PSEUDODIFFERENTIAL OPERATORS ON COMPACT

MANIFOLDS WTH LIPSCHITZ BOUNDARY

R. Duduchava”, F.-O.Speck

Abstract. Pseudodifferential operators with non-smooth symbols on a manifold
A with Lipschitz boundary are considered. Theorems about order reduction
and localization of such operators in Bessel potential H;(.#) and Holder-

Zygmund Z[‘f‘(]Rn) spaces are proved. A pseudodifferential operator A with

locally sectorial matrix symbol is proved to be Fredholm in the space Hj(.Z)
and Ind A = 0 where s depends on A. Application to a boundary value problem
for an elastic body with crack is discussed in conclusion.
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1 INTRODUCTION

1.1 PREFACE

We,gentinue the investigations started in 1985. The first results were published only recently
in . There we introduced a Bessel potential operator (BPO in short) for the quarter-plane
IR™ x IR C IR, which can be also used for a cone in IR».

Schl, Sch2
In the ntime two papers of R.Schneider mTppeared which were based on the
manuscript and succeeded in constructing BPO’s for octants and canonical Lipgschitz
domains in IR,,. Two kinds of BPO’s were involved: with non-smegth symbols (cf.
and with smooth symbols from the Hormander class S ;(/R,,) (cf. . The orderredyction
operator for a general Lipschitz domain 2 C IR,, was constructed as well (cf. ) and

applied to the investigation of some strongly elliptic systems of pseudodifferential operators
(UDOs in short) in H;(€2).

hil
The results of 5 concerning BPO’s with non—smoot}%][%y]mbols are extended here (cf.
§.2)- Namely it is proved that operators constructed in for cones 2 C IR, and in
hl]‘for any Lipschitz domaip, §} C IR, are bounded and invertible in H(€2) spaces for all
1 < p < oo (we recall that in%ﬂ]‘o
2.3).

In § 3 UDOs with non C"*°-smooth symbols on manifolds with Lipschitz boundary are
defined on Bessel potential spaces using operators of local type and some results are ob-
tained: order reduction, Fredholm criteria (in terms of the local representatives). YDOs with
locally sectorial symbols are introduced and a theorem isyproved;on theip Fredholm property
and on the index; the latter results generalize those from [26, 32,33, 39] and proofs here are
more transparent.

nly the case p = 2 was considered; cf. Theorems 2.1 and

Sul
A different approach to the order reduction operators is demonstrated in[34].

In § 4 DOs in Holder-Zygmund spaces Z;(.#)(a > 0, 1 < p < oo)on a manjfold
# with Lipschitz boundary are constructed. This section was inspired by the book [4T],
where BPOs for Z3 (IR,) are described. We start with properties of the spaces Z(.#)

(with proofs when necessary). Theorems on multipliers in the space Z>(IR,,) follow, which
were known, as far as we know, only for p = oo (we recall here that Z3(.#) = Z5 (M)

for compact . but they differ for non-compact .#). BPOs and order reduction operators
for Z3(.#) spaces on compact and non-compact manifold ./ with Lipschitz boundary are

constructed in § 4.3. In § 4.4 UDOs on gg¢ompact manifold are defined via operators of local
type; here the recent results of R.Poltz %ﬂ‘were applied. Our approach is the localization
principle . This method is not much refined, but it makes possible to investigate WDOs
with non-smooth symbols. For the case of smooth symbols (of the class S (2 x IR,),
for example) and smooth boundary of the manifold it is possible to give almost the full
describtion of the Boutet-de-Monvel algebras of the boundary value problems and get results
on the spectrum and the resolvent of the operators under investigation. In our case this might
be much complicated and we make no attempt to this. But the obtained results are sufficient

to investigate the solvability of equations appearing in mechanics and mathematical physics.
. . . . . %@9&2%”1]2
Singular integral operators on Z7(IR,) spaces were investigated in [T9, 20].




dl.

dl.

1. INTRODUCTION 3

Applications to crack problems in isotropic elastic media with steady oscillation are
exposed in § 5. We refer the reader to this section for the detailed formulations and survey
of the earlier results.

It is only for notational convenience that we stick on the scalar case up to Sub§ 3.3 and
in § 4 (cf. Remark 3.12). Most of the results remain valid for systems of equations (i.e. for
operators with matrix symbols) in vector-spaces of functions.

1.2 AUXILIARY MATERIAL
For the Fourier transform we use the notation

w(§) = Fu(§) = / exp{izé u(x)dz, ¢elR, (1.1)

n

and ! is used for the inverse operator.
i AS1,Cal,SCl,Stl
The well-known Bessel potential operators (cf. [T, 2, 38, 41])

AN =F7'NF, X =<{>=(1+]¢)2, seRR (1.2)
generate the Bessel potential spaces

Hy(IRy) = {u € D'(IRy) : ||ullsp = [|A*ul (R0 } < 00
and arrange the isometrical isomorphisms between them

A" Hy(IR,) — Hy7"(IRn), s,r€R, |Aulls—r)p = |lullsp (1.3)

Stl
Definition 1.1 (cf. hT] ). An open subset ) C IR, is called a canonical Lipschitz domain if
Q=A{(2",z,) € R, : ®(2') < x,}
for some real-valued Lipschitz function

| @) — @) IS L' =y [, 2y € R (1.4)

Definition 1.2 A compact n-dimensional manifold M4 = .# U 0.4 is said to have a Lips-
chitz boundary if there exists a covering of the manifold

N Ny
A = Ju;, 0.4 c | Uy, N, <N,
j=1 j=1

a canonical Lipschitz domain w C IR,, and coordinate C"-diffeomorphisms (r > 1)

B U; — V; CQ, j=1,2,..,N, (1.5)
VinoQY#£0, j=1,2,.. Ny, V,no=0, j=N+1,..,N.

el.

el.

el.

el.

el.
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If .# issa compact domain in IR, and has Lipschitz boundary, it is called Lipschitz
domain (cf. , VI.3.3).

Let

S(IRn) = {f € C=(IRy) : sup{(§)™ | O (&) |[< 00 :

m € IN,a € N, }, 9 f(§) = 0.0 f(§)
represent the Frechet space of fast decreasing smooth functions. S’(IR,,) is used for the space
of tempered distributions, the adjoint space to S(IR,,).

The Fourier operators F*! and the multiplication operator al,a € S(IR,), are well-
defined bounded operators in S(IR,,) and in S'(IR,,).

For a distribution a € S’(IR,,) the convolution operator is defined as
Wpo = FlaFe, p € S(IR,) (1.7)
w?: S(R,) — S'(IR,)
and a(&) is called the symbol of W.

The set of functions (symbols) for which W(? has a bounded extension Wa? : L,(IR,) —
L,(IR,) is denoted by M,(IR,) (1 < p < oo0). The function a € M,(IR,) is called
L, — multiplier. The set My,(IR,) endoved with the norm ||a|[s, = [[W7]| (IR,) and

Hrl P n

pointwise multiplication forms a Banach algebra, since W2W} = W9 (cf. ).
By M, ,(IR,) we denote the algebra ), _,_, M, (IR,).
Let further
MI(IR,) = {Na:ae My(Ry)}. (1.8)
el.2
Since A" = W}\)T (cf. (T2)) it follows that the operator
WQ: Hi(IR,) — H " (IR,), s,relR, 1<p<oo

is bounded if and only if a € M} (IR,,).

For a, 8 € IN,, o < (3 denotes the inequalities o; < 3;,(j = 1,2,..n) and o < [ is
used when o < 3, a # f.

shil
Theorem 1.3 (cf. b’ﬁ‘]).
Let a € L'*°(IR,,) and the condition

Z R_”/ \fﬁDﬁa(é‘) ’2 df < oo s
181<[%]+1.8<1 F<[¢1<2R

hold; then a € M, »(IR,).
The inequality

sup{| €°00a(€) |: B € Ny, B<1, | B 5+1} <o

1.9
implies (67.9).

el.’

el.8

el.9
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STo(x IR,,) (or S"(2x IR,), € C IR,) is used for the Hormander class of functions
Sto(Qx R,) = {a:] 9200a(x,€) |[< Cap(®)™, a,B e N} (1.10)
S"(IR,) C 57o(§2 x IRy) denotes the class of functions a(z, {) = a(£), independent of the
variable x. Due to Theorem [[.3°S"(IR,,) C M}  (IR,).
1.3 BESSEL POTENTIAL OPERATORS: DEFINITION AND GENERAL PROPERTIES

SD1
The next two definitions were suggested by F.Speck and R.Duduchava (cf. hl)]).

Definition 1.4 Let Q) C IR, be a Lipschitz domain. A linear operator B : S(IR,,) — S'(IR,,)
is said to be a Bessel potential operator of order r for Q (B € BPO(r,)) in brief), if B
has the following properties:

(i)B is translation invariant
BV, =V, B, Vip(t) = ot —h), he Ry; (1.11)
(ii) there exist continuous extensions
B: H:(IR,) — H;™"(IR,) (1.12)

which are invertible for any s € IR,,1 < p < o0;

(iii) B and its inverse B~" preserve supports within §) :
supp Bl € Q, if ¢ € D(IR,) = C(IR,), suppp C Q. (1.13)
o 0 SDl . . .
Definition 1.5 (cf. bZU] ). B € BPO(1,Q) is said to be a Bessel potential operator for
Q (B € BPO(RQ) in brief) if it generates a group {B" },c g of operators such that for any
s,r € IR the following holds:

B" € BPO(r,Q), B'B°=B"" B°=1I, B'=20B (1.14)

For a Lipschitz domain 2 C IR,, and any s € IR, 1 < p < oo the set
H3(2) = {u € Hj(IR,) :suppu C 2} (1.15)

represents a subspace of H;(IR,); in particular L,(€2) is the subspace of L,(IR,).
H3(€2) denotes the space

Hy(Q) ={u=rqu:ve H(IR,)}, (1.16)
endoved with the factor-norm

[ullsp = nf{[[v]lsp : v € Hy(IRy), rou = uj},

el.12

el.1l4
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where rq denotes the restriction of a function v € S’(IR,,) to 2.
For a Lipschitz domain 2 C IR,, there exists an extension operator

0: H3Q) — H(IR,) (1.17)

o stl
which is independent of s > 0 and 1 < p < oo (cf. h‘ﬂ, VI.3).

SD1
Lemma 1.6 (cf. bZU]. Let Q C IR, be a Lipschitz domain and r € IR. Then B €
BPO(r,Q) holds if and only if the following is valid:

(i) B =W3, o+ e My"(IR,);
(ii) the operator 5
B=W0): H}Q) — H:"(Q) (1.18)
is bounded and invertible by B~! = Wg,l forany s € IR,,1 < p < o0.
. lsbl

Proof cf. in h()] ]
Lemma 1.7 Let Q) C IR, be a Lipschitz domain, r € IR and B € BPO(r, (). The follow-
ing holds:

(i) there exists a generalized (distributional) kernel kg € 74 QR”) of B = WY such that
Bu = kg *u, foranyu € C{(IR,);if0 € Q then supp kg C §;

(ii) let # C IR, be another Lipschitz domain and 0 € &, Q + # C Q; then
BPO(r,#") C BPO(r,Q) for any r € IR.

Hrl,Hr2
Proof. Existence of kp is well known (cf. hT'TBD To prove the next claim
suppkp C €2 we assume o ¢ () and nevertheless o € suppkp. Then there exist
u, € C{P(IR,), messupp u, — 0, < kp,u, ># 0(n = 1,2,...). Consider
any to € Q,| t |< dist(xg,?) and @,(y) = u,(zo + to — y); obviously suppi,, =

To + o — supp uno C Q) for a large ng. By the definition of convolution (cf. , v.1)
kp * Uno(zo + to) =<kni vottoUno >=< kp,uno ># 0, where V.o(t) = ¢(z — t). This
contradicts Condltlon (T. since zg + to ¢  while supp @y, C

To prove assertion (ii) we notice that (cf. Theorem 4.1.1 in hS] v.1) supp Bu C
supp kp + supp u. Let B € BPO(r, #'). Then Bu = Wiu = kg xu, ®*! ¢ Mi’" %ﬂnf
and suppkp C # (cf. (i-ii)). Thus to prove that B € BPO(r Q) only property (T.
needs to be verified. We have (cf (i)) supp Bv C supp kg + suppv C # + Q C Q for any
v € 2(IR,) = C°(IR,), with suppv C €.

A similar statement holds for the inverse operator B!, [ |

. . .. lschl,sch2 .
The sufficient part of the next lemma was actually applied in [32, 33] to prove the main
assertion (cf. Theorem 3.6 below).

Lemma 1.8 Let () C IR, be a Lipschitz domain, r € IR, Bu =
= Wiu = kp * u, Pl e M7 (IR,,) where kg is the distributional kernel.

Then B € BPO(r, ) if and only if Q2 4+ supp kg C €.
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1o Proof. Sufficiency follows from the above mentioned;inclusion (cf. Theorem 4.1.1 in
m, v.1) supp Bu C suppkp + suppu | Pefinition T.4.” The necessity of the condi-
tion follows from assertion (ii) of Lemma since supp kg C 2 — z for any = € () and
BPO(r,Q)=BPO(r,2 — z). [ |

1.2el.3
Well-known Bessel potential operators besides A" (cf. (el 2 i—(el .3)) are the following

Ae(€) =& +i(14] € P)7,
(glafn) € IR;’L— = Rn—l X R+.

AL =Wy, € BPO(r, IR;,),
s,TelR, 1<p<oo, &=

(1.19)

Kal Du2 DNS1
For the proof of the next two lemmas we refer to [19] and [8] respectively (cf. also [T12]),
but one can try to prove it independently.

Lemma 1.9 Let A : o&/; — %;, j = 1,2 be a linear bounded operator between Banach
spaces and let A aa’mlt a left regularlzer RA = | + T where T is compact in <71 and <.

If the embedding <) C a5 is dense, then the kernels KerA of the operator in the spaces
2, and /5 coincide.

If, in addition, A is a Fredholm operator and the embedding 8, C P, is dense, then
the index Ind A of the operator is independent of the spaces as well.

Lemma 1.10 Let A : o/; — 9B, be a Fredholm operator between Banach spaces and Ind A
be the same for j = 1, 2.

If the embedding <#) C <75 holds, and the embedding 8, C P, is dense, then the kernels
KerA of the operator in the spaces <#, and <5 coincide.

2 BESSEL POTENTIAL OPERATORS FOR OCTANTS

Let

Yr={r€eR,:x;>0, j:172’~-~>”}=\lR+x -><1R+/

'
n

denote the first octant in /R,, and consider a function () with the following properties:

Y(A) = ¥(§), § € Ry, A >0, (2.1)
Y(x)+1>0), supp[¢ + 1] € X7, Y € C°(S™ ), (2.2)
Y(w)d,S =0, T ={weR,:|wl|=1}. (2.3)

Sn—l

. . Sch2
A Bessel potential operator for >} is defined as follows (cf. m
Nysp =Wor,  d'(€) = (1| €°)2 explr(Fyk,)(€)], (2.4)

iy

ko(z

w\:
|—|
H
]
~
"
QL
& =
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hl
Similar operators are (cf. |S3c2 D
Ny =War 07(6) = (14 | € )2 explr (P ko) ()], (2.5)

(&) = [ +senay) — 1,
j=1

where, due to discontinuity of 1) (£), the symbol ¢"(£) is not smooth (in contrast to a”(&);
cf. theorems 2.1 and 2.2). This was the reason that the operator Ay zr = W was introduced

(cf. , while for Ay, v» = W, the boundedness was proved in the spaces H}(IR,,) only
for the case p = 2.

Motivations for the choice of operators (2.4) and (2.5) are the following formulas

A g =ML =W3, () =sgnée, (2.6)
NL(€) = [n +i(14 | € P)2) = (14 | € ) exp[r(Fi; k) (€)],
Ay, sn = AT =Wy, .7)

Ai(§) = <£)Texp[r(Fw+ko)(£)l

_ T 261 L+ (E+7)8

1.19
where (2.6) represents a Bessel potential operatgy, for the half-space IR, (cf. (el .19)) and
(2.7) for the quarter-plane IR™ x IRt C IR, (cf. ), respectively.

Schil, Sch2
Several assertions, concerning operators (2.4), (2.5) and proved in |3c2, 33 Icare collected
in the following theorem.
Theorem 2.1 Let s,r € IR. Then B = Ay sn € BPO( YY) and B" =
= AZJ’E{L =W5, a" € S"(IR,).

a

The operators
By =Ny, sp =Wy H3(IR,) — H3 " (IRy) (2.8)
are invertible, BY B\" = B° =1 (s,r € IR) and preserve supports

supp Bl o C X if supp p C XT. (2.9)

The next theorem completes the foregoing one.
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Theorem 2.2 Let s,r € IR. Then By = Ay, sn € BPO( X}). The symbol g"(€) has radial
(2.10)

limits
(9")*(&) = lim R™"g"(RIE|™€) = exp[r(Fy k) (€)],
o) — W_%F(g)
=

and (g")>° € M o (IR,,).
a € IN,,.

Proof. To prove the first claim Ay, wn € BPtOl( g)’f) it suffices to get the inclusion
g" € Mj (IR,) (cf. Theorem 2.1); due to Theorem IT. “this follows from the estimate
(2.11)

sup{| §*0¢[(§) "9 (§)] [< 00 1 € € IRy} < 00
(2.12)

§
(&) = exp[(FY1k,)(£)], (2.11) is implied by the estimate
o € IN,.

Since (£)"g"
sup{| §0¢ (F4k,)(€) | € € IRy} < 00,

To prove (2.12) we introduce the notation
(=1)°(ix)” |z |?
- o¢ a - :

9ap(T) =
obviously g, 3 € Li(IR) and therefore §, 5 € C(IR,) where IR,= IR, U {co} (i.e. ja s(x)
is continuous and uniformly bounded on /R, and has the same limit however £ tends to

infinity).
Since (cf. (2. 5))
/ WY, (w)d,S = w?d,S — w?d,S =0,
gn—1 Sn—1nxy gn—1
we get
. 1 o a |z |? _
Ja0(0) = 2(4#)% - Yy (2)0; [x exp (— 1 } dr =
2 |z |?
= Z b, Vi (z)xexp | — dx =
R 4
V<« n
I dR wy (w)d,S = 0. (2.13)
Sn—l
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In so far as 8?%70(5) = Gap(E) € C(IR,) we have §o = a0 € C®(IR,).
If we recall Lagrange’s formula and take into account (2.13), we get

3a(€) = 3a(€) = §a(0) =Y 0, da(tel);, 0<t, <1, |€]<1
j=1

which implies

()1 M @19

We proceed as follows

R _1\ac¢a 00 n 2
o) = SIS [ expliagavn oyt [t e (—'jt' —t) i _

2(4m)% Jg, n
S ) &t “exp(ix %) (x) ex _|x|2 T =
a 2(47r)’5/0 P /Rn[aw p(iaVI€)|z ¢, (x) p( 1 )d —
= /OOO eXP(—t)fla(\/%f)%; (2.15)

here the last integral exists due to (2.14) and an exchange of the order of integration is legal
since the integrand is absolutely integrable; the partial integration by x is also allowed here.
The last two properties (2.15) and (2.14) imply (2.12).

Now we prove the existence of the radial limits

R = lim ki (RE) = 04k0(),  ky € Cm7H (5™, (2.16)
Let
Cale) = —— (i) @) esp (~ 50 o e Lu(mR.):
al\l _2(471_)% + Xp 4 ) @ 1 mn/
due to (2.14) there holds
. ) €|
G = < M ) 2.17
| Gol©) 11 90(6) 1< M (2.17)

Stl Dul .
Now we recall some formulas (cf. hﬂ, § V.3.1 and hO], Lemma 1.35 respectively)

PG = epl= | €F). Glle) = g (-0 ).

o0 A d
(O =50 - o [ TSI @ - jarsme). @
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and proceed as follows

Gl =TT a6+ 5 [~ 2] = Do), 2.19)

oo T — 5]' 2
a;(t) = 0,7 exp(—t?).

To estimate the integrals we rewrite them in form

Ai(t) = / AT b An), A = / ) G(T)dT 5 50

o Tt [t—rj>1 T —

An(t) = /&: / w(r) = as(t)

1 T—1

Using the estimate

t2
00 - a@<le-rlen(-15H). 1i-rist

‘ t |2 t+1 | t ‘2
j2 ~ - = — . .
| Ajp(t) |< Cyexp ( 5 dt = 2C4 exp 5 (2.21)
t—1

For A;(t) in (2.20) we have

\Ajl(t)IS/ Lyt 7) |+ Loy T>|dT§C2/ eXp(— +T)—T+
1 1

T 2 T

we get

dr 2 t— 1)
+Cy exp(—t?) il + 2C exp {—( 7) } dr < %, t>1.(2.22)
1T t ) 2 t
The inequalities (2.20)-(2.22) yield
| A1) 1< Cu(+ 27, telR
and therefore (cf. also (2.20))
Go(§)] < :
j:l
|Gal)] < C5 H(l +HG) ™, Ee R, (2.23)

j=1
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Sch2
Since (cf. |3C3 D

= 1 > -z || dt
1 ® o n t\ dt , 2
= 2(47r)3/0 172 exp (_ﬁ " . exp (zgy %) Uy (y)dy
1 = t\ A dt
- 2(47T)g/0 exXp (_Rz) Go(VHE)—; (2.24)

due to (2.23) the limit R — oo in (2.24) exists

Q) = fim k(R = [ GoviO ]

= 2(4;) /0 %/ exp (z\/ffx— |:1| >1Z)+(x)dx
= (4;)3 /neXp(iﬁy)%(y)dy/o 72 exp <—| ZJ )%

V3

2
o 1 < (i dy > n/2 <D (— 2 ﬁ
= s Jy, vt [P o)
['(n/2 d
- S [ et

The last formula represents the Fourier transform of the homogeneous (of order —n) function
| |7 ¢4 (x) and (24}2) follows from the well-known formula for the symbol of a singular
integral operator (cf. , X.1.17).

Applying (2.23) again we find the derivatives
deice(e) = / t

which exist and are continuous for any | o |[< n — 1 due to G, € L,(IR,
(2.12) and Lemma 3.1 which is proved in the next section, this implies (g")

lo

7 Go(VEe)dt

). Due to (2.11),
* e M (IR,).
[

Remark 2.3 For the function k. (x) = ¢, (x)k,(z) (cd2-4) and (2.5)) it can be proved that
it represents a singular integral kernel in the sense of [41], 11.3:

B
/|| ie—y) k@) A< Byl (2.26)
z|>2|y

/ ko(2) [de =0,  0<Ri< Ry < oo (227)
Ri<|z|<R2
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This implies k. € M o (IRy,) and, further, a” € M7  (IR,).

Similarly all this holds also for the kernel k(x) = 1(x)k,(x) (cf. (2.1)-(2.4)) and this is
easier to verify: in place of (2.26) the stronger inequality

| Vk(z) <K B |z | ™. Vu = grad u
holds and implies (2.26).

Remark 2.4 Formulas similar to (2.10) hold for the symbol a"(§) of the Bessel potential
operator Ny s (cf. (2.1)-(2.4)), namely

(a7)(€) = lim R™"a’(RE|™'€) = explr(Fyk?)(€)) (2.28)

r'3)

1 T
fr—y / 1 _— —_— . / /
exp {TQWZ anw(e) (n Tcos(0- 0| + 5 sgn(f 9)) dy 51 ,
o=¢ e

Lemma 2.5 Let r € IR.h e radial limits (a")>°(§) and (9")*(§) (¢f (2.10) and (2.28))
satisfy the inequalities

mr| m|r]

arg(@)¥(©) 1< 7, ag(@)¥©) < TS, €€ R reR. 229

Proof. Due to (2.28)

arg (a")*(0) = r[FyYk°0)] =1
T'(n/2)

=T / [(w) + 1] sgn(f - w) do,S (2.30)
Sn—l

43—t

LEZ//Q /S  Pw)sen(0-w) oS

since g, sgn(f - w) d,S = 0.

Recalling the formulae

2) n/2
/ d,5 = —
L e T(n/2)
and the properties (be. I'i-(be.ji of the indicator function (), we get

/ V(W) +1]d,S = / [V(w) +1] doS = b(w)doS
Sn—1 gn—1

Snfl
271-”/2

+ / d,S = d,S = . (2.31) e2.31
s % = T
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e2.31 e2.31 .
(Z3T) and (2.3T) yield

arg )01 < Il oy [ 1ol) +1]dos < 71

c2.29
and the proof of the first inequality in (b.29i is completed. The second inequality is proved
similarly |

3 PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER ON BESSEL PO-
TENTIAL SPACES

3.1 CONVOLUTION OPERATORS ON IR,

A function ¥(§) on IR, is called piecewise-constant if there exists a partition of IR, on
polyhedral domains by a finite number of (n-1)-dimensional hyperplanes such that (&) is
constant on each polyhedral domain (bounded or unbounded). The set of such functions
(defined for different partition%é%ﬂl be denoted by PC°(IR,,). Itis known that PC°(IR,,) C
M, (IR,,) (cf., for example, ). The subalgebra, generated by PC°(IR,) in M,(IR,)
we denote by PC,(IR,,) and

PCH(IR,) = {{§)"a(§) : a € PCy(IRy)}.

Due to the well-known inequality (cf. %)
lallar, = sup{[ a(§) |: £ € IRn} < |lal|as,, l<p<oo
the radial limits exist
a®(§) = a*(w) = llil(l) a(z+¢€f), a>® (&) =a>(w) = I%EEO R™"a(R¢), (3.1)
a€ PCI(R,), z€lR, 0#f€lR, w=|¢|'¢es!
since they exist for a € PC°(IR,,). The following inclusions hold (cf. Fl%lﬁ%
PC,(R,) = PCy(IR,) C PC,(IR,) C PCy(IR,), (3.2)

p :
=——, relp,
V=T T [p. ']

We need also the following subset of PC}(IR,,):

PCH(IR,,a) = {a € PCJ(IR,) : a>™ € My cpie(IRy) N c(s™ 1
for some ¢ > 0}, (3.3)

PCy(IR,, 0) & PCO(IR,,0), 1<p<oo, relR
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Lemma 3.1 Let1 <p < oo, s, € IRanda € PCy(IR,). Ifa> €
€ CEITY (5" then a € PC:(IR,, ).

Ifn=2and a™ € C'(S"), then a € PC} (IR, o).
Proof. Since a* (&) is homogeneous a™®(\) = a*(§) (A > 0, € IR,), and a™ €

C[%hl(S"*l), then §*0¢ a*(§) is uniformly bounded on forany | o |< [2] + 1 which
implies a®® € M,(IR,), 1 < p < oo in virtue of Theorem [IT.3.

Let now n = 2; then a>® € C'(S") implieg that a*> has g bpunded variation on S which
implies again a® € M,(IRy),1 < p < oo (cf.[15], § 2 and , Theorem 2.11). [ ]

Corollary 3.2 Let a"(§) and g"(§) be as in Theorems 2.1 and 2.3; then da",g" €
PCH(IR,, ) foranyr € IR, 1 < p < c0.

Lemma 3.3 Let 1 < p < 00, s,r € IR. The operator
wo . H(IR,) — Hy"(IR,) (3.4)

is bounded if and only if a € M (IR,) .

Let further a € PCJ(IR,). Operator (3.4) is invertible if and only if the following
inequality holds

inf{(¢) "a(§) : £ € R} >0 (3.5)

and the inverse reads Wc?_l'

1.2 lel.3
Proof. (3.4) is equivalent to (cf. (el 2), (el 3))

AT WONTS =W, Ly(IR,) — L,(IR,) (3.6)

and this proves the first claim of the lemma.

GK2
Applying the local principal (cf. m, § X.3) to the investigation of the lifted operator
(this is possible due to the exigfence of the radial limits (3.1)), the proof proceeds similarly
to the 1-dimensional case (cf. , Theorem 2.18). [ ]

Let C*(IR,,) denote the set of functions b € C*(IR,,) which have a limit b(co) =
= hmmﬂoo b(f)

Lemma 3.4 Leta € PC)(IR,), b€ C*IR,), s,re R, kelN, |s|<k,
|s—r|<k 1<p<oo.Ifa*w)=0 (we S ecf(3.1) and b(cc) = 0, the
operators

WO, WObI : HE(IR,) — H3"(IR,)

are compact.
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1.2
Proof. The commutator (cf. (el 2))
[0, \] = bA” — A"bI : Hj(IR,) — H; " (IR,), velR

Corl,DNS1 el.3
is compact (cf. [3, 12]). Applying the isomorphisms (T.3) the proof is reduced to the com-
pactness properties of the operators

W, Worbl = Ly(IRn) — Ly(IR,,), ar(€) = (§)"al§).

An appropriate approximation reduces the proof to the case where a and b have compact
supports. But bW, = bW)W, where v € S(IR,), v(£)a,(§) = a,(§). Since the kernel
b(t)k(t — 7) of bBIW? has nice integration properties (k = F~'v € S(IR,,) and supp b is com-
pact), bW is a compact operator in L,(IR,). W2bI is compact due to similar arguments.
|

Lemma 3.5 Leta € PC)(IR,, o), b€ CHIR,), s,r€IR, kelN,
|s|<k, |s—r|<k, 1<p<oco.Thenthecommutator
(oI, W =b W) — WObI : Hy(IR,) — Hy"(IR,)
is compact.
Proof. As before the proof is reduced to the case s = r = 0. Since
b(£) = b(o0) + bo(8), a(§) = a™ (&) + ao(§),
where b, and a, satisfy the conditions of the foregoing lemma, b(co) = const , we get
[bI, WO = [b,I, Wi] + [bo1, WL?O];

the second term in the last representation is compact due to Lemma 3.4. The operator
(0,1, W2] in the space Lo(IR,) can be approximated in norm by a similar one with the
symbol b, € C°(IR,), a>® € C®(S™1), a®(X) =a(§), X>0, ¢€IR, But
then W2, represents a classical Calderon-Zygmund singular integral operator with the char-

acteristic f(0) € C*(S™ })pand the compactness of the operator [b,I, W2] in the space
Ly(IR,,) is well-known (cf. X1,7.2).

Compactness in the space L, (IR,,) %I—jqws now due to the M.A.Krasnoselskil interpo-
lation theorem of compact operators (cf. , Theorem 1.4.1) since the operator is bounded
in L, (IR,,) spaces (¢ > 0) and is compact in Ly(IR,,). [
3.2 ORDER REDUCTION OPERATORS FOR A CANONICAL LIPSCHITZ DOMAIN

et {) € IR, be a special (canonical) Lipschitz domain with the constant L (cf. Definition

I)and
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
o= . , ol = . ,
0 0 1 0 0 1

I

—_

I

—_

I

—_
7
~ o -
h
h
~ o
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where 0! is the inverse matrix to o.

If o7 denotes the transposed matrix to o then ocZa(§) = a(o?&) defines an operator
which leaves invariant the multiplier sets M) (IR, )and PCJ (IR, o).

Theorem 3.6 The operators

Bjo = Wy, b, =o0ra" € PCH(IR,, )N S"(IR,), (3.7)

Big =Wy, by =0lg" € PCr(IR,, ), relR
belong to BPO(r,Q); the radial limits read (cf. (2.8), (2.9), (2.12), (3.1))

(b5)°(8) = o (a")(8), (b1)°(€) = 0 (g")(€)- (3.8)

Schl, Sch2
Proof(cf. hZTB’B’]TEasy to verify that x + %, C () forany z € Q where %, = o~ X7
On the other hand By ,, Bi o € BPO(r, %) since By, = 0, 'Who., Big=o0,'Wp.o,,
and therefore (¢f Theorem 2.1) supp B] qu C %5, j = 0, 1. The first claim follows now due
to Lemma }.8.

The remainder follows from Theorem 2.2 and Remark 2.4. [ |
SD1
Lemma 3.7 (cf. bZU] ). Let O = IR, \ ). The following operators act bijectively for all
rselR, 1<p<oo:

p

Bg= Wi H(Q) — H (),

Bio =Wy« Hy(Q) — Hy7(9),

roBrol =raWpt : Hp(Q) — Hy'(Q), k=01 (3.9)

where ( is any extension operator (from H,(Q) into H;(IR,) ) and operator (3.9) is inde-
pendent of its choice. Operators (3.9) are invertible

(TQEZ’QE)_I = TQW%TK
The following equality holds

raBy olroWy = mwg’;rd, d e M{(IR,). (3.10)

From 3.6-3.7 it follows the order reduction theorem.
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Theorem 3.8 Letd € My (IR,), s,r€IR, 1<p<oo.
The operators
roWe + H3(Q) — H7(Q),
TQng D £y(Q) = Ly(Q),
dy = by, db®, k=0,1

(cf. (3.7)) are equivalent
raWy = 1B o lraWiB %,

3.3 OPERATORS OF LOCAL TYPE

Let .# be a C'-smooth manifold with Lipschitz boundary 0.4 and .# = .# \ 0.4 .

Let 22;(z)(j = 1,2, ..., N,x €44/ ) represent a partition of the unity subordinated to a
covering Uy, ..., Uy (cf. Definition 1.2)

Zaej(x) =1, supp a;(z) C Uj, w; € C'(A).

The spaces ﬁ;(,///) and H(.#') canbe defined correctly forany 1 < p < oo, —[+1 <
s < [ (cf. [12,44]).
The operators

Biwp(x) = aej(z)p(Bi()) H3(Q) — Hi(A),

H3(Q) — H(A),

Bil(x) = (B ()0 (8; () + H(M)— H3(Q),
HS( )—> HS(Q) (3.11)

are correctly defined but are not inverses to each other if not restricted to the subset of U; C
A and of V; C () respectively.

A M), x € M(D(Q), 7 € Q) represents the set of C!(.#) (of C>(£2)) functions
v(y) such that v(y) = 1 in some neighbourhood of x which have compact support supp v in
case of a noncompact manifold.

The notations
qr(x, A) = inf{[]| v Al va € A}
qr(z,A) = inf{|| Avm|||sp vy € A} (3.12)
Il BJ|S) = inf{|B + T||}) : T € " ( Hi(.4))}, (3.13)
B, T: H;(///) — H;""(//l)
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will appear in the sequel with 2" ( H,(.#')) representing the set of compact operators be-

tween appropriate spaces (cf. (3.12)). If qz(z,A) = qr(z,A) the notation ¢(x, A) will be
used.

Definition 3.9 An operator
A:ﬁ;(///)ﬁH;_T(//l), —l+1<ss—r<l, 1<p<oo (3.14)

is called operator of local type (A € OLT"( H}(.#)) in short) if viAvy € X7 (Hy (A )) for
any vy,vy € CY (), supp vy Nsupp vy = (.

Obviously ¢ (7, A) = qr(x,A) for A € OLT"( H;(A4)).
Definition 3.10 Operators
AL Ay HS(///) — H7"( M) (3.15)

are called A ,-equivalent at the point x € M (A, a3 A, in short) if the following holds
q(z,A1 —Ay) =0

Theorem 3.11 IfA € OLT"( H;(.#)), then
Il AllS)= sup{q(z, A) -z € 4} (3.16)

If further A A, wEM A, € OLT"( H) (A )), then
INAlS) < sup{lll ALl5): « € 2} (3.17)

Kru . Pltl
Proof is similar to the one exposed M@r L,(#) spaces and in [297] for Holder
spaces. Rough estimates can be found in |36 377. |
Lemma 3.12 A € OLT"( H;(.#)) if and only if the operators
[vI,A] = vA — Avl : H3(M) — H: (M) (3.18)

are compactfor any ve CY A).

Proof (cf. |3 7| ). If (3.17) is compact then

V1AV = [V IA]vel, vy, vy € CY(A), suppv; Nsuppuy =

and, therefore, A € OLT"( H;(//{ ).

If now A € OLT"( H;(.#)), then

q(z, I A]) = q(x,[v(2) A]) =0,  veC'(A)
since q(z,vI) = q(z,v(x)]) (x € .4 is fixed). Then (3.14) yields [vI,A] € £ ( Hy(A)).
]
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Remark 3.13 The relations (3.15) and (3.16) may be derived from the case r = s =
(i.e. the case of the space L,(.#)) with the help of the order reduction operators (cf. ( %_J’T
Theorem 3.8 and Theorem 3 22 below) since all operators involved are gf{ocal type (cf.
Lemmas 3.5 and 3.12). For the half-space case this was already proved in b'j’U

Concluding the present subsection it might be noticedsthat the notigg pf a locally con-
tinuous family of operators can be introduced similarly to (cf. also %8] § XV.3.1) and

existence of the enveloping operator A ~ A,, x© € . for any locally continuous family
{Az},c7 of operators of local type can be proved.

3.4 PSEUDODIFFERENTIAL OPERATORS ON COMPACT MANIFOLDS

Throughout this section .# will be the same as in the foregoing subsection. Other notation
is used also without further comments.

Definition 3.14 An operator (3.13) is called pseudodifferential operator (with non-smooth
symbol) of order r (A € OPC"( Hy(.#)) in short) if the following holds:

(i) A € OLT"( Hi(4));

(ii) for any x € U; C M there exists a function a, € PCJ (IR, ) such that the
equivalence

Ay -
AN B, W, J*l, x E U;

el.
holds(rx—mforxe8.///andrx—fforx€,/// cf. (. 5))

a;(§) = a(z,§) is called the symbol of A and the radial limit a*(z, §) is called the
principal homogeneous symbol of A (cf. 3.1);x € #, ¢ € IR,).
Let us introduce the following notation as well

OPC’ () = (\OPC"( H3(A)).

S7p

Lemma 3.15 . The principal homogeneous symbol o™ (z, £) of any operator A €
€ OPC"( H;(#)) is defined uniquely and depends continuously on x € M .

Proof. The uniqueness follows immediately, since if a™(x,¢) =0 (v € A, € €
€ IR,), then g(x,r,W? ) = 0 (cf. Lemma 3.4) and therefore A is compact (cf.(3.16)).

Let now z,y € U; C . be points sufficiently closeptpseach other; then due to the
homogenity of symbols (cf. (3.2), (3.6) and Lemma 1.16 in [TT])

[O _CLZOHOO < ||Waog<>—a;°||8p|” vaxrxrngf—agomspg
< Boll G I valraWaee — 851 ABNNG)

+ |l oyfryWae — B ALY < e,
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where v, € A,, v, € A, are chosen to satisfy the inequalities

£
Il v [reWoe — B1AB |10 < ————
! " 2By gl
_ . €
I oylry W = BRI ABING < ——=5,  val&)vy(&) = vy (&)
2|1 B4 ol

Let .#° be another C'-manifold with the Lipschitz boundary 9.#° and let
3. U) — V) cQcC Ry, j=1,2,...,N°

represent a coordinate diffeomorphism.

If the diffeomorphism of manifolds & : .#Z — .4 1is given we are interested in the
operator
Ap = ] M Az, A e OPC"( Hy(A)). (3.19)
Theorem 3.16 A, € OPC{ (.#) and its principal homogeneous symbol reads
ar(y,6) = a(2,J;€),  y=w(z), zed, (3.20)

where JI represents the transposed matrix to the Jacobian

= (Bromo ) (t) =), wz€l; t=pix)€R, y=e)ely

Proof. Suppose first a° = a>®(z,.) € C*(S""!), 2 € .#; then by definition

Ay Ay
AN ﬁj*rﬂ?WO ]* 9 A?R ~ k*ry amy(ﬁo)
On the other hand

IR _ _ A,
(BR) " A = ((B)7 el B5:) (B AB) (87 . B1,) = g 7, AB jeeo. ~

A, _ _
~ %O*Twwaz%(]ﬂﬂ %0: j*l%* g*zﬂgoaeoﬂjl T=& ( >:/62<y) ER

These equivalences yield (cf. Lemma 3.4)
0o Ar 1 0 Ar 1 0
ryWam,y ~ a%O* erazagO* ~ ag0* Tﬂ?Wag?TaEO*7 xr( ) | 5 ‘ CL ( )

The well-known formula for the symbol b(z, ) = b,.(€) of a pseudodifferential operator
after a transformation of the variable

—1 0 _ 0
&y To:Wag?ﬁeO* =r,W,.
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Hr2
reads (cf. HS], vol.3, Theorem 18.1.17)

= D5|JT " (JT(€)] [DE explilpa(2), ).,

OéeNn

= (1), pz(2) = aeo(2) — ao(t) — aeg(t)(2 — 1), t=pjx) € IR

Obvious!
o b (€) = " (J; )

since all other summands in the asymptotic expansion have orders less then r; therefore

Ar ~00 ~00
~ 1y Wake, ay (&) = ax(J; €)

xT

ryWa%?y
or, written differently (cf. Lemma 3.4)

q(r, ryWag?y_@go) = 0.

. Du3 Pl
Due to the homogenity of the symbol (cf. h‘ﬂ, Lemma 1.15 or %128], Lemma XV.5.1)
47,1y Wags, —aze) = [Wage,~aze |l = llags, — a5l

and therefore

Uy (§) = a2 (J; €)-

For a2 € C(S" Y)Y\ Mp—cpi-(IR,), aX* & C°°(S™~1) approximation can be applied.
|

Remark 3.17 It follows that the principal homogeneous symbol a3°(§) of an operator A €
PC’” H( M) is unique and correctly defined on the cotangential fibration T*. 4 (cf.

[18]. v3 ]8 1).

dl.2
Example 3.18 Let Q) € IR,, be any compact Lipschitz domain (cf. Definition 1.2.).
Any convolution operator with coefficients

Ms

biraWe el H3(Q) — Hy™ (),
j=1
a; € PCy(IR,, ), b, c; € CF(Q), s, |s—r|<k, l<p<oo

represents a pseudodifferential operator A € OPC"( H;(S2)) and the symbols read
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Example 3.19 The operator rqoA, where

1

Av(@) = G

/ exp(i€(z — y)]a(z, §)p(y)dydE

QOx Ry

with the classical symbol a € S"(Q2 x IR,,) represents a pseudodifferential operator in the
sense of Definition 3.14, roA € OPC"( H;(€2)).

DNS1
The detailed proof of the last claim will be included in the forthcoming publication [T2].
The symbol a,(§) = a(x, &) is called elliptic if the following holds

inf{| a®(z,&)| : v €4, £€S"'}>0. (3.21)

Theorem 3.20 Let1 <p <oo, —l+1<s,s—7r <landA € OPC"( H}(.4)) with the
symbol a(x,.) € PCJ(IR,,«a), v € MA.

(3.13) is a Fredholm operator if the following holds:

(i) the symbol a(x, &) is elliptic (cf. (3.20));

(ii) the following convolution operators are invertible either for k=0 or for k=1 (cf.(3.7))
and all x € 0.4

raWoey 1 Lp(Q) = Lp(Q),  ax(@,) = b7 (§alz, §)b, (&), (3.22)

. : . %ﬁ
where €) is chosen according to Definition [I.2.

Du4 DNS 1
Proof. If we recall Definition 3.14 and the local principal (cf. M§ 4 or [T2]) we find
out that (3.13) is a Fredholm operator if and only if the local representatives

roW?o I:I;(Q) — H;7"(Q), x€0M
Wo 1 Hi(IR,) — H:"(IRy), e M, (3.23)

[e%%

are all locally invertible.

Since an operatgry, B and B + T, where T is compact, are locally equivalent at any finite
point x € IR, (cf. [9], § 4), by virtue of Lemmas 3.4 and 3.8 it follows: (3.22) are locally
invertible if and only if the lifted operators

raWare,)  + Lo(Q) = Lp(Q), v €M
Waew,y ¢ Lp(IRa) — Lp(Ry), ze M,
are locally invertible at x € M : local invertibility of the operator W ) is equivalent to

the ellipticity of ax(z, &) (cf. }[9]‘ § 4) and further to the ellipticity of a (x, €), since

ap(z,§) = (b°77)i2(€)alz, £)(07°) (§)
and b (¢) is elliptic (cf. (3.8)). [
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Remark 3.21 For the point x € 0./ for which the tangential cone Hy to §) exists at y =
B;(z) € 0 the operator (3.21) in the condition (ii) can be replaced by

P, Wiy + Lp() — Lp(J). (3.24)

Moreover: if Q has a tangential cone at any point y = 3;(x) € 00, x € OM then the
conditions of Theorem 3.20 are necessary as well.

This follows from the equivalence of local invertibility of (3.21) and (3.22) on one side
nd from the equivalence of invertibility and local invertibility of (3.22) on the other side (cf.
, & 4 for the last claim).

Remark 3.22 It was only for notational convenience that we stick to the scalar case. The-
orems 3.20 and Remark 3.21 remain valid for systems of pseudodifferential equations (of
pseudodifferential operators) with matrix-valued symbols in vector spaces if the ellipticity
condition (3.20) is interpreted in a proper way: a*(x, &) is replaced with det a™(z, §).

Remark 3.23 Theorem 3.20 and Remark 3.21 (the latter only in the sufficient part) remain

valid also for Besov spages B m(r% ). This follows with the help of the interpolation theorems
(cf. [43], §2]0)aszn§22 3)3]

3.5 REDUCTION OF ORDER FOR MANIFOLDS

The notations used here are mostly from § 3.3 (1 denotes, for example the smoothness of a
manifold .#). In [33] the order reduction operators were constructed

B, =V,(x,D) : H(M)— H" (M),

B ,=0b,(D) : HM)— H (M), (3.25)

ssrelR, —l+1<s,s—r<Il, 1<p<oo, b,b,cS(MxIR,),
but the proof of ellipticity of these operators was incomplete.

Here a modified model of the order reduction operator is suggested. These operators will
be needed in the next subsection.

Theorem 3.24 There exist isomorphisms (3.24) such that the diagram

~ a(x,D s

i) 2 Hy ()

1B B, (3.26)
ao(z,D

L) L),

a(x, D) € OPC"( H;(A)),
ao(x,D) =B, a(x,D)B; € OPC(L,(.4))

is commutative and the principal homogeneous symbol of the lifted operator reads

ag (2, €) = (b, ) (2, €) a™(x,€) (b7)*(x,€). (3.27)
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Proof. Let .7, be any C'-manifold without boundary, including .# (i.e. 0.4, =
= (0, .# C .#1) and suppose the coordinate system { (3}, U jl)}é-vzl1 be the extension of the

system from .7 : 3} ;=0;, UnA#A=U;, j=12,.,N, N<N.

Let | v |< 1 and consider the operator
Wy =B g r € BPO(v,Q X IR) C BPO(v, IRy 11),

di.1
where (2 x IR C IR, is a canonical Lipschitz domain again (cf. Definition [T.T); we suppose
that bV (&, \) € SY(IR,+1) (cf. Theorem 3.6; ¢ € IR, A € IR).

Let {wjl(m)}j\:l be a partition of unity subordinated to the covering {U ; }jvzll of A
and compose the operator

Nt N
Yan =D B Wi (BL) T ua =D BiWi (B3 A€ IR,
j=1 j=1

1.13
where then by the properties of BPO’s Wl?”@ N (cf. (el .13)) we get

raBly o =Bl 0 =By ¢ o€ Hy(M); (3.28)
therefore the operators

B\ Hy(A) — Hy " (M), By Hy(Ah) — Hy " ()

p p

are bounded.
Obviously B",, , € OPCY(.#,) and its symbol reads

N1

@& N) =) i(BH @) ([((8)) T ()] ()€, M), (3.29)

j=1

where [((5})")" (x)]7"(x) is the transposed Jacoby matrix of the inverse diffeomorphism
1317 ().

Let J be any non-degenerate matrix; then (cf. Theorem 3.6 and Lemma 2.5)

F n+1
arg ()8 ) = "y (nfl)l V() sgn [JE -y + Ayni1] dyS = (3.30)
T 2 Sn
r (%) ,
=V / [(y) + 1 sgn [JE -y + Mynsal dyS, Y= (Y1, -, Yn),
dr 2 Jsnnsy
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since supp [¢(y) + 1] € X7 (cf. (2.2)) and

/ sgn(n - y)d,S =0

for any fixed n € IR, ;.
Similarly to (2.31) we get

n+1

21 2

oy 600 1165 = i

2

and together with (3.29) this yields
| arg(b, (JE ) |< Sv < =5
2 2
therefore (cf. (3.28))
inf | (b.ay)>*(z;€,A) [> 0.

Hr2
Thus the operator BZ/,L , has the parametrix, since it is elliptic and ./ is closed (cf. HS],
vol.3)
v v -1 —y
Bk//h)\ - [b///l (‘T? D:u )\)} € OPC (%1)

such that
B By =1+Ri(N), B, \B/ , =1+Rsy()\)
R;(\),Ry(\) € OPC™ Y (A))

(R1(A),R2(X) € OPC—() if A is C™ — smooth) the symbols R;(x;&, \) of the
operators R;(\) satisfy the estimations

Oa7ﬁ < Ca’ﬂ()\)

6¥a%% » I
| 0;0¢R; (w36, ) |< AF €]+ | AR = (1 [ € )il

(3.31)

ve M, €€ R,\{0}, |5y<e lal<oco, j=1,2.

The functions C, g(\) have 11m1 ]gn‘ A—oo Cap = 0 and since the norms of R;(\) are
estimated by these constants (cf. [T8], vol.3) we can get IR; (M)l <1, j=1,2 for a large

Ao € IR; then operators
I+ R;(ho) « Hy ¥ (th) — Hy™" (A1), j=12

are invertible and therefore the operator

B =By Hy( M) — H) V(M)
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is also invertible. Due to (3.27) this yields the invertibility of the restriction

(M) — Hy V(M) (3.32)

Bu =Bl s
Hy(A)
If now a(x, D) € OPC{,(#,), then (cf. (3.27))
r.pa(x, D)B o =1 4a(x, D)B", 0 =1 4(a0b’, )(z,D), (3.33)

where 0%, (z,£) = b, (x,&, Xo) is the symbol of the operator B”, .

The operator Ej}, = Z_);/(q:, D) =r 4B, l (cf. (3.25)) is constructed similarly, where ¢
is any extension operator from H;(.#) to H,(.#,) and the operator B', is independent of
this extension. The constructed operator arranges an isomorphism

B, =b,(x,D): Hy(M) — Hy (M) (3.34)
Obviously
B',rsa(z,D) = r.,B,tr a(z,D) (3.35)

= r.4B a(z, D) =14, 0 a)(z,D).

If now | v |> 1, then consider the operators

B, =(B5)", B, =B)"=r,By)"
where m >| v | is fixed; the restriction B, = B_4, | a3 () and B’ represent the desired
p
isomorphisms (3.31) and (3.33) for any v € IR. (3.32) and (3.34) are valid as well and imply
(3.26). n

3.6 PSEUDODIFFERENTIAL OPERATORS WITH LOCALLY SECTORIAL SYMBOLS

The next definition is due to I. Spitkovs ié,l who used it for the investigation of one-
dimensional singular integral operators (cf. ).

Definition 3.25 A m x m matrix symbol a(z,§) € PC;(IR,,00), (v €
e M, re IR 1< p< c0)iscalled o, -sectorial, 0 < o, < 7/2, if there exists
0. € [0, 27| such that the following inequality

Re(e?=%)a> (z,w)n,n) > My | 11 |?, My >0 (3.36)

holds forany w € S"™', ne @™, and |0 |< /2 — a,.
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Let’s notice that a locally e—sectorial symbol (for some ¢ > 0) is known as locally
strongly elliptic.

The following two conditions are equivalent reformulations of condition (3.35) each:
(i) the Hausdorff set

H(a®(z,w)) ={(@®(z,w)n,n) : weS !, ned, |nl=1}

of the matrix-function a*(z,w), which includes the spectrum, fits inside the open angle
{Ce @\ {0} : Jarg( -0, |<as};

(ii) the matrix-functions a3 (x,w) £ ctg o, a5 (2, w) are positive definite; here ay, =
=1(a+a*), a,=3(a—a*)anda* denotes the conjugate matrix.
Theorem 3.26 Let .# have a Lipschitz boundary, preconditions of Theorem 3.20 hold and
the matrix-symbol a, () be elliptic (cf. (3.20).

If a(x, €) is ap,— sectorial for any point © € 0./ then the pseudodifferential operator

a(z,D) : HY(a) — H () (3.37)
is Fredholm for all
|s|< L % { coMt <=
sI<K - —— Qg =supi{a, @ =,
=5 T p 5

If, additionally, a(x,&) is (m — €)— sectorial, that means
H (exp(—ib,)a™(z,w)) ﬂ {z€e@ :2=Rez<0} =10 (3.38)

for a certain 0, € [0, 27)and any x € M = M \ 0.4 , then

Inda(xz, D) = 0. (3.39)

Proof. It can be assumed that 6, € C'(.#) : in according with Lemma 3.15 6, depends
continuously on z € .#; using the approximation by C'—function 6, in L. — norm a(z, §)
can be supposed to be «, — sectorial with respect to the approximating function 6,,.

Now the operator exp(—i6,)a(x, D) can be considered in the same spaces as a(z, D)
(ct. (3.36)); since these operators are Fredholm (or are not) simultaneously and their indices

coincide, it can be supposed that 0, =0, x € .

According to Theorem 3.20 the Fredholm property of operator (3.36) is implied by the
invertibility of the following operators

raWe ey ¢ La() — La(9), v €0M, (3.40)
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ao(w,€) = (by 2 ") (€)a™(x,€)(by 2 *)®(€) = go(€) expli(6)]a™(x, &),
90(€) =| (@)®(07E) [> My >0,  ¢(¢) = —2arga’(c7¢).

Due to (2.30) we get
(2
W6 = stk [ vw)smalee s
(2

and therefore (cf. (3.29))
m
p(€) 17| 5]< 5~ . (3.41)

From (3.39) and (3.40) follows
Re(ao(x,&)n,m) = Re(exp (i[p(£)]) go(§)a™ (x,&)n,n)
> Re (exp (ilp(€)]) a (@, ) v/ (), v/50(E)n)

> M| VgoEn|?> M | nl*.

Further we proceed with the help of Parseval’s equality as follows

Re (TQW o(z, )U, U) = Re (Fﬁlao(x, )FU, u)
1
= e e (ol )Fw ) 2
M,y 9 ) o
> (271')” HFUHLQ = MlHuHL27 u € CO (Q) C L2<Rn)- (3.42)

(3.41) yields the invertibility of operator (3.39) and, therefore the Fredholm property of
operator (3.36): if Re(Au, u) > M;||ul|?, then the kernels KerA and KerA* are trivial (we
recall that (Au,u) = (u, A*u); A has closed range as well, while from lim,,_,., Au,, = v
there follow the convergence u,, — w to a certain w and the equality Aw = v.

Thus (3.36) is a Fredholm operator.
Let us prove formula (3.38) under the condition (3.37) (we recall that 6, = 0).
Let for the beginning s = 0. The operator (cf. (3.24), (3.25))

ax(z, D) = (1 — Na(z, D) + \B2,B?, : HZ (M) — H, (M), 0<A<1
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depends continuously on the parameter \; the homogeneous symbol of the corresponding
lifted operator reads (cf (3.26))

ax(z,€) = (1 = A)go(§a™(z,§) + A, 0<A<1

and is o, — sectorial for any point of the boundary x € 0.#, o, < a, < 7/2; due to
condition (3.37) it is elliptic as well.

Since ag(z, D) = a(x, D), we get
Inda(z, D) = Ind ay(z, D) = Ind a;(z, D) = 0,

because the lifted operator for a;(x, D) in the space Lo(.#) (cf. Theorem 3.24) is the identity

—r _r
2

B ai(x,D)B} =1 : Lo(#)— Lo(M).

Letnow | s |[< 1/2 — /7, s #0.

The symbol a%(z, £) of the lifted operator a?(x, D) = E_/;Ha(x, D)BE;S (cf. Theorem
3.24)) reads a2(x, &) = ap(z, &) (cf. (3.39)). In according with Theorem 3.24 the indices of
operator (3.36) and of the operator

al(x,D) : Lo(M) — Lo( M) (3.43)

are equal and therefore we need to prove Ind a2(x, D) = 0.

Operator (3.42) and its symbol a’(x,£) depend continuously on s. Due to the proved
part of the theorem (3.42) is a Fredholm operator for any | s |< 1/2 — o, /7; then

Ind a’(z, D) = Ind ag(z, D) = 0,
since aY(x, D) = ag(x, D) and this operator was already considered. n

Remark 3.27 If condition (3.37) fails then formula (3.38) may be violated.

To prove this claim we will describe the method for calculating the index of operator
(3.36) in this case.

Let y(z) be a C'—function on A for which supp @, and the set {a:i% tpo(z) =
= 1} are concentrated in a sufficiently small neighbourhood of O0.# C . ; then the homo-
topy

(2, D) = po(x) | (1 = Nalz, D) + \B%,B%, | + [1 = o)) alx, D),
0<A<1

connects the operator ao(z, D) = a(z, D) with a\(z, D), and remains Fredholm in the space
Lo(A) for all 0 < X\ < 1; therefore

Ind a(z, D) = Ind a,(x, D) = Ind ay(z, D),



4. PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER IN HOLDER-ZYGMUND SPACES31

where ay(x, D) is the lifted operator (cf. (3.25))
Go(x, D) =B fay(x, D)B} : Lo(Ml) —> Ly(M).

Obviously iy(x, &) = 1 in some neighbourhood of 0.4 C M (¢ € IR,) and if as(x, €)

is the extension of ay(x,&) on M\ by I (we recall that ., is a closed C'—manifold and
M C M), then the operator

(Iz(.’E, D) : LQ(%l) — LQ(%l)
is Fredholm and
Ind as(x, D) = Ind as(z, D).

Thus the problem is reduced to the closed manifold case and the Atiyah-Singer index
formula can be applied.

Any example of pseudodifferential operator on the closed manifold .#/, with a non-trivial
index can be used to construct an example of a pseudodifferential operator on some open

manifold # C ., with the same (non-trivial) index and the same symbol a(z,§) for any
xe M (€€ IR,).

4 PSEUDODIFFERENTIAL OPERATORS AND REDUCTION OF ORDER IN HOLDER-
ZYGMUND SPACES

4.1 HOLDER-ZYGMUND SPACES

LetO <a <1, 1<p<oo. Thenthespace Z;(IR,) consists of functions

oz +1) — p(@) |
] <°"}

Z3() = { € L) : lplz =ubrcn,
and is endowed with the norm (cf. %
lellzg = llellz, + el ze- (4.1)
For a Lipschitz domain 2 C IR, two different spaces can be defined (cf. (EAFSI)TS(%?
Z;“(Q) ={ue Z(R,) : suppuC Q},
with the norm induced from Z>(IR,) and the space
Z8) ={u=rquv : ve Z2(R,)}
with the norm of the factor-space

Il ulllze=inf {|Jv]|ze : veE ZI(R,), rov=u},
P P p
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where rq denotes the restriction operator as before.

To extend.the definition of the space Z3(IR,) to the case v > 1 the Poisson integral is
involved (cf. , § TI1.2)

Peea) = [ Py(o— )t = WS (). A = e
c N ay (&) = exp(— 0 IR
n ﬂ_nTH ’ Y - Xp( ’§|y)7 y> ) I,fe (0

P,p(z) is a harmonic function
02 "L 92
=1 7"
St1
and approximates ¢(z) (cf. h‘[], § 1I1.2)

7}/13(1) | Py — ¢llp =0, e L,(R,), 1<p<oo. 4.2)

Lemma 4.1 The expression

0 —a
el %2 = l1¢lly + 5up,=0 =Dy Pysp e (4.3)

defines an equivalent norm in the space Z3(IR,).

Other equivalent norms are

k —a
lell %2 = llelly +supysoy' 1 Da, Pyplloe, ki =1,2,..m. (4.4)

St1
Proof For the case p = oo cf. h‘ﬂ, § V.4. Let us start with the equivalence of norms
(4.4) and (4.3). For this we recall the following inequalities

!

0P,
H_o : zo>0, j=0,1,...n (4.5)

8[Ej

1 To

which are implied by the following two estimates (they are applied to the integrals over
| t |< xo and over | ¢ |> x, respectively)

OP, (x)| _ s OP,, (x) Cy
8[Ej B $6L+17 81‘]‘ - | T |n+17

relR,, x>0 757=01,...,n.
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Since P, = Py * Py we get

9%P,, () 0? <Pz70 * P%ogo) (x)

8xj8xk n axjaxk

and therefore (cf. (4.3) and (4.5))

PPl 0P| || 0Peele)) e (3" 4.6)
(9xj8xk o - axj 1 al’k = Ly zy 9 5 .
7, k=0,1,....n.
Applying the Holder inequality we get
8ong0 ang aon To ﬁ—n—l
- < =C (—) , 47
where p' = p/(p —1) for1 <p <ooandp’ = oo (p'=1)forp=1 (p=o0).
Therefore op
lim —xogo(a:) =0
Tp—00 83:k
which yields

oz . oz;0xy, ), _\

The last equality together with (4.6) yields

_(9Px090 _22_a01 (k) a-1 .
H O, H = 1 o ||Zg Ty 7=0,1,...,n. (4.8)
Hence g
k 2572y & N
6l < gl + ——el%) < Cullel ), k=0,1,.m.

s+ 1 Now we prove the equivalence of (4.3) and (4.1). For this we recall the inequalities from
h‘ﬂ, ¢ II1.2 (the second is implied by the first one)

/ P,(t)dt =0, / %j)dt —0,  y>o0 49)

But then
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and further similarly to (4.5)

aP tSO aPt o a—
H—y” H < lelzs | ﬁ\m &t = Callplsy™, >0
dy - R, dy
L OP,(t)e(t)
0 «
lellzs = llello + supren, o0 '™ | =5 =

< llells + Csllellzg < (1+ Cs)llell zg-

To prove the inverse inequality, we apply Lagrange’s formula

u OP,
Pz +1t) — Ztk( gfk ) , 0<fh<1
z=x+0t

which yields due to the equivalence of the norms (4.3) and (4.4)

8Pg0
|Pyp(x +1t) — Pyp(x)| < L ‘
o k o
< |t Zuwu‘zgscausonzwt\ (4.10)
Since
Pyp(z+z) —o(x + 2) / P)\SO (x + 2)dA
we get
(0)
v [E P
Pople+2) = oo+ 2)| < Joll§) [ Aan="Fye gm0 @
" Jo

From the identity
ple+1) —p(x) = [plz+1) = Bye(z + )] + [Pye(z +1) — Bye(@)] + [Pye(z) — ()]
applying (4.10) and (4.11) (the latter is applied for y =| ¢ |, z = ¢ and for z = 0) we get
| p(a+1) — p() [< Crllell G2 [ ] T€ Ry y>0

which yields
0
lellzg < (14 Co)llel 5o
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The foregoing lemma leads to the following definition of the space Z;(IR,) for 0 <
a<oo, 1<p<oo:

ZeR) = {e e LR :liglzs = el
+ st DEPgll < 00, k=la]+1},

where [«] denotes the integer part of «.

Lemmad4.2 Let0 < a<oo, 1<p<oo.
For a function p € Z3(IR,) the following estimate holds

1Py — ¢l < Cy°[lll 2o, y > 0. (4.12)
If Q= IR, or Q) C IR, is a non-compact Lipschitz domain then
Z2(9) = L,(Q) N Z2(Q), Z2(Q) = LN Z5(Q)  @13)
where Zg‘(an) = Z)(IR,,).
Moreover: if Q C IR, is a compact Lipschitz domain, then

Zo(Q) = Z2(9Q), Z(Q) = Z2(Q). (4.14)
Proof. Let us prove first (4.12). Due to (4.9) we get
Pyple) = ola) = [ POt~ ) - o0
and further

1Py = #lloc < Hsza/ B@) [ ¢]"dt = Cillellzey®, vy >0

Ry,
which is exactly (4.12).
Obviously L,(IR,) N Z$(IR,) C Z;(an).
Letnow ¢ € Z2(IR,); then

[l < N1Pypllsc + 1Pyp = @l < 1Pyllpllelly + Cry*llllze <00,y >0
which implies ¢ € Z2% (IR,,) and proves (4.13) for Q@ = IR,. For any other 2 C IR, the
proof is similar.

(4.14) follows from (4.13) since for a compact {2 C IR,, the inclusion ¢ € Zg;(Q)
(o € Z5(Q)) implies ¢ € L,(9). ]
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Lemma4.3 Let0 < a <2, 1< p< oo.The expression

el = el + el @15
olx+1t)+ oz —1) —2p(x
lellze = 51y g 2L =220

defines an equivalent norm in the space Z3(IR,,).

Stl
Proof is exposed in h‘ﬂ, § V.4, Proposition 8 for the case p = oo and is similar for
1<p<oo. |

Lemma 4.4 Leta > 1, 1<p<oo. Theny € Z3(IR,)ifand onlyif D, o €
€ Z97°(IRy),j = 1,2, ...,n. An equivalent norm is the following

lellze = el + > 1Dl 5m (4.16)

|8|=m<[a]

St1
Proof is similar for any 1 < p < oo and is exposed in bﬂ'], § V.4, Proposition 9 for the
case p = 0. [

Lemma 4.5 Let Q) = IR, or Q) C IR, be any special or general Lipschitz domain and
0<vy<a<oo, 1<p<oo.Then thefollowing embeddings are continuous

Z3(Q) C Z7(%), Z3(Q) € Z7(9). (4.17)
If moreover §) is compact then the embeddings (4.17) are compact.

Proof. The property
1D, Pyplle < Cry™™, r=0,1,...,<[a]+1, y>0 (4.18)

of the function ¢ € L,(IR,) is necessary and sufficient for ¢ € Z7({2) and is important
only for 0 < y < 1 since for y > 1 the stronger inequality holds (proved similarly to (4.7))

1Dy Pyelloe < Coy ™ "ol r=01 ., <la] 41, p= o

now (4.17) is obvious.

If 5 < o and 2 is compact, we can suppose p = oo (cf. (4.14)). Let {¢;}7° C Z3(2)
be any bounded set; using the equivalent norm (4.16) and Arzel’a-Ascoli’s theorem about
compactness in C(€2), a subsequence {pj, }2>, C Z%(£2) can be selected which con-
verges in C(Q). If ¢ = limy . @j,, then obviously ¢ € Z$(Q) C Z2(Q) and (cf.
(4.3),(4,15),(4.16))

lim ||, — ¢llzz =1im [ll9s, — @llso + 5,0y 1D Py (s = 9)ll] =

y—r y—r

. 17(177‘ r—Q a—r
= lim IDPPy (s = @)lloe 7 supyso {4 1D Py (s, — @)oo} > =0,

where | 5 |=r = [7] < [a]. ]
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Theorem 4.6 Let Q) C IR, be a Lipschitz domain and either X = Z(2) or X = Z;(Q)
then

L(X, XM)NZL (X2, X)) C L(XXT),
l<p<oo, 0<ajfBj<o0, j=1,2,
a=(1-0)a;+0ay, v=(1—=0)y+0yr, 0<0<I,
where L (%, %) denotes the set of linear bounded operators A : 5, — PBs.

Trl
Proof is similar for the cases 1 < p < oo and is exposed in Hﬂ, § 27.2 for the case
p = 00. []

mark 4.7 Norms (4.1) and (4.15) are equivalent for 0 < o < 1 but not for o« = 1 (cf.
|, Example V.4.3.1).

The expression

lellze =llella+ > 107l e+ (4.19)
11=la]~
a—1<[a] <a, {a}t=a—[a]”

where o] is integer, defines an equivalent norm in the space Z3(IR,), 1 <p < oo, 1<
< a < 0oQ.

4.2 MULTIPLIERS

By M"(Z3(IR,)) we shall denote the class of multipliers (functions) a(§) for which the
convolution operator
Wy o Ze(R,) — Z9(IR,) (4.20)

a

is bounded. If r = 0 the notation M (Z}(IR,)) is used.

Theorem 4.8 Let a € L'*°(IR,,) and let the condition

> RQ'B'_"/ | DPa(€) |2 dé < oo 4.21)
F<lél<2R

1B1<[2]+1.8<1

hold; then a € M(Z3(IR,)) for all 0 < a < oo, 1< p < oo0.
The inequality

sup{| € || D%a(€) : € INay B<1, |BIS 541} <00

implies (4.21)
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Proof. The identity D’W? = W°D# 3 € IN,, and the equivalent norm (4.19) can be
applied to reduce the proof to the caseé 0 < a<1.

We recall also that (cf. Theorem

H Wa@”p < Cl”@”p? pE Lp(]Rn) (4.22)

Hr2
Further we follow the proof of Theorem 7.9.6 from H8] with slight modifications.
Thus 0 < a <1, p € Z(IR,) can be assumed.

Consider x € C§°(IR,), x(&) = x(=&),x(§) = 0for | £ |> 2 and x(§) = 1 for
| € |< 1. Then

(e}

> 027 =1, £ae0, 0(§) = Fo(§) = x(&) — x(29).

j=—o00

Clearly v € S(IR,), v(—¢) =v(¢) and
o= ¢ 23(8) = (27€)$(8) (4.23)
where the explicit expression for ¢;(z) reads

pi(r) = / ez £277y)u(y)dy

- 2 / [o(z +279y) + gz — 279y) — 2p(x)] v(y)dy

n

since

/ o(y)dy = 5(0) = 0.

Hence
25llo0 < C2279 ||| 52, (4.24)
682 = s0p, e g LATH AL 20 2 2200) |
Similarly
Dlgj(w) = E'Q'm/ p(x £ 277y) D u(y)dy
R,

s / o+ 279y) + oz — 279y) — 20(2)] DPuly)dy,

gelN,, |pB|=2
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and therefore A .
1D 0,100 < CH22~7 ]|, |8 |=2. (4.25)

Let ar(&) = 0(&)a(RE); from (4.21) it follows

> | Dar(§) > d¢ < Cy
pi<[z]+1
r2
and further (cf. FFIIB], § 7.9)
ap = Fkg, kr € Li(IR,), supg ||kr|l1 < Cr < 0. (4.26)

Since supp ¢; C 27 supp 0 the identity

a(€);€ = ar(R™€)g;(€), R=2

is valid and we get
Wloj =kr+*p; = R"kr(R-) * ¢, 4.27)
for their inverse Fourier images.

(4.24)-(4.27) yield

n —as 0
| W05l < IR kr(R) |1 ]105]le0 < CaCi2% ]| 52,

| WODPp;]loe < CLCK23 ||| 52, |8 ]=2. (4.28)

Applying twice Lagrange’s formula for g € C*(IR,,) we derive

glx+1t)+glz —t) — 2¢9(x) = ZeltjtijDkg(x + 65t), —1<6,0, < 1.
ik
Hence o
lgllZ) < [t D 11D%g]ee. (4.29)
18]=2

Estimates (2.28) and (2.29) yield
| Wopi(z+1) + Wopi(z — 1) — 2 Wps(x) |
< | Wp(z +t) + oo — t) — 20(x)] |<
J

<0, |3 ) 27 2 Y 2@ o) D)

23 <t 23>

3 1 0) 0)
<CCh |t . <C o | ]9,
< CiCy |t [1_2_a + 1_22_(1} ol za < Cullollza | 1]
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where Cj is independent of p € Z(IR,,).
These inequalities together with (4.22) and Lemma 4.3 yield

I Waellzg < Csl| Wl < Csllellzg-
|

Lemmad49 Llet0 < a<oo, 1<p<oo, —o0<r<ooanda—r1r >0.Then
X&) =1+ [£17)2 € M™(Z3(IRy)).

Stl )
Proof(cf. hﬂ, § V.4.4). Let first r < 0 and consider

G, (z) = 3n/ 7 ex (—t—— —.
S penE PUT T )

Stl
It is known (cf. h‘[], § V.3) that

G (&) =FG, () =N(), G, €Li(R), r<0 (4.30)

Let
def

G,(z,y) = P,G,(z) x € Z{%n, y >0,
St
where P, denotes the Poisson integral again. Further in [4T], Prop.V.5.4 it is proved that

1Dy G (2, y)llo < Cry™ ™, m=[-r]+1, y>0. (4.31)

Since Py, 1y, = Py, * Py, (v1,y2 > 0), we get

(Py1+y2AT90)(17> = Py xGrxo=P, xG. xP,*x¢p
= (Gr(m) * Pyo)(x), A" =Wy,

Let k = [a] +1, m = [—r]|+ 1. From the last identity and differentiation we get
(D3 Dy, Py 1N 0) () = (D Go (- 31) = Dy, Pyp) ().

If y; = y2 = y/2 and (4.31) is applied it follows

m r m Y
|DE " P A Gl < DY Gy (- 5) DY Pyl
Y a—r—k—m
< Cillellzg (5) (432)
since (cf. the definition of the space Z(IR,,))

1D5 Pypllos < Cilloll zgy®".
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If k+m > [a—r]+1 from (4.32) the similar inequality can be derived for k+m = [a—r]+1.
Combining (4.32) with the following (cf. (4.30))

Al = G ollp < IGr[11ll o]l

we get
Al g < Challellzg, AT =Wy,

which proves the lemma for r < 0.
Let now r > 0.
Consider any integer [ € IN, 2] > r. Then the differential operator

2 l
A = (I +) D§> L 2P (Ry) — Zy T (IRy,)
1

is continuous (cf. Lemma 4.4). Since
Ar — W)(\)r — W)(\]Ql )(\]r—2l — A2lAr—2l

and 2l 2l
N 7R, — 25 (R,)

is continuous as well, continuity of
A" Z3(IR,) — Z)7"(IR,) (4.33)
follows. |

Corollary 4.10 Operators (4.33) represent isomorphisms between the spaces for any 0 <
a<oo, 1<p<o0, —c0o<r<oo, a—1r>0.

Corollary 4.11 M"(Z3(IR,,))is independent of 0 < a < oo and consists of functions

Na, a€ M(Z}IR,)).
Let
W(R,) ={c+ Fk(§) : ke Li(IR,), ¢ = const}
denote the Wiener algebra endowed with the norm ||al|yw =| ¢ | +]|k||-

Theorem 4.12 W (IR,.) C (\<p<o00cacse M (Zy(IR,)) and if a(§) = a(c0) +
+ Fk(§), k€ Li(IR,), belongs to the Wiener algebra a € W (IR,,), then

Wp(t) = a(oo)p(t) + / k(t — 1)p(T)dT (4.34)

n

and can be approximated in norm by operators of the form

ijgo(t) = a(oo)go(t)+/ ki(t—T)p(T)dr, a; =a(oo)+Fk;, kj € S(R,). (4.35)

n
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Proof. Representation (4.34) is well-known. Since

I Woelly < [ a(oo) [ llelly + 115+ @llg < (I aloo) [ +[Ell1) lellg

= llallwllellq, 1<¢< o0
we get
I W2ellze = | Wellp 4+ supser, yoo | 4Dy Py Wlo(2) |<
< llallwllell, + supyso || W2 [y* Dy, Woel|| . < llallwllellzg. (4.36)

Concerning approximation by operators (4.35): any function k € L;(IR,) can be ap-
proximated by functions {k;}{° C Cg°(IR,,) C S(IR,) in norm; hence due to (4.36) opera-
tors (4.35) approximate operator (4.34) in the operator norm. |

MP 1
Remark 4.13 We refer the reader to b’Z‘X], § XIII.6 for a wide class of singular integral op-
erators (i.e. of operators W2 with a symbol a(€&) homogeneous of order 0) described there,
which are bounded in the Holder-Zygmund spaces. We have to notice only that the asser-
tions, formulated there for the case 0 < o < 1, stay valid for any o > 0(cf.Corrolary4.11).

el1.10
Theorem 4.14 Let —oco <1 < 00, a € S™(IR, x IR,) (cf. (I.10)) and a(x, &) has compact
supportin x € IR,.

Ifl<a<oo, 1<p<oo, a—r > 0theoperator

a(x,D) =Wp,, = ZJ(IR,) — Z;"(IR,) (4.37)

is bounded.
Proof. Since a, = a\" € S°(JRy; x IR,,) the operator a,.(z, D) = a(x, D)A~" is bounded
in L,(IR,) andin Z% (IR,,) (cf. ,§ 2.3.2.5-2.3.2.6 ). Hence (4.37) is bounded due to
Corollary 4.10 and Lemma 4.2. [ |

4.3 BESSEL POTENTIAL OPERATORS

Let us recall that A® represent Bessel potential operators on Z(IR,) spaces for the full
IR, (cf. Corollary 4.10).

Theorem 4.15 Let Q2 C IR, be a special Lipschitz domain, Q) = IR, \ Q and 0 < a <
00,1l <p<oo, —oc0o<r<oo, a-—r>0.

The operators (cf. (3.7))

Boo=Wy :  Z3(R,) — Zy " (IRy),
D28~ Z0T(9Q),
Boo =Wy Zo(Q) = Zo7(QY), (4.38)

Bo=roWpl +  Z}(Q)— Z;7(9),

p
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represent isomorphisms and the inverses read

(Boo) ' =W

—r
bo

(Boq) = Wi (Ba) = raWy.¢.

Sch2
Proof. Due to (2.4), (3.7) and Theorem 2.3 from |3C3| the function b4 =
= ATTHE"(€) meets the conditions of Theorem 4.9 (and moreover b € S°(IR,,); therefore
by" € ME( ZS(IRy)) (cf. Lemma 4.9).
Since Wfﬂ preserves supports within €2 (cf. Theorem 3.6) and are inverse to each other,
0
the first two assertions in (4.38) are valid. The remainder is proved as in Lemma 3.7. [ ]

Remark 4.16 Despite of the inclusion b, € S™(2 x IR,,) Theorem 4.14 can not be applied
in Theorem 4.15, since the symbol bjy(§) has not compact support in .

Corollary 4.17 Let 0 < aa < 00, 1 <p<oo, —o0o<r<oo, «a—1r>0and
a€ M"(Zy(IRy,)).

For a canonical Lipschitz domain Q2 C IR,, the following diagram is commutative

i o TV
Z3(9) — Z37(82)
W L (4.39)
7a—s TQWEOSab_S a—s—r
Zo=s(Q) e zemsr(q).

Remark 4.18 The order reduction operates for 2 (S2) space and a compact Lipschitz do-
main ), similar to (3.24) is described in ;;3 ], Theorem 3.5.But, as in the case of Bessel
potential spaces (cf. § 3.4) this model needs some corrections.

4.4 PSEUDODIFFERENTIAL OPERATORS

To extend Definition 3.14 to the space Z(.# ), we need some preliminary information.
For a bounded linear operator

A Z2(R.) — Z2(IR,)

the factor-norm
I Alll zg= inf {IlA+ Tlze : T is compact } (4.40)

can be defined (cf.(3.11)). -
Applying Kuratowski’s measure of non-compactness R. Poltz proved (cf. [29])

I allllzg < Cllallco, ac Zy(IRy), (4.41)

where al is the multiplication operator in the space Z(IR,,).
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The foregoing inequality opens the possibility for localization in Holder-Zygmund
spaces Z (), where ./ represents a v—smooth manifold with a Lipschitz boundary 0.4

and a < v.
Further .# is assumed to be compact.

Notations from § 2.3~ are used here without further comments; moreover the definitions
of the spaces Zy (.4 ), Zy (. ), of operators of local type A € OLT"( Z3(.#)) and of the

equivalence A ~ B (A,B : Z%(.#) — Z37"(IR,)) are similar as in the case of L, (.#)-
spaces, considered in § 3.3). We recall as well that Zg(% ) =
= 7%(M), Z3 (M) = Z (M) due to compactness of .Z .

Lemma 4.19 A € OLT"( Z3(.#)) if and only if the commutator [vl, A] = vA —
— Avl Zg(,///) —  ZX(AM) is a compact operator for any v € ZE (M), p >
max{a,a —}.

Proof is similar to Lemma 3.12 and is based on the following equality (which plays a
similar role as (3.14) in Lemma 3.12)

Il AJ|‘Y= sup {q(z,A) : ze A}, q(z,A)=inf{| Al D : w, € Ay} (4.42)

here ||| Al|(¥;denotes the Kuratovski measure of noncompactness. Inequality is proved by
R. Poltz (cf.[29], Theorem 1) for any A € OLT"(Z2(.4)). n

Lemma 4.20 Let Q) C IR, be a compact Lipschitz domain and oo > 0, r €
€ IR, a—r >0.ThenrqA" € OLT"(Z2(Q2)).

Hr2
Proof. It is known (cf. hB], vol.3, Theorem 18.1.8) that an operator bA” —

—A"BI  : Z%(IR,) — Z%"TY(IR,) is continuous (has the order r — 1) for any b €
ng(an). Hence by compact embedding (cf. Lemma 4.5) the operator broA”™ — rqA"bl
Z%(2) — Z%77(Q2) is compact. Due to Lemma 4.19 the proof is completed. n

Lemma4.21 Let0 <a<oo, —0o<r<oo, a—r>0 1<p<oo, a€
e W(IR,), be Z}(IR,), d€ Z; "(IR,), suppb,suppd be compact and ay(cc) = 0.

If a = N ag the operators
dw?d wor Zy(IR,) — Z) " (IR,,)
are compact.

Proof. It can be supposed d = b = v € C§°(IR,); in fact: v € C§°(IR,) can be chosen
such that v(x)d(z) = d(z), wv(x)b(z) = b(z) and it remains to prove the compactness of

v W2 and W20 only.

Due to Lemmas 4.10 and 4.20 and Theorem 4.12 it suffices to consider only the operator
v Wwl : Z(IR,) — Z$(IR,) (ie. r = 0) where v,w € C§°(IR,), v(z)w(x) =
= v(x), a € S(IR,). but then v WlwI is an integral operator with the kernelk(x,y) €
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C (IR, x IR, )andsupp k C Qg x €y, where )y = suppw D supp v. Hence the operator
v WowlI Z(8)) — Zg(Q) is continuous for any $ > « and due to compactness of the
embedding (cf. (4.17)) v Wowl : Z3(Q) — Z3(2) is compact. ]

Remark 4.22 If a € M"(Z}(IR,)) is any multiplier with compact support suppa C IR,

then Lemma 4.21 remains valid. In fact: W2 = W2 W? = WOW? where u € S(IR,) C
W (IR,) is such that u € C§°(IR,,) C S(IR,) C W(IR,), u(§)a(§)=a(§),§ € IR,.

Theorem 4.23 Let a be a homogeneous function, a(\§) = a(§) (A > 0,
€ R,)anda € Z5(S™Y), B>n. IfQ2C IR, is a compact Lipschitz domain, then
rq W2 € OLT®(Z2,(Q)).
Proof. It suffices to prove that uW2uv[ is compact in Z¢ (IR,,) for any u,v €
€ C§°(IR,), suppuNsuppov = 0.

The proof can be reduced further (as in the foregoing lemma) to the case 0 < a < f —n
(with the help of the Bessel potential operator A%~ where 0 < v < § — n).

Let us recall now ]gliat WY is a singular operator with the characteristic f () €
€ Hf_E(S”_l) (cf. FZS], Theorem X.7.1); by embedding f € Z5(S"1).
The kernel k(z,y) of the operator uwW?2vI is sufficiently smooth
(k€ ZB(Qy x Q), Qo =suppuUsuppv); obviously uWiI : Z%(IR,) —
— ZB-(S""1) is continuous; hence uWovI : Z%(IR,) — Z2(S™ 1) is compact due to
the compact embedding Z2 (S™ 1) C Z2-(S™ 1) (cf. (4.17)). m

Let €2 € IR, be a compact Lipschitz domain; the following notation is introduced
MZ"(Q)={ae M"(Z}(IR,)) : roW?e OLT"(Z3(Q))}.

We drop « and p in the notation since the set is independent of these parameters (cf. (4.14)
and Corollary 4.10).

The subset M Z" (€2, 00) of M Z"(£2) consists of functions a such that they have radial
limits (cf. (3.1)) a® € MZ"(Q) and the operator roW? . : Z%(Q) — Z2(Q)is
compact.

Now we are ready to introduce the pseudodifferential operator
A=qa(zx,D) : Zo(M)— Z5 (M) (4.43)

of the class OPC"(Z._(.#)). This can be done similarly to the L,—case (cf. Definition
3.14), replacing there the symbol class PC} (IR, a)by M Z"(£2,00).

5 APPLICATION TO A CRACK PROBLEM

Let us consider the problem of finding the displacement vector v = (uy,us,u3) in a
homogeneous, isotropic, elastic medium, which occupies a Lipschitz domain 2 C IR3 with
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a crack . C (2 ; either boundary data or tractions are prescribed on 0f2 and on the both

sides of the crack surfaces %i (the Dirichlet or the Neumann problems respectively). It is

supposed that the crack is interior (i.e. 9Q N .#Z = ) and represents a 3-smooth manifold
with Lipschitz boundary 0.7 .

For the sake of brevity we suppose 2 = IR3.

A can be extended to a compact closed 3-smooth manifold (the surface) .#, C IR3
which is the boundary of a compact domain 2+ C IR;3.

Thus we look for a displacement field u = (uy, uy, us) in H§IR3 \ .#) (a weak solution)
which satisfies Lame’s system with steady oscillation

A*u(z) + k*u(z) = 0, K* = §w2, xv € Ry \ A, (5.1)

where

A
A=A+ +'ugraddiv
1

is the Lame operator, u > 0, A\ > —%,u are the elastic constants, p is the density, w is the

frequence of the oscillation and | s |< % Two different boundary value problems will be
considered for equation (5.1): the Dirichlet problem

ulge=f* fTeHT(A),  fo=ft—feH () (52
and the Neumann problem
1l
T (Dyn)u | o= g%, g* € Hy (M),

Go=g —g €H, () (5.3)

where 7 (0., n) is the traction operator
, ou
T (Op,n)u = A(divu)n + 2,ua— + pn x curlu,
n

and n = n(x) is the outer normal vector to the surface .7 at the point z € ./ .

Particular cases of the boundary value problems (BVP in short) { (5.1), (5.2)} and
{ (5.1), (5.3)} were treated in a number of papers. Here we quote some of them, concerning
directly our investigations.

cFora cloged smooth manifold .7 the problem is well investigated and results are exposed
in [7, 23, 247.

cs1 Hordhe statical case (absence of the oscillation) w = 0 the-problem wasinvestigated in
[5, 13, 42] in the case of the smooth boundary 0.# and in [32, 33, 44] in the case of the

non-smooth 0.7 .
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For the Helmholz equation, which appears if A = —p, w # 0, non-real wave number

Imk # 0and A4 = IRy —EisJng IR" (the quarter-plane case), the explicit solution of the

problems was obtained in [26,
Lo . .. |cs1,Ccs3,M83,Psdl
The transmission problem for (5.1) was studied in [[3, SNé é, 447.

The case of smooth boundary 0.# was considered in :

The main purpose here is to investigate the existence (and uniqueness) of weak solu-
tions of the formulated problems, using the results of the foregoing sections. The regularity
(smoothness) of solutions is not our concern here.

To get the uniqueness of the solution it is necessary to impose some additional conditions
on the solution u(z); these conditions are the following:
a) the finite energy norm condition:

/ [l gradu(z) > + | u(z) |*] do < oo (5.4)
{z€Rz:|x|<R}\.#

b) the radiation condition at infinity:

u(@) =uM (@) +u®(z), uw™(z)=0(1), |z]|>00, Mm=12 (5.5)
u(x) ., . pw’ pu?

Kul, KGBB1
The fundamental (Kupradze’s) matrix for (5.1) reads (cf. |2u3, 247

2 .
[(z,w) = ( (61;0tm + B0, O, ) w> , (5.6)
m 3%x3

= |z |

Om = 5, m = 5_ _ o°
21 27 pw?

The single layer and the double layer potentials read respectively

V(w)plz) = /% Iz — g, w)e(y)dy sl e R\ 7,

U(w)i(z) = /ﬂ[ﬂ(ay, ()T (= — ) () dy A, 5.7)

where &1 denotes the transposed matrix.

The same operators but considered on the surface (for z € .#) are denoted by V_;(w)

and UJ (w) respectively. Let us notice, that the integral in U exists then in the sense of the
Cauchy principal value.
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Two more operators, which are necessary for our further investigations, are defined by
the formulas

Vowd(z) = /ﬁ[f(ay,n@»r(z—y,wwy)dy///,
Viwhi(z) = /ﬂ9<ax,n<x>>[9<ay,n<y>>r<z—y,wwwy/// (5.8)

Operators V_; (w), Vo(w), Vil (w) and V; (w) are all ps%%%differential operators and have
orders -1, 0, 0 and 1, respectively (for detailed proofs cf.

Theorem 5.1 The boundary value problem { (5.1), (5.2), (5.4), (5.5) } has the solution
u(z) = V(w)fo(z) — U(w)go(2), z€ IRy \ A, (5.9)

where fo = fT — [~ is defined in (5.2) and g, € ﬁ;§+s(///) is a solution of the pseudo-
differential equation

Vaa(@lgo(x) = fiw),  fi= %[f* + 1+ Vo e (5.10)

Equation (5.10) has the unique solution gy € I:I;§+8(///) forany f € H2§+s(///),
| s ]< 3.

Theorem 5.2 The boundary value problem { (5.1), (5.3)-(5.5) } has the solution of the form

(5.9), where go = gt — g~ is defined in (5.3) and f, € ﬁlf“(///) is the solution of the
pseudodifferential equation

1 .
9" +97]—Vogo, z€ .. (5.11)

‘/l(w)fo(lt) = —gl(x), g1 = 5

Equation (5.11) has the unique solution fo € H2 (&) for any g1 € Hy * (M),
| s |< 3.

PROOFS. The standard procedure is used to prove, that any solution of the problem {
(5.1), (5.4) } is represented by formula (5.9) with

fo = U ’% —U ‘%, Jgo = 9(8x,n)u ’% —9(8x,n)u ’7

Kul C 2 DNS1
(cf. [231, § MI2JA% 20197, Inserting the boundary data (eitherm2) or (5.3)) in (5.9)

and applying the well-knownpropesties of the layer potentials (cf. § V.3), we derive
equation (5.10) or (5.11) (cf. [4, I27).

Now we are about to prove the uniqueness of the solutions of (5.10) and (5.11).
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The principal symbol V_;(w, z,€) (w >0, = € .4, & € IRy) of the operator V; (w)
reads

V(€)= Voa(w, €) = / G(w, €, &)des, ceRs  (5.12)

:% N

where G(w, £) is the Fourier transform of the fundamental matrix

G<w7é) - /R eléyr(y7w)dy 5 = (§7£3) € RS (513)

DNS1
(for the detailed proofs cf. [T2]).
Since I'(z,w) is the fundamental solution of (5.1) we get

Gw, &) =C ' (w,§) i [E]>N, Cw,EFp(€) = F(A" + £)p(€),

p e S(Rg),
where N is sufficiently large. Since
~ - )\ + ,U o w2,0
Cl.d)=-(1€Pon+ 26 -0) | w=L
K 3x3 p

the integral in (5.13) converges absolutely for all 5 and the radial limits exist (cf. (3.1))

VH(w.§) = fim RV-i(oRe) = o [ €060 -

2 J_
1 | E P et} —2&i& 0
= seTepa | Eae [EPreg 0 ),
2%|€|3M 012 O 2 |£‘2
A+ p
£ = (&, &) € IRy, 0<e )\+3<

The matrix-function —V % (w, §) is self-adjoint and positiv definite. Therefore

Re(e"™VX(w,&)n,n) = (=V5(w,&)n,n) Ree > Cycos | n 2,
Co > 0, 776@3, ‘0’<g

and Theorem 3.26 implies the Fredholm property of the operator

ST ST 1y 1
Voi(w) : Hy* () — H2 (), s 1< 5 (5.14)

and the index formula
IndV_; =0. (5.15)
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Due to dense embeddings
Hy() C Hy(A), Hy(A)C Hy(M) 1<,
as well ?ﬂhpoFredholm property of (5.14) and the independence of the index from s, from

Lemma [I[.TO we get that th}e< laeerlglsgierV_l (w) is independent of s.
U
In a standard way (cf. [23] it can be proved that the equation
L1
Va(w)e =0, p € Hy* (M)

has only the trivial solution ¢ = 0, which implies KerV_; = {0} forany | s |< 1/2.
Thus (5.14) is an invertible operator and equation (5.10) has a unique solution.
The solvability and the uniqueness for equation (5.11)) is proved similarly. |
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