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Abstract
We prove boundedness of the Cauchy singular integral operator the special
weighted Sobolev KWm

p (Γ, ρ) and Hölder–Zygmund KZ0
m+µ(Γ, ρ) spaces

for large values of the smoothness parameter, which is integer m ∈ N0,
when the underlying contour is piecewise–smooth with angular points and
even with cusps. We obtain Fredholm criteria and an index formula for
singular integral equations with piecewise–continuous coefficients and com-
plex conjugation in the spaces KWm

p (Γ, ρ) and KZ0
m+µ(Γ, ρ), provided the

underlying contour has no cusps, but only angular points. The Fredholm
property and the index turn out to be independent of the smoothness pa-
rameter m ∈ N0.

Let Ω+ ⊂ C be a bounded domain in the complex plane with a piecewise–

smooth boundary Γ = ∂Ω+ and let Ω− = Ω
+

be the complementary outer domain.
Let tj ∈ Γ, j = 1, . . . , n be all knots on the boundary Γ = ∂Ω+ with the angles
πγj, 0 ≤ γj ≤ 2, j = 1, . . . , n. The boundary curve, which is simple (i.e. without
self–intersection), might contain cusps (γj = 0, 2) corresponding to an outward
(for γj = 0) and an inward (for γj = 2) peak of the domain Ω+. The arcs between

the knots Γj :=

)

tjtj+1, j = 1, . . . , n, tn+1 = t1, have only endpoints in common
and they are sufficiently smooth, say the parameterizations

ωj(x) : I := [0, 1] −→ Γj , ωj(0) = tj , ωj(1) = tj+1 (1)

are m–smooth ωj ∈ Cm(I ), j = 1, . . . , n, m ∈ N0 := {0, 1, . . .}.
The Sobolev spaceW`

p(I ) for an integer ` ∈ N0 on the unit interval is defined
as follows

W`
p(I ) :=

{
ϕ ∈ Lp(I ) : ∂kϕ ∈ Lp(I ), k = 0, . . . , m

}
,

and is endowed with a natural norm

‖ϕ |W`
p(I )‖ :=

(∑̀

k=0

‖∂k
xϕ | Lp(I )‖p

) 1
p

=


∑̀

k=0

1∫

0

|∂k
xϕ(x)|pdx




1
p

,
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∂k
xϕ(x) :=

∂kϕ(x)

∂xk
.

Applying the parameterization ωj(x) we can define the Sobolev space W`
p(Γj)

on the smooth arcs Γj for all 1 < p, q < ∞ provided ` ≤ m. For the entire
piecewise–smooth curve Γ the space W`

p(Γ) can be defined only for ` = 0, 1 since
any parameterization ω(x) : I → Γ has a piecewise–continuous first derivative
ω ∈ PC(I ) and (∂tϕ)(ω(x)) = ∂xϕ(ω(x))[ω′(x)]−1 for t = ω(x).

The second derivative of ω, which participates in the definition of the space
W2

p(Γ), might be a generalized function. In fact, for a piecewise–continuous func-
tion g ∈ PCm(Γ, t1, . . . , tn), which might have jumps only at t1, . . . , tn but a
continuous m–th derivative on the closed arcs ∂m

t g ∈ C(Γj) for all j = 1, . . . , n,
the first derivative is a distribution

g(t) = g0(t) +
n∑

j=1

[g(tj + 0)− g(tj − 0)]δ(t− tj) , g0(t± 0) = g′(t± 0) (2)

where g0(t) is piecewise–continuous, more precisely g0 ∈ PCm−1(Γ, t1, . . . , tn) and

〈δ(· − tj), ψ〉 := ψ(tj) , ψ ∈ C1(Γ) , j = 1, . . . , n . (3)

is a δ–function. To prove (2) we use the transformation to the unit interval
ω∗ϕ(x) := ϕ(ω(x)) via parameterization ω(x) : I → Γ and extend functions
continuously from I to the entire real axis R. The problem of representation (2)
is thus we reduced to the case Γ = R. Here it suffices to note that a function
g ∈ PCm(R, x1, . . . , xn) can be represented as follows

g(x) = g0(x) +
n∑

j=1

[g(xj + 0)− g(xj − 0)]χ+(x− xj)

with a continuous g0 ∈ PC(R), g′0(x± 0) = g′(x± 0) and the Heaviside function
χ+(x) = 0 for x < 0, χ+(x) = 1 for x > 0. There remains to note that χ′+ = δ in
the since of distributions.

It is clear, due to (3), that the multiplication operator

gI : W`
p(Γ) −→W`

p(Γ) , g ∈ PCm(Γ, t1, . . . , tn) (4)

is bounded only if ` = 0 (i.e. in the Lebesgue space Lp(Γ) only).
Furthermore, we like to consider singular integral operators in such spaces,

which requires boundedness of the Cauchy singular integral operator (see The-
orem 3 below) To solve all three problems (namely, to define relevant Sobolev
spaces for large m > 1, to ensure boundedness of multiplication operators (4)
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and of Cauchy singular integral operator there) we suggest to consider a special
Sobolev space KWm

p (Γ, ρ) with a power weight

ρ(t) :=
n∏

j=1

(t− tj)
αj , αj ∈ C , 1 < p < ∞ . (5)

Namely, the space is defined as follows

KW`
p(Γ, ρ) :=

{
ϕ ∈ Lp(I , ρ) : ∂kϕ ∈ Lp(I , ρ(k)), k = 0, . . . ,m

}
, (6)

ρ(k)(t) :=
n∏

j=1

|t− tj|αj+k .

The space is endowed with a natural norm

‖ϕ | KWm
p (Γ, ρ)‖ :=

(
m∑

k=0

‖∂k
t ϕ | Lp(Γ, ρ(k))‖p

) 1
p

=




m∑

k=0

∫

Γ

|ρ(k)(t)∂k
t ϕ(t)|p|dt|




1
p

, (7)

which makes it a Banach space. It can be verified straightforwardly that the
following norms are equivalent to the original norm in (7):

‖ϕ | KWm
p (Γ, ρ)‖1 :=

(
m∑

k=0

‖(ϑ∂t)
kϕ | Lp(Γ, ρ)‖p

) 1
p

, ϑ(t) :=
n∏

j=1

(t− tj) , (8)

‖ϕ | KWm
p (Γ, ρ)‖2 :=

(
m∑

k=0

‖∂k
t ϑkϕ | Lp(Γ, ρ)‖p

) 1
p

. (9)

Lemma 1 The space KWm
p (Γ, ρ) is correctly defined, i.e. it is independent of the

choice of a parameterization ω(x) : I → Γ of the curve Γ.
The multiplication operator gI is bounded in KWm

p (Γ, ρ) for any function
g ∈ PCm(Γ, t1, . . . , tn) and all ` = 0, 1, . . . , m.

Proof. From the definition of the δ–function (3) it is clear that

(t− tj)δ(t− tj) = 0 , j = 1, . . . , n (10)

and, therefore, ϑg′ = ϑg′0 (see (2)). Thus, dealing with functions from the space
KWm

p (Γ, ρ) we can ignore the δ–functions while taking derivatives. Therefore,

g′ = g′0 ∈ PCm−1(Γ, t1, . . . , tn) .
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For higher derivatives we obtain similarly: g(k) := ∂k
t g ∈ PCm−1(Γ, t1, . . . , tn) for

all k = 2, . . . , m and, at the knots,

g(k)(tj ± 0) := lim
t→tj±0

∂k
t g(t) for all j = 1, . . . , n , k = 0, 1, . . . , m . (11)

This yields

ϑk∂k
t (gϕ) =

k∑
j=0

[
j
k

)
ϑk−jg(k−j)ϑj∂j

t ϕ , k = 0, 1, . . . , m . (12)

and boundedness of the multiplication operator (4) follows.
The independence of the space KWm

p (Γ, ρ) of the choice of a parameterization
of Γ is a consequence of the boundedness property (4) proved above, because

ϑ∂xϕ(ω) = ϑ(∂tϕ)(ω)∂xω , ϑ2∂2
xϕ(ω) = ϑ2(∂2

t ϕ)(ω)(∂xω)2 + ϑ(∂tϕ)(ω)∂xϑ∂2
xω

etc. Since multiplication by the function (ϑk−1∂k
xω)` ∈ PCm−k(Γ, t1, . . . , tn) is

bounded in KWm−k
p (Γ, ρ), we find that the transformation

ω∗ : KWm
p (Γ, ρ) −→ KWm

p (I , ρ0) , ω∗ϕ(x) := ϕ(ω(x)) , (13)

ω(1− 0) = t1 − 0, ω(0 + 0) = t1 + 0 , ω(xj) = tj , j = 2, . . . , n ,

ρ0(x) := xα1(x− 1)α1

n∏
j=2

(x− xj)
αj

is a homeomorphism.

Let us consider the weighted Hölder–Zygmund space

Z0
µ(Γ, ρ) := {ϕ0 := ρϕ ∈ Zµ(Γ) : ϕ0(tj) = 0 , k = 0, . . . ,m} , 0 < µ ≤ 1 ,

which is endowed with a natural norm

‖ϕ | Z0
µ(Γ, ρ)‖ = ‖ρϕ | Zµ(Γ)‖ , (14)

‖ψ | Zµ(Γ)‖ := sup
t∈Γ

|ψ(t)|+ sup
0<s≤`
h>0

h−µ|ψ(t(s + h))− 2ψ(t(s)) + ψ(t(s− h)|


 ,

where
t(s) : [0, `] → Γ

is the natural parameterization of Γ with the help of the arc length parameter
0 < s ≤ `. Equivalent norms can be written as in (8) and (9).
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If 0 < µ < 1 the second difference |ϕk(t(s + h))− 2ϕk(t(s)) + ϕk(t(s− h)| in
the definition of the norm in (14) can be replaced by the first difference |ϕk(t(s+
h))−ϕk(t(s))| (see [St1]) which means that the weighted Hölder–Zygmund space
KZ0

µ(Γ, ρ) coincides with the weighted Hölder space H0
µ(Γ, ρ) (the case considered

in [Du1, Du2, Du4]). For µ = 1 the spaces H0
1 (Γ, ρ) and Z0

1(Γ, ρ) differ essentially
(see [St1])..

If we define straightforward the Hölder–Zygmund space Z0
m+µ(Γ, ρ) for m ≥ 1

we need m + µ–smooth contour Γ. If Γ is piecewise–smooth and we like to have
a space which has properties similar to those presented in Lemma 1, we suggest
the following special weighted Hölder–Zygmund space

KZ0
m+µ(Γ, ρ) := {ρϕ ∈ Zµ(Γ) : ϕk := ρ(k)∂kϕ ∈ Zµ(Γ), (15)

ϕk(tj) = 0 , k = 0, . . . , m , j = 0, . . . , n}
and endow it with a natural norm (cf. (14)).

‖ϕ | KZ0
m+µ(Γ, ρ)‖ :=

m−1∑

k=0

sup
t∈Γ

|ϕk(t)|+ ‖ϕm | Z0
µ(Γ)‖ .

Lemma 2 The space KZ0
m+µ(Γ, ρ) is correctly defined.

A multiplication operator

gI : KZ0
m+µ(Γ, ρ) −→ KZ0

m+µ(Γ, ρ) (16)

is bounded for every piecewise–Hölder–Zygmund function g ∈ PZm+µ(Γ, t1, . . . , tn),
which might have jumps only at t1, . . . , tn provided the m–th derivative is Hölder–
Zygmund continuous on the closed arcs, i.e. ∂m

t g ∈ Zµ(Γj) for all j = 1, . . . , n.

Proof. The proof follows word in word the proof of the preceding Lemma 1
with obvious modifications.

Theorem 3 The Cauchy singular integral operator with weight

SΓ,wϕ(t) :=
1

πi

∫

Γ

w(t)

w(τ)

ϕ(τ)dτ

τ − t
, w(t) :=

n∏
j=1

(t− tj)
βj (17)

is bounded in the spaces KWm
p (Γ, ρ) provided the following conditions hold

−1

p
< αj + βj < 1− 1

p
, j = 1, . . . , n , 1 < p < ∞ , m ∈ N0 . (18)

Furthermore, SΓ,w is bounded in the space KZ0
m+µ(Γ, ρ) if the parameters sat-

isfy
µ < αj + βj < µ + 1 , j = 1, . . . , n , 1 < µ ≤ 1 , m ∈ N0 . (19)
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Proof. Obviously,

ϑk∂k
t SΓ,wϕ =

k∑
j=0

c1jw∂j
t (ϑ

jSΓw−1ϕ)

=
k∑

j=0

c2jw∂j
t (SΓϑjw−1ϕ) +

k∑

j+r≤(m−1)k−1

c3jrt
jw(BΓtrϕ)

=
k∑

j=0

c2jw(SΓ∂j
t ϑ

jw−1ϕ) +
k∑

j+r≤(m−1)k−1

c3jrt
jw(BΓtrϕ)

=
k∑

j=0

c4j(SΓϑj∂j
t ϕ) +

k∑

j+r≤(m−1)k−1

c3jrt
jw(BΓtrϕ) , (20)

where

BΓψ :=
1

πi

∫

Γ

ψ(τ)

w(τ)
dτ , BΓ : Lp(Γ, ρ) −→ C

is a functional. Due to the conditions (18) the singular integral operator

SΓ,w : Lp(Γ, ρ) −→ Lp(Γ, ρ) (21)

is bounded (which is the same as boundedness of SΓ := SΓ,1 for w(t) ≡ 1 in
the space Lp(Γ, ρw); see [GK1, Kh1]). Since w ∈ Lp(Γ, ρ) (see (18)) and, by
definition, ϑj∂j

t ϕ ∈ Lp(Γ, ρ), j = 0, . . . , m, due to (21) we obtain

‖SΓ,wϑj∂j
t ϕ | Lp(Γ, ρ)‖ ≤ Cj‖ϑj∂j

t ϕ | Lp(Γ, ρ)‖ . (22)

From (20) and (22) we get the final result for the weighted Sobolev spaceKWm
p (Γ, ρ):

‖SΓ,wϑj∂j
t ϕ |Wm

p (Γ, ρ)‖ ≤
(

m∑
j=0

‖ϑj∂j
t ϕ | Lp(Γ, ρ)‖

) 1
p

≤ C

(
m∑

j=0

‖ϑj∂j
t ϕ | Lp(Γ, ρ)‖

) 1
p

= C‖vf |Wm
p (Γ, ρ)‖ .

For weighted Hölder–Zygmund spaces KZ0
m+µ(Γ, ρ) the proof is absolutely

similar and uses the boundedness result

SΓ,w : Z0
µ(Γ, ρ) −→ Z0

µ(Γ, ρ) , (23)

proved in [Du1, Du2] for the case 0 < µ < 1. In the case µ = 1 the boundedness of
(23) is proved similarly, based on the boundedness of the singular integral operator
SΓ (without weights) in the Hölder–Zygmund space Z1(Γ) (see [DS1, St1]).
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Remark 4 Spaces H(s,ν),m
p (M ) similar to KWm

p (Γ, ρ) were introduced in [CD1]
for a multidimensional case (called there anisotropic Bessel potential spaces). In
that paper M = Rn

+ or M is a manifold with smooth boundary. The authors
proved boundedness of a certain class of pseudodifferential operators and obtained
Fredholm criteria for them. Spaces Lp,m(R+) and Xp,m

ρ (R+), also similar to
KWm

p (Γ, ρ), were defined by J.Elschner and applied for spline approximation for
solutions to convolution equations (see [Pr1, Ch..5]).

Theorem 3 enables us to establish the Fredholm property and an index formula
for a singular integral operator with complex conjugation

Aϕ := aϕ + bSΓϕ + dV SΓV ϕ = f , V ϕ(t) := ϕ(t) , (24)

a, b, d ∈ PCm(Γ, t1, . . . , tn) for ϕ, f ∈ KWm
p (Γ, ρ) ,

a, b, d ∈ PHm+µ(Γ, t1, . . . , tn) for ϕ, f ∈ KZ0
m+µ(Γ, ρ) .

Although the coefficients of the operator A are N ×N matrix–functions and the
equation (24) is considered in the weighted N–vector spaces, we use the same
notation for spaces and classes of functions as in the scalar case N = 1 for the
sake of simplicity.

The weight function ρ(t) is defined in (5) and we assume

−1

p
< αj < 1− 1

p
, j = 1, . . . , n for KWm

p (Γ, ρ) , (25)

µ < αj < µ + 1 , j = 1, . . . , n for KZ0
m+µ(Γ, ρ) . (26)

Let X(Γ) denote the space KWm
p (Γ, ρ) or KZ0

m+µ(Γ, ρ) with the corresponding
conditions (25) and (26). The symbol of operator A (see (24)) in the space X(Γ),
when Γ has no cusps 0 < γj < 2, j = 1, . . . , n, is defined as follows

AX(Γ)(t, ξ) ::= ã(t) + b̃(t)SX(Γ)(t, ξ) + d̃(t)SX(Γ)(t,−ξ) , (27)

where

g̃(t) :=

[
g(t + 0) 0

0 g(t− 0)

]
, g ∈ (PCm)N×N(Γ, t1, . . . , tn) , t ∈ Γ ,

SX(Γ)(t, ξ) :=




coth π(iβt + ξ) − eπ(γt−1)(iβt+ξ)

sinh π(iβt + ξ)
eπ(1−γt)(iβt+ξ)

sinh π(iβt + ξ)
− coth π(iβt + ξ)


 , ξ ∈ R , (28)
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βt :=





1
p

if t 6= t1, . . . , tn , X(Γ) = KWm
p (Γ, ρ) ,

1
2

if t 6= t1, . . . , tn , X(Γ) = KZ0
m+µ(Γ, ρ) ,

1
p

+ αj if t = tj , X(Γ) = KWm
p (Γ, ρ) ,

αj − µ if t = tj , X(Γ) = KZ0
m+µ(Γ, ρ) ,

γt :=

{
1 if t 6= t1, . . . , tn ,

γj if t = tj ,
χ±(λ) :=

1

2
(1 + sign λ) .

Due to assumptions (25), (26) we have 0 < βt < 1 for all t ∈ Γ and the symbol
AX(Γ)(t, λ, ξ) represents a piecewise–continuous uniformly bounded function of all
variables.

Theorem 5 Let Γ have no cusps, i.e. 0 < γj < 2, j = 1, . . . , n and let Xm(Γ) =
KWm

p (Γ, ρ) or Xm(Γ) = KZ0
m+µ(Γ, ρ) with appropriate condition in (25), (26)

being satisfied. The equation (24) is Fredholm in the space Xm(Γ) if and only if

inf
t∈Γ, λ,ξ∈R

∣∣ det AXm(Γ)(t, ξ)
∣∣ > 0 . (29)

If condition (29) holds, then

Ind A = − 1

2π

{
[
arg det AXm(Γ)(t, +∞)

]
Γ

+
n∑

j=1

[
arg det AXm(Γ)(tj, λ, 0)

]
R\{0}

}
.

If, in particular, c = 0 and the operator A = aI + bSΓ has scalar coefficients
(N = 1), A is invertible in Xm(Γ) either from the left provided Ind A ≥ 0 or
from the right provided Ind A ≤ 0.

Proof. To prove the theorem we apply results on quasilocalization (see [DLS1]
for the case Lp(Γ, ρ) spaces, [GK1] for the case c = 0 and Lp(Γ, ρ) spaces and
[Du4] for the case of weighted Hölder spaces H0

µ(Γ, ρ); see also [Du1, Du2] for
the case of weighted Hölder spaces). We will not go into details of the proof and
restrict ourselves only by some comments.

I. All singular integral operators are bounded in Xm(Γ) if they are bounded
in X0(Γ) (see Theorem 3). This is valid also for any inverse operator and
any regularizer to the canonical operator A = aI + bSΓ, because they have
the form cI + dSΓ,w. The same proposition on boundedness holds if Γ = R
and ρ(x) ≡ 1 and for Γ = R+ and ρ(x) = xα.

Similar simultaneous boundedness property for all values of the parame-
ter m ∈ N0 holds for a Mellin convolution operators M0

g in the space
Xm(R+, xα) (for boundedness of a Mellin convolution operators see also
J. Elschner’s results in [Pr1, Ch. 5]).
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II. A local representative At0 of A at t0 ∈ Γ (including knots t0 = t1, . . . , tn) is
the following Mellin convolution operator

A
Mt0∼ At0 := ã(t0)I + b̃(t0)M

0
SXm(Γ)(t0,·) + c̃(t0)M

0
SXm(Γ)(t0,−·) = M0

AXm(Γ)(t0,·)

in the space Xm(R+, xαt0 ), where αt0 = 0 for t0 6= t1, . . . , tn and αtj = αj

(see [DLS1, Du4]). This operator, as we already noted, is invertible in
Xm(R+, xαt0 ) if and only if it is invertible in X0(R+, xαt0 ) (i.e. either in
Lp(R+, xαt0 ) or in Z0

µ(R+, xαt0 ) – the cases considered in [DLS1, Du4]).

III. The symbol of the operator A0 defined in [DLS1] and in [Du4] (see also
[Du1, Du2]) has a block–diagonal form

[
(A0)X(Γ)(t, λ, ξ) 0

0 (A0)X(Γ)(t,−λ,−ξ)

]

and it suffices to consider only the first block as a symbol of A0. Due to

this change the index formula carries the factor
1

2
.

Let us note that the symbol would be a full matrix–function if the cor-
responding operator contains terms V SΓ, V aI, aV or SΓV (see Remark
6).

IV. If BXm(Γ)(t, λ, ξ) is the symbol of B, the symbol of V BV reads as follows

(V BV )Xm(Γ)(t, λ, ξ) = B(t,−λ,−ξ) (30)

(see [DLS1, § 1]).

Remark 6 From Theorem 5 we find that the Fredholm properties and the index
of the operator A (see (24)) in the space X0(Γ) are independent of the smoothness
parameter m ∈ N0. That means that if the equation Aϕ = f for f ∈ Xm(Γ, ρ)
has a solution ϕ ∈ X0(Γ, ρ), then automatically ϕ ∈ Xm(Γ, ρ).

Remark 7 Equations more general than (24)

Ãϕ := aϕ + bV ϕ + cSΓϕ + dV SΓϕ + eSΓV ϕ + gV SΓV ϕ = f , (31)

are linear in the space Xm(Γ) over the field of real numbers R. After ”doubling”

the equation by adding the composition V Ãϕ = V f and introducing new vector–
functions Φ := (ϕ, V ϕ), F := (f, V f), we get the following equation

[
a b

b a

]
Φ +

[
c e

d g

]
SΓΦ +

[
g d

e c

]
V SΓV Φ = F , (32)
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which is linear (the same as in (24)) and can be treated in the space Xm(Γ) over
the field of complex numbers C (see [DL1, li1]). We will only indicate the symbol

of the operator Ã because the corresponding Fredholm properties and the index are
defined by the symbol as in Theorem (5) (note, that we does not need to double

the size of the symbol of the operator Ã as this was done for the operator A).
Namely,

AXm(Γ)(t, ξ) := ã(t) + b̃(t)V + c̃(t)SXm(Γ)(t, ξ)

+d̃(t)V SXm(Γ)(t, ξ)c̃(t) + ẽ(t)SXm(Γ)(t, ξ)V + g̃V SXm(Γ)(t, ξ)V , (33)

where, in addition to (28), we have to indicate the symbol V = VXm(Γ) of the
complex conjugate operator:

V :=

[
0 1

1 0

]

which is independent of the point t ∈ Γ and the space Xm(Γ) (note, that
V SXm(Γ)(t, ξ)V = SXm(Γ)(t,−ξ); cf. (31)).
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