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ABSTRACT. The aim of this paper is to develop the Wiener-Hopf
method for systems of pseudo—differential equations with ”non-
constant coefficients” and to apply it to the describtion of the as-
ymptotic behaviour of solutions to boundary integral equations for
crack problems when a crack occurs in a linear anisotropic elastic
medium. The method was suggested in [14] for scalar pseudo—
differential equations with ”constant coefficients” and applied in
[7] to the crack problems in the anisotropic case. The existence and
a-priori smoothness of such solutions has been proved in [11, 12],
while the isotropic case has been treated earlier in [7, 23, 39, 47].
Our results improve even those for the isotropic case obtained in
[7, 47]. Asymptotic estimates for the behaviour of solutions in the
anisotropic case have been obtained in [26] by a different method.

INTRODUCTION

The celebrated Wiener-Hopf method plays an essential role in in-
vestigations of pseudo—differential equations (PsDE) on the half-line
R* and finds ample applications in boundary value problems (BVP)
of mathematical physics for two-dimensional domains (see e.g. [10,
21, 22, 35, 48]). In [14] this method was adopted to the investigation
of scalar multidimensional PsDEs on the half-space R’}. Such a gen-
eralization gives rise to a difficult problem: the method requires the
Wiener—Hopf factorization of a symbol, however, the factors of such a
factorization are not in proper classes (e.g. not in Hérmander’s class

7 s(R")), even for C*°—smooth symbols, except the cases when they
satisfy the celebrated transmission property (see [4, 17, 18, 19]). The
symbols which appear in problems of mathematical physics often do
not have the transmission property (see e.g. Section 3 below). The
arising difficulties were overcomen in [14] for p = 2 and in [9, 41, 44]
for 1 < p < oo. There criterions have been found for granting the Fred-
holm property for a PsDE on a manifold M with boundary OM # (), in
Bessel potential and Besov spaces, i.e. in H¥(M) and By (M), respec-
tively. These results find many applications to BVPs of mathematical
physics (see e.g. [7, 11, 12, 13, 21, 23, 39, 40, 47, 48, 51]).

The information on the existence, uniqueness and a—priori estimates
of solutions which is available by the above—mentioned methods is in-
complete if the boundary manifold is open as e.g. in crack problems
or if it has singular submanifolds (such as conical points and edges).
The solutions to such irregular BVPs are not anymore C'*°~smooth in
the vicinity of singular submanifolds; there the asymptotic behaviour

of the solutions requires an additional investigation.
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The famous paper by V.Kondrat’ev [24] started the direct method
of investigation of such BVPs in domains with non-smooth boundaries
including cracks, and originated various interesting results (see e.g.
6, 8, 16, 25, 26, 31, 32, 33, 34, 36, 37, 47]). The papers [6, 33] deal,
for example, with the full asymptotic expansion of the solution to the
Dirichlet BVP for a second order elliptic partial differential equation
(PDE) in a domain with an edge having variable opening angle 0 <
a(w) < 2.

Based on the results for two—dimensional elasticity obtained by M.Dauge
in [8], T. von Petersdorff applied in [36] V.Kondrat’ev’s technique and
found the full asymptotic expansion for isotropic elastic bodies with
polyhedral boundary admitting cracks and generalizing the results in
[7]. V.Kondrat’ev’s method for BVPs requires the solution of a cor-
responding Sturm-Liouville problem for some operator pencil. Such a
problem for the Neumann BVP with a polygonal crack was treated by
V.Kozlov and V.Maz’ya in [26] which can serve as a model problem.
According to [31], this result allows to obtain some estimates of the
stress singularities near to the boundary.

A different approach was suggested by G.Eskin in [14]. This proce-
dure is based on the Wiener—Hopf method and deals with scalar PsDEs
with ”constant coefficients”, i.e. their symbols are independent of the
domain variable. Due to the explicit factorization of the symbols of
some particular BVP, which seems to be rather tricky, the method was
applied in [7, 47, 51] to crack and Sommerfeld problems and to Stokes
flows. For applications to two—dimensional crack and Zaremba prob-
lems see [21, 22, 48]. However, this method cannot be directly applied
to the matrix and to the ”variable coefficients” cases.

For demonstration of our improvements we formulate here first the
main results on the asymptotic behaviour of solutions to crack problems
as obtained previously by Costabel and Stephan in [7]: for the Dirichlet

problem when the boundary data belong to Hf/ FrS) with —1/2 <
o < 1/2, the solution has the form

0(s,0) = o(s)p~2x(p) + ¢1(s,p), (0.1)

where ¢y € IHI;/QJFJ(@S) and ¢ € Hi/wra/(S) with any ¢’ < o, i.e.
less than optimal regularity. Here p denotes the distance to the crack
front 0S and s is the arc length parameter on 9S. The function y is a
suitable cut—off function.

For the Neumann problem with given boundary data belonging to

H77(S) with —1/2 < o < 1/2, the desired boundary traction can
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be represented by
W(s,p) = to(s)p2X(p) + (s, p), (02)

where 1y € HY**7(85) and ¢, € HEFT(S).

As already mentioned, the proof in [7, 47] is based on explicit fac-
torizations of corresponding matrix symbols. In the anisotropic case,
however, the explicit factorization seems to be very difficult since the
symbols contain radicals!.

In our paper, however, we avoid the explicit factorizations, which in
[14] was also decisive for the scalar case. Instead, we use a refined but
implicit factorization result (see Lemma 2.3) based on a new version of
the factorization Theorem 2.1. The latter improves a similar result in
9, 42]. What we get is the same asymptotic representations (0.1) and
(0.2) but with the following improvements (cf. Theorems 4.1-4.3):

(a) the medium is anisotropic with 21 different elastic moduli in the
most general case;

(b) if the boundary data in the Dirichlet problem belong to the
Bessel potential space Hy"/?77(S) with —1/2 < ¢ < 1/2 then in (0.1)
vo € HY*™(05) and ¢, € Hy"*°(S). If, in particular, p = oo then
o € CY?+9'(9S) and ¢, € C7(S) for any o’ with 0 < ¢’ < 0;

(c) if the boundary data in the Neumann problem belong to the
Bessel potential space ]I-]I,l,/erU(@S), then in (0.2) ¢y € H§/2+U(0S) (be-
longing to C%/?t7'(9S) if p = oo) and 1 € ]ﬁl};H/HU(S) (belonging to
C+(8) if p = 00);

(d) for the canonical case when the crack coincides with the half-
space R% and the symbol of the equation is modified, which corresponds
to a lower order perturbation of the basic PsDE (cf. subsection 3.3),
we find a full asymptotic expansion for the solution;

(e) asymptotic expansions similar to (0.1) and (0.2) can be obtained
for general but uniquely solvable systems of PsDEs

Az, 0)lu=v for ue€ IF]I;(M) and given v € H;™"(OM)
(0.3)

on a p-smooth n-dimensional manifold M with smooth boundary o.M
provided that the symbol a(z, ) belongs to the class Hy.C*™ (M, R™),
introduced in subsection 2.1, if 1 < p < 00, —p+1<s,5s—1r <
W, m>n/2+ 2.

This paper is organized as follows.
1Such an attempt has been made by M.Arzis in an unpublished paper where she

succeeded only in some special cases of transversely isotropic materials.
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Sections 1,2 and 4 deal with the Wiener—-Hopf method. Subsections
1.4, 1.5 and 2.1, 2.2 contain results important for the applications of
this method. In subsection 1.4, for instance, we formulate some re-
cent results by E.Shargorodsky on boundedness and orders of pseudo—
differential operators. In subsection 1.5 we demonstrate the asymptotic
expansion for Poisson operators (see Lemmata 1.12 and 1.13), which
play an important role in Section 4. Two significant results on the
factorization of symbols (see Theorem 2.1 and Lemma 2.3) and their
modification (see Theorem 2.5) will be needed to derive the asymptotic
representations in Section 4.

In Section 3 we demonstrate the equivalent reduction of the Dirichlet
and the
Neumann boundary value problems for an anisotropic medium to the
boundary integral equations (see Theorems 3.1, 3.2 and cf. [7, 23, 27,
36, 39, 47]). We also present short proofs for solvability and regularity
results (see Theorems 3.3, 3.4 and cf. [11, 12]).

Finally, in Section 4, we present in Theorems 4.1-4.3 the asymptotic
behaviour of solutions to crack problems.



1. CONVOLUTIONS AND POISSON OPERATORS

1.1. SPACES. S(R™) denotes the Schwartz space of all fast decaying
functions and S'(R™) the dual space of tempered distributions. Since
the Fourier transform and its inverse, given by

Folw) = [ep@de and F00) = g [ i) de

R" R

are bounded operators in both spaces S(R™) and S'(R"), the convolu-
tion operator

W2 = F'aFp with a€S(R") for ¢ e SR
(1.1)

is a bounded transformation from S(R") into S'(R™) (cf. [9, 13]).
The Bessel potential space H(R") is defined as a subset of §'(R")
endowed with the norm [49, 50]

[l [HE(R™) | = [|AGu [ Ly (R)]], (1.2)

where A§ = W3 and A3(§) = (1 + 1€]2)%/2.

For any compact closed p—smooth n—dimensional manifold M (u €
N or 00), the space H~(M) can be defined by a partition of the unity
on M and local diffeomorphisms (cf. [49]) if we suppose for correctness
of definition that 1 — p < s < u. For definitions of the Besov spaces
B> ,(R") and By (M) (1 <p<oo,1<g<o0,s€R, 1—p<s<p)
see [49]. In particular, the space B; (R") (1 < p < 0o, s > 0) coincides

with all traces e = ¢|,,, of functions ¢ € H /P (R,

If M has the boundary OM # &, then M can be extended to
some closed manifold M 5 M of the same smoothness. The space
H(M) is defined as the subspace of Hy (M) of those functions u €

H (M) for which suppu C M. Then H(M) denotes the quotient
space H™(M) = H~(M)/H~(MS< /\O/l) and can be identified with the

—~

space of distributions v on M which admit an extension lu € Hj(M).

—

Therefore if ryp = | denotes the restriction for ¢ € D'(M), the
tempered distributions, then H™~(M) can be identified with the space

T MH;(M) B

The spaces By (M) and B, (M) for OM # & are defined similarly
[49, 50].

If M has no boundary or M is either a special or a general Lip-

schitz domain (i.e. the boundary is represented locally by a Lipschitz
§



function; for exact definitions see [46]) then there exist Bessel potential
operators
Ny o HYM) — HX (M), Ay o Hy M) — Hr(M),

B (M) — B N(M), ;B (M) — B (M),

101 1,11

where s,reR, 1<p<oo, 1<q<o0,

(1.3)

which? define isomorphisms (see [14, 49] for a domain with smooth
boundary and [13, 40] for a Lipschitz domain). In particular (see [14,
49] and (1.2)),

A€ = (L+[€7)2, AL(§) =& i1+ €DV,
rcR, £=(¢,&)eR?, ¢ cR*?

and moreover, WSE arranges the isometric isomorphism of spaces Hy (R") —
H>™(R") (see (1.2)).
If C* denotes the dual space to the space C and OM # &, then the
following relations are valid (see e.g. [49]):
(Hy(M))" = H,~(M), (B (M))" =B, (M),
where seR, 1<p<oo, 1<¢< oo, p/:p%l’ q :g(%@
and

(HX(M))* =H;~(M), (B (M) =B (M),
where s> -, 1<p<oo, 1<¢qg< . (1.6)

SRR

Let Q2 C R™ be an m—dimensional w—smooth submanifold, m < n
and let v = ¢ |q denote the trace operator for ¢ € S(R™). Then the
operators

B, (R") — By * ()

Y

for 1 <p<oo, 1 <q< oo, <s<w

p
are bouned (see [49, Section 3.6]).
The next lemma follows from (1.7), as noted in [18, (3.20)] and in
[43].

2Let us agree to ignore ~ in ]ﬁl;(M) and @Z’Q(M) if OM =@ since then
the operators and spaces in (1.3) coincide.
7



Lemma 1.1 (see [18, 43]). Let 0 < dimQ =m < n, ¢ € By ()
(peB; () andl <p<oo(l<g<oo), l-wt(n—m)/p <s<0.

n—m n—m

Then ¢ ® dq € HZ_T(R”) (p®dq € ]B%;,_q 7 (R™)), where
< PR, >=<p,y > for € SR"). (1.8)

Let X, denote a parameter—dependent family of Banach spaces with
v € R. If (+,-)p denotes the modified complex interpolation method
with 0 < 6 < 1, then the equality (X,,,X,,)s = Xp@, ., implies
that it A : X,, — X, , is a bounded operator for j = 1 and 2,
then A : Xgu, 0, — Xy, is bounded for every 0 < 6 < 1 and
v, va,0(v1,15) € R.

In the sequel, the following well-known interpolation properties will
be applied (see [49, Sections 2.4.7, 2.5.6, 3.3.6]):

(B3, (M), BE, (M), = BR (M), (HZ (M), HE (M), = HY(M),

I 51l ) I 1 g 1,11 I ) I

1
l<pj<oo, 1<gj<oo, ——<s;<00, s; €R, 0<0<1, (1.9)
Pj
1 1-66 6 1 1—-6 0
52(1—0)51+082, 2—9: —+ = +

P g @ @
We shall also use the interpolation property
(H (M), HE (M), =BT (M) (1.10)

Iy ) =3 9,H 1

which can be found in [49, 2.4.2, 2.5.6, 3.3.6] as well. Here the pa-
rameters have the same values as in (1.9) and (-, -)s, denotes the real
interpolation method. B

Note that (1.9) and (1.10) are also valid for the spaces H;(M) and
B> (M) if OM # @.

In view of (1.10), if the operator

A:HY(M) - H™ (M) (1.11)
is bounded for 1 < p < oo and s; < s < s9, then the operator
A:BL (M) — B (M) (1.12)

will be bounded for 1 < p < 00,1 < ¢ < oo and s1 < s < sg, too.
Let now p(x) > 0 for z € M and denote

H (M, p):={p"'u : ue HY(M)}, ¥ <i<oo, ~€eR,
JulB (M, )| = llpul B (M) (1.13)

If M C M has non—empty boundary 9M # @, then ]ﬁl;(M, p) =

{u e H;(./W, p) :suppu C M C M}
8



1.2. CONVOLUTION OPERATORS. If the convolution opera-
tor in (1.1) has the bounded extension

Wy« Ly(R") — Ly(R"),

we write a € M,(R™) and a(§) is called a (Fourier) L, -multiplier. For
v eR, let

MPR™) = {(1+[¢]*)7a(é) : a € My(R™)}.
By using the isomorphisms (1.3) and (1.4) and the obvious property
W2W?2 =w a; € M{(R™), j=1,2, (1.14)

aiaz’

we get that the operator
W Hi(R™) — HS ™ (R™)

is bounded if and only if a € My” (R"). Because of (1.10) and this
inclusion, we find the boundedness of the operator

0. ms n s—v n
w, .BM(R )—>IB3p7q (R"), seR, 1<p,q< 0.

The equality Ms(R") = Lo (R™) is well-known. A reasonable de-

scription of the class Mzﬂ”) (R™) for p # 2 is much more difficult and
still an unsolved problem. The next theorem is known as the Mikhlin—

Hormander—Lizorkin multiplier theorem. Proofs can be found in [41]
and [20, Theorem 7.9.5].

Theorem 1.2. [f

sup{|§ﬁa%<§>r cem, o<l 0<pe 1} <M<

(1.15)
then® a € () peoo Mp(R™).
Lacksquare
Let a € M{”(R"). Then the operators
W, == r W2 H3(RY) — HI"(RY), (L16)

B}, (RY) — By (RY),

are bounded where ry := rgy is the restriction operator. This follows
immediately from the above properties.

The composition rule (1.14) fails in general for half-space operators
(1.16). But if there exists an analytic extension a,(¢,&, — i\) (or

3By 0 < 8 <1 where 3= (31,...,5,) wemean 0 < 3; <1forj=1,...,n.
9



as(&', &, +1N)) for &, € R and A € RT belonging to S'(R"™! x C7) (to
S'(R*! x C*), respectively), where C* = R x i{R*, then

W Wy = Wy (1.17)

1.3. ANISOTROPIC SPACES. For a real constant s € R, we de-
fine the vectors 3 = (s,...,s,0) and s, = (0,...,0,s) in R". If
p(x) > 0, we introduce the following anisotropic weighted Bessel po-
tential spaces:

H; (R", p) : = {p € S(R") : [[o|H; (R, p)|
= [[p(Agn-r ® Dol Ly (R")|| < 00}, (1.18)

H (R}, p) - = { € Hy (R", p) : suppp C R} }. (1.19)
1.19

Similarly, the spaces H?»(R", p) and ]ﬁlﬁ” (R™, p) are defined with the
help of the operator I @ Aj.
Evidently

HE(R%) = H (R7) N HE(RY). (1.20)

Lemma 1.3. The following interpolation property is valid for weighted
spaces:

[HE (R, o), D2 (RY, po)], € O (R, p),  (1.21)
1 1-6 6 oo

s = 1—0M+0V7 - +_7 pP=p P2,
( ) p P b2 b

M,I/GR, 1<p1>p2<00, 0§9§1

Proof.  The proof follows word by word the proof for the case of
isotropic spaces with p; = py which is exposed in [50, Section 2.4]. For
brevity we omit the details. Lacksquare

Remark 1.4. As was proved by D.Kurtz in [28], the Mikhlin—Hdérmander—
Lizorkin theorem (see Theorem 1.2) remains valid also for weighted
spaces L,(R", p) if the weight function p satisfies the Hunt-Muckenhoupt—
Wheeden condition p € A,(R™).

With this result and p1,ps € A (R™) it follows that in (1.21) we
also have the inverse inclusion. For a proof we refer again to [50,
Section 2.4]. Then the operators A, ® I and I ® A’, represent Bessel

potential operators for the anisotropic Bessel potential spaces Hf,’ (R™, p)

and ]IT]IZED" (R™, p) respectively.
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1.4. PSEUDODIFFERENTIAL OPERATORS. If the symbol a(z, §)
depends on the external variable, then the corresponding convolution
operator (see (1.1))

a(z, 0)p(z) = Wy g (@) = (Flalw, §) Fy—ep(y))(2)
(1.22)

with the symbol a € C(R™, S'(R™)) is called a general pseudo—differential
operator operating on ¢ € S(R"™). Here C'(2,C) denotes the set of all
continuous functions a : Q@ — C. Let My”* " (R™ x R") denote the
class of symbols a(x, &) for which the operator in (1.22) extends to the

bounded mapping
a(z,d) : HH(R™) — H™"(R™). (1.23)

The next theorem and its corollary provides us with sufficient condi-
tions for a € MISS’H) (R™xR™). This theorem was proved by E.Shargorodsky
in [44] with the help of a suitable parametrization. We shall use this
idea in the proof of Lemma 1.7 below. Let

(e}

Aoy, &) = %a(x,g) with o € Ny.
Let X" be the class of all permutations of the single variables of = €
Rn
o(z) = (Z(), - To(m)) and
a’(z, &) :=a(o(x),&) for o€ X",

Theorem 1.5. [44, Section 5] Let s € R, ¢ € Ny, 1 < p < oo. If
a € C(R", M,(R")) and

M,(R")

oma? \(Ymy,0,...,0,-
()(() )’ dy(m)<oo

ay(m)

MmaXyesn, aeNg, |a|<l /

Rm
S,8 ].
(Yom) = W15~ ,Ym)), then a € MY )(]R” x R™) for any —¢ — 1 —1—1—9 <

s < l+ 1
p

Corollary 1.6. Ifa € Cé+"(R”,MZ§T)(R”)) (i.e. a(x,&) is compactly
supported in x € R" and 0%a € C(R”,Mér)(R”)) for all |a| <1+ n)
and | > max{|s|,|s — r|}, then a € M{™* 7 (R" x R).

If (1 + [£]2)720%a(x, &) satisfies condition (1.15) uniformly for all
z €R" and || <1+n, thena € (Vo M) (R™ x R™).

11



Lemma 1.7. Let a,b € M]gs’sfr)(R" x R"), s,r € R. If there exist
analytic extensions a(z, &', &, +1iA\) and b(x, &', &, — i) for any v € R™,
¢ e R & e R, A e RT with polynomial growth at oo (i.e. |al
and |b| are majorized by (|€'] + |&| + N for some N and all x € R"
uniformely), then the operators

a(z,d) : H3(R") — H3"(R") (1.24)
ryb(x, 0)0: Hy (R} ) — H)™"(R'}) (1.25)

are bounded. Here ( is any extension with o € HL(R") for ¢ €
H3(R% ). The operator in (1.25) is independent of the choice of L.

Proof. Let us apply the parametrization argument from [44]. Consider
¢ € S(R%). Then Fp(¢, &, + iA) € S(R*! x C*) is analytic with
respect to the variable &, + i\ € C*. The function 1(z,&, &, + i\) =
a(z,&,&, +iN)Fp(E, &, + iN) is analytic with respect to the variable
&, +iX € Ct and is fast decaying with respect to the variables (£', &, +
iA) € R* ! x C*. The inverse Fourier transform F._ t(z,x) belongs
then to C*(R") for every z € R™ and supp F !¢ C R™ x R". Since
a(z,d)p(x) := F1(z,x), we get suppa(z,d)p C R7. (1.24) follows
from the fact that the subspace S(R?) C ﬁ;(Rﬁ) is dense and the
operator a(z,d) in (1.23) is continuous.

Similarly to (1.24) it follows that r,.b(z, 0)¢ = 0 for any ¢ € ]ﬁl;(Rﬁ)
where R” := R" \ R%. If now ¢;u and fyu are two different extensions
of u € H3 (R} ) in H3(R"), then ¢ = f1u — lyu € ]ﬁ;(Rﬁ) and therefore
ryb(z, 0)liu = rib(x,d)lyu. This implies

[74b(, 0) Lp|Hy(RY) || < M inf{[|€p[H (R™)[ : £ € H(R™)}
= M{|@|H5(RY)|.
Lacksquare
For any [,m =1,2,...,00 and r > 0, let St™(R", R* x R"*) denote
the class of symbols a(&) with the property
0208 a(w, )] < Mas(1+ )71+ 1€/ 17, (1.26)
B=(8,6"), =€) eR ¢eR" |af <l |8l <m,
where 6 =0if //=0and § =1if 7 #0.
Lemma 1.8. Let m > n/2+ 1 and | > max{|s|,|s — |, |s —
rol,|s —r1 —ra|} +n + 1 be integers. If a; € Sf:jm(R”,Rk x R"™*) for
j=1,2, then (cf.(1.14))

ai(x,d)as(z,0) = (2a1a2)(x, 0)+ A4, (1.27)
1



where A_1 has the order r1 + 1y — 1, i.e.
Ayt H(R™) — HZ "= H(R")
is bounded if |o|,|oc —r1 —ro+ 1| <l —n—1.
If either ay(z,&', £ —1N) or as(x, &', €, +1N) has an analytic extension
(z € R", ¢ e R ¢, € R, A € RY) which is majorized by (|¢'| +
1&al + NN for some N and for all x € R™ uniformly, then

riai(z,0)rias(z,0) = ryajas(x,d) + A, (1.28)
where AT, has the order ri +13 — 1, and
Aty CHZ(RY) — HY e (RY)
is bounded if |o|,|c — 11 —ro+ 1| <l —n—1.
Proof. We have
ar(x,0)ag(x,0) = b(x,d) with bz, ) = "W, (z,0)as(y, €)|p=e yu

(see [20, Theorem 18.1.8]). Further, there the following estimate is
shown,

10507 [b(, €) — ar (,€)as(y, €]
< Clal, 8] 4 n/2 + 31 + Je) 171 (1 [

with 3/, 6",r1 and ry as in (1.26), with |a| < [, |#] < m and some
constant C(M, N) (see [20, Theorems 7.6.5, 18.1.7, 18.1.8]). The first
claim (1.27) follows if the second case of Corollary 1.6 is applied.

If ay(z, &', €,+i) has an analytic extension with polyonomial growth,
then due to (1.24) we obtain as(z, 9)p(x) = rias(z, 0)p(z) = az(z, 0)p(z)
for all ¢ € H>(R'}) and (1.28) takes the form

riai(z,0)as(z,0) = ry(a1as)(z,0) + AT, (1.29)
which follows from (1.27).

If ay(x, &, &, —i\) has an analytic extension with polynomial growth,

we get ryay(z,0)r— =0 (r— :=rg» = I —ry). The proof follows from
the equality r_ay(x,0)r- = ai(x,0)r_ which is proved similarly to
(1.24). Again we get (1.29). Lacksquare

Corollary 1.9. Let m >n/2+1, and | > max{|s|,|s —r|+n+1}
be integers.
Ifa € C'""™(R™), b € St™ (R, R* x R"™*) then the commutator

[CL[, 7"+b(', 6)] = aT+b('7 a) - T+b('7 8)al
has the order r — 1, i.e. the operator

wm&ﬂﬂyem”mm
1



is bounded if |o|, o —r| <l —mn—1.

1.5. POISSON OPERATORS. Let 2 C R" be some w-smooth m—
dimensional manifold (1 < m < n; cf. subsection 2.1), a € My (R™)
and consider the following Poisson operator (cf. (1.1),(1.8))

Py =Wl (p®dq) : CF(Q) — S'(R™). (1.30)

Lemma 1.10. Let 1 —k+(n—m)/p' <s<0, —w+1<s, reR,
l<p<ooand ac M,§’") (R™). Then the operator

n—m

Py:B,(Q) —H, ” (R") (1.31)

15 bounded.

Proof (see [18, 44]). ¢ € B, (©2) implies ¢ ® dq € ]HI;_#(R") (see
Lemma 1.1). Since the operator Wy : HY(R") — HY™"(R") is bounded
for any v € R, there follows (1.31). Lacksquare

Corollary 1.11. Let Q = R*! and, in addition to the conditions
of Lemma 1.10, let a(£', &, +1i\) have an analytic extension belonging to

S'(R™1 X C™H). Then
supp Pg.-1¢o CRY if p € B;vp(R"_l), i.e. the operator

B (R — VP (RY) (1.32)
s bounded.
Proof. The proof follows from 4 (1.24) and (1.31), since p €
By ,(R"1)  yields ¢ ® dq € H, °* (R7). Lacksquare

For the asymptotic expansion in Section 4 we need the following
particular Poisson operator:

PTp = PHZ,{L;QO, with Xf(é) = (& +ilE| + i)™ for r > 0.

Then P." has an explicit representation (see [14, subsection 7.5]) as

r o p(y) dy'
P+ 90(1;) = Cr‘9+(xn>xn€ / [(ZE’ - y/)z T xQ]%?
Rnfl n (133)
=T 2e "2 F((i))’ 0, (x,) = 5(1 +sgna,).

4Tt is easy to verify that (1.24) holds already if a(x, &) = a(€) and a(¢', &, + 1))
is in '(R"~1 x C*).
14



Let 1 < p < o0 and define
HE(RY) = () H(R™). (1.34)
m>0
Due to the embeddings Hi(R") C B; #(R") C C*27"/(R") with any
e>0and s —2e>n/p (see [49]) we have
HX(R") = []B;,(R") C {p € C¥(R") : p(00) = 0}

520 (1.35)
and ¢ € H°(R") implies a(0)p € H;°(R") for every multiplier a €
MY (R™) with any v € R.

Lemma 1.12. Let 1 < p < oo and ¢ € H;*(R""). Then

Pmp(x) = 04 (x,)e ™" Z crrn ™ o () + 2l L (z)
k=0 (1.36)
with oy, = |0'|F¢ € HX(R"™), c.p = (D e k=01 m
k D > Crk k" F(T) ) 3 L 9 )

and where S%mﬂ satisfies [02¢ph, 1 (x)] < Cox,* for every o € N.
Proof. Obviously, the operator P," can be written as
Pmo(x) = a(d zn)p(2'), (1.37)

where

(€, x,) = Fol oy A€ w0) = crgfy (z)ay e HED

(see [14, Section 7]). Applying Taylor’s expansion to e ##l€'l? with
respect to 6 € [0, 1] and then setting § = 1, we get

m
a(€ ) = O (zn)e " [Z Craay FTHNE N 4 2l (€ 2| E
k=0
1

am (&, 2n) = Crmi1 /(1 — t)me_m“g/'tdt. (1.38)
0
Moreover, ¢ € H*(R"™') implies ¢, = [0'|"¢ € H(R™!) for k =
0,...,m+ 1, (cf. (1.35)). Inserting (1.38) into (1.37) gives (1.36),
where

2 1(7) = am (9, )P (2) (1.39)
= / ( ’)/ ta=n" dtdy' for =z, >0
n Pm+1\Y / [(I/ N y) —|—t2l’2] Y n
Rn—1

15



(cf. (1.33) and [14, Section 4]). From (1.39) we get

. a—tmdt
|¢m+1 ‘ C Tn |SD’ITL+1 ’ + thz]g y
Rn— 1
dy
Scxn/t(l—t)m/ = dt
° S w=ypreap

1

dy’
(1—6)™ —— = (p. 1.40
0/ /1<|y'|>2+1>2 o U

Since

T
o Oy Pm t(1—t)mo%n - dt dy’
Spm—i-l / QD +1 / ( ) Tn [(ZL’/ y ) + x2] Y

where a = (/, o) € N, we get the remaining estimate in (1.36) for
02?1 in the same manner as in (1.40). Lacksquare

Lemma 1.13. Let® s,r >0, (1-{r}) ' <p<oo, 0<s—[r] <
1 and ¢ € BS (R"'). Then ((1.33),(1.36))

(@) = e0 ()l e ™ p(a!) + () with o) € ﬁ;l/p’“a(&z) :
1.41

Proof. Obviously (cf. (1.33))

0 . o e(y') — p(z')
0] =01 A with Ayp(x):=are / T — )7+ x%]nmdy/
Rn—l

T —Xn Ah@(l’/) 1.42
1

where App(z') = @(2' + h) — p(z’). For v € CF(R™!) and some
vy, which will be chosen later, we proceed with Holder’s inequality as

°If r > 0 then [r] € Ny denotes the usual Gaussian bracket, i.e. the integer part
of rand 0 < {r} :=r —[r] <1 and Ny := NU {0} where N denotes the natural
integers.
16



follows,

| A Ly(R, 220) ||P = /x;rwo)pexnp

/—[ Anplz dh’ dr

h2 4+ 22|n/?
R:ﬁ Rn—1
hdh N [Anip(z)[?
< [ alrron( / | ) dhd
— /33” [h2+x2]n/2 |h‘5p[h2+x2]n/2 x
R Rn—1
1 t|%F" dt |Apt(x
_ [ rrerio1p >p< g dt h dhd
/xn / [t2+1n/2 / |17 ( h2+x2)n/2 X
R’i Rn—1
A INID o % %T+V0+5*1/P/)p
=C / | hw($6)‘ dx /.I' g o dxn dh
|h[*P [h? + 23]
Rn—1xRn—1 0
_ | Aptp(a) Oo“*”“” Ve
=C n—1+(1/p'—r—g 1 + t2 n/2
Rn—1xRn—1 0
= SloB R, (1.43)

(see [49, p.190] for the norm in BY (R"™) = WY (R""')) provided

1 1
—-1<dp <1, —1<<7"+V0—(5——>p<1 O0<—-—-r—1py<L
4 p (1.44)

The last inequality in (1.44) restricts the exponent of the weight
function "0 as

1 1
——<r+y<l--, (1.45)
p p

while the two other inequalities should be satisfied by an appropriate
choice of §. This is always possible since (1.44) can be rewritten as
follows:

l—p<dp<p-1, pw—1<op<pu+1, 0<pu<np,
(1.46)

where p = (1/p’ —r — vp)p. The last inequality in (1.46) corresponds
o (1.45), while the first two inequalities can always be satisfied since

max{l —p, p— 1} <min{p — 1, p + 1},
if the last inequality in (1.48) holds. Thus, the operator

A, BYPT (R 5 L(RY 20) (1.47)
17



is bounded if (1.45) is satisfied. Because of (1.42) we have

Aﬂlén_1Ar¢ = A,,‘Aﬂygn_l/gb fOI' Ve R (148)
Therefore, with (1.3), the operator
A, B R HEO(RY) (1.49)

is bounded, provided 1/p" — {r} > 0, v € R. From (1.42),(1.47) it
follows that

185, Al Ly (RY, 22| < calle™ 0, A Ly(RE, a0 )|
< callg By, (R,
provided 0 < k <land [ =0,1,...,[r] + 1. Hence,
A, Bl/p —r— VO(RTL 1) —>H J[r]+1) (Ri,x%’*m“)
(1.50)

is bounded if (1.45) is satisfied.
Applying interpolation (1.21) to (1.47) and (1.50) yields that the
operator

A, B, (R CBYY TR - BOORY, 2h),

1
for O<E—7“—Vo§37 0<v<[r]+1, (1.51)

is bounded if (1.45) is satisfied. If now v = —1y = s — 1/p' + {r}, then
(1.49), (1.51) and (1.20) imply the boundedness of the operator

A, B (R — HE VP (RY), (1.52)
provided 1/p" — {r} > 0. Obviously the latter condition is equivalent
to 1/(1—{r}) < p < oo; and from (1.45) with vy = —s+1/p'—{r} we
find the condition 0 < s — [r] < 1.

Lacksquare

Remark 1.14. From (1.48) and (1.42) it is evident that ©Y(x', x,)
cannot be smoother with respect to the variable x’ than p(x'). Therefore,

the condition 1/(1 — {r}) < p < oo is necessary for the asymptotic
representation (1.41) to hold (see (1.52)).

18



2. SYMBOL FACTORIZATION AND SOLVABILITY OF
PsDE

2.1. FACTORIZATION. Let p,m = 0,1,...,00, 7€ C, QC
R". By H"C*™(Q,R") :=CH"(Q, H"C™(R")) we denote the algebra
of N x Nmatrixfunctions a(z,£) which are y~smooth with respect to
the variable x € = QUAIC, are m—smooth with respect to £ € "1 =
{£ € R": [¢] = 1} and positive homogeneous of order r in &, i.e.
a(x, ) = N'a(x,&) for A\ >0, z€Q, ¢£eR"
By H7.C*™(Q,R") C H"C*™ (£, R™) we denote the subalgebra of func-
tions a(x,§) = ag(x,tw', &,) where ' = |¢'|71¢ € S" 2 t = |¢'| € RT,
&, € R, which meet the following conditions ©
ok P — 1V T AF /
121(1) Ofap(x,tw', —1) = (—1) lll% 0fap(z, tw', 1), 21
forall z€Q, €82 k=0,1,....,m—1

Theorem 2.1. Let a € HpC*™(Q,R") (u>0,m>1,r €R) bea
positive definite N X N matriz—function satisfying

(a(x,€)n,m) = MIE[ P forall =0, €€R"  and ni@%
2.2

with some constant M > 0. Then a(x,&) admits the factorization

a(.ﬁE,f) = a_(m,f)a+(:v,§), a:l:('raf) = (gn + Z|€,|)%b:|:(x7€)7
(2.3)
where b1 (x,€, & +iA) and b*' (x, £, &n — i) have uniformly bounded
analytic extensions for A > 0, x € Q, ¢ € R*1, &, € R. Moreover
be € H'CH™1(Q,R") and

HeO0bE (2, €)| < Mo lel P51/ (2.4)

for any choice of multiindices |o| < p and |B] < m — 1. Here § =0 if
G =0andd=11if p' #0.

Proof. Let T'y = {¢ € C : |(| = 1} denote the complex unit circle and let
Crm=HQ R x S"72 x Ty) = CH(Q,C™ 1 (RT x S"2 x T'y)) be the
algebra of functions dy(x,t,w’, ) which have continuous derivatives
up to the orders p and (m — 1) with respect to the variables z € Q
and (t,w', () € RT x S"2 x T, respectively. The function b(z,&) =

SIf r = 0, m = oo, then conditions (2.1) coincide with the classical transmission
property (cf. [4, 14, 18, 19, 37]).
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|€]7"a(z, &) is homogeneous of order 0 with respect to the variable &.
Let us verify that b € C*™1(Q,R" x S"~% x T'y) where

1
b(z,t, ', C) == b(x, tw', i

<t) = by (2,0, tan g),

1+¢
with o' =|¢|71¢ e s"? t=|¢], ¢=(¢,&)eR", (=€,
2.5)
1— 1— e 0
i1+§—i1+zie—tan§ for —T <l <.

For showing (2.5) it suffices to prove that all derivatives b@055) (2 o/, ¢)
defined via

g(azl»ﬂzk) (x) t’ w/, 9) = aﬁaﬁaﬁa&g(x? t? w/7 0)7

are continuous at 6 = +£.
The continuity condition (2.1) and homogeneity lead to

~ . ~(a 9
pOPR) (1, ) = 851)6 0.5,0) (x,+ cot §w’, +1)
k o 9
— (£) ajim (0)D70 (2, % cot §w’, +1)
J,lm=1

k
o 0
= Z @i (0)D7P0 (2, £ cot EW/’ 1)
7, l;m=1

for 0<+0 <7 and keN

where i, (0) = cjim sin~?(0/2) cot™(0/2), and, therefore a;jj,(—7) =
ajim(m). From these relations together with (2.1) we obtain the conti-
nuity properties

Jim pEOBR) (1 o ) = gimg(a’oﬁ’k)(:v,w’, ).

Hence, b € (€2, S"2x ) = N1 CHk(Q, S72, C#(T,)), where
C?(Ty) denotes the Holder-Zygmund space and where m — 1 < v <m
(see [46]). A matrix—function from the algebra C?(I'y) (o > 0) admits
a factorization (see, e.g., [5]):

g(x7w/7€> :g—(wi/7C)E+(wilvc)v (26)

where b, bF € (1 C#R(Q, 5772, C7H (1)) and bEl (z, o, 2), b (2,0, 271
have uniformly bounded analytic extensions for |z| < 1. The partial

indices are zero due to the positive definiteness of b(z,w’, () (see (2.2)
and (2.5)) as is well known (see [5, 30]). The C**—smooth dependence

on the parameters (r,w') € (€2, 9" 2) follows also from the fact that
20



the partial indices are zero in the factorization (2.6) as is proved in
[45].

Representation (2.3) follows from the positive homogeneity of a(z, &)
with respect to  and from (2.6) if we transform the variables

ﬂﬂ

I el =1 et

and factorize
€] = (& — ilE')Z (& + 1)) 2.

The estimates (2.4) follow from similar estimates for by (z,w’, ()
if the transformation (2.7) is taken into account. The homogeneity

bi(z,AE) = by(x,€) for A >0 follows since the functions by (z,w’, )
are independent of ¢ = |¢'|. Lacksquare

Remark 2.2. Theorem 2.1 remains valid if (2.2) is replaced by any
other condition which ensures vanishing of the corresponding partial
indices of the factorization (2.6). Some of such conditions can be found
in [13] and in [30].

Lemma 2.3. Let a(z, &) be as in Theorem 2.1 with 2 < m < oo and
let by (x,€) be the factor in (2.3). Then the inverse has the expansion

-1

92 (e e ) 6+ (é}l—||—§—/z!|§’|)lb?<x’£)

where 1 <1 <m, £ =(¢,&,) € R" and where b, € HOCH™F=1(Q R 1)
for k=0,...,1—1. The remainder b)(x, &) satisfies the estimates

(2.8)

sup {|§68§8?b?(x,§)] cx e, R ol <p,

|mgm—w4}<m. (2.9)

Moreover, bY(z, &', &, +i)\) has an uniformly bounded analytic extension
for A > 0.

Proof. The function gll(x, tw', () with the transformed variables be-
longs to the space CH™ 1, Rt x S"2 x Ty) and has an analytic
extension into the disc [¢] < 1 (see (2.6)). Then b;'(z,tw’, 1+6(C —1))

is correctly defined for 0 < 6 < 1. If we apply Taylor’s formula about
21



6 = 0 and then take § = 1, we get

l—
~ bi(z, tw', 1
bJrl(x’tw/JC) = k( ]C' )

with bl (z, tw', () = aggll(x,tw', ¢)
1

~ 1 -
and the remainder b)(z,tw’,() = — /(1 — )b} (2, 0w, 1+ 7(¢C — 1)) dr.

—_

(€= 1P+ (¢~ 1)) (z, ', C)

i}
o

il
0

If we insert ¢ given in (2.7), the latter representation yields (2.8) and
(2.9). Lacksquare

2.2. MODIFICATION OF SYMBOLS. If a € H C*™(R",R"),
r < 0, then the operator a(z,d) : H3(R") — H)~"(R") is unbounded
even if u = m = oo (e.g., |0|" := VV\(E)IT is unbounded even in L,(R");
see [46, Section VI]). Therefore, we suggest the following modification
of symbols:

a (w,€) = a(z, (1+ &) /E)71¢, &), (2.10)

The modification (2.10) differs slightly from the one introduced by

G.Eskin in [14, p.91] and suits better our purposes .

Then, due to Corollary 1.6, for a € H"C*™(R" R"), where pu > l+n,
m >n/2, | =max{|s|,|s—r|}, s,r € R, the operator

ro a (z,9) : Hy(R") — H(R™) (2.11)
is bounded for any compact €2 € R" and any r < 0.

Corollary 2.4. If a(x,§) satisfies the conditions of Theorem 2.1,

then the modified factors ay (z,€) (see(2.3)) belong to the class
SEm=HQ,R™! x R) defined in (1.26).

Note that the modification (2.10) does not change the principal sym-
bol of a pseudo—differential operator. In fact, we have the following
lemma.

Lemma 2.5. LetQ € R™ be any compact domain, a € H"C*™(Q,R™)
and

"The modification a (z,&) = a(z, (1 + [€'))|¢/|71¢,&,) introduced in [14, p.91]
has discontinuous derivatives 8?,/ a (z,€) for || > 1 as a function of &’.
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p>l+n, m>n/24+1, [ =max{|s|,|s—7r+1|}, s € R,
—n+ 1 <r <oo. Let the symbol satisfy

8?8?@(1‘,5)‘ < My glé" 20117 P for 2 € Q and € € R"

(2.12)

and for any choice of multi—indices |o| < p and |f| < m — 1. Here
d=0ifp =0andd=1if g #0.
If 1 < p < oo then the operator
Ag = roa(z,d) —rq a (z,0) : H3(Q) — H"1(Q)
(2.13)

s bounded, i.e. Aq has the order r — 1.

Proof. Since, with the mean value theorem,

o n—la , 0 , :
a(z,€)— @ (2,€) = a(z,€,6,) — a(z,& +w &) =~y a(x,gazk W E)

=1
with a suitable 0 <6 <1, o' =[(1+ |,§’|2)1/2 —|gNete

Wk,

and
SUEHE) < €0/ Heal < 21/ HEal) for [u] < 1 provided [€/+]eu] > 2
we get with (2.12)
000, [a(z,&)— a (x,8)]| < M, 4l&" 51" for all z € Q and € € R™.
Therefore, the operator

roai(x,0) : ]?]I;(Q) — HZ Q) (2.14)
is bounded with

ar(2,€) = [1 = xo(&)][a(w. €)= a (x, )]l

where yo € C§°(R") is a cut—off function with x(§) =1 if [¢] < 1.
Since the function

ax(2,€) = xo(O)la(, &)~ & (2,€)]
is compactly supported in &, we get
roas(z,0)u € C*(Q) C BS1(Q)  for any u € H3(Q).
Further, we use the representation

Aq = roai(x,0)xo|0] + roai(x,0)(1 — x0)|0)" " + rqas(z, d),
(2.15)
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where [0]" = W, and (] € H"'C®(R") for r —1 > 0. For
—n < r — 1 < 0 these operators are the Riesz potentials and can be
written as

d or-1p(ndr=1
0" () = e / % with 1= "
Sy m:T(3) (2.16)

(see [46, Chapter V]). Due to Corollary 1.6 it suffices to consider only
the second term in (2.15) and assume —n < r — 1 < 0. Then the
operator |0]"~" : H?(R") — H>~"*(R") is bounded for  — 1 > 0 and
XolO"™! : HIS(R™) — HZ~"*H(R") is bounded for —n <7—1<0 (s € R
and 1 < p < 00).

Without loss of generality we may suppose rqgxo = 1. Then due to

(2.16), ¥ = (1 — x0)|0]" "t € C*°(R™) and

|02()] < Map(1+ |2])

S for e HY(Q).
This is evident for s > 0 since fﬂ;(Q) C L,(Q?), whereas for s < 0 we
can apply the representation ¢ = Z\ﬁl <ls|+1 cg0%py  with ¢y €
L,(Q) (recall that |9]"710% = 07|9]"7'). The above estimates im-
ply ¢ € N, o H (R™) and, therefore, rqai(z,0)(1 — x0)|0|" "¢ €
ﬂPnﬂL Hy (€2) C M1 cqeoo Hy () if [v] < L. Lacksquare
Remark 2.6. If | = max{|s|,|s — r|} and all the conditions of
Lemma 2.5 are fulfilled, then the operator
roa(z,d) : H3(Q) — H37(Q) (2.17)

1

18 bounded.

2.3. SOLVABILITY RESULTS. Let us consider an N x N system
of pseudo—differential equations on a compact domain 2 € R" with
smooth boundary 0€:

roa(z,0)u =v (2.18)

with a symbol a € HLC*#(Q,R"), where p > 5+2, —n<r<og

—o0 < s<k, 1<p<ooand seek a solution u € Iﬁlf,(ﬂ) for any given
v € H37"(Q).

The next theorem has been proved by R.Duduchava, D.Natroshvili
and E. Shargorodsky in [11, 12] for the particular case of pseudo—
differential equations arising in elasticity (see Theorems 3.3-3.4 below)
and in [13, Theorem 3.26] for more general symbols but less general

spaces where p = 2.
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Theorem 2.7. Let the symbol a(x, &) in (2.18) be elliptic, i.e.
inf{|deta(z,&)] :z€Q, £€S" '} >0, (2.19)

and positive definite on the boundary 052, satisfying condition (2.2) for
all x € 01).
Then equation (2.18) is Fredholm if and only if the conditions
1 r 1
p+2 1<s<p+2 (2.20)
are fulfilled.
If the numerical range of the matriz symbol a(x,§), i.e.

Ra(a) = {(a(z,)0,0) : w € R", 6TV, |w] =0 =1},

does not contain any half-line {z € C : argz = a, € [0,2m)} for all
interior points x € ), then the index of equation (2.18) is zero.
If, in addition, the homogeneous equation roa(x,0)u = 0 has only

the trivial solution uw = 0 in one of the spaces H>(€2) where s and p
satisfy conditions (2.20), then (2.18) has a unique solution in all these
spaces.

Proof. For the boundedness of the operator in (2.18) see Lemma 2.5
and Remark 2.6.

If the local principle is applied (see, e.g. [9, 13]), we find out that
roa(z,d) in (2.18) is a Fredholm operator if and only if its local repre-
sentatives

R") — HS"(R™) if @9 € O, (2.21)
(20,0) : H3(R") — HI"(RY) if @9 € 09,  (2.22)

1
a(z,€) + =alzo, (L+[E7)2[E7'¢, &)
are invertible for every zy € Q = QU (see [13]). If 79 € 2, then the
invertibility of a (z,d) in (2.21) follows from the ellipticity condition

o—1
(2.19). The inverse is then given by a (g, 0).
If zg € 01, then the ellipticity condition (2.19) is only necessary

but not sufficient for 7, @ (zo,d) in (2.22) to be invertible. The lifted
operator

rXT() 0y a (20d)AT(D) (2.23)
= 7 (A7 @ A7) (w0, 0) 1 Ly(R2) — L,(R?) (2.24)
should be invertible as well (cf.(1.4), (1.24), (1.25) and [13]). Since

En —i(1+E2)2\55 o o
‘. +i(15+ |§/|2)§> a_ (wo,§) ay (wo,§)

2

NE) G (0, X(6) = (



(cf. Theorem 2.1) where a~, az' € H°C*1(R?) have all the necessary
analyticity properties, the operator in (2.23) is invertible if and only if
there hold the conditions

1 1
-—l<s——-<- (2.25)

(cf. [9, Sect.2]). Note that conditions (2.25) and (2.20) coincide.

The operator rqa(z,d) has one and the same regularizer in all the
spaces H?(Q2) — ]ﬁlf,_’”(Q) if (2.25) holds. This implies the independence
of Kerrqa(z,d) of r and p. Hence, if the kernel is trivial for some pair
of parameters (s, p), it will be trivial for any s and p meeting conditions

(2.25).
The index formula Ind rqa(z, 9) = 0 follows, since the index as well
as the kernel are independent of s and p and for s = —1/2, p = 2

this is known from [13, Theorem 3.26]. If, in addition, we assume
the property Kerrqa(z,d) = {0}, this yields the unique solvability of
Equation(2.18). Lacksquare

Remark 2.8. Theorem 2.7 holds if we consider the same equation
in the Besov spaces: Let a € HpC*'(Q,R") and v € B "(Q) be

given and seek a solution u € ]E;q(Q) (see(2.18)). Then the condition
(2.20) for the Fredholm property is independent of q.

The proof of sufficiency follows from Theorem 2.7 and from the in-
terpolation property (1.11) — (1.12) since the operator rqa(z,d) :
ﬁg’q(Q) — By "(Q) and its inverse (rqa)~'(z,0) : BS "(Q) — IE;AQ)
are bounded for the same values of the parameters s and p as in The-
orem 2.7.

The necessity can be seen as follows: for s outside of the interval
given by inequality (2.21) either the equation (for some small s) or
the adjoint one (for some big s) has an infinite-dimensional kernel. If
s coincides with one of the bounds in (2.20) then the stability of the
Fredholm property yields that rq(z,d) can not be normally solvable.
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3. CRACK PROBLEMS: SOLVABILITY AND
REGULARITY

3.1. FORMULATION OF PROBLEMS. Now we shall apply the
refined Wiener—Hopf technique to the problem of finding the displace-
ment field u = (u, ug, u3) in a homogeneous anisotropic elastic medium
occupying a domain 2 C R? and containing a crack S C €2 whose ge-
ometry is given. Let us assume that the crack lies in the interior,
00N S = @, where S = SUOS. Assume that the closure S can be rep-
resented as a k—smooth manifold (k > 3) with a k-smooth boundary
0S. For the sake of brevity we suppose that 0 = R3. Moreover, S can
be extended to a closed compact k-smooth surface S CR3withScC S
and S = 9O+ where QF is a domain interior to S. The equilibrium
equations in the elastic material read (see [15, 27, 29])

or;
Z X, =0, i=1,23,

where X = (X3, Xy, X3) are given body forces and where 7 = ||7;;]|3x3
is the stress tensor. In the sequel we assume that X = 0 since otherwise
we can superpose a corresponding particular elastic field.

For small deformations we introduce the strain tensor e = ||e;;||sx3
and assume Hooke’s law in the form (see [15, 27, 29])

3
= E CijmnCmn

m,n=1

1 (ou,, Ou, o )
where e,,, = — Y + 4 for i,5,m,n=1,2,3. (3.1)

2\ 0x, Oz,

Here the elastic moduli ¢;jp,, are real-valued and satisfy the symmetry
relations

Cijmn = Cmnij = Cjimn- (32)

The energy conservation law leads to the following strong ellipticity
condition: there exists a constant ¢y > 0 such that

> CiimnGiiConn > CoZIQJ forall ¢ = (i € C.
2,J,m,n (33)
27



From (3.3) it follows that the 6 x 6 matrix

C1111 C1122 C1133 C1123 C1131 C1112
L C2222 C2233 C2223 C2231 (2212

C =l ._ i ® (3333 C3323 (3331 C3312

- HCUH6><6 - 5
L L L C2323 C2331 (2312 (3 4)
. . ° ® (3131 (3112 ’
[ J [ J [ J [ J [ ] C1212

defined by the 21 elastic moduli (see (3.1), (3.2)) is symmetric

C = llcijlloxs = lejilloxs = €T
and positive definite: there exists a positive ¢y such that
— —_— Co Co
CTCC=) Gl = 5D |G =S¢ forall ¢ eCE.
— 2 £ 2
i,] j (35)
After inserting the representation of the strain tensor into Hooke’s
law (3.1) and the latter into the equilibrium equations, we get for the

displacement vector u the second order partial differential equation (see
[15] and [29, Section 11])

Lu=0 with £=D'CD. (3.6)

Here D represents the generalized 6 x 3 matrix operator whose trans-
posed 3 x 6 matrix operator D is given by

g 0 0 0 03 0 9
DT = 0 82 0 83 0 81 y where 8j = a—
0 0 05 & O 0 i

For the elliptic partial differential equation (3.6) we shall consider two
fundamental boundary value problems: the Dirichlet and the Neumann
problems.

The Dirichlet Problem. For given u* € Hf:/#(S) with (ut—u™) €
H,/ ?(S) find a solution of equation (3.6) in R®\ S satisfying on S the
boundary conditions

YEu = uF. (3.7)

Here 7§ are the trace operators which restrict functions from the
Sobolev space Hj, (R%) with R? := R*\ S to the two different faces
S* of the surface S where ST represents the face associated with the
compact interior domain Q. By H}, (R%) we denote the Sobolev space

loc

of vector-functions p(z) = (p1(x), pa(x), p3(x)) on RY with

o= ([ te@P+ve@P)a) " <o (33)

Qs
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for any compact region g = Q\ S € R3. At infinity we require the
solutions u(z) vanish:

u(z) =o(1) for |z| — oco. (3.9)

Hl/ 2(9) denotes the trace space of H}, (R%)-functions on S; note that
the traces 4 ¢ and g for ¢ € H}, (R%)) may be different. As intro-

duced prev1ous1y,_H2/ ?(S) consists of those functions ¢ € Hl/ *(8) for
which suppy C S.
The Neumann Problem. For given t* € H_%/#(S) with (T —

t7) € H;UQ(S) find a solution of equation (3.6) in R?\ S satisfying the
boundary conditions

YET (Op,n(x))u =1t on S. (3.10)

Here 7 (0,,n(z)) denotes the traction operator (see [29, Sect.11]) de-
fined by

T (0y,n(z))u = NTCDu (3.11)
nq 0 0 0 ng no
where N'=10 ny, 0 ng 0 m

0 0 nyg nNg Ny 0

with n; = n;(z) and n(x) = (ni(z), n2(z), n3(x)) representing the ex-
terior normal vector to S.

Since the pointwise traces 727 (9., n(x))u in (3.10) may not exist for
u € Hj, (R%), we need to introduce this expression via the variational
formulation of the problem.

For any regular vectors u, v € C*RY)N C’l( N Cl(Q+) with -
R3\ Q*, decaying at infinity as |z|™!, there holds the Green formula

/yg’]'(&ﬂ,n(x)) (x) /Eu dx:l:/E(u,v)dx
S et
with  E(u,v) Z CrjpqOjUkOqUp (3.12)
k.j.psa
(see [29]). If u € HZOC(RB), Lu € Ly lOC(R3) then the right hand
side in (3.12) is Correctly deﬁned for any v € HcompGR%)‘ The bilin-
ear form ( ;T(@, n))u, 73 v)¢ defines then by duality the distribution
7;7(8, n)u € H;(S) (see [49]). Hence, (3.10) is understood in the

distributional sense.
29



To formulate the boundary integral equations we need the double
and the single layer potentials

Ugi(z) = / [T(0,,n(4))G(= — )] $(y) 4,5,

S

Vul(z) = — / G(z — y)(y)d,S for = € RS,

S

(3.13)

respectively, where
G(x)=F 'L (x) for v€R? (3.14)

represents the fundamental solution of equation (3.6) given by the in-
verse Fourier transform of the inverse symbol £71(£) of the elliptic
differential operator £ in (3.6).

If D(&) denotes the symbol of the operator D, given by

000 & & |
DT(f):—i 0 & 0 & 0 & for 52(51,52,53)€R57
0 0 & & & 0 (3.15)

then the symbol of L is given by
£(¢) = DT()CD(9). (3.16)

Obviously, D(&) is homogeneous, i.e. D(A) = AD(§) and one easily
shows that rankD(§) = 3 for || # 0. Hence, there exists ¢; > 0 such
that

ID)S| = ealélln|

and Condition (3.5) ensures the negative definiteness of the 3 x 3 matrix
symbol £(€) in (3.16):

— (£(£)¢,¢) = =(CD(£)(, D(E)C) = %\D(i)dz > dol&]*I¢I* (3.17)

with some constant dy > 0 and for all ¢ € R®, (e C?

The same notations Ug and Vg will be used for the direct values
of the integral operators (3.13) when z € S; in this case the integral
defining Ug is understood in the sense of a Cauchy v.p.. Ug and Vg
represent pseudo—differential operators of orders 0 and —1, respectively.

To reduce the boundary value problems to the solution of some

boundary integral equations, we need the following two pseudo—differential
30



operators

V() = / T(00,1(2))G(x — y)ily) S,
S
Dy(x) = T (0, n(x)) / T, n(y)G(x — )] (y) d, S, (3:18)
S

which have the orders 0 and +1, respectively. Again, the integrals are
understood in the sense of a Cauchy v.p..

The next two theorems are well-known (see [7, 11]) and describe the
explicit boundary integral equations equivalent to the Dirichlet and
the Neumann crack problems (3.6), (3.7), (3.9) and (3.6), (3.9),(3.10),
respectively.

Theorem 3.1. Let u™ € H“;/#(S) with uy == (ut —u~) € ﬁ;ﬁ(s)
see (3.7)). Then u € HY (R%) is the solution of the Dirichlet crack
s

loc

problem (3.6), (3.7), (3.9) if and only if
u(z) = —Vsp(2) + Usug(z)  for z € R, (3.19)
where ¢ € ﬂ;1/2(5) solves the pseudo—differential equation on S
V=g (3.20)
with the right-hand side given by g = —%(UJr +u™) 4+ Uluy.

Theorem 3.2. Let t* € H/"(S) with to := (tT—t~) € Hy "/*(S) (see
(3.10)). Then u € H (R%) is the variational solution of the Neumann
crack problem (3.6), (3.9), (3.10) if and only if

u(z) = —Vgto(2) + Ustp(z)  for z€RL, (3.21)

where 1 € ﬁ;/z(S) solves the pseudo—differential (hypersingular) equa-
tion on S

Dst = f (3.22)
with the right hand side given by f = %(tJr +t7) + Ulto.
3.2. THE DIRICHLET PROBLEM.

Theorem 3.3 (see [11, 12]). The single layer potential operator in
(3.13)

Vg : HY(S) — H¥(S) (3.23)

s bounded for any 1 <p<oo and —k+1<v<k+1.
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If k > 4, then (3.23) is a Fredholm operator if and only if the condi-
tions

1 3 1 1
- — = - — = 3.24
573 <v< 573 (3.24)
hold, in which case (3.20) has a unique solution ¢ € Jﬁl;(S) for any
given
g € HT(S).
Similarly, in the Besov spaces with 1 < g < oo the operator

Vs : B, (S) — BU(S) (3.25)

1,

is bounded. Under conditions (3.24), Equation (3.20) has a unique
solution o € By (S) for any given g € B H(S).

(]

Let u™ € Nypens H(S) with (ut —u~) € MNi<peoo H,/*(S). Then
the displacement vector u(x) in (3.19), which solves the Dirichlet crack
problem, is a real analytic function in R vanishing at infinity. The
traces vgu = u* on both faces of the crack surface S belong to every
Holder space C*(S) for 0 < oo < 5 and coincide on 9S : u™ (z) = u't(z)
for x € 0S.

Proof. Let

N
S=JY;, »:X;,-Y;, X;CR}:=RxR', j=1,..,
j=1 (3.26)

be some k-smooth atlas of the surface S C R3 and let

%:X;—Y;, X,Y,CR® Y,nS=Y,
Xj = (—8,8) X Xj, %lej = Xj, jI 1,...,N, (327)

be extensions of the diffeomorphisms in (3.26). By dsz;(t) = #(1)

and dzz;(t) = 5 (t) for t € R2 and ¢ € R3, respectively, we denote

the corresponding Jacobian matrices of orders 3 x 2 and 3 x 3. /()

coincides with 5/(0,¢) for ¢t € X; C R? if we delete the third column.
Let further

1/2

[, (t) = (det || (grad s, grad %jl)Hng) /

denote the Gram determinant of the vector—functions grad s,  (j, k =
1,2,3).
Without restricting generality we can choose the coordinates appropri-
ately and suppose that 3 (t) is an orthogonal matrix, i.e. Bz B =
()
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If the operator Vs in (3.23) is lifted locally from the manifold S to the
half-space R2, we get for t € R? the following transformed operator

Vi u(t) = 2. Ve lu(t)

_ —Xj<t>R2/ G5 (1) = 55D (M (Pl

where s¢;,1p(t) = x; ()Y (55(t)) and 3¢, 0(t) = x}(t)p( (1)) with
suitable smooth and compactly supported cut—off functions x; and xj.

As is shown in [1, 11], the principal part of the pseudo—differential
operator in (3.28) is given by

Vf;%ju(t) = —/g(%;-(t)(t — 7)), (t)x;(T)v(T)dr
B2 (3.29)

for v € R and ® k > [|v|]” 4+ 3. The remainder

Kju(t) := —x;(1) / (G (3¢ (t) =i (7)) Lo, (7) =G (54 (1) (t=7)) T, ()] x5 (7)0(7)dr

B
has the order —2, i.e. the operator
K, : HY(R?) — H/P2(R?) (3.30)

is bounded. Because of (3.30) and the compactness of supp x; (recall
that x; € C§°(R%)), the operator

K, : F(RY) — H™(RY)
is compact (see [49]). Therefore, the symbol of V& »;» which is the

principal symbol of the operator Vg, , reads as (cf. (3.14), (3.26),

8[s]~ denotes the integer with [s]~ < s <[s]™ + 1.
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(3.27))

Vs(z,&) = -T .(m)/e’ftg(%’»(x)t) dt

T o [
_(27r 3det% / /_Zty/ V) dun dy
—T, ()

- m / £ (”j(iv)(fo,f)) dé&y for € €R* 7 = (yo,y) € R%.

—00

Since £(€) = L(&, £) is negative definite (see (3.17)), the same holds

for the inverse
—(L7 o) = =0, LEW) = Mol PIE]* = Mol L7 (€[ In*1€] > = Manl*I€] 2,
too, where ' = £71(€)n and 5 € C3. Then, with (3.31), we find

M;|n|? _
(Vsla, €)= 1W/1' 16y, €)|2de,

d 3.32
yww/%ﬁwzmmw1 52

for all n € C? and £ € R2 B
From (3.31) and the corresponding homogeneity properties of £(§)
we get the homogeneity of the symbol and its derivatives,

OO Vs(x, M) = [N AT Vs (w, &) for |l <k —1,m e Ny, e R>, A e R.
(3.33)

If the local principle is applied (see e.g. [9, 13]), we find that Vg in
(3.23) is a Fredholm operator if and only if its local representatives

as (zg,0) : ]HIZ(R2) — HI’;+1(R2) for xy € S,
(3.34)
ry as (o,0) : ﬁ;(Ri) — HVMY(RZ)  for 9 € 0S

(3.35)
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with the modified symbol

aS (x()?f) - = F%j (':CO) Vs (1’0,5)
= Iy (20) Vs (o, (1 + f%)% sgn i, &2) (3.36)
(cf. (2.10),(3.31)) are invertible for all 7o € S = S U S (see [13]).
Since Ker Vg = {0} for v = —1/2 and p = 2 (see [3, 7, 25]), the solv-

ability result follows with the help of (3.32) and (3.33) as in Theorem
2.7.

The proposed regularity of the displacement field follows from the
proved part of the theorem and from the representation (3.19) due to
the embedding property

%
H™(S) c B(S) c C’(S) for v+ —<~ (3.37)

’ !
(see [49]) if p < oo is sufficiently large. Lacksquare

3.3. THE NEUMANN PROBLEM. For the Neumann crack prob-
lem we need the properties of Dg defined in (3.18)(see also [2]).

Theorem 3.4 (see [11, 12]). The operator
D : HYFY(S) — HY(S) (3.38)

1s bounded for any 1 <p < oo and —k+1<v <k-—1.
If k > 4, then Dg in (3.38) is a Fredholm operator if and only if the
conditions (3.24) hold, in which case (3.22) has a unique solution v €

]IT]IZ“(S) for any given
feH(S).
If 1 < q < o0, also the operator
D : BLH1(S) — BY,(S) (3.39)

is bounded. If the conditions (3.24) hold, then (3.22) has a unique solu-
tion _
@ € BLH(S) for any given g € B (S).

Let t5 € Mpeoo H/(S) 9. Then the displacement vector u(x)
in (3.21) which solves the Neumann crack problem is a real analytic
function in R% = R3\ S vanishing at infinity. The traces f@u =ut on
both faces of the crack surface S belong to every Hélder space C*(S)
with 0 < o < 1/2 and coincide on 0S : u™(z) = u™(x) for x € 0S.

"The inclusion  (tF —#7) € Npen H, */%(S) follows since H */*(S) and

]ﬁ;l/z(S) can be identified for 2 < p < oco.
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Proof. Let us consider equation (3.22). After the localization and
local transformation of variables (similar to (3.26)—(3.35)) we get the
operator representations

D, v := x;%.Dss;,' xj0 = T, Vs(ao, 8)7;:1) + Kov,
D,, : Hy*'(R*) — HL(R?),
K,, : H/H(R?) — HUP(RY)  for  m &%610)
D} v := x;,Dgx; xj0 = T, Vs (o, 8)7%:1) + K,
D7, : Hy"'(RY) — H(RY),
K HY(R2) — HYY(R2)  for dHE)
where Vg(xg, &) is defined in (3.31) and is positive definite (see (3.32)).
Due to
05 ()
—1 _ % _
s (t) grad,, s, (t)‘t:xo v grad, = »;(wo) grad,
we get
T, = N'CD(5(x9) grad,) with grad, = (9,,,0;,) ",
where D(-) is defined as the pseudo—differential operator via the symbol
(3.15).
Thus the principal symbol of the operator Dg reads as
D.S'(an g) = _T(:UOJ g)VS<‘r07 é)TT(‘TOJ §)7
T (20,€) = NCD(5(20)¢) for 29€S and € Rf3 42)

Further localization with the help of Lemma 2.5 gives: Dg in (3.38) is
invertible if and only if the pseudo—differential operators

bs (20,0) : HFH(R?) — HY(R?), for z € S,
ra b (z0,d) : H/P(R2) — HY(R%) for @y € 35,
defined by the symbol

b (20,€) =T (0,€) s (20,€) T ' (20,£),

are invertible. Here ag (z, &) is defined by (3.31) and (3.36).
The symbol Dg(z,&) inherits the positive definiteness from Vg(z, €)
in (3.32), i.e.

(Ds(x,&)n,m) > ME[[nf* for £ €R?* neC’ with M >0.
(3.43)
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Dg(x,€) is homogeneous of order one:

0¢1 07 Ds(, A§) = |AN|N"0g 0y Ds (w0, §) for |a| <k —1,m € Ny, € R% )\ eR.

ISt

Since KerDg = {0} for v = —1/2 and p = 2 (see [3, 7, 25]), the
solvability result follows with the help of (3.43), (3.44) as in Theorem
2.7.

The further proof is similar to that in Theorem 3.3 and we omit the
details. Lacksquare
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4. CRACK PROBLEMS: ASYMPTOTICS OF SOLUTIONS

4.1. FORMULATION OF THEOREMS. Let S C R3 be k-smooth
with k& > 4 and Yyg be a neighbourhood of the boundary 95 C Yyg C S
such that any y € Yjys has only one nearest point ygs on 0S. In Yjg
we introduce the following local coordinates: p = pgs(y) = p(y, yas) is
the Euclidean distance to 05 and s = s(y) = s(yss) is the arc length
on 0S. We can suppose that the coordinate diffeomorphisms in (3.26)
are given locally by (z1,x2) = (s(y), p(y)), where (z1,x9) € X; C R%

Theorem 4.1. Let u= € H ™ ™/T(S) be given and (vt — u~) €
H,/7(8), —1/2 <0 < 1/2,1 < p < .
Then the solution of integral equation (3.20) has the form

@(Sap) = p_l/QX(p)SOO(S) + 901(37p)7 f07“ (S’ p) € Yas,
(4.1)

where g € H,**7(05), @1 € Hy"*7(S), x € C*(RT) and x(p) =1 if
0 < p < e with a suitable € > 0.
Furthermore, we have the following a—priori estimates,

M7 (o H > (0S)]| + lor [H/7H7(S)]) < Ilg[EF ()]

< M(||(u* +u)[EHFS) |+ (= - =) ETHS))
(4.2)

where g is given in (3.20) and M > 0 is some constant.

If, in particular, u* € HE(S) and (vt — u™) € HL(S) with
—1/2 < 0 < 1/2, then ¢y € CV*'(3S) with —1/2 < ¢’ < o and
01 € C7(S) with0 < o’ < 0.

The theorem remains valid if the Bessel potential spaces Hy are re-
placed by the corresponding Besov spaces B, , with 1 < q < co.

Theorem 4.2. Lettt € H/"(S) be given and (t+—t~) € HYPT(S),
—1/2<0<1/2,1<p<o0.
Then the solution of integral equation (3.22) has the form

W(s, p) = pPx(p)to(s) + Ui(s,p),  for (s,p) € Yas,
(4.3)

where o € Hy**7(0S), ¢y € Hy™"77(S), x € Cg°(RT) and x(p) = 1
if

0 < p < e with a suitable € > 0.
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Furthermore, we have the following a—priori estimates
— o T o W/ \+o
(llolH 2+ (DS) | + [lvn [FL, /P4 (S)])) < || FIEL ()] <

< M(||(t" + ) E7H(S)] + || (=F — =) [E7(S)])
(4.4)

where f is given in (3.22) and M > 0 is some constant.

If, in particular, t* € HO(S) and (t7 — ¢7) € HZ(S) with —1/2 <
o < 1/2, then ¢y € O3 (3S) and ¢, € C'*(S) for any —1/2 <
o' <o.

The theorem remains valid if the Bessel potential spaces H are re-

placed by the corresponding Besov spaces B}  with 1 < g < oo.

The full asymptotics can be obtained for the following modified
pseudo—differential equation on the half-space:

a ()u=v on R" |
V€ H;_T(Ri)7 m > g + 17 r,s S R’ 1 < p < 0, <45)

where the symbol a € H}C>®(R") is positive definite (cf. (2.2)) and
modified according to (2.10).

Let
HPRY) = (| HJ(RY) and HI(RY):= () HI(RY).
m>0 1<p<oo (46)
Then (see (1.34), (1.35))
HX(RY) ﬂ By (R}) C {p € CP(RY) : p(c0) =0}
520 (4.7)

and ¢ € H°(R%}) implies a(9)p € H°(R}) for every multiplier a €

Mé”) (R™) with any v € R if the symbol a({’, &, + i\) has an analytic
extension in §'(R"™! x C~). This implication follows from (1.25) and
from the footnote remark on page 14.

We need also two classes of symbol—functions (see (1.26))

SP(R™ x B) = {a € SE(RY B x R) : a(z,€) = a(6)}
SPR) = {0 € SPXRYRXR) ¢ an,€,6) = al€)} g
The class S°(R™") coincides with Hérmander’s class ST o(R" ).
Theorem 4.3. Equation (4.5) has a unique solution u € ]ﬁl;(R’i)

for any given v € H;~"(R%) if and only if the conditions in (2.20) hold.
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If this is the case and v € HZ(RY), then the solution of Equation (4.5)
has the form

ul) = 0 (xa)e™™ Y ay ™ Pup(al) + 2t (),
k=0 (4.9)
with u, € HXR™) and |0%ud, ()] < Coal o
for any o € Njj, m €Ny, 0<v <1 and some constant C,, > 0.
For the scalar symbol case, an expansion similar to (4.9) was obtained

in [14, Section 7] even for the general case when the symbol a(&) has
not the continuity property (2.1).

4.2. PROOF OF THEOREM 4.1. We shall apply the Wiener—
Hopf method developed in the first two sections. The method was
suggested by G.Eskin in [14] for the scalar case and applied in [7] to
the crack problems in an isotropic medium.

Since g € B*™/(S) ¢ H/"(S), due to Theorem 3.3, Equation
(3.20) has a unique solution ¢ € Hll,/p_lJrU(S) . Let s, x; be the same
as in subsection 3.2 and let x§ € Cg°(R%) be such that x9x; = x?; this
is possible since y;(z) = 1 in some neighbourhood of XJQ C X, C @
and x}(z) =1if 2z € X7.

After a local lifting of equation (3.20) from the neighbourhood of the
boundary of the manifold S to R% we get

Xy Vi(a, 0)@; + X3K;8; + Tle = X39; = G, (4.10)
Vi(z,8) = x;(2)Vs (54 (), €)
5i(x) = x;(1)750(z) = x;(2)p(55(x)), ¢ € HP"H7(R3),
G;(2) = x;(2)5g.9(x) = x;(2)g(5¢(x)), g; € HyT/PHo(RD),

Tl(tp = %j*%?VS(l - 55])(:0 € Cg(Ri)a ;({j) - %j_*lxga ng - %j_*IXj
since supp )?? Nsupp(l — ;) = @. The operator K; is defined in (3.30)
and has the order —2.

Consider the modified symbol V; (z,&) = Vj(x, (1 + &)Y2sgn &y, &)

(cf. (2.10)). Then equation (4.10) can be rewritten in the form
Xre Vs (2.0)8 = g
g =9 —XIBS VG —The, gl e HFVPTO(RY), (4.11)
since Béﬁz) = K, +r[V;(z,0)— \ofj (x,0)] has the order —2 (see

Lemma 2.5).
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Due to Theorem 2.1 and Lemma 2.3 the symbol X;j (x,€) admits the
factorization

o o—1

V) (2,€) = x;(2) Vs (5(2),€) =a_ (2,€) o, (x,€),
(4.12)

Due to (1.24) and (1.25) the operators

where a*!, aT' € H¥/2Ck-1(R2 R?).

oEl ~ ~
a, (% 0) . H}l)/p—l/Z-i—a(Ri) N Hll)/p—l/Z:Fl/Q-i-a(Ri)’

oxl
ry a_ (z,0)0: H)/PPo(RL) — HYPF/2Ho(R2) (4.13)

are bounded. Since 1/p — 1 < 1/p —1/2 4+ o < 1/p, the spaces
H}g/p_l/ﬂa(Ri) and Hll,/p_l/HU(Ri) can be identified (see [49]). Thus,
the operator

B =7, ay (z,0)ry a_ (x,0)¢ : HY/P*7(R?) — HY/P~1o(R?)

is bounded. If B is applied to (4.11), we get with (1.24), (1.25),
(1.28), (4.12) and (4.13) the local representation of the solution near
the boundary;,

G; =ry ay (z,0)ry a_ (,0)g; + ¢;.
0—1 0_1 (o} o ~
oy =rya, (z,0) [m a_ (z,0)ry a_ (z,0) — [} ay (z,0)p;
(4.14)

o—1 o =~
+ [[ -y a+ (x,a)m_ a (xaa))i| Pj

with ¢; € HY/? T7(R2), since the operators in square brackets are of
order 0.
Let us recall from [14] that

Flor F0le) = 15(€) = g0l + 5 [ 22T ar

where £, is the extension by 0 since foryw(z) = (1 4 sgn xs)w(zy, z2)

provided w € L,(R?); the integral is understood in the sense of a
a1



Cauchy v.p.. Therefore

(ﬁgm%u—amjgmhﬂo:/f*dgg_mﬂgfm@mwdr

/I; oo o0 00
- (2m)? / /]:&Hyzv(xl’w)dy?/fxzﬂﬁzw(xlafz)d@d%

JJ (4.15)
=1 / v(x1,0)w(z1,0) dry = i(yv, Yow),

where Y=g, A(6) =& xi(|6]+1), €= (6,6) € R,

for any pair of test functions v, w € S(R?).
The trace operator

1
Yo = HY(RL) — B VP(R)  for s> - (4.16)
’ p
is bounded (see [49]); thus, (4.15) can be rewritten in the form

A (0)loriv = Lor AL (0)v + ivypv ® Or (4.17)

for v € HF(R?) with s > 1/p. If (cf. (1.4))

o—1

be(z,€) = A 2(€) ay (2,€), (4.18)

then by € S’g_l’oo(]Ri,]R x R) and due to Lemma 2.3 we get the repre-
sentation

by(2,8) = bo(x) + by (x) sgn &y + Ao(&) A (E)ba(, €)
(4.19)

where by, by € C*'(R2) and by € S{ "™(R2,R x R).
Applying (4.11)-(4.12) and (4.17), we proceed in (4.14) by using
(1.33) and obtain

B =X | A2 (0)bs (w,0)lor s A2 (9)b_(w,0)g} + 0} + 90?-]

= ix) e P24 0bo (i, O] + @; + 7+ ©F 4+ ) + 905’] ( |
- 4.20
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Here

o= (A2 ) (2,0)g),

7 = ixge wul/%a)[ NHON0) ~ 1) b 0)tor ),
0 = x;e2 [M2(0), by (2, 0)) bor ¢,

) = ix;e"b(z, P+3/2(I+a2)1/2’70%)

9)
05 = xjebi (z, D)X, 2(0) (Lor A4 ()4
c Hzlj/p+l/2+a( )

(4.21)

and 90]' R), Sojﬂ(pj730j7(p§7§0? € ﬁ;/erg(Ri). The latter
follows since €0T+(A£/2b_)(x7 8)9]1. c H;)/PJF"H/?(Rm - Hzla/era_lﬂ(Ri) _

H/P oY ?(R%) and since the pseudo-differential operators in square
brackets in @? and in go? have the orders —1 and —1/2, respectively

(see Lemma 1.8). For the inclusion ¢? € HI/HU(RQ) we apply also
(1.24).

For ¢} we have with (4.16) (I + 82)1/27090] € By, /2( R), and ¢} €
H,l)/p+U(R2 ) because of Lemma 1.10. Since {7 )\+ (z,0)¢Y € H,/"to 1/2(R2)

]ﬁl,l)/pw*lm(]l%ﬂ we get ¢ € Hl/pW(IW) because of (1.24).
Now we apply Lemma 1.12 to the first term in (4.20) with r = 1/2
and obtain

ix2(2)e™ Py P y000(x) = 0,X0(w)ic) jpmy P 00? + o,
where ) € HY*™(R) and b € ﬁ-v]lll,/p“’(Ri). (4.22)
If > x9(x) = x(x2), then (4.20)~(4.22) yield (4.1).

The right-hand side in (4. 2) states that the operator Vg in (3.23) is
invertible and the operator U% in (3.18) is bounded; i.e.

lQ[HYP1+(S)|| < My [|g[HY 7 (S)]| < Me|[o]H /7 (8)]
< M (It + ) S)) 4 (= — =) (S)]).

1/2

Since all functions gj, ¢9,...,¢% in (4.11)-(4.22) can be estimated by
norms of ¢ and g, we get the left—hand side of (4.2).

The inclusions @, € CY*77'(9S), ¢, € C7(S) are due to the
embeddlngs BY2T7(0S) — CY2Ho'-Ur(98), HYP(S) — CF MP(9)
for any o’ < o if p is sufficiently large.

The claim about the Besov spaces follows in the same way as in the
above proof with the Bessel potential spaces, similar to the proof of
Theorem 3.3. Lacksquare
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4.3. PROOF OF THEOREM 4.2. Here we follow the same steps
as in the previous proof.
Since f € H"(S) ¢ H*"™(S), due to Theorem 3.4 equation

(3.22) has an unique solution ¢ € Hl/p+U(S). After local lifting we get,
similar to (4.10), that

X?H D; (x,@)izj = fj1 where fj1 € ]I-]Izlj/p”(]Ri).
(4.23)

The next step is the factorization which is possible due to (3.43), (3.44)
and follows from Theorem 2.1 and Lemma 2.3:

Dy (2.€) = x(2) D= (35(2).€) Dy (35(2).£).
ex(z,8) = )\j(ﬁ) ]O); (sj(x),€), where ey can be written as

1 2\1/2
s, ) = ol €) + (¢ i ;(Fli)g)m)el(x,f),

with eo(r,&) = e(x) +egsgnéy,  es,er €Sy "O(RZ,RxR), e eh €

(cf. (4.12) and (4.18)). Similar to (4.21) we get

By [P it o+ e ],
4.24

where

v = e (A2 )(2,0) £,

02 = ixgem 2 (0) [NFOAT0) — 1) e, 0n)tor o,

1/1]?.’ = x;e" [e’”X;l/Z(ﬁ), et (z, 8)]€0r+w9,

U = ixgeen (2, 0)PL (1 + 07) 7 00,

V2 = xjeey (2, 0N (2, 0) (bors My (x, 0)¢Y)
and ¢ € HYPVPT(R2), 0y € By, (R, W29 0t P €
ﬁ'vﬂzl)/ijLU(Ri).

To get the representation (4.3) we apply, similar to (4.22), Lemma
1.13 to the first term in (4.24) and find

Ck 1(R2 )

ixge“PJ:S/Q'yoeg(a:, al)w? = 9+(332))(2(I’)icg/2$§/2’}/ow]0~+w?, w? € ]I-]I;H/pJ“’(Ri).

The proof is completed in the same manner as in subsection 4.2.
Lacksquare
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4.4. PROOF OF THEOREM 4.3. Equation (4.5) has an unique
solution
u € H7(R™) if and only if the lifted equation

o

NTT(D) @ (D)AT(D)uy = (AS:T a Af) (@) = w1
(4.25)

with given v; € L,(R’) has an unique solution u; € Ly(R%) (see
(1.3),(1.4) and (1.17)). Due to Theorem 2.1 we have

En — (1 + |5/|2)1/2 T3, —1
b b
& +i(1 %-|§W2)1/2> - +'(5)(4.26)

XT(E) @ (9A7() = (

where the factors b='(¢', &, + i) and b= (¢, &, — i)) for A = 0 belong
to SP(R™! x R) (see (4.8)) and have analytic extensions for A > 0.
Then, due to the principal result in [9], the lifted operator in (4.25) is
invertible in L,(R?) if and only if the inequalities

1 r 1

Sol<s——< =

p 2. p
are fulfilled. These are identical with (2.20). If these inequalities hold,
then the solution of (4.5) reads as

w= X" (8)by (0)or N2 (0)b_(8)v = by (O)A"*(0)lor A" (D)b_()v
(4.27)

where b, (€) := X’jr/z(f ))\r/ ()b, (€). The next formula is proved simi-
lar to (4.17):

Cory = A7 O o NT(D) + i i Pl=m=ly Xm=k (),
paard (4.28)
where g is the trace operator (see (3.6))
0= 0 HRY) — BpPRY, 1
HP(RY) — HFPR"!) for 1 <p<oo, s 74;29)

From (4.27) and (4.28) we derive the representation

m

bemoiofe
w=i3 Pary NI @ATH @) (D)o +ul,  (4.30)
k=0

where u} € ;o0 Hy /P2 (R ) for all 0 < v < 1. In fact,

ub = XN )b (0) oy with vy = Lor ATFHO)AZ(9)b_ () ;
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and the claimed inclusion in (4.30) follows from (1.24) since v; €
HE(R™) due to (4.7) while H2(R™) € Hy "H/P(R?) = HY PR,
Due to Lemma 2.3 we have

= 2 NEAZ©b5(€) + AT (&)

with  bo,. by € SER™)  and B, € SP®™ x R\ FSY

where \g(€) is given in (1.4) and the symbol classes are defined in (4.8).
If we apply the representations

Ny(EWNT ()i (&) + MTHENMNTFTHE) S 11 (6)

NPONT©) = D NN (©)das(€) + MTHEIAFTE)dS e (€)

j=0
with djye () M@®R"™") and d, € [ M®RY), j=12 I=1.k
1<p<oo 1<p<oo

where the coefficients in these representations satisfy the conditions of
Theorem 1.2, then with (4.31) we get the representation

=Y NN (b€ + ATHENTTHOM (9

j=0

where g@,...,gke ﬂ M,(R™™)  and ?JEHE ﬂ Mp@@z)

1<p<oo 1<p<oo

If we insert (4.32) into (4.30), apply Lemma 1.10, (4.16) and (1.37),
we get

m k
:ZZZP’“””/“ T ul ol (4.33)
=0 j=
= WA H @A ()b (9) 4.34
’o” —AJ( )b;(0)ug, (4.35)

(4.36)
where uf € H2(R"™) (see (4.7),(4.28)) ub? € H2(R™™1) (see (1.35),(4.34))
and u} € (oo Hy 72 (RE) for all 0 < v < 1.
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Thus, from (4.30) and (4.33)—(4.36) it follows

m k
U= ZZ Z Pf_m_r/Q_j_lug’j +uy with wuj € m ]ﬁ;“””/?(RCLF).
k=0 j=0 1<p<oo (4.37)
Since
HE(RY) € {p € CP(RY) : 0%p(¢,0) =0 for |a| < [s] —n/p}
we have
uj(z) = 2t Pui(z),  where  |0%uj(z)| < dyat o forall o €N
With Lemma 1.12 we get
k—
pf—m—r/2—j—1u§,j (z) = 04 (z,)e ™ xnm+r/2+j_k+lu§’j’l(x/)+xm+r/2u1 k](aj)
!
with uf € H2(R"!) and |02uy . i (x)| < Clap—on for all o € Nj.
From (4.37) now follows

<.

I
o

k—j

m k
u(x) :i9+($n)€ Tn m+r/2zz l,% k+1 kjl /)+$m+r/2ugﬂ_l($)
k=0 j=0 1=0

= (el Y D k() + 2 ),

where
lf

m
Lid—j—k _
Z ug” TN e HE(R™TY), U1 = u3+ZZu4k],

I=k j= k=0 j=0
10%ud, 1 ()] < Cpat ™ forall o €Ny andall 0<v<lL.

This completes the proof. Lacksquare

=

=]
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