≤ θ ≤ 1, (1.9)

s = (1− θ)s1 + θs2,
1

p
=

1− θ

p1

+
θ

p2

,
1

q
=

1− θ

q1

+
θ

q2

.

We shall also use the interpolation property
(
H∼1p1 (M),H∼2p2 (M)

)
θ,q = B∼p,q(M) (1.10)

which can be found in [49, 2.4.2, 2.5.6, 3.3.6] as well. Here the pa-
rameters have the same values as in (1.9) and (·, ·)θ,q denotes the real
interpolation method.

Note that (1.9) and (1.10) are also valid for the spaces H̃s
p(M) and

B̃s
p,q(M) if ∂M 6= ∅.
In view of (1.10), if the operator

A : H∼p (M) → H∼−rp (M) (1.11)

is bounded for 1 < p < ∞ and s1 < s < s2, then the operator

A : B∼p,q(M) → B∼−rp,q (M) (1.12)

will be bounded for 1 < p < ∞, 1 ≤ q ≤ ∞ and s1 < s < s2, too.
Let now ρ(x) ≥ 0 for x ∈M and denote

Hs
p(M, ρ) := {ρ−1u : u ∈ H∼p (M)}, 1 < p < ∞, ∼ ∈ R,

‖u|Hs
p(M, ρ)‖ = ‖ρu|H∼p (M)‖. (1.13)

If M ⊂ M̃ has non–empty boundary ∂M 6= ∅, then H̃s
p(M, ρ) :=

{u ∈ Hs
p(M̃, ρ) : supp u ⊂M ⊂ M̃}.
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1.2. CONVOLUTION OPERATORS. If the convolution opera-
tor in (1.1) has the bounded extension

W 0
a : Lp(Rn) → Lp(Rn),

we write a ∈ Mp(Rn) and a(ξ) is called a (Fourier) Lp–multiplier. For
ν ∈ R, let

M (ν)
p (Rn) =

{
(1 + |ξ|2) ν

2 a(ξ) : a ∈ Mp(Rn)
}
.

By using the isomorphisms (1.3) and (1.4) and the obvious property

W 0
a1

W 0
a2

= W 0
a1a2

, aj ∈ M (νj)
p (Rn), j = 1, 2, (1.14)

we get that the operator

W 0
a : Hs

p(Rn) → Hs−ν
p (Rn)

is bounded if and only if a ∈ M
(ν)
p (Rn). Because of (1.10) and this

inclusion, we find the boundedness of the operator

W 0
a : Bs

p,q(Rn) → Bs−ν
p,q (Rn), s ∈ R, 1 < p, q < ∞.

The equality M2(Rn) = L∞(Rn) is well–known. A reasonable de-

scription of the class M
(ν)
p (Rn) for p 6= 2 is much more difficult and

still an unsolved problem. The next theorem is known as the Mikhlin–
Hörmander–Lizorkin multiplier theorem. Proofs can be found in [41]
and [20, Theorem 7.9.5].

Theorem 1.2. If

sup

{
|ξβ∂βa(ξ)| : ξ ∈ Rn, |β| ≤ n + 1

2
, 0 ≤ β ≤ 1

}
≤ M < ∞,

(1.15)

then3 a ∈ ⋂
1<p<∞ Mp(Rn).

Lacksquare

Let a ∈ M
(ν)
p (Rn). Then the operators

Wa := r+W 0
a : H̃s

p(Rn
+) → Hs−r

p (Rn
+),

: B̃s
p,q(Rn

+) → Bs−r
p,q (Rn

+),
(1.16)

are bounded where r+ := rRn
+

is the restriction operator. This follows
immediately from the above properties.

The composition rule (1.14) fails in general for half–space operators
(1.16). But if there exists an analytic extension a1(ξ

′, ξn − iλ) (or

3By 0 ≤ β ≤ 1 where β = (β1, . . . , βn) we mean 0 ≤ βj ≤ 1 for j = 1, . . . , n.
9



a2(ξ
′, ξn + iλ)) for ξn ∈ R and λ ∈ R+ belonging to S′(Rn−1 × C−) (to

S′(Rn−1 × C+), respectively), where C± = R× iR±, then

Wa1Wa2 = Wa1a2 . (1.17)

1.3. ANISOTROPIC SPACES. For a real constant s ∈ R, we de-
fine the vectors s′ = (s, . . . , s, 0) and sn = (0, . . . , 0, s) in Rn. If
ρ(x) ≥ 0, we introduce the following anisotropic weighted Bessel po-
tential spaces:

Hs′
p (Rn, ρ) : =

{
ϕ ∈ S′(Rn) : ‖ϕ|Hs′

p (Rn, ρ)‖
= ‖ρ(Λs

Rn−1 ⊗ I)ϕ|Lp(Rn)‖ < ∞}
, (1.18)

H̃s′
p (Rn

+, ρ) : =
{
ϕ ∈ Hs′

p (Rn, ρ) : supp ϕ ⊂ Rn

+

}
.

(1.19)

Similarly, the spaces Hsn
p (Rn, ρ) and H̃sn

p (Rn
+, ρ) are defined with the

help of the operator I ⊗ Λs
R.

Evidently

H̃s
p(Rn

+) = H̃s′
p (Rn

+) ∩ H̃sn
p (Rn

+). (1.20)

Lemma 1.3. The following interpolation property is valid for weighted
spaces:

[
H̃µn

p1
(Rn

+, ρ1), H̃νn
p2

(Rn
+, ρ2)

]
θ
⊂ H̃sn

p (Rn
+, ρ), (1.21)

s = (1− θ)µ + θν,
1

p
=

1− θ

p1

+
θ

p2

, ρ = ρ1−θ
1 ρθ

2,

µ, ν ∈ R, 1 < p1, p2 < ∞, 0 ≤ θ ≤ 1.

Proof. The proof follows word by word the proof for the case of
isotropic spaces with ρ1 = ρ2 which is exposed in [50, Section 2.4]. For
brevity we omit the details. Lacksquare

Remark 1.4. As was proved by D.Kurtz in [28], the Mikhlin–Hörmander–
Lizorkin theorem (see Theorem 1.2) remains valid also for weighted
spaces Lp(Rn, ρ) if the weight function ρ satisfies the Hunt–Muckenhoupt–
Wheeden condition ρ ∈ Ap(Rn).

With this result and ρ1, ρ2 ∈ Ap(Rn) it follows that in (1.21) we
also have the inverse inclusion. For a proof we refer again to [50,
Section 2.4]. Then the operators Λr

Rn−1⊗ I and I⊗Λr
+ represent Bessel

potential operators for the anisotropic Bessel potential spaces Hs′
p (Rn, ρ)

and H̃sn
p (Rn

+, ρ) respectively.
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1.4. PSEUDODIFFERENTIAL OPERATORS. If the symbol a(x, ξ)
depends on the external variable, then the corresponding convolution
operator (see (1.1))

a(x, ∂)ϕ(x) = W 0
a(x,·)ϕ(x) := (F−1

ξ→xa(x, ξ)Fy→ξϕ(y))(x)
(1.22)

with the symbol a ∈ C(Rn,S′(Rn)) is called a general pseudo–differential
operator operating on ϕ ∈ S(Rn). Here C(Ω,C) denotes the set of all

continuous functions a : Ω → C. Let M
(s,s−r)
p (Rn × Rn) denote the

class of symbols a(x, ξ) for which the operator in (1.22) extends to the
bounded mapping

a(x, ∂) : Hs
p(Rn) → Hs−r

p (Rn). (1.23)

The next theorem and its corollary provides us with sufficient condi-

tions for a ∈ M
(s,s−r)
p (Rn×Rn). This theorem was proved by E.Shargorodsky

in [44] with the help of a suitable parametrization. We shall use this
idea in the proof of Lemma 1.7 below. Let

a(α)(x, ξ) :=
∂α

∂xα
a(x, ξ) with α ∈ N0 .

Let Σn be the class of all permutations of the single variables of x ∈
Rn :
σ(x) = (x(σ(1), . . . , xσ(n)) and

aσ(x, ξ) := a(σ(x), ξ) for σ ∈ Σn .

Theorem 1.5. [44, Section 5] Let s ∈ R, ` ∈ N0, 1 < p < ∞. If
a ∈ C(Rn,Mp(Rn)) and

maxσ∈Σn, α∈Nn
0 , |α|≤`

∫

Rm

∥∥∥∥∥
∂maσ

(α)(y(m), 0, . . . , 0, ·)
∂y(m)

∣∣∣Mp(Rn)

∥∥∥∥∥ dy(m) < ∞

(y(m) := (y1, . . . , ym)), then a ∈ M
(s,s)
p (Rn ×Rn) for any −`− 1 +

1

p
<

s < ` +
1

p
.

Corollary 1.6. If a ∈ C l+n
0 (Rn,M

(r)
p (Rn)) (i.e. a(x, ξ) is compactly

supported in x ∈ Rn and ∂α
x a ∈ C(Rn,M

(r)
p (Rn)) for all |α| ≤ l + n)

and l ≥ max{|s|, |s− r|}, then a ∈ M
(s,s−r)
p (Rn × Rn).

If (1 + |ξ|2)−r/2∂α
x a(x, ξ) satisfies condition (1.15) uniformly for all

x ∈ Rn and |α| ≤ l + n, then a ∈ ⋂
1<p<∞ M

(s,s−r)
p (Rn × Rn).

11



Lemma 1.7. Let a, b ∈ M
(s,s−r)
p (Rn × Rn), s, r ∈ R. If there exist

analytic extensions a(x, ξ′, ξn + iλ) and b(x, ξ′, ξn− iλ) for any x ∈ Rn,
ξ′ ∈ Rn−1, ξn ∈ R, λ ∈ R+ with polynomial growth at ∞ (i.e. |a|
and |b| are majorized by (|ξ′| + |ξn| + λ)N for some N and all x ∈ Rn

uniformely), then the operators

a(x, ∂) : H̃s
p(Rn

+) → H̃s−r
p (Rn

+) (1.24)

r+b(x, ∂)` : Hs
p(Rn

+) → Hs−r
p (Rn

+) (1.25)

are bounded. Here ` is any extension with `ϕ ∈ Hs
p(Rn) for ϕ ∈

Hs
p(Rn

+). The operator in (1.25) is independent of the choice of `.

Proof. Let us apply the parametrization argument from [44]. Consider
ϕ ∈ S(Rn

+). Then Fϕ(ξ′, ξn + iλ) ∈ S(Rn−1 × C+) is analytic with
respect to the variable ξn + iλ ∈ C+. The function ψ(z, ξ′, ξn + iλ) =
a(z, ξ′, ξn + iλ)Fϕ(ξ′, ξn + iλ) is analytic with respect to the variable
ξn + iλ ∈ C+ and is fast decaying with respect to the variables (ξ′, ξn +
iλ) ∈ Rn−1 × C+. The inverse Fourier transform F−1

ξ→xψ(z, x) belongs

then to C∞(Rn) for every z ∈ Rn and suppF−1ψ ⊂ Rn × Rn
+. Since

a(x, ∂)ϕ(x) := F−1ψ(x, x), we get supp a(x, ∂)ϕ ⊂ Rn
+. (1.24) follows

from the fact that the subspace S(Rn
+) ⊂ H̃s

p(Rn
+) is dense and the

operator a(x, ∂) in (1.23) is continuous.

Similarly to (1.24) it follows that r+b(x, ∂)ϕ = 0 for any ϕ ∈ H̃s
p(Rn

−)

where Rn
− := Rn \ Rn

+. If now `1u and `2u are two different extensions

of u ∈ Hs
p(Rn

+) in Hs
p(Rn), then ϕ = `1u− `2u ∈ H̃s

p(Rn
−) and therefore

r+b(x, ∂)`1u = r+b(x, ∂)`2u. This implies

‖r+b(x, ∂)`ϕ|Hs
p(Rn

+)‖ ≤ M inf{‖`ϕ|Hs
p(Rn)‖ : `ϕ ∈ Hs

p(Rn)}
= M‖ϕ|Hs

p(Rn
+)‖.

Lacksquare
For any l, m = 1, 2, . . . ,∞ and r ≥ 0, let Sl,m

r (Rn,Rk×Rn−k) denote
the class of symbols a(ξ) with the property

∣∣∂α
x ∂β

ξ a(x, ξ)| ≤ Mα,β(1 + |ξ|)r−|β′′|−δ(1 + |ξ′|)δ−|β′|, (1.26)

β = (β′, β′′), ξ = (ξ′, ξ′′) ∈ Rn, ξ′ ∈ Rk, |α| ≤ l, |β| ≤ m,

where δ = 0 if β′ = 0 and δ = 1 if β′ 6= 0.

Lemma 1.8. Let m > n/2 + 1 and l ≥ max{|s|, |s − r1|, |s −
r2|, |s − r1 − r2|} + n + 1 be integers. If aj ∈ Sl,m

rj
(Rn,Rk × Rn−k) for

j = 1, 2, then (cf.(1.14))

a1(x, ∂)a2(x, ∂) = (a1a2)(x, ∂) + A−1, (1.27)
12



where A−1 has the order r1 + r2 − 1, i.e.

A−1 : Hσ
p(Rn) → Hσ−r1−r2+1

p (Rn)

is bounded if |σ|, |σ − r1 − r2 + 1| ≤ l − n− 1.
If either a1(x, ξ′, ξn−iλ) or a2(x, ξ′, ξn+iλ) has an analytic extension

(x ∈ Rn, ξ′ ∈ Rn−1, ξn ∈ R, λ ∈ R+) which is majorized by (|ξ′| +
|ξn|+ λ)N for some N and for all x ∈ Rn uniformly, then

r+a1(x, ∂)r+a2(x, ∂) = r+a1a2(x, ∂) + A+
−1, (1.28)

where A+
−1 has the order r1 + r2 − 1, and

A+
−1 : H̃σ

p(Rn
+) → Hσ−r1−r2+1

p (Rn
+)

is bounded if |σ|, |σ − r1 − r2 + 1| ≤ l − n− 1.

Proof. We have

a1(x, ∂)a2(x, ∂) = b(x, ∂) with b(x, ∂) = ei(∂y,∂θ)a1(x, θ)a2(y, ξ)|θ=ξ,y=x

(see [20, Theorem 18.1.8]). Further, there the following estimate is
shown,

|∂α
x ∂β

ξ [b(x, ξ)− a1(x, ξ)a2(y, ξ)]|
≤ C(|α|, |β|+ n/2 + 3)(1 + |ξ|)r1+r2−|β′′|−1(1 + |ξ′|)1−|β′|

with β′, β′′, r1 and r2 as in (1.26), with |α| ≤ l, |β| ≤ m and some
constant C(M, N) (see [20, Theorems 7.6.5, 18.1.7, 18.1.8]). The first
claim (1.27) follows if the second case of Corollary 1.6 is applied.

If a2(x, ξ′, ξn+iλ) has an analytic extension with polyonomial growth,
then due to (1.24) we obtain a2(x, ∂)ϕ(x) = r+a2(x, ∂)ϕ(x) = a2(x, ∂)ϕ(x)

for all ϕ ∈ H̃s
p(Rn

+) and (1.28) takes the form

r+a1(x, ∂)a2(x, ∂) = r+(a1a2)(x, ∂) + A+
−1 (1.29)

which follows from (1.27).
If a1(x, ξ′, ξn−iλ) has an analytic extension with polynomial growth,

we get r+a1(x, ∂)r− = 0 (r− := rRn
− = I − r+). The proof follows from

the equality r−a1(x, ∂)r− = a1(x, ∂)r− which is proved similarly to
(1.24). Again we get (1.29). Lacksquare

Corollary 1.9. Let m > n/2 + 1, and l ≥ max{|s|, |s− r|+ n + 1}
be integers.

If a ∈ C l−n(Rn), b ∈ Sl,m
r (Rn

+,Rk × Rn−k) then the commutator

[aI, r+b(·, ∂)] = ar+b(·, ∂)− r+b(·, ∂)aI

has the order r − 1, i.e. the operator

[aI, b(·, ∂)] : H̃σ
p(Rn

+) → Hσ−r+1
p (Rn

+)
13



is bounded if |σ|, |σ − r| ≤ l − n− 1.

1.5. POISSON OPERATORS. Let Ω ⊂ Rn be some ω–smooth m–
dimensional manifold (1 ≤ m < n; cf. subsection 2.1), a ∈ M

(r)
p (Rn)

and consider the following Poisson operator (cf. (1.1),(1.8))

P a
Ωϕ := W 0

a (ϕ⊗ δΩ) : Ck
0 (Ω) → S′(Rn). (1.30)

Lemma 1.10. Let 1− k + (n−m)/p′ < s < 0, −ω + 1 ≤ s, r ∈ R,

1 < p < ∞ and a ∈ M
(r)
p (Rn). Then the operator

P a
Ω : Bs

p,p(Ω) → H
s−n−m

p′ −r

p (Rn) (1.31)

is bounded.

Proof (see [18, 44]). ϕ ∈ Bs
p,p(Ω) implies ϕ ⊗ δΩ ∈ Hs−n−m

p′
p (Rn) (see

Lemma 1.1). Since the operator W 0
a : Hν

p(Rn) → Hν−r
p (Rn) is bounded

for any ν ∈ R, there follows (1.31). Lacksquare

Corollary 1.11. Let Ω = Rn−1 and, in addition to the conditions
of Lemma 1.10, let a(ξ′, ξn+iλ) have an analytic extension belonging to
S′(Rn−1 × C+). Then
supp P a

Rn−1ϕ ⊂ Rn
+ if ϕ ∈ Bs

p,p(Rn−1), i.e. the operator

P a
Rn−1 : Bs

p,p(Rn−1) → H̃s−1/p′−r
p (Rn

+) (1.32)

is bounded.

Proof. The proof follows from 4 (1.24) and (1.31), since ϕ ∈
Bs

p,p(Rn−1) yields ϕ⊗ δΩ ∈ H̃
s−n−m

p
p (Rn

+). Lacksquare

For the asymptotic expansion in Section 4 we need the following
particular Poisson operator:

P−r
+ ϕ := P

eλ−r
+

Rn−1ϕ, with λ̃−r
+ (ξ) := (ξn + i|ξ′|+ i)−r for r > 0.

Then P−r
+ has an explicit representation (see [14, subsection 7.5]) as

P−r
+ ϕ(x) = crθ+(xn)xr

ne−xn

∫

Rn−1

ϕ(y′) dy′

[(x′ − y′)2 + x2
n]

n
2

,
(1.33)

cr = π−
n
2 e−ir π

2
Γ(n

2
)

Γ(r)
, θ+(xn) =

1

2
(1 + sgn xn).

4It is easy to verify that (1.24) holds already if a(x, ξ) ≡ a(ξ) and a(ξ′, ξn + iλ)
is in S′(Rn−1 × C+).
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Let 1 < p < ∞ and define

H∞
p (Rn) :=

⋂
m≥0

Hm
p (Rn). (1.34)

Due to the embeddings Hs
p(Rn) ⊂ Bs−ε

p,q (Rn) ⊂ Cs−2ε−n/p(Rn) with any
ε > 0 and s− 2ε ≥ n/p (see [49]) we have

H∞
p (Rn) =

⋂
s≥0

Bs
p,q(Rn) ⊂ {ϕ ∈ C∞(Rn) : ϕ(∞) = 0}

(1.35)

and ϕ ∈ H∞
p (Rn) implies a(∂)ϕ ∈ H∞

p (Rn) for every multiplier a ∈
M

(ν)
p (Rn) with any ν ∈ R.

Lemma 1.12. Let 1 < p < ∞ and ϕ ∈ H∞
p (Rn−1). Then

P−r
+ ϕ(x) = θ+(xn)e−xn

m∑

k=0

cr,kx
r+k−1
n ϕk(x

′) + xr+m
n ϕ0

m+1(x)
(1.36)

with ϕk = |∂′|kϕ ∈ H∞
p (Rn−1), cr,k =

(−1)k

k!

e−ir π
2

Γ(r)
, k = 0, 1, . . . , m,

and where
◦
ϕm+1 satisfies |∂α

x ϕ0
m+1(x)| ≤ Cαx−αn

n for every α ∈ Nn
0 .

Proof. Obviously, the operator P−r
+ can be written as

P−r
+ ϕ(x) = a(∂′, xn)ϕ(x′), (1.37)

where

a(ξ′, xn) = F−1
ξn→xn

λ−r
+ (ξ′, xn) = cr,0θ+(xn)xr−1

n e−xn(1+|ξ′|)

(see [14, Section 7]). Applying Taylor’s expansion to e−xn|ξ′|θ with
respect to θ ∈ [0, 1] and then setting θ = 1, we get

a(ξ′, xn) = θ+(xn)e−xn

[ m∑

k=0

cr,kx
r+k−1
n |ξ′|k + xr+m

n am(ξ′, xn)|ξ′|m+1
]
,

am(ξ′, xn) = cr,m+1

1∫

0

(1− t)me−xn|ξ′|tdt. (1.38)

Moreover, ϕ ∈ H∞
p (Rn−1) implies ϕk = |∂′|kϕ ∈ H∞

p (R−1) for k =
0, . . . ,m + 1, (cf. (1.35)). Inserting (1.38) into (1.37) gives (1.36),
where

ϕ0
m+1(x) = am(∂′, xn)ϕm+1(x

′) (1.39)

= c0xn

∫

Rn−1

ϕm+1(y
′)

1∫

0

t(1− t)m

[(x′ − y′)2 + t2x2
n]

n
2

dtdy′ for xn > 0

15



(cf. (1.33) and [14, Section 4]). From (1.39) we get

|ϕ0
m+1(x)| ≤ c0xn

∫

Rn−1

|ϕm+1(y
′)|

1∫

0

t(1− t)m dt

[(x′ − y′)2 + t2x2
n]

n
2

dy′

≤ c′0xn

1∫

0

t(1− t)m

∫

Rn−1

dy′

[(x′ − y′)2 + t2x2
n]

n
2

dt

= c′0

1∫

0

(1− t)m dt

∫

Rn−1

dy′

(|y′|)2 + 1)
n
2

= c0. (1.40)

Since

∂α
x ϕ0

m+1(x) = c0

∫

Rn−1

∂α′
y′ ϕm+1(y

′)

1∫

0

t(1−t)m∂αn
xn

xn

[(x′ − y′)2 + x2
n]

n
2

dt dy′

where α = (α′, αn) ∈ Nn
0 , we get the remaining estimate in (1.36) for

∂α
x ϕ0

m+1 in the same manner as in (1.40). Lacksquare

Lemma 1.13. Let 5 s, r > 0, (1−{r})−1 < p < ∞, 0 < s− [r] <
1 and ϕ ∈ Bs

p,p(Rn−1). Then ((1.33), (1.36))

P−r
+ ϕ(x) = crθ+(xn)xr−1

n e−xnϕ(x′) + ϕ0
1(x) with ϕ0

1 ∈ H̃s−1/p′+r
p (Rn

+) .
(1.41)

Proof. Obviously (cf. (1.33))

ϕ0
1 = crθ+Arϕ with Arϕ(x) : = xr

ne−xn

∫

Rn−1

ϕ(y′)− ϕ(x′)
[(y′ − x′)2 + x2

n]n/2
dy′

= xr
ne−xn

∫

Rn−1

∆hϕ(x′)
[h2 + x2

n]n/2
dh, (1.42)

where ∆hϕ(x′) = ϕ(x′ + h) − ϕ(x′). For ψ ∈ C∞
0 (Rn−1) and some

ν0, which will be chosen later, we proceed with Hölder’s inequality as

5If r > 0 then [r] ∈ N0 denotes the usual Gaussian bracket, i.e. the integer part
of r and 0 ≤ {r} := r − [r] < 1 and N0 := N ∪ {0} where N denotes the natural
integers.
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follows,

‖Arψ|Lp(Rn
+, xν0

n )‖p =

∫

Rn
+

x(r+ν0)p
n e−xnp

∣∣∣
∫

Rn−1

∆hψ(x′)
[h2 + x2

n]n/2
dh

∣∣∣
p

dx

≤
∫

Rn
+

x(r+ν0)p
n

( ∫

Rn−1

|h|δp′ dh

[h2 + x2
n]n/2

) p
p′

∫

Rn−1

|∆hψ(x′)|p
|h|δp[h2 + x2

n]n/2
dh dx

=

∫

Rn
+

x(r+ν0+δ−1/p′)p
n

( ∫

Rn−1

|t|δp′ dt

[t2 + 1]n/2

) p
p′

∫

Rn−1

|∆hψ(x′)|p
|h|δp(h2 + x2

n)n/2
dh dx

= c1

∫

Rn−1×Rn−1

|∆hψ(x′)|pdx′

|h|δp

∞∫

0

x
(r+ν0+δ−1/p′)p
n

[h2 + x2
n]n/2

dxn dh

= c1

∫

Rn−1×Rn−1

|∆hψ(x′)|p
hn−1+(1/p′−r−ν0)p

dh dx′
∞∫

0

t(r+ν0+δ−1/p′)p

[1 + t2]n/2
dt

= cp
2‖ψ|B1/p′−r−ν0

p,p (Rn−1)‖p , (1.43)

(see [49, p.190] for the norm in Bν
p,p(Rn−1) = W ν

p (Rn−1)) provided

− 1 < δp′ < 1, −1 <

(
r + ν0 − δ − 1

p′

)
p < 1, 0 <

1

p′
− r − ν0 < 1.

(1.44)

The last inequality in (1.44) restricts the exponent of the weight
function tν0 as

− 1

p
< r + ν0 < 1− 1

p
, (1.45)

while the two other inequalities should be satisfied by an appropriate
choice of δ. This is always possible since (1.44) can be rewritten as
follows:

1− p < δp < p− 1, µ− 1 < δp < µ + 1, 0 < µ < p,
(1.46)

where µ = (1/p′ − r − ν0)p. The last inequality in (1.46) corresponds
to (1.45), while the first two inequalities can always be satisfied since

max{1− p, µ− 1} < min{p− 1, µ + 1} ,

if the last inequality in (1.48) holds. Thus, the operator

Ar : B1/p′−r−ν0
p,p (Rn−1) → Lp(Rn

+, xν0
n ) (1.47)

17



is bounded if (1.45) is satisfied. Because of (1.42) we have

Λν
Rn−1Arψ = ArΛ

ν
Rn−1ψ for ν ∈ R. (1.48)

Therefore, with (1.3), the operator

Ar : B1/p′−{r}−ν
p,p (Rn−1) → H̃(ν,0)

p (Rn
+) (1.49)

is bounded, provided 1/p′ − {r} > 0, ν ∈ R. From (1.42),(1.47) it
follows that

‖∂k
xn

Arψ|Lp(Rn
+, xν0+l

n )‖ ≤ c3‖exn∂k
xn

Arψ|Lp(Rn
+, xν0+k

n )‖
≤ c4‖ψ|B1/p′−r−ν0

pp (Rn−1)‖,
provided 0 ≤ k ≤ l and l = 0, 1, . . . , [r] + 1. Hence,

Ar : B1/p′−r−ν0
p,p (Rn−1) → H̃(0,[r]+1)

p (Rn
+, xν0+[r]+1

n )
(1.50)

is bounded if (1.45) is satisfied.
Applying interpolation (1.21) to (1.47) and (1.50) yields that the

operator

Ar : Bs
p,p(Rn−1) ⊂ B1/p′−r−ν0

p,p (Rn−1) → H̃(0,ν)
p (Rn

+, xν0+ν
n ),

for 0 <
1

p′
− r − ν0 ≤ s, 0 < ν < [r] + 1, (1.51)

is bounded if (1.45) is satisfied. If now ν = −ν0 = s− 1/p′ + {r}, then
(1.49), (1.51) and (1.20) imply the boundedness of the operator

Ar : Bs
p,p(Rn−1) → H̃s−1/p′+r

p (Rn
+), (1.52)

provided 1/p′ − {r} > 0. Obviously the latter condition is equivalent
to 1/(1−{r}) < p < ∞; and from (1.45) with ν0 = −s+1/p′−{r} we
find the condition 0 < s− [r] < 1.

Lacksquare

Remark 1.14. From (1.48) and (1.42) it is evident that ϕ0
1(x

′, xn)
cannot be smoother with respect to the variable x′ than ϕ(x′). Therefore,
the condition 1/(1 − {r}) < p < ∞ is necessary for the asymptotic
representation (1.41) to hold (see (1.52)).
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2. SYMBOL FACTORIZATION AND SOLVABILITY OF
PsDE

2.1. FACTORIZATION. Let µ,m = 0, 1, . . . ,∞, r ∈ C, Ω ⊂
Rn. By HrCµ,m(Ω,Rn) := Cµ(Ω, HrCm(Rn)) we denote the algebra
of N ×Nmatrix–functions a(x, ξ) which are µ–smooth with respect to
the variable x ∈ Ω = Ω∪∂Ω, are m–smooth with respect to ξ ∈ Sn−1 =
{ξ ∈ Rn : |ξ| = 1} and positive homogeneous of order r in ξ, i.e.

a(x, λξ) = λra(x, ξ) for λ > 0, x ∈ Ω, ξ ∈ Rn.

By Hr
T Cµ,m(Ω,Rn) ⊂ HrCµ,m(Ω,Rn) we denote the subalgebra of func-

tions a(x, ξ) = a0(x, tω′, ξn) where ω′ = |ξ′|−1ξ′ ∈ Sn−2, t = |ξ′| ∈ R+,
ξn ∈ R, which meet the following conditions 6

lim
t→0

∂k
t a0(x, tω′,−1) = (−1)k lim

t→0
∂k

t a0(x, tω′, 1),

for all x ∈ Ω, ω′ ∈ Sn−2, k = 0, 1, . . . ,m− 1.
(2.1)

Theorem 2.1. Let a ∈ Hr
T Cµ,m(Ω,Rn) (µ ≥ 0, m ≥ 1, r ∈ R) be a

positive definite N ×N matrix–function satisfying

(a(x, ξ)η, η) ≥ M |ξ|r|η|2 for all x ∈ Ω, ξ ∈ Rn and η ∈ CN

(2.2)

with some constant M > 0. Then a(x, ξ) admits the factorization

a(x, ξ) = a−(x, ξ)a+(x, ξ), a±(x, ξ) = (ξn ± i|ξ′|) r
2 b±(x, ξ),

(2.3)

where b±1
+ (x, ξ′, ξn + iλ) and b±1

− (x, ξ′, ξn − iλ) have uniformly bounded

analytic extensions for λ > 0, x ∈ Ω, ξ′ ∈ Rn−1, ξn ∈ R. Moreover
b± ∈ H0Cµ,m−1(Ω,Rn) and∣∣∣∂α

x ∂β
ξ b±1
± (x, ξ)

∣∣∣ ≤ Mα,β|ξ|r−βn−δ|ξ′|δ−|β′| (2.4)

for any choice of multiindices |α| ≤ µ and |β| ≤ m− 1. Here δ = 0 if
β′ = 0 and δ = 1 if β′ 6= 0.

Proof. Let Γ0 = {ζ ∈ C : |ζ| = 1} denote the complex unit circle and let
Cµ,m−1(Ω,R+ × Sn−2 × Γ0) = Cµ(Ω, Cm−1(R+ × Sn−2 × Γ0)) be the
algebra of functions d0(x, t, ω′, ζ) which have continuous derivatives
up to the orders µ and (m − 1) with respect to the variables x ∈ Ω
and (t, ω′, ζ) ∈ R+ × Sn−2 × Γ0, respectively. The function b(x, ξ) =

6If r = 0, m = ∞, then conditions (2.1) coincide with the classical transmission
property (cf. [4, 14, 18, 19, 37]).
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|ξ|−ra(x, ξ) is homogeneous of order 0 with respect to the variable ξ.

Let us verify that b̃ ∈ Cµ,m−1(Ω,R+ × Sn−2 × Γ0) where

b̃(x, t, ω′, ζ) := b
(
x, tω′, i

1− ζ

1 + ζ
t
)

= b̃0

(
x, ω′, tan

θ

2

)
,

with ω′ = |ξ′|−1ξ′ ∈ Sn−2, t = |ξ′|, ξ = (ξ′, ξn) ∈ Rn, ζ = eiθ,
(2.5)

i
1− ζ

1 + ζ
= i

1− eiθ

1 + eiθ
= tan

θ

2
for − π < θ < π.

For showing (2.5) it suffices to prove that all derivatives b̃(α,0,β,k)(x, ω′, eiθ)
defined via

g(α,l,β,k)(x, t, ω′, θ) := ∂α
x ∂l

t∂
β
ω′∂

k
θ g(x, t, ω′, θ),

are continuous at θ = ±π.
The continuity condition (2.1) and homogeneity lead to

b̃(α,0,β,k)(x, ω′, eiθ) = ∂k
θ b̃

(α,0,β,0)
0 (x,± cot

θ

2
ω′,±1)

=
k∑

j,l,m=1

(±)jajlm(θ)̃b
(α,j,β,0)
0 (x,± cot

θ

2
ω′,±1)

=
k∑

j,l,m=1

ajlm(θ)̃b
(α,j,β,0)
0 (x,± cot

θ

2
ω′, 1)

for 0 ≤ ±θ ≤ π and k ∈ N
where ajlm(θ) := cjlm sin−2l(θ/2) cotm(θ/2), and, therefore ajlm(−π) =
ajlm(π). From these relations together with (2.1) we obtain the conti-
nuity properties

lim
θ→−π

b̃(α,0,β,k)(x, ω′, eiθ) = lim
θ→π

b̃(α,0,β,k)(x, ω′, eiθ).

Hence, b̃ ∈ Cµ,ν(Ω, Sn−2×Γ0) = ∩m−1
k=0 Cµ,k(Ω, Sn−2, Cν−k(Γ0)), where

Cσ(Γ0) denotes the Hölder–Zygmund space and where m− 1 < ν < m
(see [46]). A matrix–function from the algebra Cσ(Γ0) (σ > 0) admits
a factorization (see, e.g., [5]):

b̃(x, ω′, ζ) = b̃−(x, ω′, ζ )̃b+(x, ω′, ζ), (2.6)

where b̃±1
+ , b̃±1

− ∈ ⋂m−1
k=0 Cµ,k(Ω, Sn−2, Cν−k(Γ0)) and b̃±1

+ (x, ω′, z), b̃±1
− (x, ω′, z−1)

have uniformly bounded analytic extensions for |z| < 1. The partial

indices are zero due to the positive definiteness of b̃(x, ω′, ζ) (see (2.2)
and (2.5)) as is well known (see [5, 30]). The Cµ,k–smooth dependence
on the parameters (x, ω′) ∈ (Ω, Sn−2) follows also from the fact that
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the partial indices are zero in the factorization (2.6) as is proved in
[45].

Representation (2.3) follows from the positive homogeneity of a±(x, ξ)
with respect to ξ and from (2.6) if we transform the variables

ζ = −ξn − i|ξ′|
ξn + i|ξ′| , ω′ = |ξ′|−1ξ′, t = |ξ′| (2.7)

and factorize

|ξ|r = (ξn − i|ξ′|) r
2 (ξn + i|ξ′|) r

2 .

The estimates (2.4) follow from similar estimates for b̃±(x, ω′, ζ)
if the transformation (2.7) is taken into account. The homogeneity

b±(x, λξ) = b±(x, ξ) for λ > 0 follows since the functions b̃±(x, ω′, ζ)
are independent of t = |ξ′|. Lacksquare

Remark 2.2. Theorem 2.1 remains valid if (2.2) is replaced by any
other condition which ensures vanishing of the corresponding partial
indices of the factorization (2.6). Some of such conditions can be found
in [13] and in [30].

Lemma 2.3. Let a(x, ξ) be as in Theorem 2.1 with 2 ≤ m ≤ ∞ and
let b+(x, ξ) be the factor in (2.3). Then the inverse has the expansion

b−1
+ (x, ξ) =

l−1∑

k=0

( |ξ′|
ξn + i|ξ′|

)k

bk(x, ξ′) +
( |ξ′|

ξn + i|ξ′|
)l

b0
l (x, ξ)

(2.8)

where 1 ≤ l ≤ m, ξ = (ξ′, ξn) ∈ Rn and where bk ∈ H0Cµ,m−k−1(Ω,Rn−1)
for k = 0, . . . , l − 1. The remainder b0

l (x, ξ) satisfies the estimates

sup
{
|ξβ∂α

x ∂β
ξ b0

l (x, ξ)| : x ∈ Ω, ξ ∈ Rn, |α| ≤ µ,

|β| ≤ m− l − 1
}

< ∞ . (2.9)

Moreover, b0
l (x, ξ′, ξn+iλ) has an uniformly bounded analytic extension

for λ > 0.

Proof. The function b̃−1
+ (x, tω′, ζ) with the transformed variables be-

longs to the space Cµ,m−1(Ω,R+ × Sn−2 × Γ0) and has an analytic

extension into the disc |ζ| < 1 (see (2.6)). Then b̃−1
+ (x, tω′, 1+θ(ζ−1))

is correctly defined for 0 ≤ θ ≤ 1. If we apply Taylor’s formula about
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θ = 0 and then take θ = 1, we get

b̃−1
+ (x, tω′, ζ) =

l−1∑

k=0

b̃1
k(x, tω′, 1)

k!
(ζ − 1)k + (ζ − 1)lb̃0

l (x, tω′, ζ)

with b̃1
k(x, tω′, ζ) = ∂k

ζ b̃−1
+ (x, tω′, ζ)

and the remainder b̃0
l (x, tω′, ζ) =

1

l!

1∫

0

(1− τ)lb̃1
l (x, tω′, 1 + τ(ζ − 1)) dτ .

If we insert ζ given in (2.7), the latter representation yields (2.8) and
(2.9). Lacksquare

2.2. MODIFICATION OF SYMBOLS. If a ∈ HrCµ,m(Rn,Rn),
r < 0, then the operator a(x, ∂) : Hs

p(Rn) → Hs−r
p (Rn) is unbounded

even if µ = m = ∞ (e.g., |∂|r := W 0
|ξ|r is unbounded even in Lp(Rn);

see [46, Section VI]). Therefore, we suggest the following modification
of symbols:

◦
a (x, ξ) = a(x, (1 + |ξ′|2)1/2|ξ′|−1ξ′, ξn). (2.10)

The modification (2.10) differs slightly from the one introduced by
G.Eskin in [14, p.91] and suits better our purposes 7.

Then, due to Corollary 1.6, for a ∈ HrCµ,m(Rn,Rn), where µ ≥ l+n,
m > n/2, l = max{|s|, |s− r|}, s, r ∈ R, the operator

rΩ
◦
a (x, ∂) : Hs

p(Rn) → Hs−r
p (Rn) (2.11)

is bounded for any compact Ω b Rn and any r < 0.

Corollary 2.4. If a(x, ξ) satisfies the conditions of Theorem 2.1,

then the modified factors
◦
a± (x, ξ) (see(2.3)) belong to the class

Sµ,m−1
r (Ω,Rn−1 × R) defined in (1.26).

Note that the modification (2.10) does not change the principal sym-
bol of a pseudo–differential operator. In fact, we have the following
lemma.

Lemma 2.5. Let Ω b Rn be any compact domain, a ∈ HrCµ,m(Ω,Rn)
and

7The modification
◦
a (x, ξ) = a(x, (1 + |ξ′|)|ξ′|−1ξ′, ξn) introduced in [14, p.91]

has discontinuous derivatives ∂α′
ξ′

◦
a (x, ξ) for |α′| > 1 as a function of ξ′.
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µ ≥ l + n, m > n/2 + 1, l = max{|s|, |s − r + 1|}, s ∈ R,
−n + 1 < r < ∞. Let the symbol satisfy∣∣∣∂α

x ∂β
ξ a(x, ξ)

∣∣∣ ≤ Mα,β|ξ|r−βn−δ|ξ′|δ−|β′| for x ∈ Ω and ξ ∈ Rn

(2.12)

and for any choice of multi–indices |α| ≤ µ and |β| ≤ m − 1. Here
δ = 0 if β′ = 0 and δ = 1 if β′ 6= 0.

If 1 < p < ∞ then the operator

AΩ = rΩa(x, ∂)− rΩ
◦
a (x, ∂) : H̃s

p(Ω) → Hs−r+1
p (Ω)

(2.13)

is bounded, i.e. AΩ has the order r − 1.

Proof. Since, with the mean value theorem,

a(x, ξ)− ◦
a (x, ξ) = a(x, ξ′, ξn)− a(x, ξ′ + ω′, ξn) = −

n−1∑

k=1

∂a(x, ξ′ + θω′, ξn)

∂ξk

ωk,

with a suitable 0 < θ < 1, ω′ = [(1 + |ξ′|2)1/2 − |ξ′|]|ξ′|−1ξ′

and

1

2
(|ξ′|+|ξn|) ≤ |ξ′+θω′|+|ξn| ≤ 2(|ξ′|+|ξn|) for |ω′| ≤ 1 provided |ξ′|+|ξn| ≥ 2

we get with (2.12)
∣∣∣∂α

x ∂β
ξ [a(x, ξ)− ◦

a (x, ξ)]
∣∣∣ ≤ M ′

α,β|ξ|r−βn−1|ξ′|1−|β′| for all x ∈ Ω and ξ ∈ Rn.

Therefore, the operator

rΩa1(x, ∂) : H̃s
p(Ω) → Hs−r+1

p (Ω) (2.14)

is bounded with

a1(x, ξ) = [1− χ0(ξ)][a(x, ξ)− ◦
a (x, ξ)]|ξ|−r+1

where χ0 ∈ C∞
0 (Rn) is a cut–off function with χ0(ξ) = 1 if |ξ| < 1.

Since the function

a2(x, ξ) := χ0(ξ)[a(x, ξ)− ◦
a (x, ξ)]

is compactly supported in ξ, we get

rΩa2(x, ∂)u ∈ C∞(Ω) ⊂ Bs−r+1
p (Ω) for any u ∈ H̃s

p(Ω).

Further, we use the representation

AΩ = rΩa1(x, ∂)χ0|∂|r−1 + rΩa1(x, ∂)(1− χ0)|∂|r−1 + rΩa2(x, ∂),
(2.15)
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where |∂|r = W 0
|ξ|r and |ξ|r−1 ∈ Hr−1C∞(Rn) for r − 1 ≥ 0. For

−n < r − 1 < 0 these operators are the Riesz potentials and can be
written as

|∂|r−1ϕ(x) = cr−1

∫

Rn

ϕ(y) dy

|y − x|n+r−1
with cr−1 =

2r−1Γ(n+r−1
2

)

π
n
2 Γ(n

2
) (2.16)

(see [46, Chapter V]). Due to Corollary 1.6 it suffices to consider only
the second term in (2.15) and assume −n < r − 1 < 0. Then the
operator |∂|r−1 : Hs

p(Rn) → Hs−r+1
p (Rn) is bounded for r − 1 ≥ 0 and

χ0|∂|r−1 : Hs
p(Rn) → Hs−r+1

p (Rn) is bounded for −n < r−1 < 0 (s ∈ R
and 1 < p < ∞).

Without loss of generality we may suppose rΩχ0 = 1. Then due to
(2.16), ψ = (1− χ0)|∂|r−1ϕ ∈ C∞(Rn) and

|∂α
x ψ(x)| ≤ Mα,ϕ(1 + |x|2)−n+r−1+|α|

2 for ϕ ∈ H̃s
p(Ω) .

This is evident for s ≥ 0 since H̃s
p(Ω) ⊂ Lp(Ω), whereas for s < 0 we

can apply the representation ϕ =
∑

|β|<|s|+1 cβ∂β
xϕ0 with ϕ0 ∈

Lp(Ω) (recall that |∂|r−1∂β
x = ∂β

x |∂|r−1). The above estimates im-
ply ψ ∈ ⋂

q> n
n+r−1

Hs
q(Rn) and, therefore, rΩa1(x, ∂)(1 − χ0)|∂|r−1ϕ ∈⋂

q> n
n+r−1

Hν
q (Ω) ⊂ ⋂

1<q<∞Hν
q (Ω) if |ν| ≤ l. Lacksquare

Remark 2.6. If l = max{|s|, |s − r|} and all the conditions of
Lemma 2.5 are fulfilled, then the operator

rΩa(x, ∂) : H̃s
p(Ω) → Hs−r

p (Ω) (2.17)

is bounded.

2.3. SOLVABILITY RESULTS. Let us consider an N ×N system
of pseudo–differential equations on a compact domain Ω b Rn with
smooth boundary ∂Ω:

rΩa(x, ∂)u = v (2.18)

with a symbol a ∈ Hr
T Ck,µ(Ω,Rn), where µ > n

2
+ 2, −n < r < ∞,

−∞ < s < k, 1 < p < ∞ and seek a solution u ∈ H̃s
p(Ω) for any given

v ∈ Hs−r
p (Ω).

The next theorem has been proved by R.Duduchava, D.Natroshvili
and E. Shargorodsky in [11, 12] for the particular case of pseudo–
differential equations arising in elasticity (see Theorems 3.3–3.4 below)
and in [13, Theorem 3.26] for more general symbols but less general
spaces where p = 2.
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Theorem 2.7. Let the symbol a(x, ξ) in (2.18) be elliptic, i.e.

inf{| det a(x, ξ)| : x ∈ Ω, ξ ∈ Sn−1} > 0 , (2.19)

and positive definite on the boundary ∂Ω, satisfying condition (2.2) for
all x ∈ ∂Ω.

Then equation (2.18) is Fredholm if and only if the conditions

1

p
+

r

2
− 1 < s <

1

p
+

r

2
(2.20)

are fulfilled.
If the numerical range of the matrix symbol a(x, ξ), i.e.

Rx(a) := {(a(x, ω)θ, θ) : ω ∈ Rn, θ ∈ CN , |ω| = |θ| = 1} ,

does not contain any half–line {z ∈ C : arg z = αx ∈ [0, 2π)} for all
interior points x ∈ Ω, then the index of equation (2.18) is zero.

If, in addition, the homogeneous equation rΩa(x, ∂)u = 0 has only

the trivial solution u = 0 in one of the spaces H̃s
p(Ω) where s and p

satisfy conditions (2.20), then (2.18) has a unique solution in all these
spaces.

Proof. For the boundedness of the operator in (2.18) see Lemma 2.5
and Remark 2.6.

If the local principle is applied (see, e.g. [9, 13]), we find out that
rΩa(x, ∂) in (2.18) is a Fredholm operator if and only if its local repre-
sentatives

◦
a (x0, ∂) : Hs

p(Rn) → Hs−r
p (Rn) if x0 ∈ Ω, (2.21)

r+
◦
a (x0, ∂) : H̃s

p(Rn
+) → Hs−r

p (Rn
+) if x0 ∈ ∂Ω, (2.22)

◦
a (x0, ξ) : = a(x0, (1 + |ξ′|2) 1

2 |ξ′|−1ξ′, ξn)

are invertible for every x0 ∈ Ω = Ω∪ ∂Ω (see [13]). If x0 ∈ Ω, then the

invertibility of
◦
a (x0, ∂) in (2.21) follows from the ellipticity condition

(2.19). The inverse is then given by
◦
a
−1

(x0, ∂).
If x0 ∈ ∂Ω, then the ellipticity condition (2.19) is only necessary

but not sufficient for r+
◦
a (x0, ∂) in (2.22) to be invertible. The lifted

operator

r+λs−r
− (∂)`r+

◦
a (x0∂)λ−s

+ (∂) (2.23)

= r+(λs−r
−

◦
a λ−s

+ )(x0, ∂) : Lp(R2
+) → Lp(R2

+) (2.24)

should be invertible as well (cf.(1.4), (1.24), (1.25) and [13]). Since

λν+1
− (ξ)

◦
a (x0, ξ)λ

−ν
+ (ξ) =

(ξn − i(1 + |ξ′|2) 1
2

ξn + i(1 + |ξ′|2) 1
2

)s− r
2 ◦

a− (x0, ξ)
◦
a+ (x0, ξ)
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(cf. Theorem 2.1) where a±, a−1
± ∈ H0Ck−1(R2) have all the necessary

analyticity properties, the operator in (2.23) is invertible if and only if
there hold the conditions

1

p
− 1 < s− r

2
<

1

p
(2.25)

(cf. [9, Sect.2]). Note that conditions (2.25) and (2.20) coincide.
The operator rΩa(x, ∂) has one and the same regularizer in all the

spacesHs
p(Ω) → H̃s−r

p (Ω) if (2.25) holds. This implies the independence
of Ker rΩa(x, ∂) of r and p. Hence, if the kernel is trivial for some pair
of parameters (s, p), it will be trivial for any s and p meeting conditions
(2.25).

The index formula Ind rΩa(x, ∂) = 0 follows, since the index as well
as the kernel are independent of s and p and for s = −1/2, p = 2
this is known from [13, Theorem 3.26]. If, in addition, we assume
the property Ker rΩa(x, ∂) = {0}, this yields the unique solvability of
Equation(2.18). Lacksquare

Remark 2.8. Theorem 2.7 holds if we consider the same equation
in the Besov spaces: Let a ∈ Hr

T Ck,µ(Ω,Rn) and v ∈ Bs−r
p,q (Ω) be

given and seek a solution u ∈ B̃s
p,q(Ω) (see(2.18)). Then the condition

(2.20) for the Fredholm property is independent of q.

The proof of sufficiency follows from Theorem 2.7 and from the in-
terpolation property (1.11) − (1.12) since the operator rΩa(x, ∂) :

B̃s
p,q(Ω) → Bs−r

p,q (Ω) and its inverse (rΩa)−1(x, ∂) : Bs−r
p,q (Ω) → B̃s

p,q(Ω)
are bounded for the same values of the parameters s and p as in The-
orem 2.7.

The necessity can be seen as follows: for s outside of the interval
given by inequality (2.21) either the equation (for some small s) or
the adjoint one (for some big s) has an infinite–dimensional kernel. If
s coincides with one of the bounds in (2.20) then the stability of the
Fredholm property yields that rΩ(x, ∂) can not be normally solvable.
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3. CRACK PROBLEMS: SOLVABILITY AND
REGULARITY

3.1. FORMULATION OF PROBLEMS. Now we shall apply the
refined Wiener–Hopf technique to the problem of finding the displace-
ment field u = (u1, u2, u3) in a homogeneous anisotropic elastic medium
occupying a domain Ω ⊂ R3 and containing a crack S ⊂ Ω whose ge-
ometry is given. Let us assume that the crack lies in the interior,
∂Ω∩S = ∅, where S = S∪∂S. Assume that the closure S can be rep-
resented as a k–smooth manifold (k ≥ 3) with a k–smooth boundary
∂S. For the sake of brevity we suppose that Ω = R3. Moreover, S can

be extended to a closed compact k–smooth surface S̃ ⊂ R3 with S ⊂ S̃

and S̃ = ∂Ω̃+ where Ω̃+ is a domain interior to S̃. The equilibrium
equations in the elastic material read (see [15, 27, 29])

∑
j

∂τij

∂xij

+ Xi = 0, i = 1, 2, 3,

where X = (X1, X2, X3) are given body forces and where τ = ‖τij‖3×3

is the stress tensor. In the sequel we assume that X = 0 since otherwise
we can superpose a corresponding particular elastic field.

For small deformations we introduce the strain tensor e = ‖eij‖3×3

and assume Hooke’s law in the form (see [15, 27, 29])

τij =
3∑

m,n=1

cijmnemn

where emn =
1

2

(
∂um

∂xn

+
∂un

∂xm

)
for i, j, m, n = 1, 2, 3.

(3.1)

Here the elastic moduli cijmn are real–valued and satisfy the symmetry
relations

cijmn = cmnij = cjimn. (3.2)

The energy conservation law leads to the following strong ellipticity
condition: there exists a constant c0 > 0 such that

∑
i,j,m,n

cijmnζijζmn ≥ c0

∑
i,j

|ζij|2 for all ζij = ζji ∈ C.
(3.3)
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From (3.3) it follows that the 6× 6 matrix

C = ‖cij‖6×6 :=




c1111 c1122 c1133 c1123 c1131 c1112

• c2222 c2233 c2223 c2231 c2212

• • c3333 c3323 c3331 c3312

• • • c2323 c2331 c2312

• • • • c3131 c3112

• • • • • c1212




,
(3.4)

defined by the 21 elastic moduli (see (3.1), (3.2)) is symmetric

C = ‖cij‖6×6 = ‖cji‖6×6 = C>
and positive definite: there exists a positive c0 such that

ζ>Cζ =
∑
i,j

cijζiζj ≥ c0

2

∑
j

|ζj|2 =
c0

2
|ζ|2 for all ζ ∈ C6.

(3.5)

After inserting the representation of the strain tensor into Hooke’s
law (3.1) and the latter into the equilibrium equations, we get for the
displacement vector u the second order partial differential equation (see
[15] and [29, Section 11])

Lu = 0 with L = D>CD. (3.6)

Here D represents the generalized 6× 3 matrix operator whose trans-
posed 3× 6 matrix operator D> is given by

D> =




∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0


 , where ∂j =

∂

∂xj

.

For the elliptic partial differential equation (3.6) we shall consider two
fundamental boundary value problems: the Dirichlet and the Neumann
problems.

The Dirichlet Problem. For given u± ∈ H1/2
2 (S) with (u+−u−) ∈

H̃1/2
2 (S) find a solution of equation (3.6) in R3 \ S satisfying on S the

boundary conditions

γ±S u = u±. (3.7)

Here γ±S are the trace operators which restrict functions from the
Sobolev space H1

loc(R3
S) with R3

S := R3 \ S to the two different faces
S± of the surface S where S+ represents the face associated with the

compact interior domain Ω̃+. By H1
loc(R3

S) we denote the Sobolev space
of vector–functions ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) on R3

S with

(ϕ, ϕ)
(1)
ΩS

=
( ∫

ΩS

(|ϕ(x)|2 + |∇ϕ(x)|2) dx
)1/2

< ∞ (3.8)
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for any compact region ΩS = Ω \ S b R3. At infinity we require the
solutions u(x) vanish:

u(x) = o(1) for |x| → ∞. (3.9)

H1/2
2 (S) denotes the trace space of H1

loc(R3
S)–functions on S; note that

the traces γ+
S ϕ and γ−S ϕ for ϕ ∈ H1

loc(R3
S)) may be different. As intro-

duced previously, H̃1/2
2 (S) consists of those functions ψ ∈ H1/2

2 (S̃) for
which supp ψ ⊂ S.

The Neumann Problem. For given t± ∈ H−1/2
2 (S) with (t+ −

t−) ∈ H̃−1/2
2 (S) find a solution of equation (3.6) in R3 \S satisfying the

boundary conditions

γ±S T (∂x, n(x))u = t± on S . (3.10)

Here T (∂x, n(x)) denotes the traction operator (see [29, Sect.11]) de-
fined by

T (∂x, n(x))u = N>CDu (3.11)

where N> =




n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0




with nj = nj(x) and n(x) = (n1(x), n2(x), n3(x)) representing the ex-

terior normal vector to S̃.
Since the pointwise traces γ±S T (∂x, n(x))u in (3.10) may not exist for

u ∈ H1
loc(R3

S), we need to introduce this expression via the variational
formulation of the problem.

For any regular vectors u, v ∈ C2(R3
eS)

⋂
C1(Ω̃−)

⋂
C1(Ω̃+) with Ω̃− :=

R3 \ Ω̃+, decaying at infinity as |x|−1, there holds the Green formula
∫

eS

γ±eS T (∂x, n(x))u(x)γ±eS v(x) = ±
∫

eΩ±

Lu(x)v(x)dx±
∫

eΩ±

E(u, v)dx

with E(u, v) :=
∑

k,j,p,q

ckjpq∂juk∂qvp (3.12)

(see [29]). If u ∈ H1
loc(R3

eS), Lu ∈ L2,loc(R3
eS) then the right hand

side in (3.12) is correctly defined for any v ∈ H1
comp(R3

eS). The bilin-

ear form (γ±eS T (∂, n))u, γ±eS v)eS defines then by duality the distribution

γ±eS T (∂, n)u ∈ H−1/2
2 (S̃) (see [49]). Hence, (3.10) is understood in the

distributional sense.
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To formulate the boundary integral equations we need the double
and the single layer potentials

USψ(z) =

∫

S

[T (∂y, n(y))G(z − y)
]>

ψ(y) dyS,

VSψ(z) = −
∫

S

G(z − y)ψ(y) dyS for z ∈ R3
S,

(3.13)

respectively, where

G(x) = F−1L−1(x) for x ∈ R3 (3.14)

represents the fundamental solution of equation (3.6) given by the in-
verse Fourier transform of the inverse symbol L−1(ξ) of the elliptic
differential operator L in (3.6).

If D(ξ) denotes the symbol of the operator D, given by

D>(ξ) = −i




ξ1 0 0 0 ξ3 ξ2

0 ξ2 0 ξ3 0 ξ1

0 0 ξ3 ξ2 ξ1 0


 for ξ = (ξ1, ξ2, ξ3) ∈ R3,

(3.15)

then the symbol of L is given by

L(ξ) = D>(ξ)CD(ξ). (3.16)

Obviously, D(ξ) is homogeneous, i.e. D(λξ) = λD(ξ) and one easily
shows that rankD(ξ) = 3 for |ξ| 6= 0. Hence, there exists c1 > 0 such
that

|D(ξ)ζ| ≥ c1|ξ‖η|
and Condition (3.5) ensures the negative definiteness of the 3×3 matrix
symbol L(ξ) in (3.16):

− (L(ξ)ζ, ζ) = −(CD(ξ)ζ,D(ξ)ζ) ≥ c0

2
|D(ξ)ζ|2 ≥ d0|ξ|2|ζ|2 (3.17)

with some constant d0 > 0 and for all ξ ∈ R3, ζ ∈ C3 .

The same notations US and VS will be used for the direct values
of the integral operators (3.13) when z ∈ S; in this case the integral
defining US is understood in the sense of a Cauchy v.p.. US and VS

represent pseudo–differential operators of orders 0 and −1, respectively.
To reduce the boundary value problems to the solution of some

boundary integral equations, we need the following two pseudo–differential
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operators

U0
Sψ(x) =

∫

S

T (∂x, n(x))G(x− y)ψ(y) dyS,

DSψ(x) = T (∂x, n(x))

∫

S

[T (∂y, n(y))G(x− y)
]>

ψ(y) dyS,(3.18)

which have the orders 0 and +1, respectively. Again, the integrals are
understood in the sense of a Cauchy v.p..

The next two theorems are well-known (see [7, 11]) and describe the
explicit boundary integral equations equivalent to the Dirichlet and
the Neumann crack problems (3.6), (3.7), (3.9) and (3.6), (3.9),(3.10),
respectively.

Theorem 3.1. Let u± ∈ H1/2
2 (S) with u0 := (u+ − u−) ∈ H̃1/2

2 (S)
( see (3.7)). Then u ∈ H1

loc(R3
S) is the solution of the Dirichlet crack

problem (3.6), (3.7), (3.9) if and only if

u(z) = −VSϕ(z) + USu0(z) for z ∈ R3
S, (3.19)

where ϕ ∈ H̃−1/2
2 (S) solves the pseudo–differential equation on S

VSϕ = g (3.20)

with the right–hand side given by g = −1
2
(u+ + u−) + U0

Su0.

Theorem 3.2. Let t± ∈ H−1/2
2 (S) with t0 := (t+−t−) ∈ H̃−1/2

2 (S) (see
(3.10)). Then u ∈ H2

loc(R3
S) is the variational solution of the Neumann

crack problem (3.6), (3.9), (3.10) if and only if

u(z) = −VSt0(z) + USψ(z) for z ∈ R3
S , (3.21)

where ψ ∈ H̃1/2
2 (S) solves the pseudo–differential (hypersingular) equa-

tion on S

DSψ = f (3.22)

with the right hand side given by f = 1
2
(t+ + t−) + U0

St0.

3.2. THE DIRICHLET PROBLEM.

Theorem 3.3 (see [11, 12]). The single layer potential operator in
(3.13)

VS : H̃ν
p(S) → Hν+1

p (S) (3.23)

is bounded for any 1 < p < ∞ and −k + 1 ≤ ν ≤ k + 1.
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If k ≥ 4, then (3.23) is a Fredholm operator if and only if the condi-
tions

1

p
− 3

2
< ν <

1

p
− 1

2
(3.24)

hold, in which case (3.20) has a unique solution ϕ ∈ H̃ν
p(S) for any

given
g ∈ Hν+1

p (S).
Similarly, in the Besov spaces with 1 ≤ q ≤ ∞ the operator

VS : B̃ν
p,q(S) → Bν+1

p,q (S) (3.25)

is bounded. Under conditions (3.24), Equation (3.20) has a unique

solution ϕ ∈ B̃ν
p,q(S) for any given g ∈ Bν+1

p,q (S).
Let u± ∈ ⋂

1<p<∞H
1/2
p (S) with (u+−u−) ∈ ⋂

1<p<∞ H̃
1/2
p (S). Then

the displacement vector u(x) in (3.19), which solves the Dirichlet crack
problem, is a real analytic function in R3

S vanishing at infinity. The
traces γ±S u = u± on both faces of the crack surface S belong to every
Hölder space Cα(S) for 0 < α < 1

2
and coincide on ∂S : u−(x) = u+(x)

for x ∈ ∂S.

Proof. Let

S =
N⋃

j=1

Yj, κj : Xj → Yj, Xj ⊂ R2
+ := R× R+, j = 1, . . . , N

(3.26)

be some k–smooth atlas of the surface S ⊂ R3 and let

κ̃j : X̃j → Ỹj, X̃j, Ỹj ⊂ R3, Ỹj ∩ S = Yj,

X̃j = (−ε, ε)×Xj, κ̃j

∣∣
Xj

= κj, j = 1, . . . , N, (3.27)

be extensions of the diffeomorphisms in (3.26). By dκj(t) = κ′j(t)
and dκ̃j(t̃) = κ̃′j(t̃) for t ∈ R2

+ and t̃ ∈ R3
+, respectively, we denote

the corresponding Jacobian matrices of orders 3 × 2 and 3 × 3. κ′(t)
coincides with κ̃′(0, t) for t ∈ Xj ⊂ R2

+ if we delete the third column.
Let further

Γκj
(t) =

(
det ‖(gradκjk, gradκjl)‖3×3

)1/2

denote the Gram determinant of the vector–functions gradκjk (j, k =
1, 2, 3).
Without restricting generality we can choose the coordinates appropri-
ately and suppose that κ̃′j(t̃) is an orthogonal matrix, i.e. [κ̃′j(t̃)]> =

[κ̃′j(t̃)]−1.
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If the operator VS in (3.23) is lifted locally from the manifold S to the
half–space R2

+, we get for t ∈ R2
+ the following transformed operator

VS,κj
u(t) = κj∗VSκ−1

j∗ u(t)

= −χj(t)

∫

R2
+

G(κj(t)− κj(τ))χj(τ)Γκj
(τ)u(τ)dτ,

(3.28)

where κj∗ψ(t) := χj(t)ψ(κj(t)) and κ−1
j∗ ϕ(t) := χ∗j(t)ϕ(κ−1

j (t)) with
suitable smooth and compactly supported cut–off functions χj and χ∗j .

As is shown in [1, 11], the principal part of the pseudo–differential
operator in (3.28) is given by

VP
S,κj

u(t) := −
∫

R2
+

G(κ′j(t)(t− τ))Γκj
(t)χj(τ)v(τ)dτ

(3.29)

for ν ∈ R and 8 k ≥ [|ν|]− + 3. The remainder

Kjv(t) := −χj(t)

∫

R2
+

[G(κj(t)−κj(τ))Γκj
(τ)−G(κ′j(t)(t−τ))Γκj

(t)
]
χj(τ)v(τ)dτ

has the order −2, i.e. the operator

Kj : H̃ν
p(R2

+) → Hν+2
p (R2

+) (3.30)

is bounded. Because of (3.30) and the compactness of supp χj (recall

that χj ∈ C∞
0 (R2

+)), the operator

Kj : H̃ν
p(R2

+) → Hν+1
p (R2

+)

is compact (see [49]). Therefore, the symbol of VP
S,κj

, which is the

principal symbol of the operator VS,κj
, reads as (cf. (3.14), (3.26),

8[s]− denotes the integer with [s]− < s ≤ [s]− + 1.
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(3.27))

VS(x, ξ) = −Γκj
(x)

∫

R2

eiξtG(κ′j(x)t) dt

= −Γκj
(x)

(2π)3

∫

R2

eiξt

∫

R3

e−i[eκ′j(x)(0,t)]eyL−1(ỹ) dỹ dt (3.31)

=
−Γκj

(x)

(2π)3 det κ̃′j(x)

∫

R2

eiξt

∫

R2

e−ity

∞∫

−∞

L−1
(
κ̃′j(x)ỹ

)
dy0 dy dt

=
−Γκj

(x)

2π det κ̃′j(x)

∞∫

−∞

L−1
(
κ̃′j(x)(ξ0, ξ)

)
dξ0 for ξ ∈ R2, ỹ = (y0, y) ∈ R3.

Since L(ξ̃) = L(ξ0, ξ) is negative definite (see (3.17)), the same holds
for the inverse

−(L−1(ξ̃)η, η) = −(η′,L(ξ̃)η′) ≥ M0|η′|2|ξ̃|2 = M0|L−1(|ξ̃|−1ξ̃)| |η|2|ξ̃|−2 ≥ M1|η|2|ξ̃|−2 ,

too, where η′ = L−1(ξ̃)η and η ∈ C3. Then, with (3.31), we find

(VS(x, ξ)η, η) ≥ M1|η|2
2π

∞∫

−∞

|(κ̃′j(x))−1(ξ0, ξ)|−2dξ0

≥ M2|η|2
∞∫

−∞

dξ0

ξ2
0 + |ξ|2 = M |η|2|ξ|−1 (3.32)

for all η ∈ C3 and ξ ∈ R2.

From (3.31) and the corresponding homogeneity properties of L(ξ̃)
we get the homogeneity of the symbol and its derivatives,

∂α
x ∂m

ξ1
VS(x, λξ) = |λ|−1λ−m∂α

x ∂m
ξ1

VS(x, ξ) for |α| ≤ k − 1,m ∈ N0, ξ ∈ R2, λ ∈ R .
(3.33)

If the local principle is applied (see e.g. [9, 13]), we find that VS in
(3.23) is a Fredholm operator if and only if its local representatives

◦
aS (x0, ∂) : Hν

p(R2) → Hν+1
p (R2) for x0 ∈ S,

(3.34)

r+
◦
aS (x0, ∂) : H̃ν

p(R2
+) → Hν+1

p (R2
+) for x0 ∈ ∂S

(3.35)
34



with the modified symbol

◦
aS (x0, ξ) : = Γκj

(x0)
◦
V S (x0, ξ)

= Γκj
(x0)VS(x0, (1 + ξ2

1)
1
2 sgn ξ1, ξ2) , (3.36)

(cf. (2.10),(3.31)) are invertible for all x0 ∈ S = S ∪ ∂S (see [13]).
Since KerVS = {0} for ν = −1/2 and p = 2 (see [3, 7, 25]), the solv-

ability result follows with the help of (3.32) and (3.33) as in Theorem
2.7.

The proposed regularity of the displacement field follows from the
proved part of the theorem and from the representation (3.19) due to
the embedding property

H∼p (S) ⊂ B∼p,p(S) ⊂ Cν(S) for ν +
2
p

< ∼ (3.37)

(see [49]) if p < ∞ is sufficiently large. Lacksquare

3.3. THE NEUMANN PROBLEM. For the Neumann crack prob-
lem we need the properties of DS defined in (3.18)(see also [2]).

Theorem 3.4 (see [11, 12]). The operator

DS : H̃ν+1
p (S) → Hν

p (S) (3.38)

is bounded for any 1 < p < ∞ and −k + 1 ≤ ν ≤ k − 1.
If k ≥ 4, then DS in (3.38) is a Fredholm operator if and only if the

conditions (3.24) hold, in which case (3.22) has a unique solution ψ ∈
H̃ν+1

p (S) for any given
f ∈ Hν

p (S).
If 1 ≤ q ≤ ∞, also the operator

DS : B̃ν+1
p,q (S) → Bν

p,q(S) (3.39)

is bounded. If the conditions (3.24) hold, then (3.22) has a unique solu-
tion
ϕ ∈ B̃ν+1

p,q (S) for any given g ∈ Bν
p,q(S).

Let t± ∈ ⋂
1<p<∞H

−1/2
p (S) 9. Then the displacement vector u(x)

in (3.21) which solves the Neumann crack problem is a real analytic
function in R3

S = R3 \S vanishing at infinity. The traces γ±S u = u± on
both faces of the crack surface S belong to every Hölder space Cα(S)
with 0 < α < 1/2 and coincide on ∂S : u−(x) = u+(x) for x ∈ ∂S.

9The inclusion (t+ − t−) ∈ ⋂
1<p<∞ H̃

−1/2
p (S) follows since H−1/2

p (S) and

H̃−1/2
p (S) can be identified for 2 < p < ∞.
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Proof. Let us consider equation (3.22). After the localization and
local transformation of variables (similar to (3.26)–(3.35)) we get the
operator representations

Dx0v := χjκj∗DSκ−1
j∗ χjv = Tκj

VS(x0, ∂)T >
κj

v + K0v,

Dx0 : Hν+1
p (R2) → Hν

p(R2),

Kx0 : Hν+1
p (R2) → Hν+1

p (R2) for x0 ∈ S,(3.40)

D+
x0

v := χjκj∗DSκ−1
j∗ χjv = Tκj

VS(x0, ∂)T >
κj

v + K+
0 v,

D+
x0

: H̃ν+1
p (R2

+) → Hν
p(R2

+),

K+
x0

: H̃ν+1
p (R2

+) → Hν+1
p (R2

+) for x0 ∈ ∂S,
(3.41)

where VS(x0, ξ) is defined in (3.31) and is positive definite (see (3.32)).
Due to

κj∗(t) grady κ−1
j∗ (t)

∣∣
t=x0

=
∂κ−1

j (y)

∂ym

∣∣∣
y=κj(x0)

gradt = κ′j(x0) gradt

we get

Tκj
= N>CD(κ′j(x0) gradt) with gradt = (∂t1 , ∂t2)

>,

where D(·) is defined as the pseudo–differential operator via the symbol
(3.15).

Thus the principal symbol of the operator DS reads as

DS(x0, ξ) = −T (x0, ξ)VS(x0, ξ)T >(x0, ξ),

T (x0, ξ) = N>CD(κ′j(x0)ξ) for x0 ∈ S and ξ ∈ R2.(3.42)

Further localization with the help of Lemma 2.5 gives: DS in (3.38) is
invertible if and only if the pseudo–differential operators

◦
bS (x0, ∂) : Hν+1

p (R2) → Hν
p(R2), for x0 ∈ S,

rΩ

◦
bS (x0, ∂) : H̃ν+1

p (R2
+) → Hν

p(R2
+) for x0 ∈ ∂S,

defined by the symbol

◦
bS (x0, ξ) :=

◦
T (x0, ξ)

◦
aS (x0, ξ)

◦
T >(x0, ξ),

are invertible. Here
◦
aS (x, ξ) is defined by (3.31) and (3.36).

The symbol DS(x, ξ) inherits the positive definiteness from VS(x, ξ)
in (3.32), i.e.

(DS(x, ξ)η, η) ≥ M |ξ| |η|2 for ξ ∈ R2, η ∈ C3 with M > 0.
(3.43)
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DS(x, ξ) is homogeneous of order one:

∂m
ξ1

∂α
x DS(x, λξ) = |λ|λ−m∂m

ξ1
∂α

x DS(x0, ξ) for |α| ≤ k − 1,m ∈ N0, ξ ∈ R2, λ ∈ R .
(3.44)

Since KerDS = {0} for ν = −1/2 and p = 2 (see [3, 7, 25]), the
solvability result follows with the help of (3.43), (3.44) as in Theorem
2.7.

The further proof is similar to that in Theorem 3.3 and we omit the
details. Lacksquare
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4. CRACK PROBLEMS: ASYMPTOTICS OF SOLUTIONS

4.1. FORMULATION OF THEOREMS. Let S ⊂ R3 be k–smooth
with k ≥ 4 and Y∂S be a neighbourhood of the boundary ∂S ⊂ Y∂S ⊂ S
such that any y ∈ Y∂S has only one nearest point y∂S on ∂S. In Y∂S

we introduce the following local coordinates: ρ = ρ∂S(y) = ρ(y, y∂S) is
the Euclidean distance to ∂S and s = s(y) = s(y∂S) is the arc length
on ∂S. We can suppose that the coordinate diffeomorphisms in (3.26)
are given locally by (x1, x2) = (s(y), ρ(y)), where (x1, x2) ∈ Xj ⊂ R2.

Theorem 4.1. Let u± ∈ H1+1/p+σ
p (S) be given and (u+ − u−) ∈

H̃1+1/p+σ
p (S), −1/2 < σ < 1/2, 1 < p < ∞.
Then the solution of integral equation (3.20) has the form

ϕ(s, ρ) = ρ−1/2χ(ρ)ϕ0(s) + ϕ1(s, ρ), for (s, ρ) ∈ Y∂S,
(4.1)

where ϕ0 ∈ H1/2+σ
p (∂S), ϕ1 ∈ H̃1/p+σ

p (S), χ ∈ C∞
0 (R+) and χ(ρ) = 1 if

0 ≤ ρ ≤ ε with a suitable ε > 0.
Furthermore, we have the following a–priori estimates,

M−1
(‖ϕ0|H1/2+σ

p (∂S)‖+ ‖ϕ1|H̃1/p+σ
p (S)‖) ≤ ‖g|H1+1/p+σ

p (S)‖
≤ M

(‖(u+ + u−)|H1+1/p+σ
p (S)‖+ ‖(u+ −u−)|H̃1+1/p+σ

p (S)‖)
(4.2)

where g is given in (3.20) and M > 0 is some constant.

If, in particular, u± ∈ H1+σ
∞ (S) and (u+ − u−) ∈ H̃1+σ

∞ (S) with
−1/2 < σ < 1/2, then ϕ0 ∈ C1/2+σ′(∂S) with −1/2 < σ′ < σ and
ϕ1 ∈ Cσ′(S) with 0 < σ′ < σ.

The theorem remains valid if the Bessel potential spaces Hs
p are re-

placed by the corresponding Besov spaces Bs
p,q with 1 ≤ q ≤ ∞.

Theorem 4.2. Let t± ∈ H1/p+σ
p (S) be given and (t+−t−) ∈ H̃1/p+σ

p (S),
−1/2 < σ < 1/2, 1 < p < ∞.

Then the solution of integral equation (3.22) has the form

ψ(s, ρ) = ρ1/2χ(ρ)ψ0(s) + ψ1(s, ρ), for (s, ρ) ∈ Y∂S,
(4.3)

where ψ0 ∈ H3/2+σ
p (∂S), ψ1 ∈ H̃1+1/p+σ

p (S) , χ ∈ C∞
0 (R+) and χ(ρ) = 1

if
0 ≤ ρ ≤ ε with a suitable ε > 0.
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Furthermore, we have the following a–priori estimates

M−1
(‖ψ0|H3/2+σ

p (∂S)‖+ ‖ψ1|H̃1+1/p+σ
p (S)‖) ≤ ‖f |H1/p+σ

p (S)‖ ≤
≤ M

(‖(t+ + t−)|H1/p+σ
p (S)‖+ ‖(≈+ −≈−)|H̃1/p+σ

p (S)‖)
(4.4)

where f is given in (3.22) and M > 0 is some constant.

If, in particular, t± ∈ Hσ
∞(S) and (t+ − t−) ∈ H̃σ

∞(S) with −1/2 <
σ < 1/2, then ψ0 ∈ C3/2+σ′(∂S) and ψ1 ∈ C1+σ′(S) for any −1/2 <
σ′ < σ.

The theorem remains valid if the Bessel potential spaces Hs
p are re-

placed by the corresponding Besov spaces Bs
p,q with 1 ≤ q ≤ ∞.

The full asymptotics can be obtained for the following modified
pseudo–differential equation on the half–space:

◦
a (∂)u = v on Rn

+ ,

v ∈ Hs−r
p (Rn

+), m >
n

2
+ 1, r, s ∈ R, 1 < p < ∞, (4.5)

where the symbol a ∈ Hr
T C∞(Rn) is positive definite (cf. (2.2)) and

modified according to (2.10).
Let

H∞
p (Rn

+) :=
⋂
m≥0

Hm
p (Rn

+) and H∞
∞(Rn

+) :=
⋂

1<p<∞
H∞

p (Rn
+).

(4.6)

Then (see (1.34), (1.35))

H∞
p (Rn

+) =
⋂
s≥0

Bs
p,q(Rn

+) ⊂ {
ϕ ∈ C∞(Rn

+) : ϕ(∞) = 0
}

(4.7)

and ϕ ∈ H∞
p (Rn

+) implies a(∂)ϕ ∈ H∞
p (Rn

+) for every multiplier a ∈
M

(ν)
p (Rn) with any ν ∈ R if the symbol a(ξ′, ξn + iλ) has an analytic

extension in S′(Rn−1 × C−). This implication follows from (1.25) and
from the footnote remark on page 14.

We need also two classes of symbol–functions (see (1.26))

Sm
r (Rn−1 × R) :=

{
a ∈ S∞,∞

r (Rn,Rn−1 × R) : a(x, ξ) ≡ a(ξ)
}

,

Sm
r (Rn−1) :=

{
a ∈ S∞,∞

r (Rn,Rn−1 × R) : a(x, ξ′, ξn) ≡ a(ξ′)
}

.(4.8)

The class S∞r (Rn−1) coincides with Hörmander’s class Sr
1,0(Rn−1).

Theorem 4.3. Equation (4.5) has a unique solution u ∈ H̃s
p(Rn

+)
for any given v ∈ Hs−r

p (Rn
+) if and only if the conditions in (2.20) hold.
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If this is the case and v ∈ H∞
∞(Rn

+), then the solution of Equation (4.5)
has the form

u(x) = θ+(xn)e−xn

m∑

k=0

xk+r/2
n uk(x

′) + xm+r/2
n u0

m+1(x),
(4.9)

with uk ∈ H∞
∞(Rn−1) and |∂α

x u0
m+1(x)| ≤ Cαxν−αn

n

for any α ∈ Nn
0 , m ∈ N0, 0 < ν < 1 and some constant Cα > 0.

For the scalar symbol case, an expansion similar to (4.9) was obtained
in [14, Section 7] even for the general case when the symbol a(ξ) has
not the continuity property (2.1).

4.2. PROOF OF THEOREM 4.1. We shall apply the Wiener–
Hopf method developed in the first two sections. The method was
suggested by G.Eskin in [14] for the scalar case and applied in [7] to
the crack problems in an isotropic medium.

Since g ∈ B1+1/p+σ
p (S) ⊂ H1/p+σ

p (S), due to Theorem 3.3, Equation

(3.20) has a unique solution ϕ ∈ H̃1/p−1+σ
p (S) . Let κj, χj be the same

as in subsection 3.2 and let χ0
j ∈ C∞

0 (R2
+) be such that χ0

jχj = χ0
j ; this

is possible since χj(x) = 1 in some neighbourhood of X0
j ⊂ Xj ⊂ R2

+

and χ0
j(x) = 1 if x ∈ X0

j .
After a local lifting of equation (3.20) from the neighbourhood of the

boundary of the manifold S to R2
+ we get

χ0
jr+Vj(x, ∂)ϕ̃j + χ0

jKjϕ̃j + T1ϕ = χ0
j g̃j = g̃j, (4.10)

Vj(x, ξ) = χj(x)VS(κj(x), ξ)

ϕ̃j(x) = χj(x)κj∗ϕ(x) = χj(x)ϕ(κj(x)), ϕ̃j ∈ H̃1/p−1+σ
p (R2

+),

g̃j(x) = χj(x)κj∗g(x) = χj(x)g(κj(x)), g̃j ∈ H1+1/p+σ
p (R2

+),

T 1ϕ = κj∗χ̃0
jVS(1− χ̃j)ϕ ∈ Ck

0 (R2
+), χ̃0

j = κ−1
j∗ χ0

j , χ̃j = κ−1
j∗ χj

since supp χ̃0
j ∩ supp(1− χ̃j) = ∅. The operator Kj is defined in (3.30)

and has the order −2.

Consider the modified symbol
◦
V j (x, ξ) = Vj(x, (1 + ξ2

1)
1/2 sgn ξ1, ξ2)

(cf. (2.10)). Then equation (4.10) can be rewritten in the form

χ0
jr+

◦
Vj (x, ∂)ϕ̃j = g1

j ,

g1
j = g̃j − χ0

jB
(−2)
0 ϕ̃j − T 1ϕ, g1

j ∈ H1+1/p+σ
p (R2

+), (4.11)

since B
(−2)
0 = Kj + r+[Vj(x, ∂)− ◦

Vj (x, ∂)] has the order −2 (see
Lemma 2.5).
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Due to Theorem 2.1 and Lemma 2.3 the symbol
◦
V j (x, ξ) admits the

factorization

◦
V j (x, ξ) = χj(x)

◦
V S (κj(x), ξ) =

◦
a
−1

− (x, ξ)
◦
a
−1

+ (x, ξ),
(4.12)

where a±1
− , a±1

+ ∈ H±1/2Ck−1,∞(R2
+,R2).

Due to (1.24) and (1.25) the operators

◦
a
±1

+ (x, ∂) : H̃1/p−1/2+σ
p (R2

+) → H̃1/p−1/2∓1/2+σ
p (R2

+),

r+
◦
a
±1

− (x, ∂)` : H1/p+σ
p (R2

+) → H1/p∓1/2+σ(R2
+) (4.13)

are bounded. Since 1/p − 1 < 1/p − 1/2 + σ < 1/p, the spaces

H̃1/p−1/2+σ
p (R2

+) and H1/p−1/2+σ
p (R2

+) can be identified (see [49]). Thus,
the operator

B = r+
◦
a+ (x, ∂)r+

◦
a− (x, ∂)` : H1/p+σ

p (R2
+) → H̃1/p−1+σ

p (R2
+)

is bounded. If B is applied to (4.11), we get with (1.24), (1.25),
(1.28), (4.12) and (4.13) the local representation of the solution near
the boundary,

ϕ̃j =r+
◦
a+ (x, ∂)r+

◦
a− (x, ∂)g1

j + ϕ1
j ,

ϕ1
j =r+

◦
a
−1

+ (x, ∂)
[
r+

◦
a
−1

− (x, ∂)r+
◦
a− (x, ∂)− I

] ◦
a+ (x, ∂)ϕ̃j

+
[
I − r+

◦
a
−1

+ (x, ∂)r+
◦
a+ (x, ∂))

]
ϕ̃j

(4.14)

with ϕ1
j ∈ H̃1/p+σ

p (R2
+), since the operators in square brackets are of

order 0.
Let us recall from [14] that

F`0r+F−1v(ξ) = Π+
2 v(ξ) :=

1

2
v(ξ) +

1

2πi

∞∫

−∞

v(ξ1, τ)

τ − ξ2

dτ,

where `0 is the extension by 0 since `0r+w(x) = 1
2
(1 + sgn x2)w(x1, x2)

provided w ∈ Lp(R2); the integral is understood in the sense of a
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Cauchy v.p.. Therefore

([
λ̃±(∂)`0r+ − `0r+λ̃±(∂)

]
v, w

)
=

∫

R2

F−1(λ̃±Π+
2 − Π+

2 λ̃±)Fv(x)w(x) dx

=
i

(2π)2

∞∫

−∞

∞∫

−∞

Fξ2→y2v(x1, y2) dy2

∞∫

−∞

Fx2→ξ2w(x1, ξ2) dξ2 dx1

(4.15)

= i

∞∫

−∞

v(x1, 0)w(x1, 0) dx1 = i(γ0v, γ0w),

where γ0 := γR, λ̃±(ξ) = ξ2 ± i(|ξ1|+ 1), ξ = (ξ1, ξ2) ∈ R2 ,

for any pair of test functions v, w ∈ S(R2).
The trace operator

γ0 = γR : Hs
p(R2

+) → Bs−1/p
p,p (R) for s >

1

p
(4.16)

is bounded (see [49]); thus, (4.15) can be rewritten in the form

λ±(∂)`0r+v = `0r+λ±(∂)v + iγ0v ⊗ δR (4.17)

for v ∈ Hs
p(R2

+) with s > 1/p. If (cf. (1.4))

b±(x, ξ) := λ
−1/2
± (ξ)

◦
a
−1

± (x, ξ), (4.18)

then b± ∈ Sk−1,∞
0 (R2

+,R×R) and due to Lemma 2.3 we get the repre-
sentation

b+(x, ξ) = b0(x) + b1(x) sgn ξ1 + λ0(ξ1)λ
−1
+ (ξ)b2(x, ξ)

(4.19)

where b0, b1 ∈ Ck−1(R2
+) and b2 ∈ Sk−1,∞

0 (R2
+,R× R).

Applying (4.11)–(4.12) and (4.17), we proceed in (4.14) by using
(1.33) and obtain

ϕ̃j = iχ0
j

[
λ

1/2
+ (∂)b+(x, ∂)`0r+λ

1/2
− (∂)b−(x, ∂)g1

j + ϕ1
j + ϕ2

j

]

= iχ0
j

[
ex2b+(x, ∂)λ̃

−1/2
+ (∂)λ̃+(∂)`0r+ϕ0

j + ϕ1
j + ϕ2

j + ϕ3
j

]

= iχ0
j

[
ex2P

−1/2
+ γ0b0(x, ∂1)ϕ

0
j + ϕ1

j + ϕ2
j + ϕ3

j + ϕ4
j + ϕ5

j

]
.
(4.20)
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Here

ϕ0
j = e−x2(λ

1/2
−

◦
b−)(x, ∂)g1

j ,

ϕ2
j = iχje

x2λ̃
1/2
+ (∂)

[
λ̃
−1/2
+ (∂)λ

1/2
+ (∂)− I

]
b+(x, ∂1)`0r+ϕ0

j ,

ϕ3
j = χje

x2
[
λ̃

1/2
+ (∂), b+(x, ∂)

]
`0r+ϕ0

j ,

ϕ4
j = iχje

x2b1(x, ∂)P
−3/2
+ (I + ∂2

1)
1/2γ0ϕ

0
j),

ϕ5
j = χje

x2b+(x, ∂)λ̃
−1/2
+ (∂)(`0r+λ̃+(∂)ϕ0

j)

(4.21)

and ϕ0
j ∈ H1/p+1/2+σ

p (R2
+), ϕ1

j , ϕ
2
j , ϕ

3
j , ϕ

4
j , ϕ

5
j ∈ H̃1/p+σ

p (R2
+). The latter

follows since `0r+(λ
1/2
− b−)(x, ∂)g1

j ∈ H1/p+σ+1/2
p (R2

+)⊂ H1/p+σ−1/2
p (R2

+) =

H̃1/p+σ−1/2
p (R2

+) and since the pseudo–differential operators in square
brackets in ϕ2

j and in ϕ3
j have the orders −1 and −1/2, respectively

(see Lemma 1.8). For the inclusion ϕ2
j ∈ H̃1/p+σ

p (R2
+) we apply also

(1.24).

For ϕ4
j we have with (4.16) (I + ∂2

1)
1/2γ0ϕ

0
j ∈ Bσ−1/2

p,p (R), and ϕ4
j ∈

H̃1/p+σ
p (R2

+) because of Lemma 1.10. Since `0r+

◦
λ+ (x, ∂)ϕ0

j ∈ H1/p+σ−1/2
p (R2

+) =

H̃1/p+σ−1/2
p (R2

+), we get ϕ5
j ∈ H̃1/p+σ

p (R2
+) because of (1.24).

Now we apply Lemma 1.12 to the first term in (4.20) with r = 1/2
and obtain

iχ0
j(x)ex2P

−1/2
+ γ0ϕ

0
j(x) = θ+χ0

j(x)ic′1/2x
−1/2
2 γ0ϕ

0
j + ϕ6

j ,

where γ0ϕ
0
j ∈ H1/2+σ

p (R) and ϕ6
j ∈ H̃1/p+σ

p (R2
+). (4.22)

If
∑N

j=1 χ0
j(x) ≡ χ(x2), then (4.20)–(4.22) yield (4.1).

The right–hand side in (4.2) states that the operator VS in (3.23) is
invertible and the operator U0

S in (3.18) is bounded; i.e.

‖ϕ|H̃1/p−1+σ
p (S)‖ ≤ M1‖g|H1/p+σ

p (S)‖ ≤M1‖ð|H1+1/p+σ
p (S)‖

≤ M2

(
‖(u+ + u−)|H1+1/p+σ

p (S)‖+ ‖(u+ −u−)|H̃1+1/p+σ
p (S)‖

)
.

Since all functions g1
j , ϕ0

j , . . . , ϕ
6
j in (4.11)–(4.22) can be estimated by

norms of ϕ and g, we get the left–hand side of (4.2).
The inclusions ϕ0 ∈ C1/2+σ′(∂S), ϕ1 ∈ Cσ′(S) are due to the

embeddings B1/2+σ
p,p (∂S) ↪→ C1/2+σ′−1/p(∂S), H̃1/p+σ

p (S) ↪→ C
σ′−1/p
p (S)

for any σ′ < σ if p is sufficiently large.
The claim about the Besov spaces follows in the same way as in the

above proof with the Bessel potential spaces, similar to the proof of
Theorem 3.3. Lacksquare
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4.3. PROOF OF THEOREM 4.2. Here we follow the same steps
as in the previous proof.

Since f ∈ H1/p+σ
p (S) ⊂ H1/p−1+σ

p (S), due to Theorem 3.4 equation

(3.22) has an unique solution ψ ∈ H̃1/p+σ
p′ (S). After local lifting we get,

similar to (4.10), that

χ0
jr+

◦
Dj (x, ∂)ψ̃j = f 1

j where f 1
j ∈ H1/p+σ

p (R2
+).

(4.23)

The next step is the factorization which is possible due to (3.43), (3.44)
and follows from Theorem 2.1 and Lemma 2.3:

◦
Dj (x, ξ) = χ0

j(x)
◦
D− (κj(x), ξ)

◦
D+ (κj(x), ξ),

e±(x, ξ) := λ
− 1

2± (ξ)
◦
D
−1

± (κj(x), ξ) , where e+ can be written as

e+(x, ξ) = e0(x, ξ1) +
( (1 + ξ2

1)
1/2

ξ2 + i(1 + ξ2
1)

1/2

)
e1(x, ξ),

with e0(x, ξ1) = e0
0(x) + e1

0 sgn ξ1, e±, e1 ∈ Sk−1,∞
0 (R2

+,R× R), e0
0, e

1
0 ∈ Ck−1(R2

+)

(cf. (4.12) and (4.18)). Similar to (4.21) we get

ψ̃j = iχ0
j

[
ex2P

−3/2
+ γ0e0(x, ∂1)ψ

0
j + ψ1

j + ψ2
j + ψ3

j + ψ4
j + ψ5

j

]
,
(4.24)

where

ψ0
j = e−x2(λ

−1/2
− e−)(x, ∂)f 1

j ,

ψ2
j = iχje

x2λ̃
−1/2
+ (∂)

[
λ̃

1/2
+ (∂)λ

−1/2
+ (∂)− I

]
e+(x, ∂1)`0r+ψ0

j ,

ψ3
j = χje

x2
[
e−x2λ̃

−1/2
+ (∂), e+(x, ∂)

]
`0r+ψ0

j ,

ψ4
j = iχje

x2e1(x, ∂)P
−5/2
+ (I + ∂2

1)
−1/2γ0ψ

0
j ),

ψ5
j = χje

x2e+(x, ∂)λ̃
−3/2
+ (x, ∂)(`0r+λ+(x, ∂)ψ0

j )

and ψ0
j ∈ H1/p+1/2+σ

p (R2
+), γ0ψ

0
j ∈ B1/2+σ

p,p (R2
+), ψ1

j , ψ
2
j , ψ

3
j , ψ

4
j , ψ

5
j ∈

H̃1/p+1+σ
p (R2

+).
To get the representation (4.3) we apply, similar to (4.22), Lemma

1.13 to the first term in (4.24) and find

iχ0
je

x2P
−3/2
+ γ0e0(x, ∂1)ψ

0
j = θ+(x2)χ

0
j(x)ic′3/2x

1/2
2 γ0ψ

0
j +ψ6

j , ψ6
j ∈ H̃1+1/p+σ

p (R2
+).

The proof is completed in the same manner as in subsection 4.2.
Lacksquare
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4.4. PROOF OF THEOREM 4.3. Equation (4.5) has an unique
solution
u ∈ H̃s

p(Rn) if and only if the lifted equation

λs−r
− (∂)

◦
a (∂)λ−s

+ (∂)u1 =
(
λs−r
−

◦
a λ−s

+

)
(∂)u1 = v1

(4.25)

with given v1 ∈ Lp(Rn
+) has an unique solution u1 ∈ Lp(Rn

+) (see
(1.3),(1.4) and (1.17)). Due to Theorem 2.1 we have

λs−r
− (ξ)

◦
a (ξ)λ−s

+ (ξ) =
(ξn − i(1 + |ξ′|2)1/2

ξn + i(1 + |ξ′|2)1/2

)s− r
2
b−1
− (ξ)b−1

+ (ξ)
(4.26)

where the factors b±1
+ (ξ′, ξn + iλ) and b±1

− (ξ′, ξn − iλ) for λ = 0 belong
to S∞0 (Rn−1 × R) (see (4.8)) and have analytic extensions for λ > 0.
Then, due to the principal result in [9], the lifted operator in (4.25) is
invertible in Lp(Rn

+) if and only if the inequalities

1

p
− 1 < s− r

2
<

1

p

are fulfilled. These are identical with (2.20). If these inequalities hold,
then the solution of (4.5) reads as

u = λ
−r/2
+ (∂)b+(∂)`0r+λ−r/2(∂)b−(∂)v = b̃+(∂)λ̃

−r/2
+ (∂)`0r+λ

−r/2
− (∂)b−(∂)v ,

(4.27)

where b̃+(ξ) := λ̃
r/2
+ (ξ)λ

−r/2
+ (ξ)b+(ξ). The next formula is proved simi-

lar to (4.17):

`0r+ = λ̃−m−1
+ (∂)`0r+λ̃m+1

+ (∂) + i

m∑

k=0

P k−m−1
+ γ0λ̃

m−k
+ (∂),

(4.28)

where γ0 is the trace operator (see (3.6))

γ0 := γRn−1 : Hs
p(Rn

+) −→ Bs−1/p
p,p (Rn−1),

: H∞
p (Rn

+) −→ H∞
p (Rn−1) for 1 < p < ∞, s >

1

p
.

(4.29)

From (4.27) and (4.28) we derive the representation

u = i

m∑

k=0

P
eλk−m−1− r

2
+

eb+
Rn−1 γ0λ̃

m−k
+ (∂)λ

−r/2
− (∂)b−(∂)v + u1

1, (4.30)

where u1
1 ∈

⋂
1<p<∞ H̃

m+1/p+ν+r/2
p (Rn

+) for all 0 < ν < 1. In fact,

u1
1 = λ̃

−r/2−m−1
+ (∂)̃b+(∂)v1 with v1 = `0r+λ̃m+1

+ (∂)λ
−r/2
− (∂)b−(∂)v ;
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and the claimed inclusion in (4.30) follows from (1.24) since v1 ∈
H∞
∞(Rn

+) due to (4.7) while H∞
∞(Rn

+) ⊂ Hν−1+1/p
p (Rn

+) = H̃ν−1+1/p
p (Rn

+).
Due to Lemma 2.3 we have

b+(ξ) =
k∑

j=0

λj
0(ξ

′)λ−j
+ (ξ)bj(ξ

′) + λk+1
0 (ξ′)λ−k−1

+ (ξ)b0
k+1(ξ)

with b0, ..., bk ∈ S∞0 (Rn−1) and b0
k+1 ∈ S∞0 (Rn−1 × R),

(4.31)

where λ0(ξ) is given in (1.4) and the symbol classes are defined in (4.8).
If we apply the representations

λ0(ξ
′)λ−1

+ (ξ) =
k∑

j=0

λj
0(ξ

′)λ̃−j
+ (ξ)d1,j(ξ

′) + λk+1
0 (ξ′)λ̃−k−1

+ (ξ)d0
1,k+1(ξ)

λ̃
r/2
+ (ξ)λ

−r/2
+ (ξ) =

k∑
j=0

λj
0(ξ

′)λ̃−j
+ (ξ)d2,j(ξ

′) + λk+1
0 (ξ′)λ̃−k−1

+ (ξ)d0
2,k+1(ξ)

with dj,l ∈
⋂

1<p<∞
Mp(Rn−1) and d0

j,k+1 ∈
⋂

1<p<∞
Mp(Rn), j = 1, 2, l = 1, ..., k

where the coefficients in these representations satisfy the conditions of
Theorem 1.2, then with (4.31) we get the representation

b̃+(ξ) =
k∑

j=0

λj
0(ξ

′)λ̃−j
+ (ξ)̃bj(ξ

′) + λk+1
0 (ξ′)λ̃−k−1

+ (ξ)̃b0
k+1(ξ)

where b̃0, ..., b̃k ∈
⋂

1<p<∞
Mp(Rn−1) and b̃0

k+1 ∈
⋂

1<p<∞
Mp(Rn).(4.32)

If we insert (4.32) into (4.30), apply Lemma 1.10, (4.16) and (1.37),
we get

u = i

m∑

k=0

k∑
j=0

P
k−m−r/2−j−1
+ uk,j

0 + u1
1 + u1

2, (4.33)

uk
0 = γ0λ̃

m−k
+ (∂)λ

−r/2
− (∂)b−(∂)v , (4.34)

uk,j
0 = λj

0(∂
′)̃bj(∂

′)uk
0, (4.35)

u1
2 =

m∑

k=0

b̃k+1(∂)λ̃
−m−r/2−2
+ (∂)λk+1

0 (∂′)̃b0
k+1(∂)v ,

(4.36)

where uk
0 ∈ H∞

∞(Rn−1) (see (4.7),(4.28)) uk,j
0 ∈ H∞

∞(Rn−1) (see (1.35),(4.34))

and u1
2 ∈

⋂
1<p<∞ H̃

m+ν+r/2+1
p (Rn

+) for all 0 < ν < 1.
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Thus, from (4.30) and (4.33)–(4.36) it follows

u = i

m∑

k=0

k∑
j=0

P
k−m−r/2−j−1
+ uk,j

0 + u1
3 with u1

3 ∈
⋂

1<p<∞
H̃m+ν+r/2

p (Rn
+).

(4.37)

Since

H̃s
p(Rn

+) ⊂ {
ϕ ∈ Cs−n/p(Rn

+) : ∂αϕ(ξ′, 0) ≡ 0 for |α| < [s]− n/p
}

we have

u1
3(x) = xm+r/2

n u2
3(x), where

∣∣∂αu2
3(x)

∣∣ ≤ c′αxν−αn
n for all α ∈ Nn

0 .

With Lemma 1.12 we get

P
k−m−r/2−j−1
+ uk,j

0 (x) = θ+(xn)e−xn

k−j∑

l=0

xm+r/2+j−k+l
n uk,j,l

0 (x′)+xm+r/2
n u1

4,k,j(x),

with uk,j,l
0 ∈ H∞

∞(Rn−1) and
∣∣∂α

x u1
4,k,j(x)

∣∣ ≤ C ′′
αx1−αn

n for all α ∈ Nn
0 .

From (4.37) now follows

u(x) = iθ+(xn)e−xnxm+r/2
n

m∑

k=0

k∑
j=0

k−j∑

l=0

xj−k+l
n uk,j,l

0 (x′) + xm+r/2
n u0

m+1(x)

= θ+(xn)e−xnxr/2
n

m∑

k=0

xk
nuk(x

′) + xm+r/2
n u0

m+1(x),

where

uk =
m∑

l=k

l−k∑
j=0

ul,j,l−j−k
0 ∈ H∞

∞(Rn−1), u0
m+1 = u2

3 +
m∑

k=0

k∑
j=0

u1
4,k,j,

|∂αu0
m+1(x)| ≤ Cαxν−αn

n for all α ∈ Nn
0 and all 0 < ν < 1.

This completes the proof. Lacksquare
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