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Abstract
We prove boundedness of the Cauchy singular integral operator the special
weighted Sobolev KW7*(T, p) and Hélder-Zygmund KZj, , (T, p) spaces
for large values of the smoothness parameter, which is integer m € Ny,
when the underlying contour is piecewise—smooth with angular points and
even with cusps. We obtain Fredholm criteria and an index formula for
singular integral equations with piecewise—continuous coefficients and com-
plex conjugation in the spaces KW*(T', p) and KZ2, +u(T, p), provided the
underlying contour has no cusps, but only angular points. The Fredholm
property and the index turn out to be independent of the smoothness pa-

rameter m € Npy.

Let QT C C be a bounded domain in the complex plane with a piecewise—
smooth boundary I' = 9Q" and let Q~ = Q" be the complementary outer domain.
Let t; € I', j = 1,...,n be all knots on the boundary I' = 9QF with the angles
7y, 0 <v; <2,j5=1,...,n. The boundary curve, which is simple (i.e. without
self-intersection), might contain cusps (v; = 0,2) corresponding to an outward
(for ; = 0) and an inward (for v; = 2) peak of the domain Q*. The arcs between

N—
the knots I'; :=t;t;41, j = 1,...,n, t,41 = t1, have only endpoints in common

and they are sufficiently smooth, say the parameterizations
wi(x) + S =[0,1] —T;,  wi(0)=1;, wi(l)="t;1 (1)

are m-smooth w; € C™(f), j=1,...,n,m € Ny :={0,1,...}.
The Sobolev space W‘Z( ) for an mteger ¢ € Ny on the unit interval is defined
as follows

Wi(F) ={pely(S) : dpecL,(S), k=0,....,m},
and is endowed with a natural norm
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Applying the parameterization w;(x) we can define the Sobolev space W' (T';)
on the smooth arcs I'; for all 1 < p,q < oo provided ¢ < m. For the entire
piecewise-smooth curve I' the space W(T') can be defined only for £ = 0,1 since
any parameterization w(z) : ¢ — I has a piecewise—continuous first derivative
w € PC(H) and (9yp)(w(x)) = dpp(w(x))[w'(x)] 7! for t = w(z).

The second derivative of w, which participates in the definition of the space
Wﬁ(f‘), might be a generalized function. In fact, for a piecewise—continuous func-
tion g € PC™(T,ty,...,t,), which might have jumps only at t;,...,¢, but a
continuous m-th derivative on the closed arcs 9]"g € C(I';) for all j =1,...,n,
the first derivative is a distribution

9(t) = go(t) + D _[g(t; +0) = g(t; =06t —t;),  qlt£0)=g(t£0) (2)

j=1
where go(t) is piecewise—continuous, more precisely go € PC™ (T, ¢4, ...,t,) and

<5('_tj)7¢> = ¢(tj)’ ¢ECI(F)» jzlvan (3)

is a d—function. To prove (2) we use the transformation to the unit interval
wep(x) == p(w(x)) via parameterization w(x) : £ — I' and extend functions
continuously from .# to the entire real axis R. The problem of representation (2)
is thus we reduced to the case I' = R. Here it suffices to note that a function
g € PC™(R, x4, ...,x,) can be represented as follows

g(x) = go(x) + Z[g(fvj +0) = g(z; = 0)lx4 (& — ;)

with a continuous gy € PC(R), g((x £ 0) = ¢'(z £ 0) and the Heaviside function
X+(x) =0 for x <0, x4(x) = 1 for > 0. There remains to note that x’, = 4§ in
the since of distributions.

It is clear, due to (3), that the multiplication operator

gl : Wi(I) — WiT),  gePC™I,ty,...,t,) (4)

is bounded only if ¢ = 0 (i.e. in the Lebesgue space L,(I") only).

Furthermore, we like to consider singular integral operators in such spaces,
which requires boundedness of the Cauchy singular integral operator (see The-
orem 3 below) To solve all three problems (namely, to define relevant Sobolev
spaces for large m > 1, to ensure boundedness of multiplication operators (4)



and of Cauchy singular integral operator there) we suggest to consider a special
Sobolev space KW' (T", p) with a power weight

= [t = ;) a;€C, 1<p<oo. (5)

7j=1
Namely, the space is defined as follows

KW, p) i={p € Ly(F,p) : peLy,(S,p"), k=0,...,m}, (6)

n

pB(t) = T1 It = oot

The space is endowed with a natural norm
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lo | KW, p)l| == <Z 107 | Hﬁo(F,/)(’“))\lf")
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which makes it a Banach space. It can be verified straightforwardly that the
following norms are equivalent to the original norm in (7):

lp | KW, p)llh = (él\(ﬁ@)% | Lp(F,p)H”)p ) =110 1), (8)

J=1

lo | KW, p)lo = (i ko Lp<r,p>up)p | ©)

Lemma 1 The space KW' (T, p) is correctly defined, i.e. it is independent of the
choice of a parameterization w(x) : & — I of the curve T.

The multiplication operator gl s bounded in KW;”(F,p) for any function
g € PC™(Tty,...,t,) and all £ =0,1,...,m

Proof. From the definition of the d—function (3) it is clear that
(t—tj)é(t—tj):0, jzl,...,n (10)

and, therefore, ¥¢' = Jg(, (see (2)). Thus, dealing with functions from the space
KW (T, p) we can ignore the §—functions while taking derivatives. Therefore,

g =gy €PC™ T, ty,...,tn).
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For higher derivatives we obtain similarly: ¢*) := 9%g € PC™Y(T',ty,...,t,) for
all k = 2,...,m and, at the knots,

g®(t; £0):= lim dFg(t) forall j=1,....n, k=0,1,...,m. (11)

tﬂtj:to
This yields
k . ‘
90 (gp) =Y { ‘,1 ) I Igh=DWiglp k=0,1,...,m. (12)
=0

and boundedness of the multiplication operator (4) follows.
The independence of the space KW'(', p) of the choice of a parameterization
of T" is a consequence of the boundedness property (4) proved above, because

V0:p(w) = 9(0rp) (W) 0o, P*Ogp(w) = 9*(0 ) (w)(0otw)? + 9(r0) (w) 0 Dyw

etc. Since multiplication by the function (9*~'0Fw)* € PC™*(T,ty,...,t,) is
bounded in KW7'~*(T, p), we find that the transformation

wy + KW, p) — KWINI o), wep(z) i= p(w(z)), (13)
W(l—O) :tl—O, w(O—l—O) :t1+0, w(a:j) :tj, j:2,...,n,

pole) i= 2tz = 1)

J

(z — ;)%
2

is a homeomorphism. n

Let us consider the weighted Holder—Zygmund space
Zg(l“,p) ={po=pp €Z,T) : po(tj) =0, k=0,...,m}, 0<pu<l,
which is endowed with a natural norm

o | Z)(T, p)Il = llpw | Zp(T)l (14)

[0 | Zp(D)]] = sup [WOI+ sup A7EP(E(s + b)) = 20(H(s)) + ¥ (E(s — B[]

h>0

where

t(s) : [0,(] =T
is the natural parameterization of I" with the help of the arc length parameter
0 < s < (. Equivalent norms can be written as in (8) and (9).
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If 0 < i < 1 the second difference |k (t(s + h)) — 20k (t(s)) + i (t(s — h)| in
the definition of the norm in (14) can be replaced by the first difference |pg(t(s+
h)) —pr(t(s))| (see [St1]) which means that the weighted Holder-Zygmund space
KZ)(T, p) coincides with the weighted Hélder space H))(T', p) (the case considered
in [Dul, Du2, Du4]). For = 1 the spaces HY(T', p) and Z%(T, p) differ essentially
(see [St1])..

If we define straightforward the Holder—Zygmund space Z9, WLy p) form > 1
we need m + pu—smooth contour I'. If I' is piecewise-smooth and we like to have
a space which has properties similar to those presented in Lemma 1, we suggest

the following special weighted Holder—Zygmund space

KZ,, (L, p) == {pp € Z,(T) : o :=pMd*p € Z,(I), (15)

wp(t;)) =0, k=0,...,m, j=0,...,n}

and endow it with a natural norm (cf. (14)).

m—1
lp | KZD,, (T, p)|| == 282219 lex(D)] + llm | ZRT)] -
k=0

Lemma 2 The space KZ%L+H(F,p) is correctly defined.

A multiplication operator

gl : KZ°

m+u(F> p) - KZ?n—i-u(Fa /O) (16)

is bounded for every piecewise—Holder—Zygmund function g € PZ™ (T ty, ..., t,),
which might have jumps only at ty, ..., t, provided the m—th derivative is Holder—
Zygmund continuous on the closed arcs, i.e. Oy*g € Z*(I';) forall j =1,... ,n.

Proof. The proof follows word in word the proof of the preceding Lemma 1
with obvious modifications. ]

Theorem 3 The Cauchy singular integral operator with weight

Stwelt) = = [ wl eI ey =TJe-t a7

mr w(r) T—1 Pl

18 bounded in the spaces KW;”(F, p) provided the following conditions hold

1 1
—§<Oéj+ﬁj<1—z—?, j=1...,n, 1<p<oo, meN. (18)

0

miu(Ls p) if the parameters sat-

Furthermore, Sr,, is bounded in the space KZ
1sfy
p<oj+p0;<p+l, j=1....n,1<p<l, meN,. (19)



Proof. Obviously,

k
ﬂkﬁfSngp = Z cljwﬁg(ﬁjSpw_lgo)
=0
A k
cojwd] (Sp?w ) + Z csjrt’w(Brt"p)

JHr<(m=1)k—1

Il

<
> |
o

k
ngw(S[‘agﬁjU)ilQO) + Z ngrtj’UJ(BFtrgO)

j=0 jHr<(m—1)k—1
k ' k
= (SO + Y extw(BrtTy), (20)
Jj=0 j+r<(m—1)k—1

where

1 [Y() , .
Brip = m,/w(T)dT, Br : L,(',p) — C
I

is a functional. Due to the conditions (18) the singular integral operator
Srw + Lyl p) — Ly(L, p) (21)

is bounded (which is the same as boundedness of Sp := Sp; for w(t) = 1 in
the space L,(T', pw); see [GK1, Khl]). Since w € L,(I',p) (see (18)) and, by
definition, ¥78/¢ € L,(T, p), 7 =0,...,m, due to (21) we obtain

1Sr.97 00 | Ly (T, p)|| < Cill9 0 | Ly(T, p)I. (22)

From (20) and (22) we get the final result for the weighted Sobolev space KW (T, p):

1Sr.ud’ 0 | Wi (T, p)| < (Z 1907 | IL4p(F,,0)II>

=0

<C (Z 19707 | LAR[))H) = Cllof | WHT, )] -

Jj=0

For weighted Holder-Zygmund spaces KZ? W(F,p) the proof is absolutely
similar and uses the boundedness result

SF,w : Zg(r7 p) - ZS,(F’ p) ) (23)

proved in [Dul, Du2] for the case 0 < p < 1. In the case u = 1 the boundedness of
(23) is proved similarly, based on the boundedness of the singular integral operator
St (without weights) in the Hélder—Zygmund space Z;(I") (see [DS1, St1]). =



Remark 4 Spaces HY""™ () similar to KW (T, p) were introduced in [CDI]
for a multidimensional case (called there anisotropic Bessel potential spaces). In
that paper M = R? or A is a manifold with smooth boundary. The authors
proved boundedness of a certain class of pseudodifferential operators and obtained
Fredholm criteria for them. Spaces LP™(RT) and XP™(RT), also similar to
KWZI(F,p), were defined by J.Elschner and applied for spline approzimation for
solutions to convolution equations (see [Pri, Ch..5]).

Theorem 3 enables us to establish the Fredholm property and an index formula
for a singular integral operator with complex conjugation

Ap :=ap+bSrp+dVStVe =f, Vo(t):=p(t), (24)
a,b,d € PC™(L',ty,...,t,) for ¢, f € KWX(T,p),
a,b,d € PH™ (', ty,...,t,) for ¢, feKZ2, (T,p).

m-tp
Although the coefficients of the operator A are N x N matrix—functions and the
equation (24) is considered in the weighted N—vector spaces, we use the same
notation for spaces and classes of functions as in the scalar case N = 1 for the
sake of simplicity.
The weight function p(t) is defined in (5) and we assume
1 1 -
——<ozj<1—5, j=1,...,n for KWI(T,p), (25)
p
p<o;<p+1l, j=1,...,n for KZSHM(F,p). (26)

Let X(I") denote the space KW *(T', p) or KZ), , (I, p) with the corresponding

conditions (25) and (26). The symbol of operator A (see (24)) in the space X(I'),

when I' has no cusps 0 <; <2, 5 =1,...,n, is defined as follows
vyt €) = A(t) + B(t)Sqry (£ €) + d() Sy (£, =€) , (27)
where
N g(t+0) 0
g(t) :== . g€ PC™YNN( ..., t,), teTl,
0 g(t—0)

oo (e (i8+8)
cothm(if +&) —— ,
sinh 7 (25, +
SX(F) (ta §> = o (1=70) (Bt +€) ( b £> , SER, (28)

sinh (i3, + &) —cothm(ify +¢)




if t#t,...,t,, X(I) =KW, p),
if t#£t,...,t,, X(T) =KZ,,,,(T,p),

By =
5+t if t=t;, X(I) = KWm(T, p),
\ Q5 — [ if t:tj, X(F):KZ%H_H(F,p),
1 if t#t,.. . b, 1
Yt {’yj iot—t X+ () 2( gn A)

Due to assumptions (25), (26) we have 0 < ; < 1 for all t € I" and the symbol
2z (L, A, ) represents a piecewise—continuous uniformly bounded function of all
variables.

Theorem 5 Let I' have no cusps, i.e. 0 <~; <2, j=1,...,n and let X™(I') =
KW, p) or X™(I') = KZ3,, (T, p) with appropriate condition in (25), (26)
being satisfied. The equation (24) is Fredholm in the space X™(T') if and only if

inf | det mr(t, )| > 0. (29)

tel, A\ ,£€R

If condition (29) holds, then

1 n
Ind A = 5 { larg det om (¢, —i—oo)]F + Z [arg det om(r (¢, A, O)]R\{O}} .

J=1

If, in particular, ¢ = 0 and the operator A = al + bSr has scalar coefficients
(N = 1), A is invertible in X™(T") either from the left provided Ind A > 0 or
from the right provided Ind A < 0.

Proof. To prove the theorem we apply results on quasilocalization (see [DLS1]
for the case L,(I', p) spaces, [GK1] for the case ¢ = 0 and L,(I', p) spaces and
[Du4] for the case of weighted Holder spaces H)(I', p); see also [Dul, Du2] for
the case of weighted Holder spaces). We will not go into details of the proof and
restrict ourselves only by some comments.

I. All singular integral operators are bounded in X™(I") if they are bounded
in X°(T') (see Theorem 3). This is valid also for any inverse operator and
any regularizer to the canonical operator A = al + bSt, because they have
the form ¢/ + dSr,,. The same proposition on boundedness holds if I' = R
and p(z) =1 and for I' = R and p(z) = z°.

Similar simultaneous boundedness property for all values of the parame-
ter m € Ny holds for a Mellin convolution operators zmg in the space
X™(R*,2%) (for boundedness of a Mellin convolution operators see also
J. Elschner’s results in [Prl, Ch. 5]).
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I1.

I11.

IV.

A local representative A;, of A at ¢ty € I' (including knots ¢y = t1,...,t,) is
the following Mellin convolution operator

My,

A~ Ay = alto) ]+ b(to) Mg, 1+ )My = M40

(to, Sxm (1) (to,—

in the space X™(R", %), where ay, = 0 for tg # t1,...,t, and ay, = «;
(see [DLS1, Dud]). This operator, as we already noted, is invertible in
X™(RY, x%0) if and only if it is invertible in X°(R*, z%0) (i.e. either in
L,(R*,z%0) or in Z)(R™, z%0) — the cases considered in [DLS1, Du4]).

The symbol of the operator Ay defined in [DLS1] and in [Du4] (see also
[Dul, Du2]) has a block—diagonal form

(%)X(F)<t7 )\76) 0
0 () x(r (£, —A, =€)

and it suffices to consider only the first block as a symbol of Ay. Due to

1
this change the index formula carries the factor 3

Let us note that the symbol would be a full matrix—function if the cor-
responding operator contains terms V. Sr, Val, aV or SpV (see Remark
6).

If Bxmmy(t, A, &) is the symbol of B, the symbol of VBV reads as follows
(%‘@%)Xm(F) <t7 )‘7 5) = '@(t _)‘7 _5) (30)
(see [DLSI, §1]). n

Remark 6 From Theorem 5 we find that the Fredholm properties and the index
of the operator A (see (24)) in the space X°(T') are independent of the smoothness
parameter m € Ng. That means that if the equation Ap = f for f € X™(T, p)
has a solution o € X°(T', p), then automatically ¢ € X™(T, p).

Remark 7 FEquations more general than (24)

Ap = ap+ bV + cSrp + dVSpp + eSpV + gV SpVe = f | (31)

are linear in the space X™(I') over the field of real numbers R. After “doubling”

the equation by adding the composition Vﬁgp =V f and introducing new vector—
functions ® := (o, V), F = (f,Vf), we get the following equation

S

€ 9

e c

o + VSVe =F, (32)

b
b a

]SFCI>+

Ql o

g
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which is linear (the same as in (24)) and can be treated in the space X™(T") over
the field of complex numbers C (see [DL1, li1]). We will only indicate the symbol
of the operator A because the corresponding Fredholm properties and the index are
defined by the symbol as in Theorem (5) (note, that we does not need to double

the size of the symbol of the operator A as this was done for the operator A).
Namely,

gmry(t,€) = A(t) + b(t)V + &t)Sxemry (1, €)

+d(t)V Sxem(ry (t, €)c(t) + €(t) Sxmry (£, €)YV + gV Sxmmy (£, €)7,  (33)

where, in addition to (28), we have to indicate the symbol ¥ = Yxmy of the
complex conjugate operator:
0 1
Vo=
10

which is independent of the point t € I' and the space X™(I") (note, that
YV Sxmry(t,§)V = Sxm(ry(t, —§); cf. (31)).
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