
PSEUDODIFFERENTIAL OPERATORS ON COMPACT
MANIFOLDS WTH LIPSCHITZ BOUNDARY

R. Duduchava(1), F.-O.Speck

Abstract. Pseudodifferential operators with non-smooth symbols on a manifold
M with Lipschitz boundary are considered. Theorems about order reduction
and localization of such operators in Bessel potential Hs

p(M ) and Hölder-
Zygmund Zα

p (IRn) spaces are proved. A pseudodifferential operator A with
locally sectorial matrix symbol is proved to be Fredholm in the space Hs

2(M )
and Ind A = 0 where s depends on A. Application to a boundary value problem
for an elastic body with crack is discussed in conclusion.
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1 INTRODUCTION

1.1 PREFACE

We continue the investigations started in 1985. The first results were published only recently
in

SD1
[40]. There we introduced a Bessel potential operator (BPO in short) for the quarter-plane

IR+ × IR+ ⊂ IR2 which can be also used for a cone in IR2.

In the meantime two papers of R.Schneider
Sch1,Sch2
[32, 33] appeared which were based on the

manuscript
SD1
[40] and succeeded in constructing BPO’s for octants and canonical Lipschitz

domains in IRn. Two kinds of BPO’s were involved: with non-smooth symbols (cf.
Sch1
[32] )

and with smooth symbols from the Hörmander class Sr
1,0(IRn) (cf.

Sch2
[33]). The order reduction

operator for a general Lipschitz domain Ω ⊂ IRn was constructed as well (cf.
Sch2
[33] ) and

applied to the investigation of some strongly elliptic systems of pseudodifferential operators
(ΨDOs in short) in Hs

2(Ω).

The results of
Sch1
[32] concerning BPO’s with non-smooth symbols are extended here (cf.

§ 2). Namely it is proved that operators constructed in
SD1
[40] for cones Ω ⊂ IR2 and inSch1

[32] for any Lipschitz domain Ω ⊂ IRn are bounded and invertible in Hs
p(Ω) spaces for all

1 < p < ∞ (we recall that in
Sch1
[32] only the case p = 2 was considered; cf. Theorems 2.1 and

2.3).

In § 3 ΨDOs with non C∞-smooth symbols on manifolds with Lipschitz boundary are
defined on Bessel potential spaces using operators of local type and some results are ob-
tained: order reduction, Fredholm criteria (in terms of the local representatives). ΨDOs with
locally sectorial symbols are introduced and a theorem is proved on their Fredholm property
and on the index; the latter results generalize those from

MS1,Sch1,Sch2,Sp1
[26, 32, 33, 39] and proofs here are

more transparent.

A different approach to the order reduction operators is demonstrated in
Su1
[34].

In § 4 ΨDOs in Hölder-Zygmund spaces Zα
p (M )(α > 0, 1 ≤ p ≤ ∞)on a manifold

M with Lipschitz boundary are constructed. This section was inspired by the book
St1
[41],

where BPOs for Zα
∞(IRn) are described. We start with properties of the spaces Zα

p (M )
(with proofs when necessary). Theorems on multipliers in the space Zα

p (IRn) follow, which
were known, as far as we know, only for p = ∞ (we recall here that Zα

p (M ) = Zα
∞(M )

for compact M but they differ for non-compact M ). BPOs and order reduction operators
for Zα

p (M ) spaces on compact and non-compact manifold M with Lipschitz boundary are
constructed in § 4.3. In § 4.4 ΨDOs on a compact manifold are defined via operators of local
type; here the recent results of R.Pöltz

Plt1
[29] were applied. Our approach is the localization

principle . This method is not much refined, but it makes possible to investigate ΨDOs
with non-smooth symbols. For the case of smooth symbols (of the class Sr

1,0(Ω × IRn),
for example) and smooth boundary of the manifold it is possible to give almost the full
describtion of the Boutet-de-Monvel algebras of the boundary value problems and get results
on the spectrum and the resolvent of the operators under investigation. In our case this might
be much complicated and we make no attempt to this. But the obtained results are sufficient
to investigate the solvability of equations appearing in mechanics and mathematical physics.

Singular integral operators on Zα
p (IRn) spaces were investigated in

Ka1,Ka2
[19, 20].
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Applications to crack problems in isotropic elastic media with steady oscillation are
exposed in § 5. We refer the reader to this section for the detailed formulations and survey
of the earlier results.

It is only for notational convenience that we stick on the scalar case up to Sub§ 3.3 and
in § 4 (cf. Remark 3.12). Most of the results remain valid for systems of equations (i.e. for
operators with matrix symbols) in vector-spaces of functions.

1.2 AUXILIARY MATERIAL

For the Fourier transform we use the notation

û(ξ) = Fu(ξ) =

∫

IRn

exp{ixξ}u(x)dx, ξ ∈ IRn (1.1) e1.1

and F−1 is used for the inverse operator.
The well-known Bessel potential operators (cf.

AS1,Ca1,SC1,St1
[1, 2, 38, 41] )

Λs = F−1λsF, λs(ξ) =< ξ >s= (1+ | ξ |2) s
2 , s ∈ IR (1.2) e1.2

generate the Bessel potential spaces

Hs
p(IRn) = {u ∈ D′(IRn) : ‖u‖sp = ‖Λsu‖Lp(IRn)} < ∞

and arrange the isometrical isomorphisms between them

Λr : Hs
p(IRn) → Hs−r

p (IRn), s, r ∈ IR, ‖Λru‖(s−r)p = ‖u‖sp. (1.3) e1.3

d1.1 Definition 1.1 (cf.
St1
[41]). An open subset Ω ⊂ IRn is called a canonical Lipschitz domain if

Ω = {(x′, xn) ∈ IRn : Φ(x′) < xn}
for some real-valued Lipschitz function

| Φ(x′)− Φ(y′) |≤ L | x′ − y′ |, x′, y′ ∈ IRn−1. (1.4) e1.4

d1.2 Definition 1.2 A compact n-dimensional manifold M = M ∪ ∂M is said to have a Lips-
chitz boundary if there exists a covering of the manifold

M =
N⋃

j=1

Uj, ∂M ⊂
N1⋃
j=1

Uj, N1 ≤ N,

a canonical Lipschitz domain ω ⊂ IRn and coordinate Cr-diffeomorphisms (r ≥ 1)

βj : Uj → Vj ⊂ Ω, j = 1, 2, ..., N, (1.5) e1.5

Vj ∩ ∂Ω 6= ∅, j = 1, 2, ..., N1, Vj ∩ ∂Ω = ∅, j = N1 + 1, ..., N.
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If M is a compact domain in IRn and has Lipschitz boundary, it is called Lipschitz
domain (cf.

St1
[41], VI.3.3).

Let

S(IRn) = {f ∈ C∞(IRn) : sup{〈ξ〉m | ∂α
ξ f(ξ) |< ∞ : ξ ∈ IRn},

m ∈ IN, α ∈ INn}, ∂α
ξ f(ξ) = ∂α1

ξ1
...∂αn

ξn
f(ξ) (1.6) e1.6

represent the Frechet space of fast decreasing smooth functions. S ′(IRn) is used for the space
of tempered distributions, the adjoint space to S(IRn).

The Fourier operators F±1 and the multiplication operator aI, a ∈ S(IRn), are well-
defined bounded operators in S(IRn) and in S ′(IRn).

For a distribution a ∈ S ′(IRn) the convolution operator is defined as

W 0
a ϕ = F−1aFϕ, ϕ ∈ S(IRn) (1.7) e1.7

W 0
a : S(IRn) → S ′(IRn)

and a(ξ) is called the symbol of W 0
a .

The set of functions (symbols) for which W 0
a has a bounded extension W 0

a : Lp(IRn) →
Lp(IRn) is denoted by Mp(IRn) (1 ≤ p ≤ ∞). The function a ∈ Mp(IRn) is called
Lp − multiplier. The set Mp(IRn) endoved with the norm ‖a‖Mp = ‖W 0

a ‖ Lp(IRn) and

pointwise multiplication forms a Banach algebra, since W 0
a W 0

b = W 0
ab (cf.

Hr1
[17] ).

By Mp,q(IRn) we denote the algebra
⋂

p<r<q Mr(IRn).
Let further

M r
p (IRn) = {λra : a ∈ Mp(IRn)}. (1.8) e1.8

Since Λr = W 0
λr (cf. (

e1.2
1.2)) it follows that the operator

W 0
a : Hs

p(IRn) → Hs−r
p (IRn), s, r ∈ IR, 1 < p < ∞

is bounded if and only if a ∈ M r
p (IRn).

For α, β ∈ INn α ≤ β denotes the inequalities αj ≤ βj, (j = 1, 2, ...n) and α < β is
used when α ≤ β, α 6= β.

t1.3 Theorem 1.3 (cf.
Sh1
[35]).

Let a ∈ Lloc
1 (IRn) and the condition

∑

|β|≤[n
2 ]+1,β≤1

R−n

∫
R
2

<|ξ|≤2R

| ξβDβa(ξ) |2 dξ < ∞ (1.9) e1.9

hold; then a ∈ M1,∞(IRn).
The inequality

sup{| ξβ∂β
ξ a(ξ) |: β ∈ INn, β ≤ 1, | β |≤ n

2
+ 1} < ∞

implies (
e1.9
1.9).
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Sr
1,0(Ω×IRn) (or Sr(Ω×IRn), Ω ⊂ IRn) is used for the Hörmander class of functions

Sr
1,0(Ω× IRn) = {a :| ∂α

x ∂β
ξ a(x, ξ) |< Cα,β〈ξ〉r−|α|, α, β ∈ INn}. (1.10) e1.10

Sr(IRn) ⊂ Sr
1,0(Ω× IRn) denotes the class of functions a(x, ξ) ≡ a(ξ), independent of the

variable x. Due to Theorem
t1.3
1.3 Sr(IRn) ⊂ M r

1,∞(IRn).

1.3 BESSEL POTENTIAL OPERATORS: DEFINITION AND GENERAL PROPERTIES

The next two definitions were suggested by F.Speck and R.Duduchava (cf.
SD1
[40]).

d1.4 Definition 1.4 Let Ω ⊂ IRn be a Lipschitz domain. A linear operator B : S(IRn) → S ′(IRn)
is said to be a Bessel potential operator of order r for Ω (B ∈ BPO(r, Ω) in brief), if B
has the following properties:

(i)B is translation invariant

BVh = VhB, Vhϕ(t) = ϕ(t− h), h ∈ IRn; (1.11) e1.11

(ii) there exist continuous extensions

B : Hs
p(IRn) → Hs−r

p (IRn) (1.12) e1.12

which are invertible for any s ∈ IRn, 1 < p < ∞;

(iii) B and its inverse B−1 preserve supports within Ω :

supp B±1ϕ ⊂ Ω, if ϕ ∈ D(IRn) = C∞
0 (IRn), supp ϕ ⊂ Ω. (1.13) e1.13

d1.5 Definition 1.5 (cf.
SD1
[40]). B ∈ BPO(1, Ω) is said to be a Bessel potential operator for

Ω (B ∈ BPO(Ω) in brief) if it generates a group {Br}r∈IR of operators such that for any
s, r ∈ IR the following holds:

Br ∈ BPO(r, Ω), BrBs = Br+s, B0 = I, B1 = B (1.14) e1.14

For a Lipschitz domain Ω ⊂ IRn and any s ∈ IR, 1 < p < ∞ the set

H̃s
p(Ω) = {u ∈ Hs

p(IRn) : supp u ⊂ Ω} (1.15) e1.15

represents a subspace of Hs
p(IRn); in particular Lp(Ω) is the subspace of Lp(IRn).

Hs
p(Ω) denotes the space

Hs
p(Ω) = {u = rΩv : v ∈ Hs

p(IRn)}, (1.16) e1.16

endoved with the factor-norm

‖u‖sp = inf{‖v‖sp : v ∈ Hs
p(IRn), rΩv = u},
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where rΩ denotes the restriction of a function v ∈ S ′(IRn) to Ω.

For a Lipschitz domain Ω ⊂ IRn there exists an extension operator

` : Hs
p(Ω) → Hs

p(IRn) (1.17) e1.17

which is independent of s > 0 and 1 < p < ∞ (cf.
St1
[41], VI.3).

l1.6 Lemma 1.6 (cf.
SD1
[40]. Let Ω ⊂ IRn be a Lipschitz domain and r ∈ IR. Then B ∈

BPO(r, Ω) holds if and only if the following is valid:

(i) B = W 0
Φ, Φ±1 ∈ M±r

p (IRn);

(ii) the operator
B = W 0

Φ : H̃s
p(Ω) → H̃s−r

p (Ω) (1.18) e1.18

is bounded and invertible by B−1 = W 0
Φ−1 for any s ∈ IRn, 1 < p < ∞.

Proof cf. in
SD1
[40].

l1.7 Lemma 1.7 Let Ω ⊂ IRn be a Lipschitz domain, r ∈ IR and B ∈ BPO(r, Ω). The follow-
ing holds:

(i) there exists a generalized (distributional) kernel kB ∈ D ′(IRn) of B = W 0
Φ such that

Bu = kB ∗ u, for any u ∈ C∞
0 (IRn); if 0 ∈ Ω then supp kB ⊂ Ω;

(ii) let K ⊂ IRn be another Lipschitz domain and 0 ∈ K , Ω + K ⊂ Ω; then
BPO(r,K ) ⊂ BPO(r, Ω) for any r ∈ IR.

. Proof. Existence of kB is well known (cf.
Hr1,Hr2
[17, 18]). To prove the next claim

supp kB ⊂ Ω we assume x0 /∈ Ω and nevertheless x0 ∈ supp kB. Then there exist
un ∈ C∞

0 (IRn), mes supp un → 0, < kB, un >6= 0(n = 1, 2, ...). Consider
any t0 ∈ Ω, | t |< dist(x0, Ω) and ũn(y) = un(x0 + t0 − y); obviously supp ũn0 =
x0 + t0 − supp un0 ⊂ Ω for a large n0. By the definition of convolution (cf.

Hr2
[18], v.1)

kB ∗ ũn0(x0 + t0) =< kB, Vx0+t0ũn0 >=< kB, un0 >6= 0, where Vzϕ(t) = ϕ(z − t). This
contradicts condition (

e1.13
1.13) since x0 + t0 /∈ Ω while supp ũn0 ⊂ Ω.

To prove assertion (ii) we notice that (cf. Theorem 4.1.1 in
Hr2
[18] , v.1) supp Bu ⊂

supp kB + supp u. Let B ∈ BPO(r,K ). Then Bu = W 0
Φu = kB ∗ u, Φ±1 ∈ M±r

p (IRn)
and supp kB ⊂ K (cf. (i-ii)). Thus to prove that B ∈ BPO(r, Ω) only property (

e1.13
1.13)

needs to be verified. We have (cf (i)) supp Bv ⊂ supp kB + supp v ⊂ K + Ω ⊂ Ω for any
v ∈ D(IRn) = C∞

0 (IRn), with supp v ⊂ Ω.

A similar statement holds for the inverse operator B−1.

The sufficient part of the next lemma was actually applied in
Sch1,Sch2
[32, 33] to prove the main

assertion (cf. Theorem 3.6 below).

l1.8 Lemma 1.8 Let Ω ⊂ IRn be a Lipschitz domain, r ∈ IR, Bu =
= W 0

Φu = kB ∗ u, Φ±1 ∈ M±r
p (IRn) where kB is the distributional kernel.

Then B ∈ BPO(r, Ω) if and only if Ω + supp kB ⊂ Ω.
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Proof. Sufficiency follows from the above mentioned inclusion (cf. Theorem 4.1.1 inHr2
[18], v.1) supp Bu ⊂ supp kB + supp u and Definition

d1.4
1.4. The necessity of the condi-

tion follows from assertion (ii) of Lemma
l1.7
1.7 since supp kB ⊂ Ω − x for any x ∈ Ω and

BPO(r,Ω)=BPO(r,Ω− x).

Well-known Bessel potential operators besides Λr (cf. (
e1.2
1.2)-(

e1.3
1.3)) are the following

Λr
± = Wλr

± ∈ BPO(r, IR±
n ), λ±(ξ) = ξn ± i(1+ | ξ′ |2) 1

2 , (1.19) e1.19

s, r ∈ IR, 1 < p < ∞, ξ = (ξ′, ξn) ∈ IR+
n := IRn−1 × IR+.

For the proof of the next two lemmas we refer to
Ka1
[19] and

Du2
[8] respectively (cf. also

DNS1
[12]),

but one can try to prove it independently.

l1.9 Lemma 1.9 Let A : Aj → Bj, j = 1, 2 be a linear bounded operator between Banach
spaces and let A admit a left regularizer RA = I + T where T is compact in A1 and A2.

If the embedding A1 ⊂ A2 is dense, then the kernels KerA of the operator in the spaces
A1 and A2 coincide.

If, in addition, A is a Fredholm operator and the embedding B1 ⊂ B2 is dense, then
the index Ind A of the operator is independent of the spaces as well.

l1.10 Lemma 1.10 Let A : Aj → Bj be a Fredholm operator between Banach spaces and Ind A
be the same for j = 1, 2.

If the embedding A1 ⊂ A2 holds, and the embedding B1 ⊂ B2 is dense, then the kernels
KerA of the operator in the spaces A1 and A2 coincide.

2 BESSEL POTENTIAL OPERATORS FOR OCTANTS

Let
Σn

1 = {x ∈ IRn : xj > 0, j = 1, 2, ..., n} = IR+ × · · · × IR+

︸ ︷︷ ︸
n

denote the first octant in IRn and consider a function ψ(ξ) with the following properties:

ψ(λξ) ≡ ψ(ξ), ξ ∈ IRn, λ > 0, (2.1) e2.1

ψ(x) + 1 ≥ 0 , supp[ψ + 1] ⊂ Σn
1 , ψ ∈ C∞(Sn−1), (2.2) e2.2∫

Sn−1

ψ(ω)dωS = 0, Sn−1 = {ω ∈ IRn :| ω |= 1}. (2.3) e2.3

A Bessel potential operator for Σn
1 is defined as follows (cf.

Sch2
[33])

Λr
ψ,Σn

1
= W 0

ar , ar(ξ) = (1+ | ξ |2) r
2 exp[r(Fψko)(ξ)], (2.4)

ko(x) =
1

2(4π)
n
2

∫ ∞

0

t−
n
2 exp

[
−| x |

2

4t
− t

]
dt

t
.
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Similar operators are (cf.
Sch1
[32])

Λr
ψ+,Σn

1
= W 0

gr , gr(ξ) = (1+ | ξ |2) r
2 exp[r(Fψ+ko)(ξ)], (2.5)

ψ+(ξ) =
n∏

j=1

(1 + sgn xj)− 1,

where, due to discontinuity of ψ+(ξ), the symbol gr(ξ) is not smooth (in contrast to ar(ξ);
cf. theorems 2.1 and 2.2). This was the reason that the operator Λψ,Σn

1
= W o

ar was introduced
(cf.

Sch2
[33]), while for Λψ+,Σn

1
= W o

gr the boundedness was proved in the spaces Hs
p(IRn) only

for the case p = 2.

Motivations for the choice of operators (2.4) and (2.5) are the following formulas

Λr
ψ+

n ,IR+
n

= Λr
+ = W 0

λr
+
, ψ+

n (ξ) = sgn ξn, (2.6)

λr
+(ξ) = [ξn + i(1+ | ξ |2) 1

2 ]r = (1+ | ξ |2)r exp[r(Fψ+
n ko)(ξ)],

Λr
ψ+,Σ2

1
= Λr

1 = W 0
λr
1
, (2.7)

λr
1(ξ) = 〈ξ〉r exp[r(Fψ+ko)(ξ)]

= −
(

ξ1 − i(1 + ξ2
2)

1
2

ξ1 + i(1 + ξ2
2)

1
2

)r

exp[rI(ξ1, ξ2) + rI(ξ2, ξ1)] ,

I(ξ1, ξ2) := −
∫ ∞

1

τ

ξ2 + τ 2

2ξ1

π(ξ2
2 + τ 2)

1
2

log
ξ2 + (ξ2

1 + τ 2)
1
2

τ
dτ ,

where (2.6) represents a Bessel potential operator for the half-space IR+
n (cf. (

e1.19
1.19)) and

(2.7) for the quarter-plane IR+ × IR+ ⊂ IR2 (cf.
SD1
[40]), respectively.

Several assertions, concerning operators (2.4), (2.5) and proved in
Sch1,Sch2
[32, 33] are collected

in the following theorem.

Theorem 2.1 Let s, r ∈ IR. Then B = Λψ,Σn
1
∈ BPO( Σn

1 ) and Br =
= Λr

ψ,Σn
1

= W 0
ar , ar ∈ Sr(IRn).

The operators

Br
+ = Λr

ψ+,Σn
1

= W 0
gr : Hs

2(IRn) → Hs−r
2 (IRn) (2.8)

are invertible, Br
+B−r

+ = Bo = I (s, r ∈ IR) and preserve supports

supp Br
+ϕ ⊂ Σn

1 if supp ϕ ⊂ Σn
1 . (2.9)

The next theorem completes the foregoing one.
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Theorem 2.2 Let s, r ∈ IR. Then B+ = Λψ+,Σn
1
∈ BPO( Σn

1 ). The symbol gr(ξ) has radial
limits

(gr)∞(ξ) = lim
R→∞

R−rgr(R|ξ|−1ξ) = exp[r(Fψ+ko)(ξ)] , (2.10)

ko(x) =
π−

n
2 Γ(n

2
)

2|x|n

and (gr)∞ ∈ M1,∞(IRn).

Proof. To prove the first claim Λψ+,Σn
1
∈ BPO( Σn

1 ) it suffices to get the inclusion
gr ∈ M r

1,∞(IRn) (cf. Theorem 2.1); due to Theorem
t1.3
1.3 this follows from the estimate

sup{| ξα∂α
ξ [〈ξ〉−rgr(ξ)] |< ∞ : ξ ∈ IRn} < ∞ α ∈ INn. (2.11)

Since 〈ξ〉−rgr(ξ) = exp[(Fψ+ko)(ξ)], (2.11) is implied by the estimate

sup{| ξα∂α
ξ (Fψ+ko)(ξ) |: ξ ∈ IRn} < ∞, α ∈ INn. (2.12)

To prove (2.12) we introduce the notation

gα,β(x) =
(−1)α(ix)β

2(4π)
n
2

ψ+(x)∂α
x

[
xα exp

(
−| x |

2

4

)]
;

obviously gα,β ∈ L1(IR) and therefore ĝα,β ∈ C(
.

IRn) where
.

IRn= IRn ∪ {∞} (i.e. ĝα,β(x)
is continuous and uniformly bounded on IRn, and has the same limit however ξ tends to
infinity).

Since (cf. (2. 5))
∫

Sn−1

ω2γψ+(ω)dωS = 2n

∫

Sn−1∩Σn
1

ω2γdωS −
∫

Sn−1

ω2γdωS = 0,

we get

ĝα,0(0) =
1

2(4π)
n
2

∫

IRn

ψ+(x)∂α
x

[
xα exp

(
−| x |

2

4

)]
dx =

=
∑
γ≤α

bγ

∫

IRn

ψ+(x)x2γ exp

(
−| x |

2

4

)
dx =

=
∑
γ≤α

bγ

∫ ∞

0

Rn−1 exp

(
−R2

4

)
dR

∫

Sn−1

ω2γψ+(ω)dωS = 0. (2.13)
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In so far as ∂β
ξ ĝα,0(ξ) = ĝα,β(ξ) ∈ C(

.

IRn) we have ĝα = ĝα,0 ∈ C∞(
.

IRn).
If we recall Lagrange’s formula and take into account (2.13), we get

ĝα(ξ) = ĝα(ξ)− ĝα(0) =
n∑

j=1

∂ξj
ĝα(toξ)ξj, 0 ≤ to ≤ 1, | ξ |≤ 1

which implies

| ĝα(ξ) |≤ M
| ξ |

1+ | ξ | . (2.14)

We proceed as follows

ξα∂α
ξ k̂+(ξ) =

(−1)αξα

2(4π)
n
2

∫

IRn

exp(ixξ)xαψ+(x)dx

∫ ∞

0

t−
n
2 exp

(
−| x |

2

4t
− t

)
dt

t
=

=
(−1)αξα

2(4π)
n
2

∫

IRn

exp(ix
√

tξ)xαψ+(x)dx

∫ ∞

0

t
|α|
2 exp

(
−| x |

2

4
− t

)
dt

t
=

=
1

2(4π)
n
2

∫ ∞

0

exp(−t)
dt

t

∫

IRn

[∂α
x exp(ix

√
tξ)]xαψ+(x) exp

(
−| x |

2

4

)
dx =

=

∫ ∞

0

exp(−t)ĝα(
√

tξ)
dt

t
; (2.15)

here the last integral exists due to (2.14) and an exchange of the order of integration is legal
since the integrand is absolutely integrable; the partial integration by x is also allowed here.
The last two properties (2.15) and (2.14) imply (2.12).

Now we prove the existence of the radial limits

k̂∞+ (ξ) = lim
R→∞

k̂+(Rξ) = ψ̂+k0(ξ), k̂+ ∈ Cn−1(Sn−1). (2.16)

Let

Gα(x) =
1

2(4π)
n
2

(ix)αψ+(x) exp

(
−| x |

2

4

)
, Gα ∈ L1(IRn);

due to (2.14) there holds

| Ĝ0(ξ) |=| ĝ0(ξ) |≤ M
| ξ |

1+ | ξ | . (2.17)

Now we recall some formulas (cf.
St1
[41], § V.3.1 and

Du1
[10], Lemma 1.35 respectively)

FG0
0(ξ) = exp(− | ξ |2), G0

0(x) =
1

2(4π)
n
2

exp

(
−| x |

2

4

)
,

(Fχ+
n u)(ξ) = −1

2
û(ξ)− 1

2π

∫ ∞

−∞

û(ξ′, t)dt

ξn − t
, χ+

n (ξ) =
1

2
(1 + sgn ξn). (2.18)
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and proceed as follows

Ĝα(ξ) = 2−n

n∏
j=1

[
aj(ξj) +

1

2π

∫ ∞

−∞

aj(τ)dτ

τ − ξj

]
− 1

2
exp(−|ξ|2) , (2.19)

aj(t) = ∂
αj

t exp(−t2).

To estimate the integrals we rewrite them in form

Aj(t) =

∫ ∞

−∞

aj(τ)dτ

τ − t
= Aj1(t) + Aj2(t), Aj1(t) =

∫

|t−τ |>1

aj(τ)dτ

τ − t
, (2.20)

Aj2(t) =

∫ t+1

t−1

aj(τ)dτ

τ − t
=

∫ t+1

t−1

aj(τ)− aj(t)

τ − t
dτ ,

Using the estimate

| aj(t)− aj(τ) |≤ C1 | t− τ | exp

(
−| t |

2

2

)
, | t− τ |≤ 1,

we get

| Aj2(t) |≤ C1 exp

(
−| t |

2

2

) ∫ t+1

t−1

dt = 2C1 exp

(
−| t |

2

2

)
. (2.21)

For Aj1(t) in (2.20) we have

| Aj1(t) |≤
∫ ∞

1

| aj(t + τ) | + | aj(t− τ) |
τ

dτ ≤ C2

∫ ∞

1

exp

(
−t2 + τ 2

2

)
dτ

τ
+

+C2 exp(−t2)

∫ t
2

1

dτ

τ
+

2C2

t

∫ ∞

1

exp

[
−(t− τ)2

2

]
dτ ≤ C3

t
, t ≥ 1. (2.22)

The inequalities (2.20)-(2.22) yield

| Aj(t) |≤ C4(1+ | t |)−1, t ∈ IR

and therefore (cf. also (2.20))

|Ĝ0(ξ)| ≤ C5
| ξ |

(1 + |ξ|)
n∏

j=1

(1+ | ξj |)−1,

|Ĝα(ξ)| ≤ C5

n∏
j=1

(1 + |ξj|)−1, ξ ∈ IRn. (2.23)
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Since (cf.
Sch2
[33])

k+(Rξ) =
1

2(4π)
n
2

∫

IRn

exp(iRxξ)ψ+(x)dx

∫ ∞

0

t−
n
2 exp

(
−|x|

2

4t
− t

)
dt

t

=
1

2(4π)
n
2

∫ ∞

0

t−
n
2 exp

(
− t

R2

)
dt

t

∫

IRn

exp

(
iξy − |y|2

4t

)
ψ+(y)dy

=
1

2(4π)
n
2

∫ ∞

0

exp

(
− t

R2

)
Ĝ0(

√
tξ)

dt

t
; (2.24)

due to (2.23) the limit R →∞ in (2.24) exists

k̂∞+ (ξ) = lim
R→∞

k̂+(Rξ) =

∫ ∞

0

Ĝ0(
√

tξ)
dt

t

=
1

2(4π)
n
2

∫ ∞

0

dt

t

∫

IRn

exp

(
i
√

tξx− | x |2
4

)
ψ+(x)dx

=
1

2(4π)
n
2

∫

IRn

exp(iξy)ψ+(y)dy

∫ ∞

0

t−
n
2 exp

(
−| y |

2

4t

)
dt

t

=
1

2(π)
n
2

∫

IRn

exp(iξy)ψ+(y)
dy

| y |n
∫ ∞

0

τn/2 exp(−τ 2)
dτ

τ

=
Γ(n/2)

2π
n
2

∫

IRn

exp(iξy)ψ+(y)
dy

| y |n .

The last formula represents the Fourier transform of the homogeneous (of order−n) function
| x |−n ψ+(x) and (2.12) follows from the well-known formula for the symbol of a singular
integral operator (cf.

MP1
[28], X.1.17).

Applying (2.23) again we find the derivatives

∂α
ξ k̂∞+ (ξ) =

∫ ∞

0

t
|α|−2

2 Ĝ0(
√

tξ)dt

which exist and are continuous for any | α |≤ n − 1 due to Gα ∈ L1(IRn). Due to (2.11),
(2.12) and Lemma 3.1 which is proved in the next section, this implies (gr)∞ ∈ M1,∞(IRn).

Remark 2.3 For the function k+(x) = ψ+(x)ko(x) (cf. (2.4) and (2.5)) it can be proved that
it represents a singular integral kernel in the sense of

St1
[41], II.3:

| k+(x) |≤ B

| x |n , | x |> 0, (2.25)
∫

|x|≥2|y|
| k+(x− y)− k+(x) | dx ≤ B, | y |> 0, (2.26)

∫

R1<|x|<R2

| k+(x) | dx = 0, 0 < R1 < R2 < ∞. (2.27)
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This implies k̂+ ∈ M1,∞(IRn) and, further, ar ∈ M r
1,∞(IRn).

Similarly all this holds also for the kernel k(x) = ψ(x)ko(x) (cf. (2.1)-(2.4)) and this is
easier to verify: in place of (2.26) the stronger inequality

| ∇k(x) |≤ B | x |−n−1 . ∇u = grad u

holds and implies (2.26).

Remark 2.4 Formulas similar to (2.10) hold for the symbol ar(ξ) of the Bessel potential
operator Λψ,Σn

1
(cf. (2.1)-(2.4)), namely

(ar)∞(ξ) = lim
R→∞

R−rar(Rξ|−1ξ) = exp[r(Fψko)(ξ)] (2.28)

= exp

[
r
Γ(n

2
)

2π
n
2

∫

Sn−1

ψ(θ′)
(

ln
1

| cos(θ · θ′) | +
iπ

2
sgn(θ · θ′)

)
dθ′S

]
,

θ =| ξ |−1 ξ ∈ Sn−1.

l2.5 Lemma 2.5 Let r ∈ IR.h e radial limits (ar)∞(ξ) and (gr)∞(ξ) (cf. (2.10) and (2.28))
satisfy the inequalities

| arg(ar)∞(ξ) |≤ π|r|
2

, | arg(gr)∞(ξ) |≤ π | r |
2

, ξ ∈ IRn, r ∈ IR . (2.29) e2.29

Proof. Due to (2.28)

arg (ar)∞(θ) = r= [Fψko(θ)] = r
Γ(n/2)

4πn/2−1

∫

Sn−1

ψ(ω) sgn(θ · ω) dωS

= r
Γ(n/2)

4π
n
2
−1

∫

Sn−1

[ψ(ω) + 1] sgn(θ · ω) dωS , (2.30) e2.30

since
∫

Sn−1 sgn(θ · ω) dωS = 0.
Recalling the formulae ∫

Sn−1

dωS =
2πn/2

Γ(n/2)

and the properties (
e2.1
2.1)-(

e2.3
2.3) of the indicator function ψ(x), we get

∫

Sn−1

∣∣ψ(ω) + 1
∣∣ dωS =

∫

Sn−1

[
ψ(ω) + 1

]
dωS =

∫

Sn−1

ψ(ω) dωS

+

∫

Sn−1

dωS =

∫

Sn−1

dωS =
2πn/2

Γ(n/2)
. (2.31) e2.31
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(
e2.31
2.31) and (

e2.31
2.31) yield

| arg (ar)∞(θ)| ≤ |r| Γ(n/2)

4πn/2−1

∫

Sn−1

∣∣ψ(ω) + 1
∣∣ dωS ≤ π|r|

2

and the proof of the first inequality in (
e2.29
2.29) is completed. The second inequality is proved

similarly

3 PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER ON BESSEL PO-
TENTIAL SPACES

3.1 CONVOLUTION OPERATORS ON IRn

A function ψ(ξ) on IRn is called piecewise-constant if there exists a partition of IRn on
polyhedral domains by a finite number of (n-1)-dimensional hyperplanes such that ψ(ξ) is
constant on each polyhedral domain (bounded or unbounded). The set of such functions
(defined for different partitions) will be denoted by PC0(IRn). It is known that PC0(IRn) ⊂
M1,∞(IRn) (cf., for example,

DS1
[15]). The subalgebra, generated by PC0(IRn) in Mp(IRn)

we denote by PCp(IRn) and

PCr
p(IRn) = {〈ξ〉ra(ξ) : a ∈ PCp(IRn)}.

Due to the well-known inequality (cf.
Hr1
[17])

‖a‖M2 = sup{| a(ξ) |: ξ ∈ IRn} ≤ ‖a‖Mp , 1 ≤ p ≤ ∞
the radial limits exist

ax(ξ) ≡ ax(ω) = lim
ε→0

a(x + εξ), a∞(ξ) ≡ a∞(ω) = lim
R→∞

R−ra(Rξ), (3.1)

a ∈ PCr
p(IRn), x ∈ IRn, 0 6= ξ ∈ IRn, ω =| ξ |−1 ξ ∈ Sn−1

since they exist for a ∈ PC0(IRn). The following inclusions hold (cf.
Hr1,DS1
[17, 15])

PCp(IRn) = PCp′(IRn) ⊂ PCr(IRn) ⊂ PC2(IRn), (3.2)

p′ =
p

p− 1
, r ∈ [p, p′]

We need also the following subset of PCr
p(IRn):

PCr
p(IRn, α) = {a ∈ PCr

p(IRn) : a∞ ∈ Mp−ε,p+ε(IRn) ∩ C(Sn−1)

for some ε > 0}, (3.3)

PCp(IRn,∞)
def
= PC0

p(IRn,∞), 1 < p < ∞, r ∈ IR.
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Lemma 3.1 Let 1 < p < ∞, s, r ∈ IR and a ∈ PCr
p(IRn). Ifa∞ ∈

∈ C [n
2
]+1(Sn−1), then a ∈ PCr

p(IRn, α).

If n = 2 and a∞ ∈ C1(S1), then a ∈ PCr
p(IR2,∞).

Proof. Since a∞(ξ) is homogeneous a∞(λξ) = a∞(ξ) (λ > 0, ξ ∈ IRn), and a∞ ∈
C[n

2 ]+1(Sn−1), then ξα∂α
ξ a∞(ξ) is uniformly bounded on IRn for any | α |≤ [

n
2

]
+ 1 which

implies a∞ ∈ Mp(IRn), 1 < p < ∞ in virtue of Theorem
t1.3
1.3.

Let now n = 2; then a∞ ∈ C1(S1) implies that a∞ has a bounded variation on S1 which
implies again a∞ ∈ Mp(IR2), 1 < p < ∞ (cf.

DS1
[15], § 2 and

Du1
[10], Theorem 2.11 ).

Corollary 3.2 Let ar(ξ) and gr(ξ) be as in Theorems 2.1 and 2.3; then ar, gr ∈
PCr

p(IRn, α) for any r ∈ IR, 1 < p < ∞.

Lemma 3.3 Let 1 < p < ∞, s, r ∈ IR. The operator

W 0
a : Hs

p(IRn) → Hs−r
p (IRn) (3.4)

is bounded if and only if a ∈ M r
p (IRn) .

Let further a ∈ PCr
p(IRn). Operator (3.4) is invertible if and only if the following

inequality holds
inf{〈ξ〉−ra(ξ) : ξ ∈ IRn} > 0 (3.5)

and the inverse reads W 0
a−1 .

Proof. (3.4) is equivalent to (cf. (
e1.2
1.2), (

e1.3
1.3))

Λs−r W 0
a Λ−s = W 0

λ−ra : Lp(IRn) → Lp(IRn) (3.6)

and this proves the first claim of the lemma.

Applying the local principal (cf.
GK2
[16], § X.3) to the investigation of the lifted operator

(this is possible due to the existence of the radial limits (3.1)), the proof proceeds similarly
to the 1-dimensional case (cf.

Du1
[10], Theorem 2.18).

Let Ck(
.

IRn) denote the set of functions b ∈ Ck(IRn) which have a limit b(∞) =
= lim|ξ|→∞ b(ξ).

Lemma 3.4 Let a ∈ PCr
p(IRn), b ∈ Ck(

.

IRn), s, r ∈ IR, k ∈ IN, | s |≤ k,

| s − r |≤ k, 1 < p < ∞ . If a∞(ω) = 0 (ω ∈ Sn−1; cf.(3.1)) and b(∞) = 0, the
operators

b W 0
a , W 0

a bI : Hs
p(IRn) → Hs−r

p (IRn)

are compact.
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Proof. The commutator (cf. (
e1.2
1.2))

[bI, Λν ] = bΛν − ΛνbI : Hs
p(IRn) → Hs−ν

p (IRn), ν ∈ IR

is compact (cf.
Cor1,DNS1
[3, 12]). Applying the isomorphisms (

e1.3
1.3) the proof is reduced to the com-

pactness properties of the operators

bW 0
ar ,W 0

arbI : Lp(IRn) → Lp(IRn), ar(ξ) = 〈ξ〉−ra(ξ).

An appropriate approximation reduces the proof to the case where a and b have compact
supports. But bW 0

ar
= bW 0

v W 0
ar

where v ∈ S(IRn), v(ξ)ar(ξ) ≡ ar(ξ). Since the kernel
b(t)k(t− τ) of bW 0

v has nice integration properties (k = F−1v ∈ S(IRn) and supp b is com-
pact), bW 0

v is a compact operator in Lp(IRn). W 0
a bI is compact due to similar arguments.

Lemma 3.5 Let a ∈ PCr
p(IRn, α), b ∈ Ck(

.

IRn), s, r ∈ IR, k ∈ IN,
| s |≤ k, | s− r |≤ k, 1 < p < ∞. Then the commutator

[bI, W 0
a ] = b W 0

a − W 0
a bI : Hs

p(IRn) → Hs−r
p (IRn)

is compact.

Proof. As before the proof is reduced to the case s = r = 0. Since

b(ξ) = b(∞) + bo(ξ), a(ξ) = a∞(ξ) + ao(ξ),

where bo and ao satisfy the conditions of the foregoing lemma, b(∞) = const , we get

[bI, W 0
a ] = [boI, W 0

a∞ ] + [boI, W 0
ao

];

the second term in the last representation is compact due to Lemma 3.4. The operator
[boI,W 0

a∞ ] in the space L2(IRn) can be approximated in norm by a similar one with the
symbol bo ∈ C∞

0 (IRn), a∞ ∈ C∞(Sn−1), a∞(λξ) ≡ a(ξ), λ > 0, ξ ∈ IRn. But
then W 0

a∞ represents a classical Calderon-Zygmund singular integral operator with the char-
acteristic f(θ) ∈ C∞(Sn−1) and the compactness of the operator [boI,W 0

a∞ ] in the space
L2(IRn) is well-known (cf.

MP1
[28],XI,7.2).

Compactness in the space Lp(IRn) follows now due to the M.A.Krasnoselskiǐ interpo-
lation theorem of compact operators (cf.

KPS1
[21], Theorem 1.4.1) since the operator is bounded

in Lp±ε(IRn) spaces (ε > 0) and is compact in L2(IRn).

3.2 ORDER REDUCTION OPERATORS FOR A CANONICAL LIPSCHITZ DOMAIN

Let Ω ∈ IRn be a special (canonical) Lipschitz domain with the constant L (cf. Definitiond1.1
1.1) and

σ =




1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
0 0 · · · 1 0
−1 −1 · · · −1 L−1




, σ−1 =




1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
0 0 · · · 1 0
L L · · · L L




,
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where σ−1 is the inverse matrix to σ.

If σT denotes the transposed matrix to σ then σT
∗ a(ξ) = a(σT ξ) defines an operator

which leaves invariant the multiplier sets M r
p (IRn)and PCr

p(IRn, α).

Theorem 3.6 The operators

Br
0,Ω = W 0

br
o
, br

o = σT
∗ ar ∈ PCr

p(IRn, α) ∩ Sr(IRn), (3.7)

Br
1,Ω = W 0

br
1
, br

1 = σT
∗ gr ∈ PCr

p(IRn, α), r ∈ IR

belong to BPO(r, Ω); the radial limits read (cf. (2.8), (2.9), (2.12), (3.1))

(br
o)
∞(ξ) = σT

∗ (ar)∞(ξ), (br
1)
∞(ξ) = σT

∗ (gr)∞(ξ). (3.8)

Proof(cf.
Sch1,Sch2
[32, 33]). Easy to verify that x+Kσ ⊂ Ω for any x ∈ Ω where Kσ = σ−1 Σn

1 .
On the other hand Br

0,Ω, Br
1,Ω ∈ BPO(r,K ) since Br

0,Ω = σ−1
∗ W 0

arσ∗, Br
1,Ω = σ−1

∗ W 0
brσ∗,

and therefore (cf Theorem 2.1) supp Br
1,Ωu ⊂ Kσ, j = 0, 1. The first claim follows now due

to Lemma
l1.8
1.8.

The remainder follows from Theorem 2.2 and Remark 2.4.

Lemma 3.7 (cf.
SD1
[40]). Let Ω′ = IRn \ Ω. The following operators act bijectively for all

r, s ∈ IR, 1 < p < ∞ :

Br
k,Ω = W 0

br
k

: H̃s
p(Ω) → H̃s−r

p (Ω),

B
r

k,Ω = W 0
b
r
k

: H̃s
p(Ω

′) → H̃s−r
p (Ω′),

rΩB
r

k,Ω` = rΩW 0
b
r
k
` : Hs

p(Ω) → Hs−r
p (Ω), k = 0, 1 (3.9)

where ` is any extension operator (from Hs
p(Ω) into Hs

p(IRn) ) and operator (3.9) is inde-
pendent of its choice. Operators (3.9) are invertible

(rΩB
r

k,Ω`)−1 = rΩW 0

b
−r
k

`.

The following equality holds

rΩB
r

k,Ω`rΩW 0
d = rΩW 0

b
−r
k d

, d ∈ M q
p (IRn). (3.10)

From 3.6-3.7 it follows the order reduction theorem.
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Theorem 3.8 Let d ∈ M r
p (IRn), s, r ∈ IR, 1 < p < ∞.

The operators

rΩW 0
d : H̃s

p(Ω) → Hs−r
p (Ω),

rΩW 0
dk

: Łp(Ω) → Lp(Ω),

dk = b
s−r

k db−s
k , k = 0, 1

(cf. (3.7)) are equivalent
rΩW 0

dk
= rΩB

s−r

k,Ω `rΩW 0
d B−s

k.Ω.

3.3 OPERATORS OF LOCAL TYPE

Let M be a C l-smooth manifold with Lipschitz boundary ∂M and M = M \ ∂M .

Let aej(x)(j = 1, 2, ..., N, x ∈ M ) represent a partition of the unity subordinated to a
covering U1, ..., UN (cf. Definition

d1.2
1.2)

N∑
j=1

aej(x) ≡ 1, supp aej(x) ⊂ Uj, aej ∈ C l(M ).

The spaces H̃s
p(M ) and Hs

p(M ) can be defined correctly for any 1 ≤ p ≤ ∞,−l+1 ≤
s ≤ l (cf. [12,44]).

The operators

βj∗ϕ(x) = aej(x)ϕ(βj(x)) : H̃s
p(Ω) → H̃s

p(M ),

: Hs
p(Ω) → Hs

p(M ),

β−1
j∗ ψ(x) = aej(β

−1
j (x))ψ(β−1

j (x)) : H̃s
p(M ) → H̃s

p(Ω),

: Hs
p(M ) → Hs

p(Ω), (3.11)

are correctly defined but are not inverses to each other if not restricted to the subset of Uj ⊂
M and of Vj ⊂ Ω respectively.

∆x(M ), x ∈ M (∆x(Ω), x ∈ Ω) represents the set of C l(M ) (of C∞(Ω)) functions
v(y) such that v(y) = 1 in some neighbourhood of x which have compact support supp v in
case of a noncompact manifold.

The notations

qL(x, A) = inf{‖| vxA‖|(r)sp : vx ∈ ∆x}
qR(x, A) = inf{‖| Avx‖|(r)sp : vx ∈ ∆x} (3.12)

‖| B‖|(r)sp = inf{‖B + T‖(r)
sp : T ∈ K r( Hs

p(M ))}, (3.13)

B, T : H̃s
p(M ) → Hs−r

p (M )
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will appear in the sequel with K r( Hs
p(M )) representing the set of compact operators be-

tween appropriate spaces (cf. (3.12)). If qL(x, A) = qR(x, A) the notation q(x, A) will be
used.

Definition 3.9 An operator

A : H̃s
p(M ) → Hs−r

p (M ), −l + 1 ≤ s, s− r ≤ l, 1 < p < ∞ (3.14)

is called operator of local type (A ∈ OLTr( Hs
p(M )) in short) if v1Av2 ∈ K r(Hs

p(M )) for
any v1, v2 ∈ C l(M ), supp v1 ∩ supp v2 = ∅.

Obviously qL(x, A) = qR(x, A) for A ∈ OLTr( Hs
p(M )).

Definition 3.10 Operators

A1, A2 : H̃s
p(M ) −→ Hs−r

s (M ) (3.15)

are called ∆x-equivalent at the point x ∈ M (A1
∆x∼ A2 in short) if the following holds

q(x, A1 − A2) = 0

Theorem 3.11 If A ∈ OLTr( Hs
p(M )), then

‖| A‖|(r)sp = sup{q(x, A) : x ∈ M }. (3.16)

If further A ∆x∼ Ax, x ∈ M , Ax ∈ OLTr( Hs
p(M )), then

‖| A‖|(r)sp ≤ sup{‖| Ax‖|(r)sp : x ∈ M } (3.17)

Proof is similar to the one exposed in
Kru1
[22] for Lp(M ) spaces and in

Plt1
[29] for Hölder

spaces. Rough estimates can be found in
Si1,SiC1
[36, 37].

Lemma 3.12 A ∈ OLTr( Hs
p(M )) if and only if the operators

[vI, A] = vA− AvI : H̃s
p(M ) −→ Hs−r

s (M ) (3.18)

are compact for any v ∈ C l(M ).

Proof (cf.
SiC1
[37] ). If (3.17) is compact then

v1Av2I = [v1IA]v2I, v1, v2 ∈ C l(M ), supp v1 ∩ supp v2 = ∅
and, therefore, A ∈ OLTr( Hs

p(M )).

If now A ∈ OLTr( Hs
p(M )), then

q(x, [vI, A]) = q(x, [v(x)I, A]) = 0, v ∈ C l(M )

since q(x, vI) = q(x, v(x)I) (x ∈ M is fixed). Then (3.14) yields [vI, A] ∈ K r( Hs
p(M )).
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Remark 3.13 The relations (3.15) and (3.16) may be derived from the case r = s = 0
(i.e. the case of the space Lp(M )) with the help of the order reduction operators (cf. (

e1.3
1.3),

Theorem 3.8 and Theorem 3.22 below) since all operators involved are of local type (cf.
Lemmas 3.5 and 3.12). For the half-space case this was already proved in

Ra1
[30].

Concluding the present subsection it might be noticed that the notion of a locally con-
tinuous family of operators can be introduced similarly to

Si1
[36] (cf. also

MP1
[28], § XV.3.1) and

existence of the enveloping operator A ∆x∼ Ax, x ∈ M for any locally continuous family
{Ax}x∈M of operators of local type can be proved.

3.4 PSEUDODIFFERENTIAL OPERATORS ON COMPACT MANIFOLDS

Throughout this section M will be the same as in the foregoing subsection. Other notation
is used also without further comments.

Definition 3.14 An operator (3.13) is called pseudodifferential operator (with non-smooth
symbol) of order r (A ∈ OPCr( Hs

p(M )) in short) if the following holds:

(i) A ∈ OLTr( Hs
p(M ));

(ii) for any x ∈ Uj ⊂ M there exists a function ax ∈ PCr
p(IRn, α) such that the

equivalence
A ∆x∼ βj∗rxW

0
ax

β−1
j∗ , x ∈ Uj

holds (rx = rΩ for x ∈ ∂M and rx = I for x ∈ M ; cf. (
e1.5
1.5) ).

ax(ξ) = a(x, ξ) is called the symbol of A and the radial limit a∞(x, ξ) is called the
principal homogeneous symbol of A (cf. (3.1); x ∈ M , ξ ∈ IRn).

Let us introduce the following notation as well

OPCr(M ) =
⋂
s,p

OPCr( Hs
p(M )).

Lemma 3.15 . The principal homogeneous symbol a∞(x, ξ) of any operator A ∈
∈ OPCr( Hs

p(M )) is defined uniquely and depends continuously on x ∈ M .

Proof. The uniqueness follows immediately, since if a∞(x, ξ) ≡ 0 (x ∈ M , ξ ∈
∈ IRn), then q(x, rxW

0
ax

) ≡ 0 (cf. Lemma 3.4) and therefore A is compact (cf.(3.16)).

Let now x, y ∈ Uj ⊂ M be points sufficiently close to each other; then due to the
homogenity of symbols (cf. (3.2), (3.6) and Lemma 1.16 in

Du3
[11])

|a∞x − a∞y ‖∞ ≤ ‖W 0
a∞x −a∞y ‖sp‖| vyvxrxryW

0
a∞x −a∞y ‖|sp≤

≤ ‖B−r
O,Ω‖(−r)

sp {‖| vx[rxW
0
a∞x − β−1

j∗ Aβj∗]‖|(r)sp

+ ‖| vy[ryW
0
a∞y − β−1

j∗ Aβj∗]‖|(r)sp } < ε,
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where vy ∈ ∆y, vx ∈ ∆x are chosen to satisfy the inequalities

‖| vx[rxW
0
a∞x − β−1

j∗ Aβj∗]‖|(r)sp <
ε

2‖Br
O,Ω‖(−r)

sp

‖| vy[ryW
0
a∞y − β−1

j∗ Aβj∗]‖|(r)sp <
ε

2‖Br
O,Ω‖(−r)

sp

, vx(ξ)vy(ξ) = vy(ξ).

Let M 0 be another C l-manifold with the Lipschitz boundary ∂M 0 and let

β0
j : U0

j −→ V 0
j ⊂ Ω ⊂ IRn, j = 1, 2, ..., N0

represent a coordinate diffeomorphism.

If the diffeomorphism of manifolds ae : M → M
0

is given we are interested in the
operator

Aae = ae−1
∗ Aae∗, A ∈ OPCr( Hs

p(M )). (3.19)

Theorem 3.16 Aae ∈ OPCr
sp(M ) and its principal homogeneous symbol reads

a∞ae (y, ξ) = a∞ae (x, JT
x ξ), y = ae(x), x ∈ M , (3.20)

where JT
x represents the transposed matrix to the Jacobian

Jx = (β0
k ◦ ae ◦ β−1

j )′(t) ≡ ae′0, x ∈ Uj, t = βj(x) ∈ IRn, y = ae(x) ∈ U0
k .

Proof. Suppose first a∞x = a∞(x, .) ∈ C∞(Sn−1), x ∈ M ; then by definition

A
∆x∼ βj∗rxW

0
ax

β−1
j∗ , Aae

∆y∼ β0
k∗ryW

0
aae,y

(β0
k)
−1
∗ .

On the other hand

(β0
k)
−1
∗ Aaeβ

0
k∗ = ((β0

k)
−1
∗ ae−1

∗ βj∗)(β−1
j∗ Aβj∗)(β−1

j∗ ae∗β0
k∗) = ae−1

0∗ β−1
j∗ Aβj∗ae0∗

∆τ∼
∆τ∼ ae−1

0∗ rxW
0
ax

ae0∗, ae0 = β−1
j∗ ae∗β0

k∗ = β0
k ◦ ae ◦ β−1

j τ = ae0(t) = β0
k(y) ∈ IRn.

These equivalences yield (cf. Lemma 3.4)

ryW
0
aae,y

∆τ∼ ae−1
0∗ rxW

0
ax

ae0∗
∆τ∼ ae−1

0∗ rxW
0
a∞x,r

ae0∗, a∞x,r(ξ) ≡ | ξ |r a∞x (ξ).

The well-known formula for the symbol b(x, ξ) ≡ bx(ξ) of a pseudodifferential operator
after a transformation of the variable

ae−1
0∗ rxW

0
a∞x,r

ae0∗ = ryW
0
bx
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reads (cf.
Hr2
[18], vol.3, Theorem 18.1.17)

bx(ξ) =
∑

α∈INn

1

α!
Dα

ξ [| JT
x (ξ) |r a∞x (JT

x (ξ)] [Dα
z exp[i〈ρx(z), ξ〉]]z=t

y = ae(x), ρx(z) = ae0(z)− ae0(t)− ae′0(t)(z − t), t = βj(x) ∈ IRn.

Obviously
b∞x (ξ) = a∞x (JT

x ξ)

since all other summands in the asymptotic expansion have orders less then r; therefore

ryWa∞ae,y

∆τ∼ ryW
0
ã∞x , ã∞x (ξ) = ã∞x (JT

x ξ)

or, written differently (cf. Lemma 3.4)

q(τ , ryWa∞ae,y−ã∞x ) = 0.

Due to the homogenity of the symbol (cf.
Du3
[11], Lemma 1.15 or

MP1
[28], Lemma XV.5.1)

q(τ , ryWa∞ae,y−ã∞x ) = ‖Wa∞ae,y−ã∞x ‖ = ‖a∞ae,y − ã∞x ‖∞
and therefore

a∞ae,y(ξ) = a∞x (JT
x ξ).

For a∞x ∈ C(Sn−1)
⋂

Mp−ε,p+ε(IRn), a∞x ∈\ C∞(Sn−1) approximation can be applied.

Remark 3.17 It follows that the principal homogeneous symbol a∞x (ξ) of an operator A ∈
OPCr( Hs

p(M )) is unique and correctly defined on the cotangential fibration T ∗M (cf.Hr2
[18], v.3, § 18.1).

Example 3.18 Let Ω ∈ IRn be any compact Lipschitz domain (cf. Definition
d1.2
1.2.).

Any convolution operator with coefficients

A =
m∑

j=1

bjrΩW 0
aj

cjI : H̃s
p(Ω) → Hs−r

p (Ω),

aj ∈ PCr
p(IRn, α), bj, cj ∈ Ck(Ω), | s |, | s− r |≤ k, 1 < p < ∞

represents a pseudodifferential operator A ∈ OPCr( Hs
p(Ω)) and the symbols read

a(x, ξ) =
k∑

j=1

bj(x)aj(ξ)cj(x). a∞(x, ξ) =
k∑

j=1

bj(x)a∞j (ξ)cj(x).
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Example 3.19 The operator rΩA, where

Aϕ(x) =
1

(2π)n

∫

Ω×IRn

exp[iξ(x− y)]a(x, ξ)ϕ(y)dydξ

with the classical symbol a ∈ Sr(Ω × IRn) represents a pseudodifferential operator in the
sense of Definition 3.14, rΩA ∈ OPCr( Hs

p(Ω)).

The detailed proof of the last claim will be included in the forthcoming publication
DNS1
[12].

The symbol ax(ξ) = a(x, ξ) is called elliptic if the following holds

inf{| a∞(x, ξ) | : x ∈ M , ξ ∈ Sn−1} > 0. (3.21)

Theorem 3.20 Let 1 < p < ∞, −l + 1 ≤ s, s− r ≤ l and A ∈ OPCr( Hs
p(M )) with the

symbol a(x, .) ∈ PCr
p(IRn, α), x ∈ M .

(3.13) is a Fredholm operator if the following holds:
(i) the symbol a(x, ξ) is elliptic (cf. (3.20));
(ii) the following convolution operators are invertible either for k=0 or for k=1 (cf.(3.7))

and all x ∈ ∂M

rΩW 0
a∞k (x,.) : Lp(Ω) → Lp(Ω), ak(x, ξ) ≡ bs−r

k (ξ)a(x, ξ)b−s
k (ξ), (3.22)

where Ω is chosen according to Definition
d1.2
1.2.

Proof. If we recall Definition 3.14 and the local principal (cf.
Du4
[9], § 4 or

DNS1
[12]) we find

out that (3.13) is a Fredholm operator if and only if the local representatives

rΩW 0
ax

: H̃s
p(Ω) → Hs−r

p (Ω), x ∈ ∂M

W 0
ax

: Hs
p(IRn) → Hs−r

p (IRn), x ∈ M , (3.23)

are all locally invertible.
Since an operators B and B + T, where T is compact, are locally equivalent at any finite

point x ∈ IRn (cf.
Du4
[9], § 4), by virtue of Lemmas 3.4 and 3.8 it follows: (3.22) are locally

invertible if and only if the lifted operators

rΩW 0
a∞k (x,.) : Lp(Ω) → Lp(Ω), x ∈ ∂M

W 0
a∞k (x,.) : Lp(IRn) → Lp(IRn), x ∈ M ,

are locally invertible at x ∈ M ; local invertibility of the operator W 0
a∞k (x,.) is equivalent to

the ellipticity of ak(x, ξ) (cf.
Du4
[9] , § 4) and further to the ellipticity of a∞(x, ξ), since

ak(x, ξ) ≡ (bs−r)∞k (ξ)a(x, ξ)(b−s)∞k (ξ)

and bν
k(ξ) is elliptic (cf. (3.8)).
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Remark 3.21 For the point x ∈ ∂M for which the tangential cone Ky to Ω exists at y =
βj(x) ∈ ∂Ω the operator (3.21) in the condition (ii) can be replaced by

rKyW
0
a∞k (x,.) : Lp(Ky) → Lp(Ky). (3.24)

Moreover: if Ω has a tangential cone at any point y = βj(x) ∈ ∂Ω, x ∈ ∂M then the
conditions of Theorem 3.20 are necessary as well.

This follows from the equivalence of local invertibility of (3.21) and (3.22) on one side
and from the equivalence of invertibility and local invertibility of (3.22) on the other side (cf.Du4
[9], § 4 for the last claim).

Remark 3.22 It was only for notational convenience that we stick to the scalar case. The-
orems 3.20 and Remark 3.21 remain valid for systems of pseudodifferential equations (of
pseudodifferential operators) with matrix-valued symbols in vector spaces if the ellipticity
condition (3.20) is interpreted in a proper way: a∞(x, ξ) is replaced with det a∞(x, ξ).

Remark 3.23 Theorem 3.20 and Remark 3.21 (the latter only in the sufficient part) remain
valid also for Besov spaces Bs

p,q(M ). This follows with the help of the interpolation theorems
(cf.

Tr1
[43] , § 2.10) as in

DNS1,DNS2
[12, 13].

3.5 REDUCTION OF ORDER FOR MANIFOLDS

The notations used here are mostly from § 3.3 (l denotes, for example the smoothness of a
manifold M ). In

Sch2
[33] the order reduction operators were constructed

Br
M = br

M (x,D) : H̃s
p(M ) → H̃s−r

p (M ),

Br

M = b
r

M (x,D) : Hs
p(M ) −→ Hs−r

p (M ), (3.25)

s, r ∈ IR, −l + 1 ≤ s, s− r ≤ l, 1 < p < ∞, br
M , b

r

M ∈ Sr(M × IRn),

but the proof of ellipticity of these operators was incomplete.
Here a modified model of the order reduction operator is suggested. These operators will

be needed in the next subsection.

Theorem 3.24 There exist isomorphisms (3.24) such that the diagram

H̃s
p(M )

a(x,D)−→ Hs−r
p (M )

↑ B−s
M ↓ Bs−r

M

Lp(M )
a0(x,D)−→ Lp(M ).

(3.26)

a(x,D) ∈ OPCr( Hs
p(M )),

a0(x, D) = Bs−r

M a(x,D)B−s
M ∈ OPC0(Lp(M ))

is commutative and the principal homogeneous symbol of the lifted operator reads

a∞0 (x, ξ) = (b
s−r

M )∞(x, ξ) a∞(x, ξ) (b−s
M )∞(x, ξ). (3.27)
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Proof. Let M1 be any C l-manifold without boundary, including M (i.e. ∂M1 =
= ∅, M ⊂ M1) and suppose the coordinate system {(β1

j , U
1
j )}N1

j=1 be the extension of the
system from M : β1

j |M = βj, U1
j ∩M = Uj, j = 1, 2, ..., N, N ≤ N1.

Let | ν |< 1 and consider the operator

Wbν = Bν
ψ,Ω×IR ∈ BPO(ν, Ω× IR) ⊂ BPO(ν, IRn+1),

where Ω×IR ⊂ IRn+1 is a canonical Lipschitz domain again (cf. Definition
d1.1
1.1); we suppose

that bν(ξ, λ) ∈ Sν(IRn+1) (cf. Theorem 3.6; ξ ∈ IRn, λ ∈ IR).

Let
{
ψ1

j (x)
}N1

j=1
be a partition of unity subordinated to the covering {U0,j}N1

j=1 of M 0

and compose the operator

Bν
M1,λ =

N1∑
j=1

β1
j∗Wbν(.,λ)(β

1
j∗)

−1ψ1
j I, Bν

M ,λ =
N∑

j=1

βj∗Wbν(.,λ)β
−1
j∗ ψ1

j I, λ ∈ IR,

where then by the properties of BPO’s W 0
bν(.,λ) (cf. (

e1.13
1.13)) we get

rM Bν
M1,λϕ = Bν

M1,λϕ = Bν
M ,λϕ ϕ ∈ H̃s

p(M ); (3.28)

therefore the operators

Bν
M ,λ : H̃s

p(M ) → H̃s−ν
p (M ), Bν

M ,λ : Hs
p(M1) → Hs−ν

p (M1)

are bounded.
Obviously Bν

M1,λ ∈ OPCν(M1) and its symbol reads

bν
M1

(x; ξ, λ) =
N1∑
j=1

ψ1
j (β

1
j (x))bν([((β1

j )
′)>(x)]−1(x)ξ, λ), (3.29)

where [((β1
j )
′)>(x)]−1(x) is the transposed Jacoby matrix of the inverse diffeomorphism

[β1
j ]
−1(x).

Let J be any non-degenerate matrix; then (cf. Theorem 3.6 and Lemma 2.5)

arg(bν)∞(Jξ, λ) = ν
Γ

(
n+1

2

)

4π
n+1

2
−1

∫

Sn

ψ(y) sgn [Jξ · y′ + λyn+1] dyS = (3.30)

= ν
Γ

(
n+1

2

)

4π
n−1

2

∫

Sn∩Σn
1

[ψ(y) + 1] sgn [Jξ · y′ + λyn+1] dyS, y = (y1, ..., yn),
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since supp [ψ(y) + 1] ⊂ Σn
1 (cf. (2.2)) and

∫

Sn

sgn(η · y)dyS = 0

for any fixed η ∈ IRn+1.

Similarly to (2.31) we get

∫

Sn∩Σn
1

[ψ(y) + 1] dyS =
2π

n+1
2

Γ
(

n+1
2

)

and together with (3.29) this yields

| arg(bν
∞(Jξ, λ) |< π

2
ν <

π

2
;

therefore (cf. (3.28))
inf | (bM ν

1
)∞(x; ξ, λ) |> 0.

Thus the operator Bν
M1,λ has the parametrix, since it is elliptic and M1 is closed (cf.

Hr2
[18],

vol.3)
B−ν

M1,λ =
[
bν
M1

(x; Dx, λ)
]−1 ∈ OPC−ν(M1)

such that

B−ν
M1,λBν

M1,λ = I + R1(λ), Bν
M1,λB−ν

M1,λ = I + R2(λ)

R1(λ), R2(λ) ∈ OPC−1(M1)

(R1(λ), R2(λ) ∈ OPC−∞(M1) if M is C∞ − smooth) the symbols Rj(x; ξ, λ) of the
operators Rj(λ) satisfy the estimations

| ∂β
x∂α

ξ Rj(x; ξ, λ) |≤ Cα,β

(1+ | ξ | + | λ |)1+|α| ≤
Cα,β(λ)

(1+ | ξ |)1+|α| , (3.31)

x ∈ M1, ξ ∈ IRn \ {0}, | β |≤ `, | α |< ∞, j = 1, 2.

The functions Cα,β(λ) have limits lim|λ|→∞ Cα,β(λ) = 0 and since the norms of Rj(λ) are
estimated by these constants (cf.

Hr2
[18], vol.3) we can get ‖Rj(λ0)‖ < 1, j = 1, 2 for a large

λ0 ∈ IR; then operators

I + Rj(λ0) : Hs−ν
p (M1) −→ Hs−ν

p (M1), j = 1, 2

are invertible and therefore the operator

BM1 = BM1,λ0 : Hs
p(M1) −→ Hs−ν

p (M1)
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is also invertible. Due to (3.27) this yields the invertibility of the restriction

BM = BM1 | H̃s
p(M )

: H̃s
p(M ) −→ H̃s−ν

p (M ) (3.32)

If now a(x,D) ∈ OPCr
sp(M1), then (cf. (3.27))

rM a(x,D)Bν
M ϕ = rM a(x,D)Bν

M1
ϕ = rM (a ◦ bν

M1
)(x,D), (3.33)

where bν
M1

(x, ξ) ≡ bν
M1

(x, ξ, λ0) is the symbol of the operator Bν
M1

.

The operator Bν

M = b
ν

M (x,D) = rM Bν
M1

` (cf. (3.25)) is constructed similarly, where `

is any extension operator from H̃s
p(M ) to Hs

p(M1) and the operator Bν

M is independent of
this extension. The constructed operator arranges an isomorphism

Bν

M = b
ν

M (x,D) : Hs
p(M ) −→ Hs−ν

p (M ) (3.34)

Obviously

Bν

M rM a(x,D) = rM Bν

M1
`rM a(x,D) (3.35)

= rM Bν

M1
a(x,D) = rM (b

ν

M1
◦ a)(x, D).

If now | ν |≥ 1, then consider the operators

Bν
M1

= (B
ν
m

M1
)m, Bν

M = (B
ν
m

M )m = rM (B
ν
m

M1
)m`

where m >| ν | is fixed; the restriction BM = BM1| H̃s
p(M )

and Bν

M represent the desired

isomorphisms (3.31) and (3.33) for any ν ∈ IR. (3.32) and (3.34) are valid as well and imply
(3.26).

3.6 PSEUDODIFFERENTIAL OPERATORS WITH LOCALLY SECTORIAL SYMBOLS

The next definition is due to I. Spitkovskiǐ, who used it for the investigation of one-
dimensional singular integral operators (cf.

LS1
[25]).

Definition 3.25 A m×m matrix symbol a(x, ξ) ∈ PCr
2(IRn,∞), (x ∈

∈ M , r ∈ IR, 1 < p < ∞) is called αx -sectorial, 0 < αx < π/2, if there exists
θx ∈ [0, 2π] such that the following inequality

Re(ei(θ−θx)a∞(x, ω)η, η) ≥ M0 | η |2, M0 > 0 (3.36)

holds for any ω ∈ Sn−1, η ∈ CI m, and | θ |< π/2− αx.
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Let’s notice that a locally ε−sectorial symbol (for some ε > 0) is known as locally
strongly elliptic.

The following two conditions are equivalent reformulations of condition (3.35) each:
(i) the Hausdorff set

H (a∞(x, ω)) = {(a∞(x, ω)η, η) : ω ∈ Sn−1, η ∈ CI m, | η |= 1}
of the matrix-function a∞(x, ω), which includes the spectrum, fits inside the open angle
{ζ ∈ CI \ {0} : | arg ζ − θx |< αx};

(ii) the matrix-functions a∞R (x, ω)± ctg αxa
∞
I (x, ω) are positive definite; here aR =

= 1
2
(a + a∗), aI = 1

2
(a− a∗) and a∗ denotes the conjugate matrix.

Theorem 3.26 Let M have a Lipschitz boundary, preconditions of Theorem 3.20 hold and
the matrix-symbol ax(ξ) be elliptic (cf. (3.20).

If a(x, ξ) is αx− sectorial for any point x ∈ ∂M then the pseudodifferential operator

a(x,D) : H̃
r
2
+s

2 (M ) −→ H
− r

2
+s

2 (M ) (3.37)

is Fredholm for all

| s |≤ 1

2
− αa

π
, αa = sup{αx : x ∈ ∂M } <

π

2
,

If, additionally, a(x, ξ) is (π − ε)− sectorial, that means

H (exp(−iθx)a
∞(x, ω))

⋂
{z ∈ CI : z = Re z ≤ 0} = ∅ (3.38)

for a certain θx ∈ [0, 2π]and any x ∈ M = M \ ∂M , then

Ind a(x, D) = 0. (3.39)

Proof. It can be assumed that θx ∈ C l(M ) : in according with Lemma 3.15 θx depends
continuously on x ∈ M ; using the approximation by C l−function θ̃x in L∞− norm a(x, ξ)

can be supposed to be αx− sectorial with respect to the approximating function θ̃x.

Now the operator exp(−iθx)a(x, D) can be considered in the same spaces as a(x,D)
(cf. (3.36)); since these operators are Fredholm (or are not) simultaneously and their indices
coincide, it can be supposed that θx ≡ 0, x ∈ M .

According to Theorem 3.20 the Fredholm property of operator (3.36) is implied by the
invertibility of the following operators

rΩW 0
a0(x,·) : L2(Ω) → L2(Ω), x ∈ ∂M , (3.40)



3. PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER ON BESSEL POTENTIAL SPACES29

a0(x, ξ) = (b
− r

2
+s

0 )∞(ξ)a∞(x, ξ)(b
− r

2
−s

0 )∞(ξ) = g0(ξ) exp[iϕ(ξ)]a∞(x, ξ),

g0(ξ) =| (a−r)∞(σT ξ) |≥ M0 > 0, ϕ(ξ) = −2 arg as(σT ξ).

Due to (2.30) we get

ϕ(ξ) = s
Γ(n

2
)

4π
n
2
−1

∫

Sn−1

ψ(x) sgn(σT ξ · x)dxS

= s
Γ(n

2
)

4π
n
2
−1

∫

Sn−1∩Σn
1

[ψ(x) + 1] sgn(σT ξ · x)dxS,

and therefore (cf. (3.29))
| ϕ(ξ) |≤ π | s |< π

2
− αa. (3.41)

From (3.39) and (3.40) follows

Re(a0(x, ξ)η, η) = Re (exp (i[ϕ(ξ)]) g0(ξ)a
∞(x, ξ)η, η)

≥ Re
(
exp (i[ϕ(ξ)]) a∞(x, ξ)

√
g0(ξ)η,

√
g0(ξ)η

)

≥ M1 |
√

g0(ξ)η |2≥ M1 | η |2 .

Further we proceed with the help of Parseval’s equality as follows

Re
(
rΩW 0

a0(x,·)u, u
)

= Re
(
F−1a0(x, ·)Fu, u

)

=
1

(2π)n
Re (a0(x, ξ)Fu, Fu) ≥

≥ M1

(2π)n
‖Fu‖2

L2
= M1‖u‖2

L2
, u ∈ C∞

0 (Ω) ⊂ L2(IRn). (3.42)

(3.41) yields the invertibility of operator (3.39) and, therefore the Fredholm property of
operator (3.36): if Re(Au, u) ≥ M1‖u‖2, then the kernels KerA and KerA∗ are trivial (we
recall that (Au, u) = (u, A∗u); A has closed range as well, while from limn→∞ Aun = v
there follow the convergence un → w to a certain w and the equality Aw = v.

Thus (3.36) is a Fredholm operator.
Let us prove formula (3.38) under the condition (3.37) (we recall that θx ≡ 0).

Let for the beginning s = 0. The operator (cf. (3.24), (3.25))

aλ(x,D) = (1− λ)a(x,D) + λB
r
2

M B
r
2

M : H
r
2
p (M ) −→ H

− r
2

p (M ), 0 ≤ λ ≤ 1
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depends continuously on the parameter λ; the homogeneous symbol of the corresponding
lifted operator reads (cf (3.26))

aλ(x, ξ) = (1− λ)g0(ξ)a
∞(x, ξ) + λ, 0 ≤ λ ≤ 1

and is αx− sectorial for any point of the boundary x ∈ ∂M , αx ≤ αa ≤ π/2; due to
condition (3.37) it is elliptic as well.

Since a0(x,D) = a(x,D), we get

Ind a(x,D) = Ind aλ(x,D) = Ind a1(x,D) = 0,

because the lifted operator for a1(x,D) in the space L2(M ) (cf. Theorem 3.24) is the identity

B−
r
2

M a1(x,D)B−
r
2

M = I : L2(M ) −→ L2(M ).

Let now | s |≤ 1/2− αa/π, s 6= 0.

The symbol a0
s(x, ξ) of the lifted operator a0

s(x,D) = B−
r
2
+s

M a(x,D)B
r
2
+s

M (cf. Theorem
3.24)) reads a0

s(x, ξ) = a0(x, ξ) (cf. (3.39)). In according with Theorem 3.24 the indices of
operator (3.36) and of the operator

a0
s(x,D) : L2(M ) → L2(M ) (3.43)

are equal and therefore we need to prove Ind a0
s(x,D) = 0.

Operator (3.42) and its symbol a0
s(x, ξ) depend continuously on s. Due to the proved

part of the theorem (3.42) is a Fredholm operator for any | s |≤ 1/2− αa/π; then

Ind a0
s(x,D) = Ind a0

0(x,D) = 0,

since a0
0(x,D) = a0(x,D) and this operator was already considered.

Remark 3.27 If condition (3.37) fails then formula (3.38) may be violated.
To prove this claim we will describe the method for calculating the index of operator

(3.36) in this case.
Let ϕ0(x) be a C l−function on M for which supp ϕ0 and the set {x ∈ M : ϕ0(x) =

= 1} are concentrated in a sufficiently small neighbourhood of ∂M ⊂ M ; then the homo-
topy

ãλ(x,D) = ϕ0(x)
[
(1− λ)a(x,D) + λB

r
2

M B
r
2

M

]
+ [1− ϕ0(x)] a(x, D),

0 ≤ λ ≤ 1

connects the operator ã0(x,D) = a(x,D) with ã1(x,D), and remains Fredholm in the space
L2(M ) for all 0 ≤ λ ≤ 1; therefore

Ind a(x,D) = Ind ã1(x,D) = Ind ã2(x,D),
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where ã2(x,D) is the lifted operator (cf. (3.25))

ã2(x,D) = B−
r
2

M ã1(x,D)B−
r
2

M : L2(M ) −→ L2(M ).

Obviously ã2(x, ξ) ≡ 1 in some neighbourhood of ∂M ⊂ M (ξ ∈ IRn) and if a2(x, ξ)
is the extension of ã2(x, ξ) on M1 by 1 (we recall that M1 is a closed C l−manifold and
M ⊂ M1), then the operator

a2(x,D) : L2(M1) −→ L2(M1).

is Fredholm and
Ind ã2(x,D) = Ind a2(x,D).

Thus the problem is reduced to the closed manifold case and the Atiyah-Singer index
formula can be applied.

Any example of pseudodifferential operator on the closed manifold M1 with a non-trivial
index can be used to construct an example of a pseudodifferential operator on some open
manifold M ⊂ M1 with the same (non-trivial) index and the same symbol a(x, ξ) for any
x ∈ M (ξ ∈ IRn).

4 PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER IN HÖLDER-
ZYGMUND SPACES

4.1 HÖLDER-ZYGMUND SPACES

Let 0 < α < 1, 1 ≤ p ≤ ∞. Then the space Zα
p (IRn) consists of functions

Zα
p (IRn) =

{
ϕ ∈ Lp(IRn) : ‖ϕ‖Zα = supx,t∈IRn

| ϕ(x + t)− ϕ(x) |
| t |α < ∞

}

and is endowed with the norm (cf.
Ka1,Ka2
[19, 20])

‖ϕ‖Zα
p

= ‖ϕ‖Lp + ‖ϕ‖Zα . (4.1)

For a Lipschitz domain Ω ⊂ IRn two different spaces can be defined (cf. (
e1.15
1.15),(

e1.16
1.16)):

Z̃α
p (Ω) =

{
u ∈ Zα

p (IRn) : supp u ⊂ Ω
}

,

with the norm induced from Zα
p (IRn) and the space

Zα
p (Ω) =

{
u = rΩv : v ∈ Zα

p (IRn)
}

with the norm of the factor-space

‖| u‖|Zα
p
= inf

{‖v‖Zα
p

: v ∈ Zα
p (IRn), rΩv = u

}
,
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where rΩ denotes the restriction operator as before.
To extend the definition of the space Zα

p (IRn) to the case α ≥ 1 the Poisson integral is
involved (cf.

St1
[41], § III.2)

Pyϕ(x) =

∫

IRn

Py(x− t)ϕ(t)dt = W 0
ay

f(x), Py(x) =
cny

(| x |2 +y2)
n+1

2

,

cn =
Γ(n+1

2
)

π
n+1

2

, ay(ξ) = exp(− | ξ | y), y > 0, x, ξ ∈ IRn.

Pyϕ(x) is a harmonic function
(

∂2

∂y2
+

n∑
j=1

∂2

∂x2
j

)
Pyϕ(x) ≡ 0

and approximates ϕ(x) (cf.
St1
[41], § III.2)

lim
y→0

‖Pyϕ− ϕ‖p = 0, ϕ ∈ Lp(IRn), 1 < p < ∞. (4.2)

Lemma 4.1 The expression

‖ϕ‖(0)
Zα

p
= ‖ϕ‖p + supy>0 y1−α‖DyPyϕ‖∞ (4.3)

defines an equivalent norm in the space Zα
p (IRn).

Other equivalent norms are

‖ϕ‖(k)
Zα

p
= ‖ϕ‖p + supy>0 y1−α‖Dxk

Pyϕ‖∞, k = 1, 2, ...n. (4.4)

Proof For the case p = ∞ cf.
St1
[41], § V.4. Let us start with the equivalence of norms

(4.4) and (4.3). For this we recall the following inequalities
∥∥∥∥
∂Px0

∂xj

∥∥∥∥
1

≤ C1

x0

, x0 > 0, j = 0, 1, ..., n (4.5)

which are implied by the following two estimates (they are applied to the integrals over
| t |≤ x0 and over | t |> x0 respectively)

∣∣∣∣
∂Px0(x)

∂xj

∣∣∣∣ ≤
C2

xn+1
0

,

∣∣∣∣
∂Px0(x)

∂xj

∣∣∣∣ ≤
C2

| x |n+1
,

x ∈ IRn, x0 > 0, j = 0, 1, ..., n.



4. PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER IN HÖLDER-ZYGMUND SPACES33

Since Py = P y
2
∗ P y

2
we get

∂2Px0ϕ(x)

∂xj∂xk

=
∂2

(
Px0

2
∗ Px0

2
ϕ
)

(x)

∂xj∂xk

and therefore (cf. (4.3) and (4.5))

∥∥∥∥
∂2Px0ϕ

∂xj∂xk

∥∥∥∥
∞
≤

∥∥∥∥
∂Px0

2

∂xj

∥∥∥∥
1

∥∥∥∥∥
∂Px0

2
ϕ(x)

∂xk

∥∥∥∥∥
∞
≤ C1‖ϕ‖(k)

Zα
p

(x0

2

)α−2

, (4.6)

j, k = 0, 1, ..., n.

Applying the Hölder inequality we get
∥∥∥∥
∂Px0ϕ

∂xk

∥∥∥∥
∞

=

∥∥∥∥
∂Px0

∂xk

∗ ϕ

∥∥∥∥
∞
≤

∥∥∥∥
∂Px0

∂xk

∥∥∥∥
p′
‖ϕ‖p = C3

(x0

2

) n
p′−n−1

‖ϕ‖p , (4.7)

where p′ = p/(p− 1) for 1 < p < ∞ and p′ = ∞ (p′ = 1) for p = 1 (p = ∞).

Therefore

lim
x0→∞

∂Px0ϕ(x)

∂xk

= 0

which yields
∂Px0ϕ(x)

∂xj

=

∫ ∞

xj

(
∂2Px0ϕ(x)

∂xj∂xk

)

xk=λ

dλ.

The last equality together with (4.6) yields
∥∥∥∥
∂Px0ϕ

∂xj

∥∥∥∥
∞
≤ 22−αC1

α− 1
‖ϕ ‖(k)

Zα
p

xα−1
0 , j = 0, 1, ..., n. (4.8)

Hence

‖ϕ‖(k)
Zα

p
≤ ‖ϕ‖p +

22−αC1

α− 1
‖ϕ‖(k)

Zα
p
≤ C4 ‖ϕ‖(k)

Zα
p

, k = 0, 1, ..., n.

Now we prove the equivalence of (4.3) and (4.1). For this we recall the inequalities fromSt1
[41], § III.2 (the second is implied by the first one)

∫

IRn

Py(t)dt ≡ 0,

∫

IRn

∂Py(t)dt

∂y
≡ 0, y > 0. (4.9)

But then
∂Py(t)ϕ(x)

∂y
=

∫

IRn

∂Py(t)

∂y
[ϕ(x− t)− ϕ(x)]dt
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and further similarly to (4.5)
∥∥∥∥
∂Py(t)ϕ

∂y

∥∥∥∥
∞

≤ ‖ϕ‖Zα
p

∫

IRn

∣∣∣∣
∂Py(t)

∂y

∣∣∣∣ | t |α dt = C5‖ϕ‖Zα
p
yα−1, y > 0

‖ϕ‖(0)
Zα

p
= ‖ϕ‖p + supx∈IRn,y>0 y1−α

∣∣∣∣
∂Py(t)ϕ(t)

∂y

∣∣∣∣
≤ ‖ϕ‖p + C5‖ϕ‖Zα

p
≤ (1 + C5)‖ϕ‖Zα

p
.

To prove the inverse inequality, we apply Lagrange’s formula

Pyϕ(x + t)− Pyϕ(x) =
n∑

k=1

tk

(
∂Pyϕ(z)

∂zk

)

z=x+θt

, 0 < θ < 1

which yields due to the equivalence of the norms (4.3) and (4.4)

|Pyϕ(x + t)− Pyϕ(x)| ≤ | t |
n∑

k=1

∥∥∥∥
∂Pyϕ

∂xk

∥∥∥∥
∞

≤ | t |α
n∑

k=1

‖ϕ‖(k)
Zα

p
≤ C6‖ϕ‖(0)

Zα
p
| t |α . (4.10)

Since
Pyϕ(x + z)− ϕ(x + z) =

∫ y

0

∂

∂λ
Pλϕ(x + z)dλ

we get

|Pyϕ(x + z)− ϕ(x + z)| ≤ ‖ϕ‖(0)
Zα

p

∫ y

0

λα−1dλ =
‖ϕ‖(0)

Zα
p

α
yα−1, y > 0. (4.11)

From the identity

ϕ(x + t)−ϕ(x) = [ϕ(x + t)−P|t|ϕ(x + t)] + [P|t|ϕ(x + t)−P|t|ϕ(x)] + [P|t|ϕ(x)−ϕ(x)]

applying (4.10) and (4.11) (the latter is applied for y =| t |, z = t and for z = 0) we get

| ϕ(x + t)− ϕ(x) |≤ C7‖ϕ‖(0)
Zα

p
| t |α . x ∈ IRn, y > 0

which yields
‖ϕ‖Zα

p
≤ (1 + C7)‖ϕ‖(0)

Zα
p
.
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The foregoing lemma leads to the following definition of the space Zα
p (IRn) for 0 <

α < ∞, 1 ≤ p ≤ ∞ :

Zα
p (IRn) =

{
ϕ ∈ Lp(IRn) : ‖ϕ‖Zα

p
= ‖ϕ‖p

+ supy>0 yk−α‖Dk
yPyϕ‖∞ < ∞, k = [α] + 1

}
,

where [α] denotes the integer part of α.

Lemma 4.2 Let 0 < α < ∞, 1 ≤ p ≤ ∞.

For a function ϕ ∈ Zα
p (IRn) the following estimate holds

‖Pyϕ− ϕ‖∞ ≤ Cyα‖ϕ‖Zα , y > 0. (4.12)

If Ω = IRn or Ω ⊂ IRn is a non-compact Lipschitz domain then

Zα
p (Ω) = Lp(Ω) ∩ Zα

∞(Ω), Z̃α
p (Ω) = Lp(Ω) ∩ Z̃α

∞(Ω) (4.13)

where Z̃α
p (IRn) = Zα

p (IRn).

Moreover: if Ω ⊂ IRn is a compact Lipschitz domain, then

Z̃α
p (Ω) = Z̃α

∞(Ω), Zα
p (Ω) = Zα

∞(Ω). (4.14)

Proof. Let us prove first (4.12). Due to (4.9) we get

Pyϕ(x)− ϕ(x) =

∫

IRn

Py(t)[ϕ(x− t)− ϕ(t)]dt

and further

‖Pyϕ− ϕ‖∞ ≤ ‖ϕ‖Zα

∫

IRn

Py(t) | t |α dt = C1‖ϕ‖Zαyα, y > 0

which is exactly (4.12).
Obviously Lp(IRn) ∩ Zα

∞(IRn) ⊂ Zα
p (IRn).

Let now ϕ ∈ Zα
p (IRn); then

‖ϕ‖∞ ≤ ‖Pyϕ‖∞ + ‖Pyϕ− ϕ‖∞ ≤ ‖Py‖p′‖ϕ‖p + C1y
α‖ϕ‖Zα < ∞, y > 0

which implies ϕ ∈ Zα
∞(IRn) and proves (4.13) for Ω = IRn. For any other Ω ⊂ IRn the

proof is similar.

(4.14) follows from (4.13) since for a compact Ω ⊂ IRn the inclusion ϕ ∈ Z̃α
∞(Ω)

(ϕ ∈ Zα
∞(Ω)) implies ϕ ∈ Lp(Ω).
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Lemma 4.3 Let 0 < α < 2, 1 ≤ p ≤ ∞. The expression

‖ϕ‖′Zα
p

= ‖ϕ‖p + ‖ϕ‖′Zα , (4.15)

‖ϕ‖′Zα = supx,t∈IRn,t>0

| ϕ(x + t) + ϕ(x− t)− 2ϕ(x) |
| t |α

defines an equivalent norm in the space Zα
p (IRn).

Proof is exposed in
St1
[41], § V.4, Proposition 8 for the case p = ∞ and is similar for

1 ≤ p < ∞.

Lemma 4.4 Let α > 1, 1 ≤ p ≤ ∞. Then ϕ ∈ Zα
p (IRn) if and only if Dxj

ϕ ∈
∈ Zα−ε

p (IRn), j = 1, 2, ..., n. An equivalent norm is the following

‖ϕ‖′′Zα
p

= ‖ϕ‖p +
∑

|β|=m≤[α]

‖Dβϕ‖Zα−m
p

. (4.16)

Proof is similar for any 1 ≤ p ≤ ∞ and is exposed in
St1
[41], § V.4, Proposition 9 for the

case p = ∞.

Lemma 4.5 Let Ω = IRn or Ω ⊂ IRn be any special or general Lipschitz domain and
0 < γ < α < ∞, 1 < p < ∞. Then the following embeddings are continuous

Z̃α
p (Ω) ⊂ Z̃γ

p (Ω), Zα
p (Ω) ⊂ Zγ

p (Ω). (4.17)

If moreover Ω is compact then the embeddings (4.17) are compact.

Proof. The property

‖Dr
yPyϕ‖∞ ≤ C1y

α−r, r = 0, 1, ...,≤ [α] + 1, y > 0 (4.18)

of the function ϕ ∈ Lp(IRn) is necessary and sufficient for ϕ ∈ Zα
p (Ω) and is important

only for 0 < y < 1 since for y ≥ 1 the stronger inequality holds (proved similarly to (4.7))

‖Dr
yPyϕ‖∞ ≤ C2y

n
p′−n−r‖ϕ‖p, r = 0, 1, ...,≤ [α] + 1, p′ =

p

p− 1
;

now (4.17) is obvious.
If β < α and Ω is compact, we can suppose p = ∞ (cf. (4.14)). Let {ϕj}∞1 ⊂ Zα

∞(Ω)
be any bounded set; using the equivalent norm (4.16) and Arzel’a-Ascoli’s theorem about
compactness in C(Ω), a subsequence {ϕjk

}∞k=1 ⊂ Zα
∞(Ω) can be selected which con-

verges in C(Ω). If ϕ = limk→∞ ϕjk
, then obviously ϕ ∈ Zα

∞(Ω) ⊂ Zγ
∞(Ω) and (cf.

(4.3),(4,15),(4.16))

lim
k
‖ϕjk

− ϕ‖Zγ
∞ = lim

k

[‖ϕjk
− ϕ‖∞ + supy>0 yr−γ‖DβPy(ϕjk

− ϕ)‖∞
]

=

= lim
k
‖DβPy(ϕjk

− ϕ)‖1− γ−r
α−r∞ supy>0

{
yr−α‖DβPy(ϕjk

− ϕ)‖∞
} γ−r

α−r = 0,

where | β |= r = [γ] ≤ [α].



4. PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER IN HÖLDER-ZYGMUND SPACES37

Theorem 4.6 Let Ω ⊂ IRn be a Lipschitz domain and either Xα = Zα
p (Ω) or Xα = Z̃α

p (Ω).
then

L (Xα1 , Xγ1)
⋂

L (Xα2 , Xγ2) ⊂ L (Xα, Xγ),

1 < p < ∞, 0 < αj, βj < ∞, j = 1, 2,

α = (1− θ)α1 + θα2, γ = (1− θ)γ1 + θγ2, 0 < θ < 1,

where L (B1,B2) denotes the set of linear bounded operators A : B1 → B2.

Proof is similar for the cases 1 ≤ p ≤ ∞ and is exposed in
Tr1
[43], § 27.2 for the case

p = ∞.

Remark 4.7 Norms (4.1) and (4.15) are equivalent for 0 < α < 1 but not for α = 1 (cf.St1
[41], Example V.4.3.1).

The expression

‖ϕ‖′′′Zα
p

= ‖ϕ‖p +
∑

|β|=[α]−
‖Dβϕ‖

Z
{α}+
p

, (4.19)

α− 1 ≤ [α]− < α, {α}+ = α− [α]−

where [α]− is integer, defines an equivalent norm in the space Zα
p (IRn), 1 < p < ∞, 1 <

< α < ∞.

4.2 MULTIPLIERS

By M r(Zα
p (IRn)) we shall denote the class of multipliers (functions) a(ξ) for which the

convolution operator
W 0

a : Zα
p (IRn) −→ Zα−r

p (IRn) (4.20)

is bounded. If r = 0 the notation M(Zα
p (IRn)) is used.

Theorem 4.8 Let a ∈ Lloc
1 (IRn) and let the condition

∑

|β|≤[n
2 ]+1,β≤1

R2|β|−n

∫
R
2

<|ξ|≤2R

| Dβa(ξ) |2 dξ < ∞ (4.21)

hold; then a ∈ M(Zα
p (IRn)) for all 0 < α < ∞, 1 < p < ∞.

The inequality

sup{| ξ ||β|| Dβa(ξ) |: β ∈ INn, β ≤ 1, | β |≤ n

2
+ 1} < ∞

implies (4.21)
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Proof. The identity DβW 0
a = W 0

a Dβ, β ∈ INn and the equivalent norm (4.19) can be
applied to reduce the proof to the case 0 < α ≤ 1.

We recall also that (cf. Theorem
t1.3
1.3)

‖W 0
a ϕ‖p ≤ C1‖ϕ‖p, ϕ ∈ Lp(IRn) (4.22)

Further we follow the proof of Theorem 7.9.6 from
Hr2
[18] with slight modifications.

Thus 0 < α ≤ 1, ϕ ∈ Zα
p (IRn) can be assumed.

Consider χ ∈ C∞
0 (IRn), χ(ξ) = χ(−ξ), χ(ξ) = 0 for | ξ |≥ 2 and χ(ξ) = 1 for

| ξ |≤ 1. Then

∞∑
j=−∞

v̂(2−jξ) = 1, ξæ0, v̂(ξ) = Fv(ξ) = χ(ξ)− χ(2ξ).

Clearly v ∈ S(IRn), v(−ξ) = v(ξ) and

ϕ =
∞∑
−∞

ϕj, ϕ̂j(ξ) = v̂(2−jξ)ϕ̂(ξ) (4.23)

where the explicit expression for ϕj(x) reads

ϕj(x) =

∫

IRn

ϕ(x± 2−jy)v(y)dy

=
1

2

∫

IRn

[
ϕ(x + 2−jy) + ϕ(x− 2−jy)− 2ϕ(x)

]
v(y)dy

since ∫

IRn

v(y)dy = v̂(0) = 0.

Hence

‖ϕj‖∞ ≤ C22
α·j‖ϕ‖(0)

Zα , (4.24)

‖ϕ‖(0)
Zα = supx,t∈IRn,|t|>0

| ϕ(x + t) + ϕ(x− t)− 2ϕ(x) |
| t |α .

Similarly

Dβϕj(x) = (−1)|β|2|β|j
∫

IRn

ϕ(x± 2−jy)Dβv(y)dy

= 22j−1

∫

IRn

[
ϕ(x + 2−jy) + ϕ(x− 2−jy)− 2ϕ(x)

]
Dβv(y)dy,

β ∈ INn, | β |= 2
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and therefore
‖Dβϕj‖∞ ≤ C22

(2−α)j‖ϕ‖(0)
Zα , | β |= 2. (4.25)

Let aR(ξ) ≡ v̂(ξ)a(Rξ); from (4.21) it follows

∑

|β|≤[n
2 ]+1

∫

IRn

| DβaR(ξ) |2 dξ ≤ C3

and further (cf.
Hr2
[18], § 7.9)

aR = FkR, kR ∈ L1(IRn), supR ‖kR‖1 ≤ CR < ∞. (4.26)

Since supp ϕ̂j ⊂ 2j supp v̂ the identity

a(ξ)ϕ̂jξ = aR(R−1ξ)ϕ̂j(ξ), R = 2j

is valid and we get
W 0

a ϕj = kR ∗ ϕj = RnkR(R·) ∗ ϕj (4.27)
for their inverse Fourier images.

(4.24)-(4.27) yield

‖W 0
a ϕj‖∞ ≤ ‖RnkR(R·)‖1‖ϕj‖∞ ≤ C2Ck2

−αj‖ϕ‖(0)
Zα ,

‖W 0
a Dβϕj‖∞ ≤ C1Ck2

2−αj‖ϕ‖(0)
Zα , | β |= 2. (4.28)

Applying twice Lagrange’s formula for g ∈ C2(IRn) we derive

g(x + t) + g(x− t)− 2g(x) =
∑

j.k

θ1tjtkDjDkg(x + θ2t), −1 < θ1, θ2 < 1.

Hence
‖g‖(0)

Z1 ≤ | t |2
∑

|β|=2

‖Dβg‖∞. (4.29)

Estimates (2.28) and (2.29) yield

| W 0
a ϕj(x + t) + W 0

a ϕj(x− t)− 2 W 0
a ϕj(x) |

≤
∑

j

| W 0
a [ϕ(x + t) + ϕ(x− t)− 2ϕ(x)] |≤

≤ C1Ck


3

∑

2−j<|t|
2−αj + t2

∑

2−j≥|t|
2(2−α)j


 ‖ϕ‖(0)

Zα

≤ C1Ck | t |α
[

3

1− 2−α
+

1

1− 22−α

]
‖ϕ‖(0)

Zα ≤ C4‖ϕ‖(0)
Zα | t |α,
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where C4 is independent of ϕ ∈ Zα
p (IRn).

These inequalities together with (4.22) and Lemma 4.3 yield

‖W 0
a ϕ‖Zα

p
≤ C5‖W 0

a ϕ‖′Zα
p
≤ C6‖ϕ‖Zα

p
.

Lemma 4.9 Let 0 < α < ∞, 1 ≤ p ≤ ∞, −∞ < r < ∞ and α − r > 0. Then
λr(ξ) = (1+ | ξ |2) r

2 ∈ M r(Zα
p (IRn)).

Proof(cf.
St1
[41], § V.4.4). Let first r < 0 and consider

Gr(x) =
1

2nΓ(− r
2
)(2π)

3n
2

∫ ∞

0

t−
r+n

2 exp

(
−t− | x |2

(4π)2t

)
dt

t
.

It is known (cf.
St1
[41], § V.3) that

Ĝr(ξ) = FGr(ξ) = λr(ξ), Gr ∈ L1(IR), r < 0 (4.30)

Let
Gr(x, y)

def
= PyGr(x) x ∈ IRn, y > 0,

where Py denotes the Poisson integral again. Further in
St1
[41], Prop.V.5.4 it is proved that

‖Dm
y Gr(x, y)‖∞ ≤ C1y

−r−m, m = [−r] + 1, y > 0. (4.31)

Since Py1+y2 = Py1 ∗ Py2 (y1, y2 > 0), we get

(Py1+y2Λ
rϕ)(x) = Py1+y2 ∗Gr ∗ ϕ = Py1 ∗Gr ∗ Py2 ∗ ϕ

= (Gr(·, y1) ∗ Py2ϕ)(x), Λr = W 0
λr .

Let k = [α] + 1, m = [−r] + 1. From the last identity and differentiation we get

(Dm
y1

Dk
y2

Py1+y2Λ
rϕ)(x) = (Dm

y1
Gr(·, y1) ∗Dk

y2
Py2ϕ)(x).

If y1 = y2 = y/2 and (4.31) is applied it follows

‖Dk+m
y PyΛ

rϕ‖∞ ≤ ‖Dm
y
2
Gr

(
·, y

2

)
‖1‖Dk

y
2
P y

2
ϕ‖∞

≤ C1‖ϕ‖Zα
p

(y

2

)α−r−k−m

(4.32)

since (cf. the definition of the space Zα
p (IRn))

‖Dk
yPyϕ‖∞ ≤ C1‖ϕ‖Zα

p
yα−k.
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If k+m > [α−r]+1 from (4.32) the similar inequality can be derived for k+m = [α−r]+1.

Combining (4.32) with the following (cf. (4.30))

‖Λrϕ‖p = ‖Gr ∗ ϕ‖p ≤ ‖Gr‖1‖ϕ‖p

we get
‖Λrϕ‖Zα−r

p
≤ C2‖ϕ‖Zα

p
, Λr = W 0

λr ,

which proves the lemma for r < 0.

Let now r > 0.

Consider any integer l ∈ IN, 2l > r. Then the differential operator

Λ2l =

(
I +

2∑
1

D2
j

)l

: Zα+2l−r
p (IRn) −→ Zα−r

p (IRn)

is continuous (cf. Lemma 4.4). Since

Λr = W 0
λr = W 0

λ2lW
0
λr−2l = Λ2lΛr−2l

and
Λr−2l : Zα

p (IRn) −→ Zα+2l−r
p (IRn)

is continuous as well, continuity of

Λr : Zα
p (IRn) −→ Zα−r

p (IRn) (4.33)

follows.

Corollary 4.10 Operators (4.33) represent isomorphisms between the spaces for any 0 <
α ≤ ∞, 1 ≤ p ≤ ∞, −∞ < r < ∞, α− r > 0.

Corollary 4.11 M r(Zα
p (IRn))is independent of 0 < α ≤ ∞ and consists of functions

λra, a ∈ M(Zα
p (IRn)).

Let
W (IRn) = {c + Fk(ξ) : k ∈ L1(IRn), c = const}

denote the Wiener algebra endowed with the norm ‖a‖W =| c | +‖k‖1.

Theorem 4.12 W (IRn) ⊂ ⋂
1≤p≤∞,0<α<∞ M(Zα

p (IRn)) and if a(ξ) = a(∞) +

+ Fk(ξ), k ∈ L1(IRn), belongs to the Wiener algebra a ∈ W (IRn), then

W 0
a ϕ(t) = a(∞)ϕ(t) +

∫

IRn

k(t− τ)ϕ(τ)dτ (4.34)

and can be approximated in norm by operators of the form

W 0
aj

ϕ(t) = a(∞)ϕ(t)+

∫

IRn

kj(t−τ)ϕ(τ)dτ , aj = a(∞)+Fkj, kj ∈ S(IRn). (4.35)
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Proof. Representation (4.34) is well-known. Since

‖W 0
a ϕ‖q ≤ | a(∞) | ‖ϕ‖q + ‖k ∗ ϕ‖q ≤ (| a(∞) | +‖k‖1) ‖ϕ‖q

= ‖a‖W‖ϕ‖q, 1 ≤ q ≤ ∞
we get

‖W 0
a ϕ‖Zα

p
= ‖W 0

a ϕ‖p + supx∈IRn,y>0 | yk−αDk
yPy W 0

a ϕ(x) |≤
≤ ‖a‖W‖ϕ‖p + supy>0

∥∥ W 0
a

[
yk−αDk

yPy W 0
a ϕ

]∥∥
∞ ≤ ‖a‖W‖ϕ‖Zα

p
. (4.36)

Concerning approximation by operators (4.35): any function k ∈ L1(IRn) can be ap-
proximated by functions {kj}∞1 ⊂ C∞

0 (IRn) ⊂ S(IRn) in norm; hence due to (4.36) opera-
tors (4.35) approximate operator (4.34) in the operator norm.

Remark 4.13 We refer the reader to
MP1
[28], § XIII.6 for a wide class of singular integral op-

erators (i.e. of operators W 0
a with a symbol a(ξ) homogeneous of order 0) described there,

which are bounded in the Hölder-Zygmund spaces. We have to notice only that the asser-
tions, formulated there for the case 0 < α < 1, stay valid for any α > 0(cf.Corrolary4.11).

Theorem 4.14 Let−∞ < r < ∞, a ∈ Sr(IRn× IRn) (cf. (
e1.10
1.10)) and a(x, ξ) has compact

support in x ∈ IRn.

If 0 < α < ∞, 1 < p < ∞, α− r > 0 the operator

a(x,D) = W 0
a(x,·) : Zα

p (IRn) −→ Zα−r
p (IRn) (4.37)

is bounded.

Proof. Since ar = aλr ∈ S0(IRn×IRn) the operator ar(x,D) = a(x,D)Λ−r is bounded
in Lp(IRn) and in Zα

∞(IRn) (cf.
RS1
[31], § 2.3.2.5 - 2.3.2.6 ). Hence (4.37) is bounded due to

Corollary 4.10 and Lemma 4.2.

4.3 BESSEL POTENTIAL OPERATORS

Let us recall that Λs represent Bessel potential operators on Zα
p (IRn) spaces for the full

IRn(cf. Corollary 4.10).

Theorem 4.15 Let Ω ⊂ IRn be a special Lipschitz domain, Ω′ = IRn \ Ω and 0 < α <
∞, 1 < p < ∞, −∞ < r < ∞, α− r > 0.

The operators (cf. (3.7))

B0,Ω = W 0
br
0

: Zα
p (IRn) → Zα−r

p (IRn),

: Z̃α
p (Ω) → Z̃α−r

p (Ω),

B0,Ω = W 0
b
r
0

: Z̃α
p (Ω′) → Z̃α−r

p (Ω′), (4.38)

BΩ = rΩW 0
b
r
0
` : Zα

p (Ω) → Zα−r
p (Ω),
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represent isomorphisms and the inverses read

(B0,Ω)−1 = W 0
b−r
0

,
(
B0,Ω

)
= W 0

b
−r
0

(
BΩ

)
= rΩW 0

b
−r
0

`.

Proof. Due to (2.4), (3.7) and Theorem 2.3 from
Sch2
[33] the function b± =

= λ∓rb±r
0 (ξ) meets the conditions of Theorem 4.9 (and moreover b± ∈ S0(IRn); therefore

b±r
0 ∈ M±r

p ( Zα
p (IRn)) (cf. Lemma 4.9).

Since W 0
b±r
0

preserves supports within Ω (cf. Theorem 3.6) and are inverse to each other,
the first two assertions in (4.38) are valid. The remainder is proved as in Lemma 3.7.

Remark 4.16 Despite of the inclusion br
0 ∈ Sr(Ω × IRn) Theorem 4.14 can not be applied

in Theorem 4.15, since the symbol br
0(ξ) has not compact support in x.

Corollary 4.17 Let 0 < α < ∞, 1 < p < ∞, −∞ < r < ∞, α − r > 0 and
a ∈ M r(Zα

p (IRn)).

For a canonical Lipschitz domain Ω ⊂ IRn the following diagram is commutative

Z̃α
p (Ω)

rΩ W 0
a−→ Zα−r

p (Ω)
↑ W 0

b−s
0

↓ W 0
b
s
0

Z̃α−s
p (Ω)

rΩW 0
b
s

ab−s−→ Zα−s−r
p (Ω).

(4.39)

Remark 4.18 The order reduction operator for Zα
∞(Ω) space and a compact Lipschitz do-

main Ω, similar to (3.24) is described in
Sch2
[33], Theorem 3.5.But, as in the case of Bessel

potential spaces (cf. § 3.4) this model needs some corrections.

4.4 PSEUDODIFFERENTIAL OPERATORS

To extend Definition 3.14 to the space Zα
p (M ), we need some preliminary information.

For a bounded linear operator

A : Zα
p (IRn) −→ Zα−r

p (IRn)

the factor-norm
‖| A‖|Zα

p
= inf

{‖A + T‖Zα
p

: T is compact
}

(4.40)

can be defined (cf.(3.11)).
Applying Kuratowski’s measure of non-compactness R. Pöltz proved (cf.

Plt1
[29])

‖| aI‖|Zα
p
≤ C‖a‖∞, a ∈ Zα

p (IRn), (4.41)

where aI is the multiplication operator in the space Zα
p (IRn).
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The foregoing inequality opens the possibility for localization in Hölder-Zygmund
spaces Zα

p (M ), where M represents a ν−smooth manifold with a Lipschitz boundary ∂M
and α ≤ ν.

Further M is assumed to be compact.
Notations from § 2.3 are used here without further comments; moreover the definitions

of the spaces Zα
p (M ), Z̃α

p (M ), of operators of local type A ∈ OLTr( Zα
p (M )) and of the

equivalence A x∼ B (A, B : Zα
p (M ) → Zα−r

p (IRn)) are similar as in the case of Lp(M )-
spaces, considered in § 3.3). We recall as well that Z̃α

p (M ) =

= Z̃α
∞(M ), Zα

p (M ) = Zα
∞(M ) due to compactness of M .

Lemma 4.19 A ∈ OLTr( Zα
p (M )) if and only if the commutator [vI, A] = vA−

− AvI : Z̃α
p (M ) → Zα

p (M ) is a compact operator for any v ∈ Zµ
∞(M ), µ ≥

max{α, α− r}.
Proof is similar to Lemma 3.12 and is based on the following equality (which plays a

similar role as (3.14) in Lemma 3.12)

‖| A‖|(d)= sup
{
q(x, A) : x ∈ M

}
, q(x, A) = inf

{‖| vxA‖|(d) : vx ∈ ∆x

}
; (4.42)

here ‖| A‖|(d) denotes the Kuratovski measure of noncompactness. Inequality is proved by
R. Pöltz (cf.

Plt1
[29], Theorem 1) for any A ∈ OLTr(Zα

∞(M )).

Lemma 4.20 Let Ω ⊂ IRn be a compact Lipschitz domain and α > 0, r ∈
∈ IR, α− r > 0. Then rΩΛr ∈ OLTr(Zα

∞(Ω)).

Proof. It is known (cf.
Hr2
[18], vol.3, Theorem 18.1.8) that an operator bΛr −

− ΛrbI : Zα
∞(IRn) −→ Zα−r+1

∞ (IRn) is continuous (has the order r − 1 ) for any b ∈
C∞

0 (IRn). Hence by compact embedding (cf. Lemma 4.5) the operator brΩΛr − rΩΛrbI :
Z̃α
∞(Ω) → Zα−r

∞ (Ω) is compact. Due to Lemma 4.19 the proof is completed.

Lemma 4.21 Let 0 < α < ∞, −∞ < r < ∞, α− r > 0, 1 ≤ p ≤ ∞, a0 ∈∈ W (IRn), b ∈ Zα
p (IRn), d ∈ Zα−r

p (IRn), supp b, supp d be compact and a0(∞) = 0.

If a = λra0 the operators

d W 0
a , W 0

a bI : Zα
p (IRn) −→ Zα−r

p (IRn)

are compact.

Proof. It can be supposed d = b = v ∈ C∞
0 (IRn); in fact: v ∈ C∞

0 (IRn) can be chosen
such that v(x)d(x) = d(x), v(x)b(x) = b(x) and it remains to prove the compactness of
v W 0

a and W 0
a vI only.

Due to Lemmas 4.10 and 4.20 and Theorem 4.12 it suffices to consider only the operator
v W 0

a wI : Zα
p (IRn) −→ Zα

p (IRn) (i.e. r = 0) where v, w ∈ C∞
0 (IRn), v(x)w(x) =

= v(x), a ∈ S(IRn). but then v W 0
a wI is an integral operator with the kernelk(x, y) ∈
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C∞
0 (IRn × IRn)and supp k ⊂ Ω0 ×Ω0, where Ω0 = supp w ⊃ supp v. Hence the operator

v W 0
a wI : Zα

p (Ω) → Zβ
p (Ω) is continuous for any β > α and due to compactness of the

embedding (cf. (4.17)) v W 0
a wI : Zα

p (Ω) −→ Zα
p (Ω) is compact.

Remark 4.22 If a ∈ M r(Zα
p (IRn)) is any multiplier with compact support supp a ⊂ IRn

then Lemma 4.21 remains valid. In fact: W 0
a = W 0

u W 0
a = W 0

a W 0
u , where u ∈ S(IRn) ⊂

W (IRn) is such that u ∈ C∞
0 (IRn) ⊂ S(IRn) ⊂ W (IRn), u(ξ)a(ξ) = a(ξ), ξ ∈ IRn.

Theorem 4.23 Let a be a homogeneous function, a(λξ) = a(ξ) (λ > 0,
ξ ∈ IRn) and a ∈ Zβ

∞(Sn−1), β > n. If Ω ⊂ IRn is a compact Lipschitz domain, then
rΩ W 0

a ∈ OLT0(Zα
∞(Ω)).

Proof. It suffices to prove that uW 0
a vI is compact in Zα

∞(IRn) for any u, v ∈
∈ C∞

0 (IRn), supp u ∩ supp v = ∅.
The proof can be reduced further (as in the foregoing lemma) to the case 0 < α < β−n

(with the help of the Bessel potential operator Λα−γ where 0 < γ < β − n).

Let us recall now that W 0
a is a singular operator with the characteristic f(θ) ∈

∈ H
β−n

2
2 (Sn−1) (cf.

MP1
[28], Theorem X.7.1); by embedding f ∈ Zβ−n

∞ (Sn−1).

The kernel k(x, y) of the operator uW 0
a vI is sufficiently smooth

(k ∈ Zβ−n
∞ (Ω0 × Ω0), Ω0 = supp u ∪ supp v); obviously uW 0

a vI : Zα
∞(IRn) →

→ Zβ−n
∞ (Sn−1) is continuous; hence uW 0

a vI : Zα
∞(IRn) → Zα

∞(Sn−1) is compact due to
the compact embedding Zα

∞(Sn−1) ⊂ Zβ−n
∞ (Sn−1) (cf. (4.17)).

Let Ω ∈ IRn be a compact Lipschitz domain; the following notation is introduced

MZr(Ω) =
{
a ∈ M r(Zα

p (IRn)) : rΩ W 0
a ∈ OLTr(Zα

p (Ω))
}

.

We drop α and p in the notation since the set is independent of these parameters (cf. (4.14)
and Corollary 4.10).

The subset MZr(Ω,∞) of MZr(Ω) consists of functions a such that they have radial
limits (cf. (3.1)) a∞ ∈ MZr(Ω) and the operator rΩW 0

a−a∞ : Z̃α
∞(Ω) −→ Zα

∞(Ω) is
compact.

Now we are ready to introduce the pseudodifferential operator

A = a(x,D) : Z̃α
∞(M ) → Zα−r

∞ (M ) (4.43)

of the class OPCr(Zr
∞(M )). This can be done similarly to the Lp−case (cf. Definition

3.14), replacing there the symbol class PCr
p(IRn, α)by MZr(Ω,∞).

5 APPLICATION TO A CRACK PROBLEM

Let us consider the problem of finding the displacement vector u = (u1, u2, u3) in a
homogeneous, isotropic, elastic medium, which occupies a Lipschitz domain Ω ⊂ IR3 with
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a crack M ⊂ Ω ; either boundary data or tractions are prescribed on ∂Ω and on the both
sides of the crack surfaces M

±
(the Dirichlet or the Neumann problems respectively). It is

supposed that the crack is interior (i.e. ∂Ω ∩M = ∅) and represents a 3-smooth manifold
with Lipschitz boundary ∂M .

For the sake of brevity we suppose Ω = IR3.

M can be extended to a compact closed 3-smooth manifold (the surface) M0 ⊂ IR3

which is the boundary of a compact domain D+ ⊂ IR3.

Thus we look for a displacement field u = (u1, u2, u3) in Hs
2IR3 \M ) (a weak solution)

which satisfies Lame’s system with steady oscillation

∆∗u(x) + κ2u(x) = 0, κ2 =
ρ

µ
ω2, x ∈ IR3 \M , (5.1)

where
∆∗ = ∆ +

λ + µ

µ
grad div

is the Lame operator, µ > 0, λ > −2
3
µ are the elastic constants, ρ is the density, ω is the

frequence of the oscillation and | s |< 1
2
. Two different boundary value problems will be

considered for equation (5.1): the Dirichlet problem

u |
M
±= f±, f± ∈ H

1
2
+s

2 (M ), f0 = f+ − f− ∈ H̃
1
2
+s

2 (M ) (5.2)

and the Neumann problem

T (∂x, n)u |
M
±= g±, g± ∈ H

− 1
2
+s

2 (M ),

g0 = g+ − g− ∈ H̃
− 1

2
+s

2 (M ) (5.3)

where T (∂x, n) is the traction operator

T (∂x, n)u = λ(div u)n + 2µ
∂u

∂n
+ µn× curlu,

and n = n(x) is the outer normal vector to the surface M0 at the point x ∈ M .

Particular cases of the boundary value problems (BVP in short) { (5.1), (5.2)} and
{ (5.1), (5.3)} were treated in a number of papers. Here we quote some of them, concerning
directly our investigations.

For a closed smooth manifold M the problem is well investigated and results are exposed
in

CK1,Ku1,KGBB1
[7, 23, 24].

For the statical case (absence of the oscillation) ω = 0 the problem was investigated inCS1,DNS2,Stf1
[5, 13, 42] in the case of the smooth boundary ∂M and in

Sch1,Sch2,Psd1
[32, 33, 44] in the case of the

non-smooth ∂M .
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For the Helmholz equation, which appears if λ = −µ, ω 6= 0, non-real wave number
Im κ 6= 0 and M = IR+

2 = IR+ × IR+ (the quarter-plane case), the explicit solution of the
problems was obtained in

MS1,SD1
[26, 40].

The transmission problem for (5.1) was studied in
CS1,CS3,MS3,Psd1
[5, 6, 27, 44].

The case of smooth boundary ∂M was considered in
DNS3
[14].

The main purpose here is to investigate the existence (and uniqueness) of weak solu-
tions of the formulated problems, using the results of the foregoing sections. The regularity
(smoothness) of solutions is not our concern here.

To get the uniqueness of the solution it is necessary to impose some additional conditions
on the solution u(x); these conditions are the following:
a) the finite energy norm condition:

∫

{x∈IR3:|x|<R}\M

[| grad u(x) |2 + | u(x) |2] dx < ∞; (5.4)

b) the radiation condition at infinity:

u(x) = u(1)(x) + u(2)(x), u(m)(x) = o(1), | x |→ ∞, m = 1, 2 (5.5)
∂u(m)(x)

∂ | x | − iκmu(m)(x) = o(| x |−1), κ2
1 =

ρω2

λ + 2µ
, κ2

2 =
ρω2

µ

The fundamental (Kupradze’s) matrix for (5.1) reads (cf.
Ku1,KGBB1
[23, 24])

Γ(x, ω) =

(
2∑

m=1

(
δkjαm + βm∂xk

∂xj

) exp (iκm | x |)
| x |

)

3×3

, (5.6)

αm =
δ2m

2πµ
, βm =

(−1)m

2πρω2
.

The single layer and the double layer potentials read respectively

V (ω)ϕ(z) =

∫

M

Γ(z − y, ω)ϕ(y)dyM , z ∈ IR3 \M ,

U(ω)ψ(z) =

∫

M

[T (∂y, n(y))Γ(z − y, ω)]T ψ(y)dyM , (5.7)

where A T denotes the transposed matrix.
The same operators but considered on the surface (for z ∈ M ) are denoted by V−1(ω)

and UT
0 (ω) respectively. Let us notice, that the integral in UT

0 exists then in the sense of the
Cauchy principal value.
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Two more operators, which are necessary for our further investigations, are defined by
the formulas

V0(ω)ψ(z) =

∫

M

[T (∂y, n(y))Γ(z − y, ω)]ψ(y)dyM ,

V1(ω)ψ(z) =

∫

M

T (∂x, n(x))[T (∂y, n(y))Γ(z − y, ω)]T ψ(y)dyM (5.8)

Operators V−1(ω), V0(ω), V T
0 (ω) and V1(ω) are all pseudodifferential operators and have

orders -1, 0, 0 and 1, respectively (for detailed proofs cf.
DNS1
[12]).

Theorem 5.1 The boundary value problem { (5.1), (5.2), (5.4), (5.5) } has the solution

u(z) = V (ω)f0(z)− U(ω)g0(z), z ∈ IR3 \M , (5.9)

where f0 = f+ − f− is defined in (5.2) and g0 ∈ H̃
− 1

2
+s

2 (M ) is a solution of the pseudo-
differential equation

V−1(ω)g0(x) = f1(x), f1 =
1

2
[f+ + f−] + V T

0 f0, x ∈ M . (5.10)

Equation (5.10) has the unique solution g0 ∈ H̃
− 1

2
+s

2 (M ) for any f1 ∈ H
1
2
+s

2 (M ),
| s |< 1

2
.

Theorem 5.2 The boundary value problem { (5.1), (5.3)-(5.5) } has the solution of the form

(5.9), where g0 = g+ − g− is defined in (5.3) and f0 ∈ H̃
1
2
+s

2 (M ) is the solution of the
pseudodifferential equation

V1(ω)f0(x) = −g1(x), g1 =
1

2
[g+ + g−]− V0g0, x ∈ M . (5.11)

Equation (5.11) has the unique solution f0 ∈ H̃
1
2
+s

2 (M ) for any g1 ∈ H
− 1

2
+s

2 (M ),
| s |< 1

2
.

PROOFS. The standard procedure is used to prove, that any solution of the problem {
(5.1), (5.4) } is represented by formula (5.9) with

f0 = u |M+ −u |M− , g0 = T (∂x, n)u |M+ −T (∂x, n)u |M−

(cf.
Ku1
[23], § III.2,

Cos2
[4], § 2,

DNS1
[12]). Inserting the boundary data (either (5.2) or (5.3)) in (5.9)

and applying the well-known properties of the layer potentials (cf.
Ku1
[23], § V.3), we derive

equation (5.10) or (5.11) (cf.
Cos2,DNS1
[4, 12]).

Now we are about to prove the uniqueness of the solutions of (5.10) and (5.11).
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The principal symbol V−1(ω, x, ξ) (ω > 0, x ∈ M , ξ ∈ IR2) of the operator V1(ω)
reads

V−1(ω, x, ξ) = V−1(ω, ξ) =
1

2π

∫ ∞

−∞
G(ω, ξ, ξ3)dξ3, ξ ∈ IR2, (5.12)

where G(ω, ξ̃) is the Fourier transform of the fundamental matrix

G(ω, ξ̃) =

∫

IR3

eiξ̃·yΓ(y, ω)dy ξ̃ = (ξ, ξ3) ∈ IR3 (5.13)

(for the detailed proofs cf.
DNS1
[12]).

Since Γ(x, ω) is the fundamental solution of (5.1) we get

G(ω, ξ̃) = C−1(ω, ξ̃) if | ξ̃ |> N, C(ω, ξ̃)Fϕ(ξ̃) = F (∆∗ + κ2)ϕ(ξ̃),
ϕ ∈ S(IR3),

where N is sufficiently large. Since

C(ω, ξ̃) = −
(
| ξ̃ |2 δjk +

λ + µ

µ
ξ̃j ξ̃k − κ2

)

3×3

, κ2 =
ω2ρ

µ
,

the integral in (5.13) converges absolutely for all ξ̃ and the radial limits exist (cf. (3.1))

V ∞
−1(ω, ξ) = lim

R→∞
RV−1(ω, Rξ) =

1

2π

∫ ∞

−∞
C−1(0, ξ, t)dt =

= − 1

2ae | ξ |3 µ



| ξ |2 +aeξ2

1 −aeξ1ξ2 0
−aeξ1ξ2 | ξ |2 +aeξ2

2 0
0 0 | ξ |2


 ,

ξ = (ξ1, ξ2) ∈ IR2, 0 < ae =
λ + µ

λ + 3
< 1.

The matrix-function −V ∞
−1(ω, ξ) is self-adjoint and positiv definite. Therefore

Re(ei(θ−π)V ∞
−1(ω, ξ)η, η) = (−V ∞

−1(ω, ξ)η, η) Re eiθ ≥ C0 cos θ | η |2,
C0 > 0, η ∈ CI 3, | θ |< π

2

and Theorem 3.26 implies the Fredholm property of the operator

V−1(ω) : H̃
− 1

2
+s

2 (M ) → H
1
2
+s

2 (M ), | s |< 1

2
. (5.14)

and the index formula
Ind V−1 = 0. (5.15)
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Due to dense embeddings

H̃ν
2 (M ) ⊂ H̃r

2(M ), Hν
2 (M ) ⊂ Hr

2(M ) r ≤ ν,

as well as the Fredholm property of (5.14) and the independence of the index from s, from
Lemma

l1.10
1.10 we get that the kernel KerV−1(ω) is independent of s.

In a standard way (cf.
Ku1,DNS1
[23, 12]) it can be proved that the equation

V−1(ω)ϕ = 0, ϕ ∈ H̃
− 1

2
2 (M )

has only the trivial solution ϕ = 0, which implies KerV−1 = {0} for any | s |< 1/2.

Thus (5.14) is an invertible operator and equation (5.10) has a unique solution.
The solvability and the uniqueness for equation (5.11)) is proved similarly.
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