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BOUNDARY VALUE PROBLEMS
IN DOMAINS WITH PEAKS



Abstract. We obtain criteria of solvability of the Dirichlet and the
Neumann boundary value problems (BVPs) for the Laplacian in 2D do-
mains with angular points and peaks on the boundary. We start with the
correct formulation of BVPs and modify it for domains with outward peaks
(classical conditions are incorrect). Boundary integral equations (BIEs),
obtained by the indirect potential method, turn out to be equivalent to the
corresponding BVPs only when inward peaks are absent. BIEs on bound-
ary curve with angular points are investigated in different weighted func-
tion spaces. If boundary curve has a cusp, corresponding to an inward or
an outward peak, equations are non-Fredholm in usual spaces and we
should impose restrictions on the right-hand sides. The conditions are de-
fined by some mean–value integrals. We consider also equivalent reduction
to boundary pseudo-differential equations (BPsDEs) of orders ±1 by the
direct potential method. Crucial role in our investigations of BVPs and of
corresponding BIEs, PsDOs belongs to the equivalent reduction of BVPs
to the Riemann–Hilbert problem for analytic functions on the unit disk.
The latter problem can be investigated thoroughly, even when peaks are
present and equations have non-closed image by invoking results on convo-
lution equations with vanishing symbols.
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Introduction

Let Ω+ ⊂ C be a bounded domain in the complex plane with a piecewise-
smooth boundary Γ = ∂Ω+ and Ω− = C \ Ω+ be the complementary outer
domain. Let tj ∈ Γ, j = 1, . . . , n, be all knots on the boundary Γ = ∂Ω+

with the angles πγj , 0 ≤ γj ≤ 2, j = 1, . . . , n. Boundary curve might
contain cusps γj = 0, 2 corresponding to an outward (for γj = 0) and an
inward (for γj = 2) peaks of the domain Ω+. By ~ν(t) = (ν1(t), ν2(t)) we
denote the outer unit normal vector to Γ (with respect to Ω+).

As a model we consider the Dirichlet u±(t) = g(t) (and the Neumann
∂~ν(t)u

±(t) = f(t), t ∈ Γ) BVPs for harmonic functions

∆u(x) = 0 , x ∈ Ω± (0.1)

and look for the solution, as common, in the Sobolev space

u ∈W 1
2 (Ω+) or u ∈W 1

2,loc(Ω−) , u(x) = O(1) , as |x| → ∞ . (0.2)

Applying the potential method, based on the Green formula and its
consequence-representation of solution by layer potentials, invoking the
Plemelji formulae (see § 1) we get boundary integral equations (BIEs)
of logarithmic potential

±1
2
ϕ(t) +

1
2π

∫
Γ

∂~ν(τ) log |t− τ |ϕ(τ)|dτ | = g(t) , (0.3)

±1
2
ψ(t) +

1
2π

∫
Γ

∂~ν(t) log |t− τ |ψ(τ)|dτ | = f(t) , t ∈ Γ, (0.4)

which are conjugate to each-other (the indirect method; see [Ma1]). It
is rather a classical result, that (0.3) and (0.4) are Fredholm equations
provided Γ is smooth. Note that reduction to the BIEs (0.3) and (0.4) is
equivalent.

When Γ has angular points, equations (0.3) and (0.4) have fixed singu-
larities in the kernels (i.e., they are Mellin convolution equations) and are
Fredholm except some discrete values of parameters of spaces they are
treated in (see Theorems 1.23, 1.24 and cf. [Du1, Du3, Ma1]). It is impor-
tant that in both mentioned cases equivalence of BVPs with corresponding
BIEs still hold.

Piecewise-smooth domains without peaks are particular cases of Lips-
chitz domains and BVPs for second order equations in such domains were
thoroughly investigated recently (mostly in the Hilbert spaces L2 and W 1

2 )
even for domains in Rn, n > 2. For details of these profound investigations
as well as for exhaustive survey of vast literature in this field we recommend
recent publications [Ke1, MMP1, MMT1, MT1].

Situation changes completely if domain Ω± has peaks. There arise three
principal problems.
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• If a single outward peak occurs constraints (0.2) become incorrect.
Namely, if we look for solution of BVP in the Sobolev space W 1

p (Ω+)
for arbitrary fixed value of p ∈ (1,∞), there exists a compact domain
Ω2γ+3 ⊂ C+ with outward peak at 0 ∈ ∂Ω2γ+3 in the first quadrant
R+ + iR+ ⊂ C of the complex plane such that the analytic function
zγ , z ∈ Ω, with arbitrary 0 < γ <∞ belongs to the space W 1

p (Ω2γ+3)
(details see below in Example 1.2). Therefore in classical formulation
u ∈ W 1

2 (Ω+) solution to BVP might have non-integrable singularity
on the boundary and it is necessary to change constraints on harmonic
functions in the domain. Moreover, due to complicated relations be-
tween traces of functions on different faces of outward peaks (see, e.g.,
[Ia1]) it is almost impossible to investigate corresponding BIEs.

• If a single inward peak occurs, equivalence of BVPs (0.1), (0.2) with
the corresponding BIEs (0.3), (0.4) fail completely. Such reduction is
connected with a representation of harmonic function of the Smirnov
class by the Cauchy integral with real valued density. This turned
out to be possible if and only if the Riemann–Hilbert BVPs for
analytic functions is surjective in the same Smirnov space but for the
complementary domain (see Lemmata 1.1 and 1.13). If the domain
has an inward peak, the complementary domain has an outward peak
and the Riemann–Hilbert BVP is not normally solvable (see Lemma
1.11).

• If a single peak (outward or inward) occurs solvability property of BIEs
(0.3) and (0.4) change dramatically: symbols of these convolution-type
equations vanish and equations can not be Fredholm in any Lp(Γ)
or any other space with weight or without (see [MS1]–[MS8] and § 1.6
below). For the space of continuous functions this was noticed already
by J.Radon [Ra1].

We start with investigations of correct formulation of the BVPs. Namely,
we look for solutions in the weighted Smirnov–Lebesgue space ep(Ω±, ρ)
(see § 1.2) of harmonic functions written as the real part of analytic functions
represented by the Cauchy integrals with densities in the Lebesgue spaces
with weight Lp(Γ, ρ) (plus constanta for the unbounded domain Ω−). The
choice of constraints is justified in the following sense: looking for solutions
in more narrow Smirnov–Sobolev space u ∈ w

1
2
2 (Ω±) is the same as the

common (classical) constraint u ∈ W 1
2 (Ω±) provided the domain Ω± has

no outward peaks (see Lemma 1.2). Moreover, to raise flexibility of the
method we suggest to look for solutions in some other Smirnov spaces:
weighted Smirnov–Sobolev ws

p(Ω±, ρ), 0 ≤ s ≤ 1, Smirnov–Hölder

h0
m+µ(Ω±, ρ) etc. (see § 1.2).

If the boundary curve has cusps (i.e., the domain has peaks) equations
(0.3) and (0.4) have non-closed images. Same is true for the Dirichlet
and the Neumann BVPs for (0.1) when inward peaks are present. Maz’ya
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and V.Solov’ev in [MS1]–[MS4] suggested to study BIEs (0.3), (0.4) di-
rectly. Namely, they have found conditions on the right-hand sides which
ensure existence of solutions and have established properties (smoothness,
asymptotic) of such solutions. The method is based on the corresponding
results for boundary value problems in domains with peaks, obtained with
the help of conformal mappings (see [Wa1, Wa2] for properties of such con-
formal mappings). In more recent investigations [MS5]–[MS8] for curves
with cusps of order µ ∈ R+ they have found pairs of Banach spaces where
BIEs (0.3), (0.4) are surjective.

Different approach (transformation of the underlying domain which
maintains the structure of BVPs) was exploited in [RST1, RST2]. The
authors obtained solvability results for BVPs in domains with special cusps
when the right-hand sides and solutions are in special weighted spaces.

Essential role in our investigations play an equivalent reduction of the
Dirichlet and the Neumann BVPs for (0.1) to the Riemann–Hilbert
BVPs for analytic functions on the unit circumference, using the conformal
mapping. Namely, we apply the approach exposed in [Mu1, Ch. III] and
contributed by I.Vekua in [Ve1]. Obtained BVPs are reduced further to
equivalent Cauchy singular integral equations on the unit circumference.

The same method was applyed by V.Kokilashvili and V.Paatashvi-
li. Namely, they look for solutions of BVPs in the Smirnov–Lebesgue space
ep(Ω±), 1 < p <∞. Although the motivation for the choice of constraints,
ensuring equivalent reduction to the Riemann–Hilbert problem, was clear
justification for the change of conditions in [KKP1] is missing.

For the investigation of the Cauchy singular integral equations on the
unit circumference, which arise as an equivalent equation, we apply localiza-
tion to 2× 2 systems of convolution equations on the real semi-axes. Local
representatives at cusps have vanishing symbols and, by applying results
on convolution equations with vanishing symbols of integer order (see [Pr1,
§ 5.2] and § 3.1 below), we describe the image space by mean–value integrals
and find the criteria for the data which ensures unique solvability of the
Dirichlet and the Neumann BVPs for (0.1).

Further we prove equivalence of BVPs and of corresponding BIEs (0.3)
and (0.4) if inward peaks are absent (see Theorems 1.12 and 1.14). If the
boundary curve has no cusps, obtained BIEs are particular cases of gen-
eral equations studied in § 4 by invoking results from [DLS1]. They are
Fredholm with rare exceptions for the parameters of the space. Although
such investigations were carried out earlier (see survey in [Ma1]) some re-
sults of the present paper are new: we prove boundedness of harmonic
(the double and the single) layer potentials and obtain criteria for Fred-
holm property of equations (0.3) and (0.4) in the spaces of continuous and
piecewise-continuous functions C(Γ,κ) and PC(Γ,κ) (in some cases also

in PC1(Γ,κ); see § 1.7) with exponential weight κ(t) =
n∏

j=1

|t − cj |αj , 0 ≤
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αj < 1.
If inward peaks are present equivalence with BVPs fail (see Lemma 1.13)

and equations (0.3), (0.4) are investigated by localization. The localization
enables replacement of inward peaks by outward ones (see § 5.4). Solvability
criteria of equations (0.3) and (0.4) are summarized in Theorems 1.23 and
1.24, which are proved in § 5.4.

Let Tow, Tiw be the discrete sets of all outward, all inward peaks and
Tpk = Tow ∪Tiw be the set of all peaks of Ω+. We define the spaces

Lp(Γ, ρ,Tow), Lp(Γ, ρ,Tiw) ⊂ Lp(Γ, ρ,Tpk) ⊂ Lp(Γ, ρ) ,

with the help of the integrals (see (1.76)), where ρ(t) =
n∏

j=1

|t − cj |αj ,

− 1
p < αj < 1 − 1

p , 1 < p < ∞. It is proved that equations (0.3) and
(0.4) are Fredholm between spaces Lp(Γ, ρ) −→ Lp(Γ, ρ,Tpk) provided

the conditions 1
p +αj 6= min

{
1
γj
, 1

2−γj

}
holds for all tj 6∈ Tpk. Moreover, if

the inequalities 1
p +αj < min

{
1
γj
, 1

2−γj

}
hold, the mappings are isomorphic.

As for solvability of the Dirichlet BVP for Ω+ (for Ω−) it suffices to
restrict the data g ∈ Lp(Γ, ρ,Tow) (respectively, g ∈ Lp(Γ, ρ,Tiw)) and the

solution is unique provided 1
p +αj < min

{
1
γj
, 1

2−γj

}
for all tj 6∈ Tpk (note,

that inward peaks of Ω± have no impact on the corresponding Dirichlet
BVP). Similar holds for the Neumann BVPs.

In Lemma 1.22 we formulate sufficient conditions for the inclusion ϕ ∈
Lp(Γ, ρ,Tiw), which involves the conformal mapping ζ(z) : Ω+ −→ D1

of the domain Ω+ onto the unit disk D1 = {ζ ∈ C : |ζ| = 1}. It is
possible to write more transparent and explicit condition, but for these we
need asymptotic behaviour of the conformal mapping ζ(z) in the vicinity of
outward peak. This we leave for a forthcoming paper.

In our investigations we apply the Cisotti formula, which represents
the derivative of the conformal mapping ω : D1 → Ω+ (see [LS1, Ch. III,
§ 1, no. 44, Example 5]):

ω′(z) = ω′(0) exp

 1
π

∫
|τ |=1

β(τ)dτ
τ − z

− 1
π

∫
|τ |=1

β(τ)
dτ

τ

 , z ∈ D1 . (0.5)

Here β(τ) := arg ~ν(ω(τ))−argτ and arg ~ν(ω(τ)) stands for the argument of
the outer unit normal vector to the curve Γ = ∂Ω+ at the point τ = eiϑ ∈
Γ1 := ∂D1. The formula was rediscovered in [PK1] for a piecewise-smooth
boundary (see also [KKP1]). We return to the classical approach in [LS1])
which is, above all, very simple and prove the Cisotti formula (0.5) in § 5.1
for a domain with rectifiable Jordan boundary.
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Although the conformal mapping is participating implicitly, representa-
tion (0.5) simplifies proofs of some classical theorems on conformal map-
pings1) (see [KKP1, Ch. III] and § 5.1 for the proofs of Lindelöf’s, Kel-
logg’s, Warschawsky’s theorems). Moreover, using the Cisotti formula
we generalize the Kellogg theorem for the Zygmund space (see Theorem
5.9).

In [Po1, Theorem 3.15] the Cisotti formula is rediscovered for a so-called
regulated domain, i.e., for a domain for which the inclination α(t), t ∈ Γ
of the tangent vector to the boundary has limits α(t± 0) everywere on the
boundary t ∈ Γ.

V.Kokilashvili and V.Paatashvili had applied formula (0.5) to find
discontinuities of the coefficient, but the obtained Riemann–Hilbert prob-
lems they have found “non-solvable in Lp(Γ) spaces in general” when out-
ward cusps are present (see [KKP1, Ch. IY]) and have written sufficient
condition of solvability as well as explicit formula for solutions provided the
solvability conditions hold.

Applying the representation of solution by layer potentials and the di-
rect method we obtain boundary pseudo-differential equation

1
2π

∫
Γ

log |t− τ |ϕ(τ)|dτ | = g∗(t) , t ∈ Γ , (0.6)

g∗(t) := −1
2
g(t)− 1

2π

∫
Γ

∂~ν(τ) log |t− τ |g(τ)|dτ | ,

of order −1 for the Dirichlet problem for the Laplacian (0.1) and the
boundary pseudo-differential equation

1
2π

∫
Γ

∂~ν(t)∂~ν(τ) log |t− τ |ϕ(τ)|dτ | = f∗(t) , t ∈ Γ , (0.7)

f∗(t) :=
1
2
f(t) +

1
2π

∫
Γ

∂~ν(t) log |t− τ |f(τ)|dτ | ,

of order +1 for the Neumann problem. We can formulate criteria of solv-
ability of equations (0.6) and (0.7) based on full equivalence with corre-
sponding BVPs (see Theorems 1.19, 1.20).

All principal theorems on solvability of boundary value problems and
boundary integral equations are formulated in § 1.7. Some of them are
proved later, mostly in § 5.

Acknowledgments: the authors thank I.Graham (University of Bath)
and S.Chandler–Wilde (Brunel University, London) for many encourag-
ing discussions on the subject during the first authors visit to these univer-
sities.

1)See [Ga1] for a survey on application of linear and non-linear integral equations in
conformal mappings.
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1 Boundary value problems

In the present section we formulate the Dirichlet and the Neumann
boundary value problems for the Laplacian in domains with angular points
and peaks; discuss their equivalent reduction to boundary integral equations
(the direct potential method), to boundary pseudo-differential equations
(the indirect potential method) and to singular integral equations on the
unit circumference (Muskhelishvili–Vekua method); we expose prop-
erties of harmonic potentials appearing in the method and formulate all
principal results.

1.1 spaces

We start by rigorous definitions of domains and spaces which are necessary
for our considerations.

Let Γ be a closed, oriented, simple (i.e., without self-intersection), piece-
wise-Ljapunov curve on the complex plane C, circumventing a domain Ω+

and having knots at t1, . . . , tn ∈ Γ, i.e.,

Γ =
n⋃

j=1

Γj , Γj =

)
tjtj+1 , tn+1 := t1 , j = 1, . . . , n ; (1.1)

Γ

t1

tj 0

tn

q

q

q

q

q
q q

tk

Ω+
γk = 2

γn

γj = 0

γn

t2Ω−

γ2γ1

z

=

A
A
AU

�
���*

-t

~ν(t)

t′(s)
Re z

ϑt

Fig. 1
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here Γj are ν−smooth, ν > 1, oriented curves connecting knots tj and
tj+1. Let πγj be the angle at tj between Γj−1 and Γj , measured from
Ω+, 0 ≤ γj ≤ 2, j = 1, . . . , n. When γj = 0 or γj = 2 the domain Ω+

has an outward or an inward peak, respectively or, what is the same, the
boundary curve Γ has a cusp (see Fig. 1).

We use the following standard notation for spaces:
Cm(Γ) for the space of functions ϕ(t), t ∈ Γ with continuous derivatives

up to the order m

∂k
t ϕ ∈ C(Γ) , k = 0, 1, . . . ,m , ∂t :=

d

dt
, m ∈ N0 := {0, 1, . . .}.

Let us note that invariant (with respect to a parametrisation of the
underlying curve Γ) definition of the space Cm(Γ) can be provided iff Γ is
m-smooth. Therefore for piecewise-smooth curves (with angular points or
cusps) we can define only C(Γ) := C0(Γ).

Hµ(Γ) for the space of Hölder continuous functions ψ(t), t ∈ Γ with
the following finite norm

‖ψ
∣∣Hµ(Γ)‖ := ‖ψ

∣∣C(Γ)‖+ sup
t1 6=t2

|ψ(t2)− ψ(t1)|
|t2 − t1|µ

, 1 < µ ≤ 1 .

PC(Γ) for the space of functions ϕ(t) which are continuous on each
closed arc between knots t1, . . . , tn and might have jumps at these knots.

PCm(Γ) for the space of functions ϕ ∈ Cm−1(Γ) which have piecewise-
continuous last derivative ∂m

t ϕ ∈ PC(Γ) with possible jumps at knots
t1, . . . , tn.

Both, the spaces Cm(Γ) and PCm(Γ) are endowed with the uniform
norm

‖ϕ
∣∣PCm(Γ)‖ :=

m∑
k=1

sup
{
|∂kϕ(t)| : t ∈ Γ

}
,

which makes them into Banach spaces.
Let

ρ(t) =
n∏

j=1

|t− tj |αj (1.2)

be a weight function and Cm(Γ, ρ) ⊂ PCm(Γ, ρ) denote the weighted spaces
of functions:

Cm(Γ, ρ) :=
{
ϕ ∈ Cm−1(Γ) : ρ∂mϕ ∈ C(Γ)

}
,

PCm(Γ, ρ) :=
{
ϕ ∈ Cm−1(Γ) : ρ∂mϕ ∈ PC(Γ)

}
.

These spaces both can be endowed with the weighted norm ‖ϕ
∣∣PCm(Γ, ρ)‖=

‖ϕ
∣∣Cm−1(Γ))‖+ ‖ρ∂mϕ

∣∣PC(Γ))‖.
We will write C(Γ), PC(Γ, ρ) etc. when m = 0.
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H0
m+µ(Γ, ρ), 0 < µ < 1, m = 0, 1, . . ., for the weighted function space

H0
m+µ(Γ, ρ) :=

{
ϕ ∈ Cm−1(Γ) : ϕ̃(m) := ρ∂mϕ ∈ Hµ(Γ),

ϕ̃(m)(t1) = . . . = ϕ̃(m)(tn) = 0
}
,

‖ϕ
∣∣H0

m+µ(Γ, ρ)‖ := ‖ϕ
∣∣Cm−1(Γ)‖+ ‖ρ∂mϕ

∣∣Hµ(Γ)‖ ,

provided Γ \ {t1, . . . , tn} is Cm+µ-smooth, while Γ itself is PCm−1-smooth.
Note, that for piecewise-smooth curve Γ definition is correct only for m =
0, 1.

Lp(Γ, ρ) for the weighted Lebesgue space endowed with the norm

‖ϕ
∣∣Lp(Γ, ρ)‖ :=

∫
Γ

|ρ(t)ϕ(t)|p |dt|

 1
p

.

Wm
p (Γ, ρ) for the Sobolev space

Wm
p (Γ, ρ) :=

{
ϕ : ϕ, ∂kϕ ∈ Lp(Γ, ρ), k = 0, . . . ,m

}
,

‖ϕ
∣∣Wm

p (Γ, ρ)‖ :=
m∑

k=0

‖∂kϕ
∣∣Lp(Γ, ρ)‖ .

W s
p (Γ, ρ), s ∈ R, for the weighted Sobolev–Slobodetski space which

for s ≥ 0 can be defined by the complex interpolation (see [Tr1]) between the
spaces Wm

p (Γ, ρ) and W 0
p (Γ, ρ) := Lp(Γ, ρ) (s ≤ m ∈ N, while for negative

s < 0 can be defined as the dual space to W−s
p′ (Γ, ρ−1), p′ := p/(p− 1).

Since multiplication by a piecewise-continuous function is a bounded
operator in W s

p,loc(R) only for s < 1/p, the space W s
p (Γ, ρ) on piecewise-

smooth curve Γ can be defined correctly only for |s| < 1 + 1/p.
Ep(Ω+, ρ) will stand for the Smirnov–Lebesgue space of analytic func-

tions: if ω : D1 → Ω+ denotes the conformal mapping of the unit disk
D1 := {ζ ∈ C : |ζ| < 1} onto the domain Ω+, the norm of ψ ∈ Ep(Ω+, ρ) is
defined as follows

‖ψ
∣∣Ep(Ω+, ρ)‖ := sup

0<r<1

 ∫
Γ(r)

|ρ(τ)ψ(τ)|p dτ

 1
p

,

where Γ(r) := {z = ω(ζ) : |ζ| = r} are the images of the concentric circum-
ferences of the radius r.

Similarly is defined the Smirnov–Lebesgue space Ep(Ω−, ρ) for the
outer domain Ω−.

An equivalent definition of the Smirnov–Lebesgue spaces Ep(Ω±, ρ) is
the following: u ∈ Ep(Ω±, ρ) iff u(z) is represented by the Cauchy integral
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as follows

Φ(z) = c0 + CΓϕ(z) , c0 = const , ϕ ∈ Lp(Γ, ρ) ,

CΓϕ(z) :=
1

2πi

∫
Γ

ϕ(τ)dτ
τ − z

, z ∈ Ω± (1.3)

(cf. [Pv1] and [Go1, Ch.X, § 5]). In particular, for the compact domain
Ω+ ⊂ C representation (1.3) can be written also as follows Φ(z) = CΓϕ0(z),
ϕ0(t) = c0 + ϕ(t), t ∈ Γ, while for Ω− we have c0 = Φ(∞).

Taking the advantage of the last definition we will introduce the following
new spaces, suited for our purposes.

W s
p (Ω±, ρ)–the weighted Smirnov–Sobolev space of functions Φ(z)

represented as in (1.3) with a density ϕ ∈W s
p (Γ, ρ). Note, that the restric-

tion for piecewise-smooth contour Γ is |s| < 1 + 1
p .

The space W 1
p (Ω±, ρ) consists of functions Φ(z) which belong to Ep(Ω±, ρ)

together with their derivatives Φ, ∂Φ ∈ Ep(Ω±, ρ). This is easy to check with
a partial integration.

Due to Theorem 1.8 proved below, we get W s
2 (Ω±) ⊂ W

s+ 1
2

2,loc (Ω±). If
outward peaks are absent 0 < γj ≤ 1, the following inverse is also true:

traces of functions from W
s+ 1

2
2,loc (Ω±) belong to W s

2 (Γ). In case of outward
peaks the last assertion fails as shown in Example 1.3 (see also [Ia1]). Note
that formulated theorem on traces remain valid even in the presence of
inward peaks (with interior angle 2π).

H 0
m+µ(Ω±, ρ), C m(Ω±, ρ) and PC m(Ω±, ρ) are used for the weighted

Smirnov–Hölder etc. spaces of functions Φ(z) represented as in (1.3) with
a density ϕ in appropriate spaces H0

m+µ(Γ, ρ), in Cm(Γ, ρ) (with the restric-
tion m ≤ 1 for a piecewise-smooth contour Γ) or in PCm(Γ, ρ), respectively
(with the restriction m ≤ 2 for a piecewise-smooth contour Γ).

ep(Ω±, ρ) = w0
p(Ω±, ρ), ws

p(Ω±, ρ), h0
m+µ(Ω±, ρ), cm(Ω±, ρ) and

pcm(Ω±, ρ) is used for the spaces of harmonic functions represented as real
u(z) = Re Φ(z) (or the imaginary u(z) = Im Φ(z) parts of functions Φ(z)
from Ep(Ω±, ρ) = W 0

p (Ω±, ρ), W s
p (Ω±, ρ), H 0

m+µ(Ω±, ρ), C m(Ω±, ρ) and,
respectively, from PC m(Ω±, ρ). We use ep(Ω± etc for the space ep(Ω±, 1)
etc.

It is important to have representations of functions (1.3) with a pure real
or a pure imaginary density ϕ(t). Next lemma provides the condition for
such representation. Similar considerations can be found in [Mu1, §§ 62–66].

Lemma 1.1 Let X(Γ) be one of the following spaces: W s
p (Γ, ρ), H0

m+µ(Γ, ρ),
Cm(Γ, ρ) or PCm(Γ, ρ) and X (Ω±)–the corresponding Smirnov space
W s

p (Γ, ρ), H 0
m+µ(Γ, ρ) etc.

The function Φ ∈ X (Ω±) can be represented by the Cauchy integral
as in (1.3) with a pure real ϕ = Re ϕ ∈ X(Γ) or a pure imaginary ϕ =
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i Im ϕ ∈ X(Γ) density if and only if the Riemann–Hilbert problem for
the complementary domain Ω∓ = C \ Ω±

Re Ψ∓(t) = g(t), t ∈ Γ , g ∈ X(Γ) , Ψ(z) → 0 as |z| → ∞

is surjective, i.e., has solution for all right-hand sides in X (Ω∓).
For the domain Ω+ the same conditions provide the representation Φ(z)=

CΓϕ0(z), z ∈ Ω+ with a real valued density ϕ0 = Reϕ0.

We postpone the proof of the formulated Lemma until Subsection 2.3.
Let us conclude this subsection by the following agreements which we

will hold on in the sequel.

I. Xs(Γ, ρ) (or more simple X(Γ)) is used to denote the spaces W s
p (Γ, ρ),

H0
s (Γ, ρ) Cs(Γ, ρ) or PCs(Γ, ρ), where the weight function ρ(t) is de-

fined in (1.2) and X s(Ω±, ρ), xs(Ω±, ρ)–for the corresponding Smir-
nov spaces of analytic and harmonic functions.

For the parameters there hold the following constraints:

|s| ≤ 1 , −1
p
< αj < 1− 1

p
, 1 < p <∞ for W s

p (Γ, ρ) ,

{
m+ s , m=0, 1 , 0<s<1 ,
s < αj < s+ 1 , Γ \ {t1, . . . , tn}∈Cm+s for H0

s (Γ, ρ) ,(1.4)

s=m ∈ N0 , 0 < αj < 1 for PCm(Γ, ρ)

and for Cm(Γ, ρ)

for j = 0, . . . , n. Conditions (1.4) are necessary and sufficient for
boundedness of the Cauchy singular integral operator

SΓϕ(t) =
1
πi

∫
Γ

ϕ(τ)dτ
τ − t

, t ∈ Γ (1.5)

(the integral in (1.5) is understood in the Cauchy mean value sense)
in the spaces Wm

p (Γ, ρ) ([GK1, Go2, Kh1, Kh2] and H0
m+µ(Γ, ρ) (see

[Du1, Du6, Du7, GK1]) and of operators with fixed singularities in the
kernel (see § 3.2) in all four spaces Wm

p (Γ, ρ), H0
m+µ(Γ, ρ), Cm(Γ, ρ)

and in PCm(Γ, ρ) (see [Du1] and § 3.2 below; SΓ is not bounded in
Cm(Γ, ρ) and in PCm(Γ, ρ)).

II. For a space with weight Wm
p (Γ, ρ), H0

m+µ(Γ, ρ) or PCm(Γ, ρ), if not
otherwise stated, the weight function is defined in (1.1) and the expo-
nents satisfy the appropriate conditions (1.4).
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1.2 Boundary value problems

For a real valued harmonic function

∆u(x) = 0 , x ∈ Ω±, (1.6)

we consider the Dirichlet

u±(t) = g(t) , g ∈ Xs(Γ, ρ) , 0 ≤ s ≤ 1 , t ∈ Γ , (1.7)

and the Neumann

(∂~ν(t)u)±(t) = f(t) , f ∈ Xs−1(Γ, ρ) , 0 ≤ s ≤ 1 , t ∈ Γ, (1.8)

boundary value problems, with some real valued data 2) Im g(t)≡ Im f(t)≡
0, where ∂~ν(t) := ν1(t)∂t1 + ν2(t)∂t2 , t = (t1, t2) ∈ Γ denotes the normal
derivative. We hold on the agreement about spaces and weights made in
conclusion of § 1.1.

We look for solutions of problem (1.6), (1.7) (of (1.6), (1.8)) in the
Smirnov class

u ∈ xs(Ω±, ρ) , 0 ≤ s ≤ 1 . (1.9)

Let us note that by definition of the Smirnov class a function u ∈
xs(Ω−, ρ) automatically possesses a finite limit at the infinity: u(x) = O(1)
for x ∈ Ω− as |x| → ∞ (see (1.3)).

Next Lemma and example are a certain justification of the choice of
constraints (1.9) instead of (0.2) which is common for domains with a Lip-
schitz boundary (see [Ke1, Ma1, MT1]).

Lemma 1.2 If (0.2) holds, Ω± has no outward peak and u(z) is a harmonic
function (i.e., u(z) solves (1.6)). Then

u ∈ w
1
2
2 (Ω±) . (1.10)

Vice versa, u ∈ w
1
2
2 (Ω±) ⊂ e2(Ω±) implies (0.2) and u(z) is a harmonic

function, also for domains Ω± with outward peaks.

We postpone the proof of the formulated Lemma until Subsection 2.3.
Next example shows that under constraints (0.2) solution u(x) of BVPs

(1.6), (1.7) and (1.6), (1.8) might have non-integrable trace u+(t) on the
boundary Γ = ∂Ω+ as soon as Ω± has a single outward peak.

Example 1.3 Let 0 < σ <∞, γ > 0 and

Ω+
σ :=

{
x1 + ix2 : 0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ xσ+1

1

}
. (1.11)

2)If we admit complex-valued data Im g 6≡ 0 in (1.6) and Im f 6≡ 0 in (1.8) but then

we have to look for a complex-valued solution u = ur + iui, ur, ui ∈ xs(Ω±, ρ) in (1.9).
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Then, choosing the branch of the analytic function ϕγ(z) := z−γ appropri-
ately, for the harmonic function ϕγ(z) := Re z−γ we get ∆ϕγ = 0 in Ωγ

and ϕγ ∈W 1
p (Ω+

σ ) provided σ − (γ + 1)p > −2.

In particular, ϕγ ∈W 1
2 (Ω+

2γ+3).

In fact,

‖ϕγ

∣∣W 1
p (Ω+

σ )‖p =

1∫
0

dx1

xσ+1
1∫
0

[
(x2

1 + x2
2)
− γ

2 p + γ(x2
1 + x2

2)
− γ+1

2 p
]
dx2

≤ C1

1∫
0

dx1

xσ+1
1∫
0

(x1 + x2)−(γ+1)pdx2 = C2

1∫
0

x
−(γ+1)p+1
1 dx1

×
xσ
1∫

0

(1 + t)−(γ+1)pdt ≤ C3

1∫
0

x
σ−(γ+1)p+1
1 dx1 = C4 <∞ .

1.3 Representation of solutions and layer potentials

Applying the Gauss formula on divergence (on “partial integration”)∫
Ω±

∂ju(y)v(y)dy =
∫

Ω±

u(y)∂jv(y)dy ±
∮
Γ

νj(τ)u(τ)v(τ)dτ , (1.12)

we readily obtain two well-known Green formulae∫
Ω±

∆u(y)v(y)dy =
2∑

j=1

∫
Ω±

∂ju(y)∂jv(y)dy ±
∮
Γ

∂~ν(τ)u(τ)v(τ)dτ , (1.13)

∫
Ω±

[
∆u(y)v(y)− u(y)∆v(y)

]
dy =

∮
Γ

[
∂~ν(τ)u(τ)v(τ)

−u(τ)∂~ν(τ)v(τ)
]
dτ , u, v ∈ C∞com(Ω±) . (1.14)

Invoking the fundamental solution of equation (1.6)

F∆(z) :=
1
2π

log |z| , ∆F∆(z) = δ(z) , z ∈ R2 ,

where δ is Kroneker’s delta function, we can easily derive from (1.14) the
following representation formula for a harmonic function u(x) which meets
condition (1.9)

χ+(x)u(x) = WΓu
+(x)− VΓ(∂~νu)+(x) ,

χ−(x)u(x) = u∞ −WΓu
−(x) + VΓ(∂~νu)−(x) ,

x ∈ R2 \ Γ = Ω− ∪ Ω+

(1.15)
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(see [Ma1, Ch.1, § 1.2]), where u∞ =const, χ± is the characteristic function
of the domain Ω± and

WΓϕ(x) =
1
2π

∫
Γ

ϕ(τ)∂~ν(τ) log |τ − x|ds , ds = |dτ | ,

VΓϕ(x) =
1
2π

∫
Γ

ϕ(τ) log |τ − x|ds , x ∈ Ω±,
(1.16)

are the double and the single layer potentials (known as the harmonic or
the logarithmic potentials as well).

Let us note, that constants are included into the class of harmonic func-
tions in unbounded domains Ω− (see (1.3) and the second formulae in (1.15))
only in 2-dimensional case (see, e.g., [Ma1, p.216], [Vl1, p.333]).

For the direct values of harmonic potentials (1.16) on Γ we use the
notation WΓ,0 and VΓ,−1 where the additional subscript indices indicate
the order of these operators, treated as pseudo-differential operators on the
manifold Γ (see Theorem 1.5 below). According this rule we have also
SΓ := CΓ,0 (see (1.3) and (1.5)).

Lemma 1.4 The following holds:

WΓ,0ϕ(t)=
1
4

(SΓ + V SΓV )ϕ(t) =
1

4πi

∫
Γ

ϕ(τ)d log
τ − t

τ − t

=
1

4πi

∫
Γ

ϕ(τ)
[
dτ

τ − t
− dτ

τ − t

]
, (1.17)

W ∗Γ,0ϕ(t)=
1
4
(
hSΓh+ V hSΓhV

)
ϕ(t)

=
1

4πi

∫
Γ

ϕ(τ)

[
h(t)
h(τ)

dτ

τ − t
− h(t)
h(τ)

dτ

τ − t

]
, (1.18)

∂tVΓ,−1ϕ(t)=
i

4
(SΓ − V SΓV )ϕ(t)

=
1
4π

∫
Γ

ϕ(τ)
[
dτ

τ − t
+

dτ

τ − t

]
, t ∈ Γ , (1.19)

where
V ϕ(t) := ϕ(t) , h(t) := ieiϑt (1.20)

and ϑt denotes the inclination to the abscissa axes of the outer unit normal
vector ~ν(t) (t ∈ Γ \ {t1, . . . , tn}; see Fig. 1).

Proof (see [Mu1, § § 12,14]). Let us consider the natural parametrisation
of the curve Γ by the arc length parameter

τ(s) : [0, `] −→ Γ , τ(0) = τ(`) .
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Easy to ascertain that if the derivative τ ′(s) exists, coincides with the unit
tangent vector to Γ. We have

~ν(τ) = (cosϑτ , sinϑτ ) ,
dτ =

[
cos
(

π
2 + ϑτ

)
+ i sin

(
π
2 + ϑτ

)]
|dτ | = h(τ)ds (1.21)

(see Fig. 1 and (1.20)). Therefore

1
2π
∂~ν(τ)[log |τ − t|]ds =

1
2π|τ − t|

[
d|τ − t|
dRe τ

cosϑτ +
d|τ − t|
d Im τ

sinϑτ

]
ds

=
Re (τ − t) cosϑτ + Im (τ − t) sinϑτ

2π|τ − t|2
ds =

−(τ − t)dτ + (τ − t)dτ
4πi

=
1

4πi

[
dτ

τ − t
− dτ

τ − t

]
=

1
4πi

dτ log
τ − t

τ − t
,

which gives (1.17).
Formula (1.18) follows from (1.17) since the adjoint operator S∗Γ to SΓ

in (1.5) with respect to the sesquilinear form

〈ϕ,ψ〉 :=
∫
Γ

ϕ(τ)ψ(τ)|dτ |

reads
S∗Γ = V hSΓh

−1V = h−1V SΓV hI . (1.22)

In fact, since dτ = h(τ)|dτ | and h(τ) = h−1(τ) (see (1.20), (1.21)), we get

〈SΓϕ,ψ〉 :=
∫
Γ

SΓϕ(τ)ψ(τ)|dτ | =
∫
Γ

SΓϕ(τ)h(τ)ψ(τ)dτ

= −
∫
Γ

ϕ(t)SΓh(τ)ψ(τ)dt =
∫
Γ

ϕ(t)V (SΓV hψ)(t)h(t)|dt|

=
∫
Γ

ϕ(t)V h(t)(SΓh−1V ψ)(t)|dt|.

To prove formula (1.19) we proceed as follows:

∂tVΓ,−1ϕ(t) =
1
2π

∫
Γ

ϕ(τ)∂τ log |τ − t|ds

=
1
2π

∫
Γ

ϕ(τ)
−Re (τ − t) sinϑτ + Im (τ − t) cosϑτ

|τ − t|2
ds

=
1
2π

∫
Γ

ϕ(τ)
Re (τ − t) Re dτ + Im (τ − t) Im dτ

|τ − t|2

=
1
4π

∫
Γ

ϕ(τ)
[
dτ

τ − t
+

dτ

τ − t

]
.
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Next two theorems deal with boundedness properties of layer potentials.
They are based on Lemma 1.4 and justify constraints (1.4) on the weight
function ρ(t).

Theorem 1.5 WΓ,0 is bounded in the spaces W s
p (Γ, ρ) for 0 ≤ s ≤ 1 and

in H0
m+µ(Γ, ρ) for m = 0, 1.

The operator W ∗Γ,0 is bounded in the spaces W s
p (Γ, ρ) for −1 ≤ s ≤ 0

and in H0
µ(Γ, ρ).

VΓ,−1 is bounded from Lp(Γ, ρ) to W 1
p (Γ, ρ) and from H0

µ(Γ, ρ) to
H0

1+µ(Γ, ρ).

Theorem 1.6 The operator WΓ,0 is bounded in C(Γ, ρ) and in PCm(Γ, ρ)
for m = 0, 1.

The operator W ∗Γ,0 is bounded in PC(Γ, ρ).

We postpone the proofs of the formulated theorems until Subsection 2.3.
Here we will prove the following corollary.

Corollary 1.7 Let ρ(t) be defined by (1.2) and (1.4). If Γ is smooth (con-
tains no cusps and no angular points γ1 = · · · = γn = 1) operators WΓ,0

and W ∗Γ,0 have weak singular kernels and are compact in the spaces Lp(Γ, ρ)
and PC(Γ, ρ).

Operator WΓ,0 is compact also in spaces W s
p (Γ, ρ) for −1 ≤ s ≤ 1, in

C(Γ, ρ) and in PC1(Γ, ρ).

Proof. It suffices to prove compactness of WΓ,0, since W ∗Γ,0 is the adjoint
operator and would have weak singular kernel if WΓ,0 has.

If Γ = R or Γ ⊂ R then K1 = WΓ,0 = 0 as it is clear from representations
(1.17) and (1.18).

If Γ = Γ1 := {ζ ∈ C : |ζ| = 1} is the unit circumference then ϑt ≡
ϑ, h(t) = eiϑ and τ = eiϑ, t = eiλ (0 ≤ ϑ, λ ≤ 2π) inserted into (1.17) gives

K1 = WΓ1,0ϕ(λ) =
1
4π

2π∫
0

ϕ(ϑ)dϑ ; (1.23)

therefore WΓ1,0 is one dimensional and compact.
If Γ is arbitrary smooth curve and ω : Γ → Γ′ is a corresponding

diffeomorphism where either Γ′ ⊂ R or Γ′ = Γ1, then

WΓ,0 = Kω −K∗ω + ω−1
∗ K1ω∗ ,

Kω := ω−1
∗ SΓω∗ − SΓ , ω∗ϕ(t) = ϕ(ω(t)) , t ∈ Γ ,

with ω−1 : Γ → Γ′ standing for the inverse diffeomorphism and K∗ω–for
the adjoint to Kω. the integral operator Kω has a weak singular kernel
(see [DLS1, § 3.5] or [Kh1, GK1]). As for K1, either K1 = 0 or it is a one
dimensional operator (see (1.23)).
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To accomplish boundedness properties of potential operators and their
direct values on the curve we formulate the next result. For a general
assertion (layer potentials for partial differential operators with variable
coefficient and arbitrary order in Rn, provided they have a fundamental
solution) we quote [Du10, Theorem 3.2] (for Lipschitz domains see also
[MMP1, MMT1, MT1]).

Theorem 1.8 Let s ∈ R and the boundary Γ = ∂Ω± be m-smooth, where
m ∈ N0, m ≥ |s|.

The potential operators 3)

CΓ : W s
2 (Γ) −→W

s+ 1
2

2,com(Ω±) ,

WΓ : W s
2 (Γ) −→W

s+ 1
2

2,com(Ω±) ,

VΓ : W s
2 (Γ) −→W

s+ 3
2

2,com(Ω±)

(1.24)

(see (1.3) and (1.16)) are bounded 4).
In particular, if Γ is piecewise-smooth we should restrict −1 ≤ s ≤ 1.

Proof. For a smooth Γ = ∂Ω± see [Du10, Theorem 3.2].
Let Γ have knots t1, . . . , tn (see (Fig. 1) and consider CΓϕ(z). The

operator CΓ is of the local type, i.e., if

v1 ∈ C∞0 (Ω+) , v2 ∈ L∞(Γ) , supp v1 ∩ supp v2 = ∅ ,

then v1CΓv2ϕ ∈ C∞0 (C). Therefore it suffices to establish continuity (1.24)
for vCΓuI, where v ∈ C∞0 (Ω+), u ∈ C(Γ) are cut-off functions, equal 1 in
some small neighbourhood of a knot tj and vanishing outside another one;
in particular, v(tk) = u(tk) = 0 for j 6= k.

We can suppose that

ϕ = ϕ1 + ϕ2 , ϕk := ukϕ ∈W s
2 (Γ) , uk := χku , k = 1, 2 ,

where χ1(t) and χ2(t) are characteristic functions of the left and right neigh-
bourhoods of tj ∈ Γ and [χ1(t) + χ1(t)]u(t) = u(t). Since χk(t), k = 1, 2
have discontinuities at tj , for the claimed inclusions ϕk ∈ W s

2 (Γ) we need
ϕ(tj) = 0 if s ≥ 1

2 . The latter can be provided since (CΓ1)(z) ≡ 1 for
z ∈ Ω+ and

CΓϕ(z) = CΓϕ0(z) + ϕ(tj) .

Thus,

v(z)CΓuϕ(z)=u(z)CΓϕ1(z)+u(z)CΓϕ2(z)=u(z)CΓ1ϕ1(z)+u(z)CΓ2ϕ2(z),

3)For a compact domain we define W µ
2,com(Ω±) = W µ

2 (Ω±).
4)We have formulated only a particular result–the case p = 2. The general result for

1 < p < ∞ in [Du10] states boundedness between the Bessel potential and the Besov
spaces.
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where Γ1 and Γ2 are smooth and closed contours which have in common
either only the point {tj} when γj < 1, or two points (one of them {tj})

when 1 < γj < 2, or some arc Γ′ =

)
tj zo when γj = 2. We can assume

ϕk ∈W s
2 (Γk) extending functions to Γk \ (Γ∩Γk) by 0 (k = 1, 2). As noted

above, due to smoothness of Γk we get vCΓk
ϕk ∈ W

s+ 1
2

2 (Ω+
k ), where Ω+

k is
the inner domain for Γk, k = 1, 2. On the other hand,

supp v ∩ Ω+ = Ω1 ∪ Ω2 , Ωk := ( supp v ∩ Ω+) ∩ Ω+
k , k = 1, 2 .

Then vCΓϕk = vCΓk
ϕk ∈ W

s+ 1
2

2 (Ω1 ∪ Γ2) since on the common boundary
Ω1 ∩ Ω2 = Γ1 ∩ Γ2 ⊂ Ω+ ∪ {tj}, except tj , functions are C∞ smooth.

Therefore, vCΓuϕ = vCΓϕ1 + vCΓϕ2 ∈W
s+ 1

2
2 (Ω+).

The inclusion vCΓuϕ ∈ W
s+ 1

2
2,com(Ω−) and other results in (1.24) are

proved similarly.

To proceed further we need the Plemelji formulae (the jump relations)
for layer potentials, which we formulate next.

Let Φ ∈ C(Ω±). By Φ±(t), t ∈ Γ = ∂Ω± is denoted, as usual, non-
tangential boundary values Φ±(t) = lim

z∈Ω±, z→t
Φ(z).

Lemma 1.9 Let 1 < p < ∞, −1 ≤ s ≤ 1 and ϕ ∈ W s
p (Γ, ρ), where ρ(t) is

defined in (1.2), (1.4). Then

(WΓϕ)±(t) = ±1
2
ϕ(t) +WΓ,0ϕ(t) , (∂~νVΓϕ)±(t) = ∓1

2
ϕ(t) +W ∗Γ,0ϕ(t) ,

(∂~νWΓϕ)+(t) = (∂~νWΓϕ)−(t) , (CΓϕ)±(t) = ±1
2
ϕ(t) +

1
2
SΓϕ(t) , (1.25)

for almost all t ∈ Γ (for all t ∈ Γ \ {t1, . . . , tn} provided s > 1
2 or ϕ ∈

H0
µ(Γ, ρ)).

Proof. The proof can be found e.g. in [Mu1, § § 15,16]) (see the survey
[Ma1]). See also [MT1, Appendix C] for the case of Lipschitz domains and
[Du10, § 6.4] for much more general operators.

If Γ is a compact curve and ϕ ∈ L1(Γ) then

WΓϕ(x) = O
(

1
|x|

)
as |x| → ∞ . (1.26)

As for the single layer potential,

VΓϕ(x) = O(1) as |x| → ∞ iff
∫
Γ

ϕ(τ)|dτ | = 0 (1.27)

and then
VΓϕ(x) = o(1) as |x| → ∞ . (1.28)
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In fact,

VΓϕ(x) =
∫
Γ

ϕ(τ) log
r

|x|
|dτ |+ log |x|

∫
Γ

ϕ(τ)|dτ |

= o(1) + log |x|
∫
Γ

ϕ(τ)|dτ | as |x| → ∞ .

and (1.27), (1.28) follow.
If ∫

Γ

(∂~ν(τ)u)−(τ)|dτ | = 0, (1.29)

then in (1.15) we have

u∞ = u(∞) = WΓu
−(0)− VΓ(∂~νu)−(0) . (1.30)

In fact, the first equality u∞ = u(∞) follows from (1.15), and (1.26)–
(1.28) since (1.29) holds.

Passing to the limit x → t ∈ Γ, x ∈ Ω−, in the representation formula
(1.15) and applying the appropriate Plemelji formulae (1.25) we find:

u−(t) = u∞ +
1
2
u−(t)−WΓu

−(t) + VΓ(∂~νu)−(t) , t ∈ Γ .

The obtained formula can be rewritten as follows

u∞ =
1
2
u−(t) +WΓu

−(t)− VΓ(∂~νu)−(t) , t ∈ Γ .

Therefore, the trace of the harmonic function

w(x) = WΓu
−(x)− VΓ(∂~νu)−(x) , x ∈ Ω+,

on the boundary Γ = ∂Ω+

w+(t) =
1
2
u−(t) +WΓu

−(t)− VΓ(∂~νu)−(t) = u∞ , t ∈ Γ .

(see the appropriate Plemelji formulae (1.25)) is constant. This implies
w(x) ≡=const for the entire domain x ∈ Ω+ and, therefore, u∞ = w(0) =
WΓu

−(0)− VΓ(∂~νu)−(0).
The integral WΓ1(x) is known as the Gaussian integral and can be

written explicitly:

WΓ1(x) =
1
2π

∫
Γ

∂~ν(τ) log |τ − x||dτ | =

 1 if x ∈ Ω+ ,
0 if x ∈ Ω− ,
1
2 if x ∈ Γ

(1.31)

(see [Ma1, Chapter I, § 1.1]).
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Remark 1.10 The homogeneous equation

−1
2
r +W ∗Γ,0r = 0 , (1.32)

has a unique linearly independent solution r0 6≡ 0 in L2(Γ) such that

VΓr0(x) ≡ 1 ,
∫
Γ

r0(τ)|dτ | ≡ 1 ,

VΓr0(x) = O (log |x|) for x ∈ Ω− as |x| → ∞ .

(1.33)

The solution r0 ∈ W 1
∞(Γ) is known as the Robin function (or the density

of the Robin potential; see [Ma1, § 2.2]).
The homogeneous equation

−1
2
ψ(t) +WΓ,0ψ(t) = 0

has, due to (1.31), the solution ψ(t) ≡ 1, which is a unique linearly inde-
pendent solution of this equation in L2(Γ) (see [Ma1, § 2.2]).

Lemma 1.11 The Riemann–Hilbert problem

Re Ψ±(t) = g(t) , t ∈ Γ, (1.34)

has a solution Ψ ∈ Ep(Ω±, ρ) for all right-hand sides g ∈ Lp(Γ, ρ) (i.e., is
surjective under asserted conditions) if and only if:

i.
1
p

+ αj 6=


1
γj

for Ω+ ,

1
2− γj

for Ω− ,
(1.35)

ii. the domain has no inward peaks:

{
0 ≤ γj < 2 for Ω+ ,

0 < γj ≤ 2 for Ω−
(1.36)

for all j = 1, . . . , n.
Moreover, (1.34) is Fredholm if and only if (1.36) holds and then the

index of the corresponding operator reads

Ind A =
∑

( 1
p+αj)γj>1

1 for Ω+ ,

Ind A =
∑

( 1
p+αj)(1−γj)>1

1 for Ω− .

Proof. The proof will be given in § 5.2.
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1.4 Reduction to boundary integral equations (the in-
direct method)

Theorem 1.12 Let conditions (1.35) and (1.36) hold for the complemen-
tary domain Ω∓. A harmonic function u ∈ ep(Ω±, ρ) solves the Dirichlet
problem (1.6), (1.7) if and only if

u(x) = χ−(x)g0 +WΓϕ±(x) , x ∈ Ω± , (1.37)

where
g0 :=

∫
Γ

g(τ)r0(τ)|dτ | , (1.38)

r0(τ) is the Robin function (see Remark 1.10) and ϕ± = Re ϕ± ∈ Lp(Γ, ρ)
is some real valued solution of the corresponding boundary integral equation
(written separately for the domains Ω+ and Ω−, respectively)

A+ϕ+(t) :=
1
2
ϕ+(t) +WΓ,0ϕ+(t) = g(t) , t ∈ Γ , (1.39)

A−ϕ−(t) := −1
2
ϕ−(t) +WΓ,0ϕ−(t) = g(t)− g0 , t ∈ Γ . (1.40)

Proof. Easy to ascertain that formulae (1.17) and (1.19) hold for the
corresponding potential operators as well

WΓϕ(z) =
1
2

(CΓ + V CΓV )ϕ(z) = Re [CΓ Reϕ(z)] + iRe [CΓ Imϕ(z)] ,

∂zVΓϕ(z) =
i

2
(CΓ − V CΓV )ϕ(z) = − Im (CΓ Reϕ)(z) + i Im (CΓ Imϕ)(z)

= Re (CΓiReϕ)(z)− iRe (CΓi Imϕ)(z), , z ∈ Ω± (1.41)

(see (1.3)).
Conditions (1.35), (1.36) provide representation of a solution u ∈

ep(Ω±, ρ), by the real part of the Cauchy integral with a real valued density

u(x) = χ−(x)g0 + Re [CΓϕ±(x)] , ϕ ∈ Lp(Ω±, ρ) , x ∈ Ω±

(see Lemmata 1.1, 1.13 and 1.11) and, due to (1.41) the latter can be rewrit-
ten in the form (1.37).

Passing to the limit x → t ∈ Γ, x ∈ Ω± in the representation formula
(1.37), applying the appropriate Plemelji formulae (1.25) and inserting
u±(t) = g(t) we get equations (1.39) for the density ϕ+ and (1.40) for the
density ϕ−, respectively.

The constant u(∞) in (1.37) is chosen in the form (1.38) to justify the
orthogonality condition∫

Γ

[g(τ)− g0]r0(τ)|dτ | =
∫
Γ

g(τ)r0(τ)|dτ | − g0 = 0 (1.42)
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(see (1.33)) which is necessary and sufficient for the existence of the solution
of equation (1.40) provided the equation is Fredholm (see § 1.6, Theorem
1.23).

Vice versa, let ϕ+, ϕ− + c0 ∈ Lp(Γ, ρ), c0 =const, be solutions of (1.39),
(1.40), respectively (we remind, that homogeneous equation (1.40) has con-
stants as solutions; see Remark 1.10); let u(∞) = g0 =const be defined by
(1.38). u(x) in (1.37) solves equation (1.6); passing to the limit x→ t ∈ Γ,
x ∈ Ω± and invoking the appropriate Plemelji formulae (1.25) due to
equalities (1.39), (1.40) we get

u+(t) =
1
2
ϕ+(t) +WΓ,0ϕ+ = g(t) , t ∈ Γ ,

u−(t) = χ−(t)g0 − [(WΓϕ− + c0)(x)]
− = χ−(t)g0 − [(WΓϕ−)(x)]−

= χ−(t)g0 −
1
2
ϕ−(t) +WΓ,0ϕ− = g(t) , t ∈ Γ

since (WΓc0)(x) ≡ 0 for x ∈ Ω− (see Remark 1.10) and the boundary
condition (1.7) holds.

Let us note that representation (1.37) (and, later, a similar one (1.43))
can not be used if inward peak is present. Namely, there holds the following.

Lemma 1.13 The function u ∈ ep(Ω±, ρ) (u ∈ ws
p(Ω±)) can be represented

by the double layer potential (1.37) with a density ϕ ∈ Lp(Γ, ρ) (in W s
p (Γ))

if and only if the Riemann–Hilbert problem for the complementary domain
Ω∓ (1.34) is surjective (see Lemma 1.11).

Proof. The proof follows from Lemma 1.11. In fact, let Φ(z) = u(z)+iv(z),
Φ ∈ Ep(Ω±, ρ) (Φ ∈ W s

p (Ω±, ρ)) be the analytic function in the same domain
Ω±. Since, due to (1.41), WΓ = 1

2 (CΓ + V CΓV ), representation (1.37)
follows if the representation of the analytic function Φ(z) by the Cauchy
integral (1.3) with a pure real ϕ = Re ϕ density in Lp(Γ, ρ) (in W s

p (Γ))
holds.

Vice versa, let ϕ = Reϕ and u = WΓϕ = Re CΓϕ; since Φ = u + iv is
defined by u(z) uniquelly modulo a pure imaginary aditive constant ic0, we
find Φ(z) = ic0 + CΓϕ(z) (cf. (1.3)) with the same density ϕ = Reϕ.

Theorem 1.14 Let conditions (1.35) and (1.36) hold for the complemen-
tary domain Ω∓. A harmonic function u ∈ ep(Ω±, ρ) solves the Neumann
problem (1.6), (1.8) if and only if

u(x) = c0 + VΓψ±(x) , x ∈ Ω± ,∫
Γ

ψ−(τ)|dτ | = 0 ,
(1.43)
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where ψ± ∈ w−1
p (Γ, ρ) are solutions of equations (written separately for the

domains Ω+ and Ω−, respectively)

B+ψ+(t) := −1
2
ψ+(t) +W ∗Γ,0ψ+(t) = f(t) , t ∈ Γ , (1.44)

B−ψ−(t) :=
1
2
ψ−(t) +W ∗Γ,0ψ−(t) = f(t) , t ∈ Γ , (1.45)

and c0 is arbitrary constant.

Proof. Since solution belongs to the Smirnov space u ∈ ep(Ω±, ρ) and
conditions of Lemmata 1.1, 1.11 hold, we have the following representation

u(x) = c0 + Im
[
CΓψ

0
±(x)

]
, Im ψ0

± = 0 , ψ0
± ∈ Lp(Γ, ρ) , x ∈ Ω±

(see (1.3)). Due to (1.41) the latter can be rewritten in the form (1.43)

u = Im CΓψ
0
± = i∂zVΓψ

0
± = VΓ[∂τψ

1
±] = VΓψ± , ψ± := ∂tψ

1
± = i∂tψ

0
±

and ψ± ∈ w−1
p (Γ, ρ) since ψ0

± ∈ ep(Γ, ρ).
Applying the normal derivative ∂~ν(x) to the representation (1.43), pass-

ing to the limit x→ t ∈ Γ, x ∈ Ω± with the help of appropriate Plemelji
formulae (1.25) and inserting u± = g we get equations (1.44) for the density
ψ+(t) and (1.45) for the density ψ−, respectively.

The second condition in (1.43) provides u(x) = c0 + o(1) for x ∈ Ω− as
|x| → ∞ (see (1.26), (1.28)).

Vice versa, let ψ± ∈ w−1
p (Γ, ρ) be solutions of (1.44), (1.45). Then u(x)

in (1.43) solves equation (1.6) and has the asymptotic u(x) = c0 + o(1)
as |x| → ∞. Applying the normal derivative ∂~ν(x), passing to the limit
x→ t ∈ Γ, x ∈ Ω± and invoking the appropriate Plemelji formulae (1.25)
due to equalities (1.44), (1.45) we get

(∂~νu)±(t) = ∓1
2
ψ±(t) +W ∗Γ,0ψ± = f(t) , t ∈ Γ,

and the boundary condition (1.8) holds as well.

Lemma 1.15 The homogeneous Dirichlet BVP (1.6), (1.7) with g = 0

and u ∈ w
1
2
2 (Ω±) has a unique solution.

The homogeneous Neumann BVP (1.6), (1.8) with f = 0 and u ∈
w

1
2
2 (Ω±) has only a constant solution u(x) ≡ const .

Proof. The proof is based on the Green formula (1.13) and is standard.

In fact, if u ∈ w
1
2
2 (Ω±) then on the boundary u± ∈W

1
2
2 (Γ). Due to Theorem

1.8 this yields u ∈ W 1
2 (Ω±) and ∂xj

u ∈ L2(Ω±), ∆u ∈ W−1
2 (Ω±), j = 1, 2.
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Now if ∆u(x) = 0 in Ω± and u±(t) = 0 on Γ (see (1.6), (1.7)) by assuming
v(x) = u(x) in (1.13) we get

2∑
j=1

|∂ju(x)|2 ≡ 0 for x ∈ Ω± .

Therefore u(x) =const on entire domain and since u(t) = 0 on the boundary,
u(x) = 0 everywhere.

For the Neumann BVP (1.6), (1.8) the proof is similar.

1.5 Reduction to Cauchy singular integral equations
on the circumference

In the present subsection we reduce the Dirichlet (1.6), (1.7) and the Neu-
mann (1.6), (1.7) BVPs to Riemann–Hilbert BVPs for analytic functions
on the unit circumference Γ1 or, what is equivalent, to Cauchy singular
integral equations (SIEs) on Γ1. Theorems on the Fredholm and the solv-
ability properties for the obtained SIEs will be formulated in § 1.6.

The method goes back to N.Muskhelishvili (see [Mu1, Ch. III]) and
I.Vekua [Ve1]; they investigated BVPs in Hölder spaces when domain
has smooth boundary (see [Mu1, § § 41,43,75]) and for domains with finite
number of cuts (see [Mu1, § 109]). In [Kh1] B.Khvedelidze treated similar
problems in the Lebesgue spaces and in [KKP1, Ch. IV] the method was
applied to the same BVPs on domains with angular points and cusps in the
Smirnov–Lebesgue space ep(Ω±) without weight. For the weighted space
see [Me1].

Let Ω±, t1 . . . , tj ∈ Γ = ∂Ω± be as in § 1.1 and

ω : D1 −→ Ω± , ω(ζj) = tj , j = 1, . . . , n, (1.46)

be a conformal mapping of the unit disk

D1 = D+
1 := {z ∈ C : |z| < 1}

onto the domain Ω± (ω(0) = 0, ω′(0) = 1 for the domain Ω+ and ω(0) =
∞, ω′(0) = 1 for the domain Ω−; see § 5 for further details). By ζ(x) we
denote the inverse mapping

ζ : Ω± −→ D1 , ζ(ω(z)) ≡ z , ω(ζ(x)) ≡ x . (1.47)

Then

ω′(ζ(z)) = [ζ ′(z)]−1 ,

ζ(0) = 0, ζ ′(0) = 1 for Ω+ ,

ζ(∞) = 0, ζ ′(∞) = 1 for Ω− .



26

Let D−1 := {z ∈ C : |z| > 1} be the domain outer to the unit disk
D1 = D+

1 and

ρ0(z) :=
n∏

j=1

(z − tj)αj for z ∈ Ω+ ⊂ C (1.48)

denote the analytic function in the domain Ω+, which is the extension of
the weight function; namely, ρ0(x) is analytic in the complex plane C cut
along some curves connecting knots t1, . . . , tn ∈ ∂Ω± with infinity and do
not crossing the domain Ω+.

Theorem 1.16 A harmonic function u ∈ ep(Ω±, ρ) solves the Dirichlet
problem (1.6), (1.7) if and only if

u(x) = Re

 [ζ ′(x)]
1
p

2πρ0(x)


∫
|τ |=1

ϕ(τ)dτ
τ − ζ(x)

− i

2

π∫
−π

ϕ(eiϑ)dϑ


 (1.49)

for x ∈ Ω±,. where ζ(x) is the conformal mapping from (1.47). ϕ = Re ϕ ∈
Lp(Γ1) in (1.49) is a real-valued solutions of the following singular integral
equation on the unit circumference

Aϕ(ζ) := P+
Γ1
ϕ(ζ) +G(ζ)P−Γ1

ϕ(ζ) +
G(ζ)− 1

2
Kϕ = g0(ζ) , ζ ∈ Γ1 ,

Kϕ :=
1
2π

π∫
−π

ϕ(eiϑ)dϑ , P±Γ1
:=

1
2
(I ± SΓ1) , (1.50)

where the coefficient G ∈ PC(Γ1) (see § 5.2) and the right-hand side g0 ∈
Lp(Γ1) are defined as follows:

G(ζ) := −ρ0(ω(ζ))
ρ0(ω(ζ))

[
ω′(ζ)
ω′(ζ)

] 1
p

,

g0(ζ) := 2ρ0(ω(ζ))[ω′(ζ)]
1
p g(ω(ζ)) , ζ ∈ Γ1 .

(1.51)

The solution has the following asymptotic at infinity

u(∞) = Re

(2π)−1
n∏

j=1

(−t)αj

π∫
−π

ϕ(eiϑ)dϑ

 . (1.52)

Proof. The Dirichlet problem (1.6), (1.7) can be written as follows

Re [Ψ±(t)] = g(t) , t ∈ Γ1 ,

u(x) = Re Ψ(x) , Ψ ∈ Ep(Ω±, ρ0) , x ∈ Ω± .
(1.53)
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Then for the analytic function

Φ(z) :=


ρ0(ω(z))[ω′(z)]

1
p Ψ(ω(z)) for |z| < 1 ,

ρ0

(
ω

(
1
z

))[
ω′
(

1
z

)] 1
p

Ψ
(
ω

(
1
z

))
for |z| > 1

(1.54)

(see [Mu1, § 39] and [KKP1, Ch. IV, § 1]), where ρ0(x) is defined in (1.48),
boundary condition (1.53) acquires the form

Re [Ψ±(ω(ζ))] =
1
2

[
Φ+(ζ)

ρ0(ω(ζ))[ω′(ζ)]
1
p

+
Φ−(ζ)

ρ0(ω(ζ))[ω′(ζ)]
1
p

]
= g(ω(ζ)) ,

which can also be written as follows

Φ+(ζ)−G(ζ)Φ−(ζ) = g0(ζ) , ζ ∈ Γ1 , (1.55)

with G(ζ) and g0(ζ) defined in (1.51). Since Φ ∈ Ep(D1) it is represented
by the Cauchy integral

Φ(z) = −Kϕ+ CΓ1iϕ(z) = − 1
2π

π∫
−π

ϕ(eiϑ)dϑ+
1
2π

∫
|τ |=1

ϕ(τ)dτ
τ − z

(1.56)
for all |z| 6= 1 with a pure imaginary density iϕ, ϕ ∈ Lp(Γ1). If we apply
the Plemelji formulae for the Cauchy integral (see (1.25)), we get

Φ±(ζ) = −Kϕ+
i

2
[±ϕ(ζ) + SΓ1ϕ(ζ)] = −Kϕ± iP±Γ1

ϕ(ζ)

for ζ ∈ Γ1 and inserting this into (1.55) we get equation (1.50) for the
density ϕ ∈ Lp(Γ1).

Let us remind that we need only the real-valued solution ϕ = Re ϕ of
(1.50). To this end let us check that if ψ ∈ Lp(Γ1) is a solution, than ψ is
a solution as well. In fact, applying the relations

ζ =
1
ζ
, τ =

1
τ
, dτ =

dτ

τ2
,
dτ

τ
= idϑ for τ = eiϑ, |ζ| = 1, −π < ϑ < π

we find that

G(ζ) = G−1(ζ) , g0(ζ) = G−1(ζ)g0(ζ) , g = g ,

P±Γ1
ψ(ζ) =

1
2
ψ(ζ)∓ 1

2πi

∫
|τ |=1

ψ(τ)dτ
τ − ζ

=
1
2
ψ(ζ)∓ 1

2πi

∫
|τ |=1

ζ

τ

ψ(τ)dτ
τ − ζ

= P∓Γ1
ψ(ζ)± 1

2πi

∫
|τ |=1

ψ(τ)
dτ

τ
= P∓Γ1

ψ(ζ)±Kψ . (1.57)
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Now, if ψ ∈ Lp(Γ1) is a solution of equation (1.50), taking the complex
conjugate and invoking (1.57) we get the same equality for ψ:

G(ζ)Aϕ(ζ) := P+
Γ1
ψ(ζ) +G(ζ)P−Γ1

ψ(ζ) +
G(ζ)− 1

2
Kψ = g0(ζ) , ζ ∈ Γ1.

Therefore, the real-valued function ϕ := Re ψ = 1
2 (ψ + ψ) is a solution we

look for.
With a solution ϕ := Re ϕ of (1.50) at hand we find Φ(z) from (1.56),

but the latter might have the following symmetry property

Φ∗(z) := Φ
(

1
z

)
= Φ(z) , z ∈ Ω+ ∪ Ω− ,

as it follows from the definition (1.54). This property is proved similarly to
(1.57):

Φ(z) = Φ
(

1
z

)
=
i

2
Kϕ+

1
2π

∫
|τ |=1

ϕ(τ)dτ
τ − 1

z

=
i

2
Kϕ+

1
2π

∫
|τ |=1

z

τ

ϕ(τ)dτ
τ − z

= − i

2
Kϕ+

1
2π

∫
|τ |=1

ϕ(τ)dτ
τ − z

= − i

2
Kϕ+ iCΓ1ϕ(z) = Φ(z) . (1.58)

Inserting Φ(z) in (1.54) we find first Ψ(z) and afterwards u = Re Ψ.
The result is written in (1.49).

Vice versa, if ϕ(ζ) is a solutions of (1.58) we easily ascertain that Ψ(z)
found in (1.56) and (1.54) solves BVP (1.53) and u(x) (see (1.49)) solves
BVP (1.6), (1.7).

The asymptotic (1.52) result from (1.47)–(1.49) and from the following
asymptotic of the weight function

ρ0

(
ω

(
1
z

))
=

n∏
j=1

(−t)−αj +O(|z|−1) as |z| → ∞ .

Theorem 1.17 A harmonic function u ∈ w1
p(Ω±, ρ) solves the Neumann

problem (1.6), (1.8) if and only if

u(x) = c0 + Re


x∫

x0

[ζ ′(y)]
1
p

2πρ0(y)

∫
|τ |=1

ψ−(τ)dτ
τ − ζ(y)

dy

 , (1.59)

u(x) = c0 + Re


x∫

x0

[ζ ′(y)]
1
p

2πρ0(y)

 ∫
|τ |=1

ψ+(τ)dτ
τ − ζ(y)

− i

2

π∫
−π

ψ+(eiϑ)dϑ

 dy

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for x ∈ Ω− and x ∈ Ω+, respectively; x0 ∈ Ω± is some fixed point, c0 ∈ R
is a real constant and ζ(x) is the conformal mapping from (1.46). ψ± =
Re ψ± ∈ Lp(Γ1) are real-valued solutions of the following singular integral
equations on the unit circumference

B−ψ−(ζ) :=


P+

Γ1
ψ−(ζ) + F (ζ)P−Γ1

ψ−(ζ) = f0(ζ) , ζ ∈ Γ1 ,

Kψ− =
1
2π

π∫
−π

ψ−(eiϑ)dϑ = 0 , (1.60)

B+ψ+(ζ) := P+
Γ1
ψ+(ζ) + F (ζ)P−Γ1

ψ+(ζ) +
F (ζ)− 1

2
Kψ+ = f0(ζ) .

The coefficient F ∈ PC(Γ1) (see § 5.2) and the right-hand side f0 ∈ Lp(Γ1)
are defined as follows:

F (ζ) :=
ρ0(ω(ζ))
ρ0(ω(ζ))

[
ω′(ζ)
ω′(ζ)

] 1
p−1

,

f0(ζ) := 2ρ0(ω(ζ))[ω′(ζ)]
1
p f(ω(ζ)) , ζ ∈ Γ1 .

(1.61)

Proof. The Neumann problem (1.6), (1.8) can be written as follows (see
[Mu1, § § 74,75])

Re
[
eiϑt(Ψ′)±(t)

]
= f(t) , t ∈ Γ1 ,

u(x) = Re Ψ(x) , Ψ ∈ W 1
p (Ω±, ρ0) x ∈ Ω± ,

(1.62)

where ϑ(ζ) = ϑt denotes the inclination of the outer unit normal vector ~ν(t)
to the abscissa axes at t = ω(ζ) ∈ Γ\{t1, . . . , tn} (see Fig. 1). In fact, since

Ψ = u+ iv ∈ W 1
p (Ω±, ρ0) , Ψ′ :=

∂u

∂x
− i

∂u

∂y
∈ Ep(Ω±, ρ0) , (1.63)

∂~ν(t)u(t) = cosϑt
∂u

∂x
+ sinϑt

∂u

∂y
, cosϑt + i sinϑt = eiϑt

(see (1.21)), we get

Re
[
eiϑt(Ψ′)±(t)

]
= cosϑt

[
∂u

∂x

]±
+ sinϑt

[
∂u

∂y

]±
= (∂~ν(t)u)±(t)

and (1.62) follows.
Similarly to (1.54) (see also [Mu1, § 39] and [KKP1, Ch. IV, § 2]) for the

analytic function

Φ(z) :=


ρ0(ω(z))[ω′(z)]

1
p Ψ′(ω(z)) for |z| < 1,

ρ0

(
ω

(
1
z

))[
ω′
(

1
z

)] 1
p

Ψ′
(
ω

(
1
z

))
for |z| > 1,

(1.64)
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which belongs to the space Ep(D1), we get the following BVP:

Φ+(ζ)− F (ζ)Φ−(ζ) = f0(ζ) , ζ ∈ Γ1 , (1.65)

where f0(ζ) is defined in (1.61) and

F (ζ) := −e−2ϑ(ζ)i ρ0(ω(ζ))
ρ0(ω(ζ))

[
ω′(ζ)
ω′(ζ)

] 1
p

= e−2α(ζ)i ρ0(ω(ζ))
ρ0(ω(ζ))

[
ω′(ζ)
ω′(ζ)

] 1
p

with α(ζ) = ϑ(ζ) + π
2 denoting the inclination of the tangent to Γ vector

to the abscissa axes at t = ω(ζ) ∈ Γ \ {t1, . . . , tn} (see Fig. 1). Let us
recall that ω′(z) has an angular (i.e., non-tangential) boundary limits ∧→ for
almost all ζ ∈ Γ1 and

ω′(ζ) = eα(ζ)i|ω′(ζ)| (1.66)

(see, e.g., [Go1, p.p. 405–411] and [Ks1, Ch. I, II]). Therefore

e−2α(ζ)i =

(
ω′(ζ)
ω′(ζ)

)−1

and by inserting this into the foregoing formula we get F (ζ) as written in
(1.61). In (1.64), (1.65) Φ ∈ Ep(D1) and, therefore, it can be represented
by the Cauchy integral (cf. (1.56))

Φ(z) := −Kψ+ + i(CΓ1ψ)+(x) = − i

2π

π∫
−π

ψ+(eiϑ)dϑ+
1
2π

∫
|τ |=1

ψ+(τ)dτ
τ − z

.

(1.67)
For the domain Ω− we should require in addition (see the condition in
(1.60))

Kψ− =
1
2π

π∫
−π

ψ−(eiϑ)dϑ = 0 .

To justify the latter we remind that Ψ ∈ W 1
p (Ω±, ρ0) and, due to represen-

tation (1.3) the derivative should vanish at the infinity Ψ′(∞) = 0; therefore
(see (1.64), (1.67))

π∫
−π

ψ−(eiϑ)dϑ = 2πΦ(0) = 2πρ0(ω(0))[ω′(0)]
1
p Ψ′(ω(0)) = 0

because ω(0) = ∞ (see (1.46)–(1.47)).
Let us note that Φ(z) in (1.67) would have the symmetry property

Φ∗(z) = Φ(z)(cf. (1.58)).
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Since we need only real-valued solutions ψ± = Re ψ± of (1.60), we
check, based on the properties similar to (1.57) that along with ψ± equa-
tions (1.60) have solutions ψ±. Therefore the real-valued solutions ψ± =
Re ψ± = 1

2 (ψ± + ψ±) are those we look for.
Vice versa, if ψ± = Re ψ± are real-valued solutions of (1.59), (1.60),

we find easily that Φ(z), defined in (1.64) solves BVP (1.65), which implies
that u(x) in (1.59) solves BVP (1.6), (1.8).

Remark 1.18 Equivalent reduction of the Dirichlet (1.6), (1.7) and the
Neumann (1.6), (1.8) BVPs to BIEs (1.50) and (1.60) can be carried out
in the spaces of continuous C(Ω∓, ρ) and piecewise-continuous PC(Ω∓, ρ)
functions. Transition to the unit disk is clear and smooth, but is senseless
because the Cauchy SIO is unbounded in these spaces, even on the unit
circumference.

Solvability results we possess e.g. for the Hölder spaces with weight
h0

µ(D1, ρ) on the unit disk (see § 4), but transformation of the Riemann–
Hilbert problem for Ω+ to the unit disk (similar to (1.53)–(1.59)) is not
implemented so far.

1.6 Reduction to boundary pseudo-differential equa-
tions (the direct method)

Theorem 1.19 Let Xs(Γ, ρ) stand for one of the following spaces: W s
p (Γ, ρ)

with 0 ≤ s ≤ 1 or for H0
µ+1(Γ, ρ), PC

1(Γ, ρ). xs(Ω±, ρ) is used for the
corresponding Smirnov space of harmonic functions. ρ(t) is defined in
(1.2) and inequalities (1.4) hold.

A harmonic function u ∈ xs(Ω±, ρ) solves the Dirichlet problem (1.6),
(1.7) if and only if

u(x) = χ−(x)[WΓg(0)− VΓϕ−(0)]±WΓg(x)∓ VΓϕ±(x) , (1.68)

where ϕ ∈ Xs−1(Γ, ρ) is a solution of the following pseudo-differential equa-
tion of order −1 (written separately for the domains Ω+ and Ω−, respecti-
vely)

VΓ,−1ϕ+(t) :=
1
2π

∫
Γ

log |t− τ |ϕ+(τ)|dτ | = g+(t) , t ∈ Γ, (1.69)


VΓ,−1ϕ−(t) :=

1
2π

∫
Γ

log
∣∣∣∣ t− τ

τ

∣∣∣∣ϕ−(τ)|dτ | = g−(t) , t ∈ Γ ,∫
Γ

ϕ−(τ)|dτ | = 0
(1.70)
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and

g+(t) := −1
2
g(t)− 1

2π

∫
Γ

∂~ν(τ) log |t− τ |g(τ)|dτ | , t ∈ Γ ,

g−(t) :=
1
2
g(t)− 1

2π

∫
Γ

∂~ν(τ) log
∣∣∣∣ t− τ

τ

∣∣∣∣ g(τ)|dτ | , t ∈ Γ .

Proof. Solution u(x) of the the Dirichlet problem (1.6), (1.7) has the
form (1.68) (see (1.15) and (1.30)). Taking the trace on Γ from Ω±, invoking
the Plemelji formulae (1.25), inserting u±(t) = g(t) from (1.7) and choos-
ing the function ϕ±(t) := (∂~ν(t)u)±(t) for an unknown, we get equations
(1.69) and the first equation in (1.70), because

WΓϕ(x)−WΓϕ(0) =
1
2π

∫
Γ

∂~ν(τ) log
∣∣∣∣x− τ

τ

∣∣∣∣ϕ(τ)|dτ | ,

VΓϕ(x)− VΓϕ(0) =
1
2π

∫
Γ

log
∣∣∣∣x− τ

τ

∣∣∣∣ϕ(τ)|dτ | , x ∈ Ω± .

The second equation in system (1.70) is necessary for boundedness of solu-
tion (1.68) at infinity (see (1.27), (1.28)).

Vice versa, if u(x) is written in the form (1.68), it is obviously harmonic
and u ∈ xs(Ω±, ρ). In fact, ϕ± = Re ϕ± ∈ Xs−1(Γ, ρ) and, due to (1.41),

u(x) = χ−(x)u(∞)±WΓg(x)∓VΓϕ±(x)=χ−(x)u(∞)+ ReCΓ[±g∓iϕ±](x).

Further, u(x) has finite limit u(∞) = WΓg(0) − VΓϕ−(0) at infinity and it
remains to check the boundary condition (1.7). To this end it suffices to take
the trace in (1.68), applying the Plemelji formulae (1.25), and remember
that equations (1.69) and (1.70) hold. We easily get:

u±(x) = χ−(x)[WΓg(0)− VΓϕ−(x)] +
1
2
g(t)

±WΓ,0g(t)∓ VΓϕ±(t) = g(t).

Theorem 1.20 Let Xs(Γ, ρ) stand for one of the following spaces: W s
p (Γ, ρ)

with 0 ≤ s ≤ 1 or for H0
µ+1(Γ, ρ), PC

1(Γ, ρ). xs(Ω±, ρ) is used for the
corresponding Smirnov space of harmonic functions. ρ(t) is defined in
(1.2) and inequalities (1.4) hold.

A harmonic function u ∈ xs(Ω±, ρ) solves the Neumann problem (1.6),
(1.8) if and only if

u(x) = C0 ±WΓψ±(x)∓ VΓf(x) , (1.71)
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where C0 is arbitrary constant, ψ ∈ Xs(Γ, ρ) is a solution of the following
pseudo-differential equation of order +1

DΓ,+1ψ±(t) :=
1
2π

∫
Γ

∂~ν(t)∂~ν(τ) log |t− τ |ψ±(τ)|dτ | = f±(t), t ∈ Γ, (1.72)

and
f±(t) := ±1

2
f(t) +

1
2π

∫
Γ

∂~ν(t) log |t− τ |f(τ)|dτ | , t ∈ Γ .

For the outer domain problem Ω− the data f(t) should meet the addi-
tional constraint ∫

Γ

f(τ)|dτ | = 0 . (1.73)

Proof. Solution u(x) of the the Neumann problem (1.6), (1.8) has the form
(1.71) (see (1.15)) and to be bounded in the outer domain condition (1.73)
should hold (see (1.27), (1.28)). Taking the trace on Γ from Ω±, invoking
the Plemelji formulae (1.25), inserting (∂~ν(t)u)±(t) = f(t) from (1.8) and
anounceing ψ±(t) := u±(t) as an unknown function, we get equations (1.72).

Vice versa, if u(x) is written in the form (1.71), it is obviously harmonic
and u ∈ xs(Ω±, ρ). In fact, ψ± = Re ψ± ∈ Xs(Γ, ρ) and, due to (1.41),

u(x) = C0 ±WΓψ±(x)∓ VΓf(x) = C0 + ReCΓ[±ψ±(x)∓ if ](x) .

Further, u(x) has finite limit u(∞) = C0 at infinity (see (1.73) and recall
(1.27), (1.28)). It remains to check the boundary condition (1.8). To this
end it suffices to take the trace in (1.71), applying the Plemelji formulae
(1.25), and remember that equations (1.72) hold. We easily get:

(∂~ν(t)u)±(x) = ±DΓ,+1ψ±(t) +
1
2
g(t)∓ VΓf(t) = f(t) .

1.7 Statement of the principal results

In the present subsection we formulate principal results on BIEs (1.39),
(1.40), (1.44), (1.45), (1.50), (1.60) (see Theorems 1.26 and 1.29), which we
prove later in § 5.3–§ 5.4. We also formulate (and prove) their immediate
consequences-solvability results for corresponding BVPs (see Theorems 1.28
and 1.30). Theorems are formulated separately for the case of absence of
cusps because in such a case equations can be studied directly and not only
the weighted Lebesgue space Lp(Γ, ρ), but in the weighted spaces of con-
tinuous, piecewise-continuous and Hölder functions. Moreover, equations
are Fredholm in usual spaces, in contrast to the case of cusps, when we
have to introduce special image spaces to make operators Fredholm. The
approaches to the cases are substantially different (cf. § 5.3 and § 5.4).
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Before formulating theorems on solvability of boundary integral equa-
tions and boundary value problems let us recall [DNS1, Lemma 19] which
will be quoted later and which is useful in establishing additional smooth-
ness properties of solutions to BVPs (e.g., Hölder continuity with weight).

A pair of Banach spaces {X0,X1} embedded in some topological space
E is called an interpolation pair. For such a pair we can introduce the
following two spaces Xmin = X0 ∩ X1 and Xmax = X0 + X1 :=

{
x ∈ E : x =

x0 +x1, xj ∈ Xj , j = 0, 1
}
; Xmin and Xmax become Banach spaces if they

are endowed with the norms

‖x|Xmin‖ = max
{
‖x|X0‖, ‖x|X1‖

}
,

‖x|Xmax‖ = inf
{
‖x0|X0‖+ ‖x1|X1‖ : x = x0 + x1, xj ∈ Xj , j = 0, 1

}
,

respectively.
Besides, we have the continuous embedding

Xmin ⊂ X0, X1 ⊂ Xmax.

For any interpolation pairs {X0,X1} and {Y0,Y1} the space
L ({X0X1}, {Y0Y1}) consists of all linear operators from Xmax into Ymax

whose restrictions to Xj belong to L (Xj ,Yj) (j = 0, 1). The notation
L (X,Y) is used for the space of all linear bounded operators A : X → Y.

Lemma 1.21 (see [DNS1, Lemma 19]). Assume {X0,X1} and {Y0,Y1}
are interpolation pairs and the embedding Xmin ⊂ Xmax, Ymin ⊂ Ymax to be
dense. Let an operator A ∈ L (X0,Y0) ∩L (X1,Y1) have a common regu-
larizer: R ∈ L (Y0,X0) ∩L (Y1,X1) and RA− I ∈ L (X0X0) ∩L (X1,X1)
be compact. Then

A : Xmin → Ymin, A : Xmax → Ymax

are Fredholm operators and

Ind Xmin→YminA = Ind Xmax→YmaxA = Ind Xj→XjA, j = 0, 1.

If y ∈ Yj, then any solution x ∈ Xmax of the equation Ax = y belongs
to Xj. In particular,

Ker XminA = Ker XjA = Ker XmaxA , j = 0, 1.

Let

T := {t1, . . . tn} , Tpk := Tow ∪Tiw ,

Tow := {tj ∈ T : γj = 0} , Tiw := {tj ∈ T : γj = 2}
(1.74)

be the collections of all knots, of all peaks, of all outward and all inward
peaks on Γ.
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Let us define the following mean value integral on the contour Γ (cf.
(1.90))

Vtj
ϕ(t) :=

∫
^
tjt

(
ζ ′(t)
ζ ′(τ)

) 1
p
(
ζ(τ)− ζ(tj)
ζ(t)− ζ(tj)

) 1
p ρ(τ)
ρ(t)

ϕ(τ)ζ ′(τ)dτ
ζ(τ)− ζ(tj)

. (1.75)

Let tj ∈ Tpk be a peak and t ∈ Γ. The points

t = ω(ζ) and t∗tj
:= ω(ζ(t)ζ2

j ) , ω(ζj) = tj

are the images of equidistant points |ζ(t) − ζj | = |ζ(t)ζ2
j − ζj | on the unit

circumference under the conformal mapping (1.46). Points t ∈ Γ and t∗tj
∈ Γ

are on different sides from the outward peak tj ∈

)
t∗tj
t . Let Γtj ⊂ Γ be,

similarly to Γ1ζj ⊂ Γ1, a sufficiently small fixed neighbourhood of tj ∈ Γ
such that Γtk

∩ Γtj
= ∅ (and, therefore, tk 6∈ Γtj

) for k 6= j. Let Γtj
=

Γ−tj
∪ Γ+

tj
be the decomposition of the neighbourhood of tj into the semi-

closed left and right neighbourhoods and χtj be the characteristic function
of Γtj . We define the space

Lp(Γ, ρ,Tpk) :=
{
ϕ ∈ Lp(Γ, ρ) : Ṽtj

ϕ ∈ Lp(Γ, ρ) , tj ∈ Tpk

}
, (1.76)

Ṽtjϕ := Vtjϕ
∗
tj
, ϕ∗tj

(t) := εjϕ(t)− ϕ(ω(ζ(t)ζ2
j )), , εj := e

π
p (γj−1)i ,

‖ϕ
∣∣Lp(Γ, ρ,Tpk)‖ :=‖ϕ

∣∣Lp(Γ, ρ)‖+
∑

tj∈Tpk

‖Ṽtj
χtj

ϕ
∣∣Lp(Γ+

tj
, (t− tj)αj )‖

and 5) εj = e−
π
p i for tj ∈ Tow, εj = e

π
p i for tj ∈ Tiw. Similarly is defined

the space Lp(Γ, ρ,Tow) ⊂ Lp(Γ, ρ,Tpk).

Lemma 1.22 Let Γ be a piecewise-Ljapunov curve. If ψ ∈ Lp(Γ, ρ) and
log[ζ(t)− ζ(tj)]ψ∗tj

∈ Lp(Γ, ρ) for all tj ∈ Tpk, then ψ ∈ Lp(Γ, ρ,Tpk).
Let a ∈ L∞(Γ) and

a(t) = a(tj) +O
(
| log[ζ(t)− ζ(tj)]|−1

)
(1.77)

for all tj ∈ Tpk as t→ tj. Then the operators

aI : Lp(Γ, ρ,Tpk) −→ Lp(Γ, ρ,Tpk) ,

[a− a0(t)]I : Lp(Γ, ρ) −→ Lp(Γ, ρ,Tpk)
(1.78)

are bounded, where a0(t) :=
∑

tj∈Tpk

a(tj)χj(t) and χj(t) denotes the charac-

teristic function of Γtj
.

5)Non-equal rights of left and right neighbourhoods and differences for outward and
inward peaks in the definition of the space Lp(Γ, ρ, Tpk) are explained in Remark 5.12.
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Proof. The proof is an easy consequence of Lemmata 1.25 and 1.27.

Note, that if Γ has no cusps, 0 < γj < 2 for all j = 11, . . . , n, than

log[ζ(t)− ζ(tj)] ∼ log[t− tj ] , t ∈ Γ

(see Corollary 5.10). For a curve with cusps this is not valid any more.

Theorem 1.23 Let Tpk = ∅ and Xm(Γ, ρ) be one of the following spaces
Wm

p (Γ, ρ), H0
µ+m(Γ, ρ), Cm(Γ, ρ) or PC(Γ, ρ), m = 0, 1.

Equations (1.39) and (1.40) are Fredholm in the space Xm(Γ, ρ) if and
only if

βj 6=

{
γ0

j if m = 0 ,

1− γ0
j if m = 1 ,

γ0
j := min

{
1
γj
,

1
2− γj

}
for all j = 1, . . . , n, where

βj :=


1
p

+ αj for Xm(Γ, ρ) = Wm
p (Γ, ρ) ,

αj for PCm(Γ, ρ) , C(Γ, ρ),

αj − µj for H0
µ+m(Γ, ρ) .

(1.79)

If Tpk 6= ∅ or βj = γ0
j when m = 0, βj = 1 − γ0

j when m = 1, then the
operators A± in (1.39), (1.40) have non-closed images in Wm

p (Γ, ρ).
Equations (1.39) and (1.40) with ϕ ∈ Lp(Γ, ρ), g ∈ Lp(Γ, ρ,Tpk) are

Fredholm, i.e., the operators

A± : Lp(Γ, ρ) → Lp(Γ, ρ,Tpk) (1.80)

are bounded and are Fredholm if and only if βj 6= γ0
j for all tj 6∈ Tpk;

the following formulae hold for the index, kernel and cokernel in the space
Xm(Γ, ρ) when Tpk = ∅ or in the pairs (1.80) when Tpk 6= ∅

Ind X0(Γ,ρ)A± =
∑

tj 6∈Tpk
βj>γ0

j

1 , Ind X1(Γ,ρ)A± = −
∑

tj∈T
βj<1−γ0

j

1 , (1.81)

dimX0(Γ,ρ) Ker A± = ε± + Ind X0(Γ,ρ)A± , dim Coker X0(Γ,ρ)A± = ε± ,

dim Ker X1(Γ,ρ)A± = ε± , dim Coker X1(Γ,ρ)A± = ε± − Ind X1(Γρ)A±

with ε+ = 0 and ε− = 1.
In particular, if

0 < βj < γ0
j for all tj 6∈ Tpk , (1.82)



37

then equations (1.39) and (1.40) have solutions for all right-hand sides g(t)
in Lp(Γ, ρ,Tpk) (in C(Γ, ρ) and in 6) H0

µ(Γ, ρ) when Tpk = ∅), while for

Tpk = ∅ , 1− γ0
j < βj < 1 for all tj ∈ T (1.83)

they have solutions in W 1
p (Γ, ρ), in PC1(Γ, ρ) and in H0

µ+1(Γ, ρ) for the
right hand sides in the same spaces. Equation (1.39) has a unique solution
in these spaces, while homogeneous equation (1.40), g(t) ≡ 0 has a single
linearly independent solution ϕ−(t) ≡ 1.

Proof. The proof is postponed to § 5.4.

Theorem 1.24 Let Tpk = ∅ and Xm(Γ, ρ) be either Wm
p (Γ, ρ) (m = 0,−1)

or H0
µ(Γ, ρ).

Equations (1.44) and (1.45) are Fredholm in X(Γ, ρ) if and only if

βj 6=

{
1− γ0

j for Lp(Γ, ρ), H0
µ(Γ, ρ) ,

γ0
j for W−1

p (Γ, ρ) ,
γ0

j := min
{

1
γj
,

1
2− γj

}
for all j = 1, . . . , n, where βj is defined in (1.79).

If either Tpk 6= ∅ or βj = γ0
j when m = 0, βj = 1− γ0

j when m = 1 then
the operators B± in (1.44), (1.45) have non-closed images in Wm

p (Γ, ρ).
Equations (1.44) and (1.45) with ψ ∈ Lp(Γ, ρ), f ∈ Lp(Γ, ρ,Tpk) are

Fredholm, i.e., the operators

B± : Lp(Γ, ρ) → Lp(Γ, ρ,Tpk) (1.84)

are bounded and are Fredholm if and only if βj 6= 1 − γ0
j for all tj 6∈ Tpk;

the following formulae hold for the index, kernel and cokernel in the space
Xm(Γ, ρ) when Tpk = ∅ or in the pairs (1.84) when Tpk 6= ∅

Ind X0(Γ,ρ)B± =
∑

tj 6∈Tpk
βj>1−γ0

j

1 , (1.85)

Ind X1(Γ,ρ)B± = −
∑

tj∈T
βj<γ0

j

1 , (1.86)

dim Ker X0(Γ,ρ)B±=ε± + Ind X0(Γ,ρ)B± , dim Coker X0(Γ,ρ)B±=ε± ,

dim Ker X−1(Γ,ρ)B± = ε± , dim Coker X−1(Γ,ρ)B± = ε± − Ind X−1(Γ,ρ)B± ,

where ε+ = 0 and ε− = 1.

6)Absence of additional solvability condition for equation (1.40) under constraints
(1.82) and (1.83), which are inevitable since dim Coker A− = 1 (see Remark 1.10),
is due to the special right-hand side g(t) − g0, which already satisfies the orthogonality
condition (1.42).
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In particular, if

0 < βj < 1− γ0
j for all tj 6∈ Tpk , (1.87)

then equation (1.45) has solution for all right-hand sides f(t) in Lp(Γ, ρ,Tpk)
(in H0

µ(Γ, ρ) when Tpk = ∅), if and only if (1.73) holds. If

Tpk = ∅ , γ0
j < βj < 1 for all tj ∈ T (1.88)

then, again, equation (1.45) has a solution for all right-hand sides f(t) in
W−1

p (Γ, ρ), while equation (1.44) has a solution if and only if condition
(1.73) holds.

Equation (1.45) has a unique solution in these spaces, while homogeneous
equation (1.44), f(t) ≡ 0 has a single linearly independent solution ψ− = r0
(see Remark 1.10).

Proof. For the cases Tpk = ∅ and Wm
p (Γ, ρ) (m = 0,−1) the proof fol-

lows from the foregoing Theorem 1.23 because equations (1.39), (1.40) in
Wm

p (Γ, ρ) (m = 0, 1) and equations (1.45), (1.44) in W−m
p′ (Γ, ρ−1) are pair-

wise conjugate.
As for equations (1.44) and (1.45) in the Hölder spaces H0

µ(Γ, ρ) and
the case Tpk 6= ∅ (see (1.84)), the assertion is proved word to word as
Theorem 1.23 (see § 5.4).

Let

Ξ := {ζ1, . . . , ζn} ⊂ Γ1 , Ξpk := Ξow ∪ Ξiw , (1.89)

Ξow := {ζj = {ω−1(tj) : tj ∈ Tow} ,
Ξiw := {ζj = {ω−1(tj) : tj ∈ Tiw}

be the images on the unit circumference of the discrete sets T , Tpk, Tow Tiw

(see (1.74)) under the inverse conformal mapping ω−1(ζ) in (1.46)–(1.47).
We define the following mean value integral

Vζjϕ(ζ) :=
∫
^

ζjζ

(
τ − ζj
ζ − ζj

) 1
p

ϕ(τ)
dτ

τ − ζj
. (1.90)

Let us fix a neighbourhood Γ1ζj ⊂ Γ1 of ζj ∈ Γ1 such that Γ1ζk
∩Γ1ζj = ∅

(which implies ζk 6∈ Γ1ζj ) for k 6= j and decompose Γ1ζj into the left and the
right neighbourhoods Γ1ζj

= Γ−1ζj
∪ Γ+

1ζj
. χζj

be the characteristic function
of Γ1ζj . We define the space (see (1.89))

Lp(Γ1,Ξow) :=
{
ϕ ∈ Lp(Γ1) : Ṽζj

ϕ ∈ Lp(Γ+
1ζj

) , ζj ∈ Ξow

}
, (1.91)

Ṽζj
ϕ := Vζj

ϕ∗ζj
, ϕ∗ζj

(ζ) := e−
π
p iϕ(ζ)− ϕ(ζζ2

j ) ,

‖ϕ
∣∣Lp(Γ1,Ξow)‖ := ‖ϕ

∣∣Lp(Γ1)‖+
∑

ζj∈Ξow

‖Ṽζj
χζj

ϕ
∣∣Lp(Γ+

1ζj
)‖ .
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Below, in Lemma 1.22, there is given a sufficient condition for the inclu-
sion ϕ ∈ Lp(Γ1,Ξow) and for the boundedness of a multiplication operator
aI).

Let us note, that if ζ ∈ Γ±1ζj
, then the point ζζ2

j belongs to the different
half-neighbourhood ζζ2

j ∈ Γ∓1ζj
(i.e., points are on different sides of ζj ∈

Γ1ζj
), but are equidistant from ζj : |ζ − ζj | = |ζζ2

j − ζj |.

Lemma 1.25 If ψ ∈ Lp(Γ1) and log(ζ − ζj)ψ∗ζj
∈ Lp(Γ1) for all ζj ∈ Ξpk,

then ψ ∈ Lp(Γ1,Ξpk).
Let a ∈ L∞(Γ1) and

a(t) = a(tj) +O
(
| log(ζ − ζj)|−1

)
for all ζj ∈ Ξpk as ζ → ζj .

Then the operators

aI : Lp(Γ1,Ξpk) −→ Lp(Γ1,Ξpk) ,

[a− a0(ζ)]I : Lp(Γ1) −→ Lp(Γ1,Ξpk)
(1.92)

are bounded, where a0(t) :=
∑

ζj∈Ξpk

a(ζj)χj(t) and χj(t) denots the charac-

teristic function of Γζj
.

Proof will be given later at the end of § 3.3.

Theorem 1.26 The operator

A : Lp(Γ1) −→ Lp(Γ1,Ξow) (1.93)

(see (1.50)) is bounded and is Fredholm (i.e. equation (1.50) is Fred-
holm if g0 ∈ Lp(Γ1,Ξow) and we look for a solution ϕ ∈ Lp(Γ1)) if and
only if

νj :=
(

1
p

+ αj

)
γj 6= 1 for all ζj 6∈ Ξow . (1.94)

If conditions (1.94) hold,

Ind A =
∑

ζj 6∈Ξow
νj>1

1 ,

dim Ker A = Ind A , dim Coker A = 0 ,
(1.95)

Proof. The proof is postponed to § 5.3.
Let (cf. (1.64))

Zωϕ(ζ) := ρ(ω(ζ))[ω′(ζ)]
1
pϕ(ω(ζ)) . (1.96)



40

Lemma 1.27 Zω defines an isomorphism of spaces

Zω : Lp(Γ, ρ) −→ Lp(Γ1) ,

: Lp(Γ, ρ,Tow) −→ Lp(Γ1,Ξow),

: Lp(Γ, ρ,Tpk) −→ Lp(Γ1,Ξpk)

(1.97)

and the inverse operator reads

Z −1
ω ψ(t) := ρ−1(t)[(ω−1)′(t)]

1
pψ(ω−1(t)) . (1.98)

The integral operators Vtj
in (1.75), Ṽtj

in (1.76) and Vζj
in (1.90), Ṽζj

in
(1.91) are related as follows

Zωχtj
Vtj

χtj
Z −1

ω = Vζj
, Zωχtj

Ṽtj
χtj

Z −1
ω = Ṽζj

. (1.99)

Proof. The proof is direct and follows from the definitions.

Theorem 1.28 The Dirichlet problem (1.6), (1.7) with

u ∈ ep(Ω+, ρ) and g ∈ Lp(Γ, ρ,Tow) (1.100)

is Fredholm if and only if the conditions

νj :=
(

1
p

+ αj

)
γj 6= 1 for all ζj 6∈ Tiw . (1.101)

hold. If this is the case, the problem has solution for each right hand-side
in (1.100) and the homogeneous problem has exactly

κ :=
∑
νj>1

1 (1.102)

solutions (i.e., the index of the corresponding operator is κ). In particular,
if conditions

νj = ν0
j :=

(
1
p

+ αj

)
γj < 1 for all ζj 6∈ Tiw (1.103)

hold, the problem has a unique solution.
Moreover, if Tow = ∅ the Dirichlet problem (1.6), (1.7) with

u ∈ w1
p(Ω+, ρ) and g ∈W 1

p (Γ, ρ) , ν1
j :=

(
1
p + αj − 1

)
γj ,

u ∈ pcm(Ω+, ρ) and g ∈ PCm(Γ, ρ) ,

νm
j := (αj −m)γj , m = 0, 1 ,

u ∈ c(Ω+, ρ) and g ∈ C(Γ, ρ) , ν0
j := αjγj ,

u ∈ h0
µ+m(Ω+, ρ) and g ∈ H0

µ+m(Γ, ρ) ,

νm
j := (αj − µj −m)γj , m = 0, 1,

(1.104)
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is Fredholm if and only if the condition

νm
j 6= (−1)m (1.105)

holds for all j = 1, . . . , n. If this is the case, the problem has the following
index

Ind A :=
∑
|νm

j |>1

(−1)m. (1.106)

and either the kernel (when Ind A ≤ 0) or the cokernel (when Ind A ≥ 0) is
trivial. For Ind A = 0 both kernel and cokernel are trivial and the problem
has a unique solution for all right-hand sides (see (1.103)).

The same holds for the domain Ω− with the obvious replacements: Tow

by Tiw and γj by 1− γj.

Proof. The first part of the theorem (1.100)–(1.103) follows from Theorems
1.16 and 1.26.

The second half of the theorem, when Tow = ∅, follows from equivalence
of the Dirichlet problem and of the corresponding singular integral equa-
tion (1.39)–(1.40) in appropriate space, which can be proved as in Theorem
1.12, and from appropriate assertions on singular integral equations in § 4.

Theorem 1.29 The operator

B+ : Lp(Γ1) −→ Lp(Γ1,Ξow) (1.107)

(see (1.60)) is bounded and is Fredholm (i.e., equation (1.60) is Fred-
holm if f0 ∈ Lp(Γ1,Ξow) and we look for a solution ϕ ∈ Lp(Γ1)) if and
only if the conditions

µj :=
(

1− 1
p
− αj

)
γj 6= 1 for all tj 6∈ Tow . (1.108)

hold. If conditions (1.107) hold,

Ind B+ = −1 +
∑

ζj 6∈Ξow
µj>1

1 ,

dim Ker B+ = Ind B+ , dim Coker B = 1+ .

(1.109)

Proof. The proof follows word in word the proof of Theorem 1.26 (see § 5.3)
with obvious modifications (including substitution of 1

p by 1
p − 1, as seen

from (1.51) and (1.61)). The only difference which we have found worth
explaining is the appearance of “−1” and “1” in the index formulae (1.106):
the second condition in (1.60) obviously increases dim Coker B+ by 1 and
diminishes Ind B+ also by 1.
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Theorem 1.30 The Neumann problem (1.6), (1.8) for Ω+ has solutions
u(x) + c0, where c0 =const is arbitrary and, u ∈ w1

p(Ω+, ρ) for f ∈
Lp(Γ, ρ,Tow) if and only if conditions (1.108) hold and the solution is unique
modulo a constant if µj < 1 for tj 6∈ Tow. The index of the problem is given
by the formula

Ind B+ := 1 +
∑
µj>1

1. (1.110)

If Tow = ∅ the Neumann problem (1.6), (1.8) Ω+ with

u ∈ pc1(Ω+, ρ) and g ∈ PCm(Γ, ρ) , µj := (1− αj)γj ,

u ∈ h0
µ+1(Ω+, ρ) and g ∈ H0

µ+1(Γ, ρ) ,

µj := (1− αj + µj)γj , m = 0, 1

(1.111)

is Fredholm if and only if the condition µj 6= 1 holds for all j = 1, . . . , n. If
this is the case, the problem has the same index (1.110).

The same holds for the domain Ω− with the obvious replacements: Tow

by Tiw and γj by 1− γj.

Proof. The first part of the theorem (1.110) follows from Theorems 1.17
and 1.29.

The second half of the theorem, when Tow = ∅, follows from equivalence
of the Neumann problem to the corresponding singular integral equation
(1.43)–(1.44) in appropriate space, which can be proved as in Theorem 1.14,
and from appropriate assertions on singular integral equations in § 4.

Remark 1.31 Fredholm and solvability properties of pseudodifferential
equations (1.69), (1.70), (1.72) can easily be derived from Theorems 1.28
and 1.30 (see Theorems 1.19 and 1.20). To save the space we leave this to
readers.

2 Convolutions with elliptic symbols

2.1 Boundedness properties

C∞0 (R) denotes the Frechet space of all infinitely differentiable functions
on R := (−∞,∞) with compact supports supp ϕ and D′(R) – the dual
space of distributions.

The convolution operator W 0
a with a symbol a ∈ L∞(R) is defined as

follows
W 0

aϕ := F−1aFϕ , ϕ ∈ C∞0 (R), (2.1)

where

Fϕ(ξ)=
∫
R

eiξxϕ(x)dx and
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F−1ψ(x)= (2π)−n

∫
R

e−ixξψ(ξ)dξ, x, ξ ∈ Rn, (2.2)

are the Fourier transforms.
Mp(R) denotes, as usual (see [Du1, Hr1], the class of Fourier Lp-

multipliers, i.e., the class of all those symbols a(λ) ∈ L∞(R) for which
the operator W 0

a admits a bounded extension

W 0
a : Lp(R) → Lp(R) (2.3)

for all 1 < p <∞ (see [BS1, Du1, RS1]).
In particular, if symbol a(λ) has: one of the following properties:

i. bounded total variation a ∈ V1(R) (B.Stechkin theorem),

ii. if

a ∈ C1(R \ {0}) , |a(t)| ≤M0 <∞ , |ta′(t)| ≤M0 <∞ (2.4)

(J.Marcinkievicz theorem),

iii. belongs to the Wiener algebra

a ∈W (R) := {a(λ) = c+ Fk(λ) : k ∈ L1(R)} ,

then a ∈ Mp(R). Moreover, in the case (iii.) W 0
a is written as an integral

convolution

W 0
aϕ(x) = cϕ(x) +

∞∫
−∞

k(x− y)ϕ(y)dy ,

while in general case convolution has distributional kernel (see [Du1, Hr1,
St1] for details).

Let Ṙ and R̈ denote one point and two point compactifications of the
real axes

Ṙ := R ∪ {∞} , or R̈ := R ∪ {±∞}

respectively and PC(Ṙ) denote the space of all piecewise-continuous func-
tions on Ṙ, i.e., the space of all functions a(λ) on R which have finite limits
a(λ ± 0) for all λ ∈ Ṙ. The space PC(Ṙ) coincides with the closure of
all piecewise-constant functions on Ṙ with respect to the uniform norm
(in L∞(Ṙ); see [Du1]). Let PCp(Ṙ) be the same closure of all piecewise-
constant functions with respect to the multiplier norm ‖a

∣∣Mp(R)‖ := ‖W 0
a

∣∣
L (Lp(R))‖. Then

PC2(Ṙ) = PC(Ṙ) , V1(R),W (R) ⊂
⋂

1<p<∞
PCp(Ṙ) .
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For a matrix symbol a ∈ PCN×N
p (Ṙ) invertibility criteria of the operator

W 0
a in Lp(R) space reads

inf
λ∈R

|det a(λ)| > 0 , (2.5)

which yields a−1 ∈ PCN×N
p (Ṙ) and the inverse operator is W 0

a−1 (see [Du1,
Hr1] for these and other properties of multipliers).

Moreover, we can take 1 ≤ p ≤ ∞ and involve new spaces. Namely
W 0

a has bounded extensions in the following spaces of smooth functions:
Cm

0 (Ṙ), Cm(Ṙ), Cm
0 (R̈) for all m = 0, 1, . . . (see [Kr1]). These spaces are

defined as follows.
Let X be either one point or two point compactifications of the real

axes and Cm(X) denote the Banach space of continuous functions on the
compact Hausdorff set X, which have continuous derivatives up to the
order m and is endowed with the appropriate uniform norm

‖ϕ‖ =
m∑

k=0

sup
t∈R

∣∣∣∣( dk

dtk
ϕ

)
(t)
∣∣∣∣

(Cm(X) is even a Banach algebra with pointwise multiplication). Note,
that a function ϕ ∈ Cm(Ṙ) and its derivatives have equal limits at infinity
(dk/dtk)ϕ(∞) = (dk/dtk)ϕ(±∞) while function ϕ ∈ Cm(R̈) might have two
different limits (dk/dtk)ψ(±∞) for all k = 0, 1, . . . ,m.

Cm
0 (Ṙ) denotes the subspace (the sub-algebra) of Cm(Ṙ) of those func-

tions ϕ(x) which vanish at infinity with all derivatives up to the order m:

Cm
0 (Ṙ) :=

{
ϕ ∈ Cm(Ṙ) : ϕ(∞) = · · · =

(
dm

dtm
ϕ

)
(∞) = 0

}
.

Let
Waϕ := r+W

0
a `0ϕ , ϕ ∈ C∞0 (R+) , (2.6)

where r+ denotes the restriction to R+ from R, while `0–the right inverse to
r+ which extends functions by 0 from R+ to R. Let Lp(R+, ρ), ρ(x) ≥ 0,
denote the weighted Lebesgue space endowed with the standard norm
‖ϕ
∣∣Lp(R+, ρ)‖ := ‖ρϕ

∣∣Lp(R+)‖.

Lemma 2.1 (see [Du1, Sc1]). Let a ∈ V1(R) and

1 < p <∞ , −1
p
< α, γ < 1− 1

p
. (2.7)

Then

Wa : Lp(R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α) (2.8)
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is continuous.

Let β ∈ R and

L
〈β〉
1 (R) :=

 L1(R+) ∩ L1(R−, (1− x)−β) for β < 0 ,

L1(R−) ∩ L1(R+, (1 + x)β) for β > 0 ,

where R− := (−∞, 0]. Let further

Wβ(R) :=
{
a(λ) = c+ Fk(λ) : c = const , k∈L1(R, (1 + |x|)|β|)

}
, (2.9)

W
〈β〉
1 (R) :=

{
a(λ) = c+ Fk(λ) : c = const , k ∈ L〈β〉1 (R)

}
(2.10)

and endow them with the appropriate norms

‖a
∣∣Wβ(R)‖ := |c|+ ‖k

∣∣L1(R, (1 + |x|)|β|)‖ for ± β > 0 ,

‖a
∣∣W 〈β〉(R)‖ := |c|+ ‖k

∣∣L〈β〉1 (R)‖ = |c|+ ‖k
∣∣L1(R∓)‖

+‖k
∣∣L1(R±, (1 + |x|)|β|)‖ for ± β > 0

provided a(λ) = c+ Fk(λ). Obviously, Wβ(R) ⊂W 〈β〉(R).
Let C(Ṙ+) denote the restriction of the space C(Ṙ) to the semi-axes

R+ and C(Ṙ+, (1 + x)β) denote the weighted space of functions ϕ(x) on
the semi-axes R+ for which (1 + x)βϕ(x) belong to C(Ṙ+).The space is
endowed with the appropriate weighted norm ‖ϕ

∣∣C(Ṙ+, (1+x)β)‖ := ‖(1+
x)βϕ(x)

∣∣C(Ṙ+)‖.

Lemma 2.2 Let a ∈W 〈β〉(R) and β ∈ R. Then the operator

Wa : C(Ṙ+, (1 + x)β) −→ C(Ṙ+, (1 + x)β) (2.11)

is continuous7) and

lim
x→∞

(1 + x)βWaϕ(x) = a(0) lim
x→∞

(1 + x)βϕ(x) , (2.12)

‖Wa

∣∣C(Ṙ+, (1 + x)β‖ ≤ ‖a
∣∣W 〈β〉(R)‖ . (2.13)

Proof. For a(λ) = c we have Wa = cI and the assertion is trivial. Thus,
we can take a = Fk, k ∈ L〈β〉1 (R).

The integral

W 0
a =

∞∫
−∞

k(x− y)ϕ(y)dy =

∞∫
−∞

k(y)ϕ(x− y)dy

7)See similar assertions in [GF1, Pr1, PS1].
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is continuous function for a continuous ϕ ∈ C(Ṙ+, (1 + x)β) and we should
check only (2.12)–(2.13).

Obviously,

‖Wa

∣∣C(Ṙ+, (1 + x)β)‖ ≤ Kβ ,

Kβ = sup
x∈R+

∞∫
0

(
1 + x

1 + y

)β

|k(x− y)|dy .
(2.14)

If β < 0, applying the inequality

1 + x ≤ (1 + |x− y|)(1 + y) , x, y ∈ R+ , (2.15)

we proceed as follows

Kβ ≤ sup
x>0

 x∫
0

(
1 + x

1 + y

)β

|k(x− y)|dy +

∞∫
x

(
1 + y

1 + x

)−β

|k(x− y)|dy


≤ sup

x>0

 ∞∫
0

|k(x− y)|dy +

∞∫
x

(1 + |x− y|)−β |k(x− y)|dy


≤
∞∫
0

|k(t)|dt+

0∫
−∞

(1 + |t|)−β |k(t)|dt = ‖a
∣∣W 〈β〉(R)‖ .

Now let β > 0. Similarly to the foregoing case we find (see (2.14) and
(2.15))

Kβ ≤ sup
x>0

 x∫
0

(
(1 + x

1 + y

)β

|k(x− y)|dy +

∞∫
x

(
(1 + x

1 + y

)β

|k(x− y)|dy


≤ sup

x>0

 x∫
0

(1 + |x− y|)β |k(x− y)|dy +

∞∫
x

|k(x− y)|dy


≤ sup

x>0

 x∫
0

(1 + t)β |k(t)|dt+

0∫
−∞

|k(t)|dt

 = ‖a
∣∣Wβ(R)‖ .

To prove (2.12) (for arbitrary β ∈ R) we represent

ϕβ(x) := (1 + x)βϕ(x) = ϕβ(∞) + ϕ0
β(x) , ϕ0

β(∞) = 0

and suppose that both ϕ0
β(x) and k(t) have compact supports

suppϕ0
β ⊂ [0, c1] , supp k ⊂ [−c2, c2] .
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Since such functions are dense in appropriate spaces, this does not restricts
generality. Then

lim
x→∞

(1 + x)βWaϕ(x) = lim
x→∞

∞∫
0

(
1 + x

1 + y

)β

k(x− y)ϕβ(y)dy

= lim
x→∞

c1∫
0

(
1 + x

1 + y

)β

k(x− y)ϕ0
β(y)dy

+ϕβ(∞) lim
x→∞

∞∫
0

(
1 + x

1 + y

)β

k(x− y)dy = a(0)ϕβ(∞) ,

since

k(x− y)ϕ0
β(y) = 0 if x ≥ c1 + c2,

lim
x→∞

∞∫
0

(
1 + x

1 + y

)β

k(x− y)dy = lim
x→∞

c2∫
−c2

(
1 + x

1 + x− t

)β

k(t)dt

=

c2∫
−c1

k(t)dt =

∞∫
−∞

k(t)dt = a(0) .

This accomplishes the proof.

2.2 Fredholm properties

Lemma 2.3 Let β ∈ R. Then Wβ(R) ⊂ W0(R) = W (R) ⊂ C(Ṙ) is an in-
verse closed Banach algebra in C(Ṙ), which reads: the element a ∈Wβ(R)
is invertible if and only if it is invertible in C(Ṙ), i.e., iff inf

λ∈R
|a(λ)| > 0,

and then a−1 ∈Wβ(R).

Proof. The proof see in [GRS1, § 18].

Let for a matrix-function a = [ajk]N×N with entries ajk ∈ A use the
same notation a ∈ A.

Lemma 2.4 Let β ∈ R and a matrix-function a ∈Wβ(R) be elliptic

inf
λ∈R

|det a(λ)| > 0 . (2.16)

Then a(λ) has the following factorization

a(λ) = a−(λ) diag
{(

λ− i

λ+ i

)κ1

, . . . ,

(
λ− i

λ+ i

)κN
}
a+(λ) (2.17)
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where the matrix-functions a±− ∈ Wβ(R) and a±+ ∈ Wβ(R) have uniformly
bounded analytic extensions a±−(λ − iσ) and a±+(λ + iσ) in the lower and
upper σ > 0 complex half-planes, respectively. The integers κ1, . . . ,κN are
known as the partial indices of the factorization (2.17).

Proof. For the algebra W (R) = W0(R) the proof is well-known (see, e.g.,
[GF1]) and we follow the same scheme: if all rational functions are dense in
Wβ(R) (a rationally dense algebra) and the Hilbert transform

SRϕ(x) =
1
πi

∞∫
−∞

ϕ(y)dy
y − x

= −W 0
sign λ ϕ(x) , x ∈ R (2.18)

(see [Du1, Lemma 1.35]) is bounded there (a decomposable algebra), then
according to the general theorem proved in [BG1] (see also [CG1, GF1]) all
invertible elements of Wβ(R) would possess factorization (2.17). Invertibil-
ity of a ∈Wβ(R) under condition (2.16) is provided by Lemma 2.3.

Rational density of Wβ(R) follows since the Laguerre polynomials are
dense in L1(R, (1 + |x|)|β|) (see, e.g., [GF1, § 8]).

Wβ(R) is a decomposable because FSRF−1ψ(λ) = − sign λψ(λ) (see
(2.18)) is a bounded operator in L〈β〉1 (R) and Wβ(R) = const +FL1(R, (1+
|x|)|β|)) (see (2.8)).

Let us consider a = c+ Fk ∈Wβ(R) and the corresponding equation

W 0
aϕ(x) = c ϕ(x) +

∞∫
−∞

k(x− y)ϕ(y)dy = f(x) , x ∈ R+ (2.19)

(cf. (2.5)).

Theorem 2.5 Equation (2.19) in the space C(Ṙ+, (1 + x)β), β ∈ R is
Fredholm if and only if the symbol a(λ) is elliptic (see (2.16)). If this
is the case, then

Ind Wa = − ind a .

If, in addition, (2.19) is a scalar equation N = 1, then:

i. equation (2.19) is uniquely solvable for all f ∈ C(Ṙ+, (1+x)β) provided
ind a = 0;

ii. if κ = ind a < 0 equation (2.19) has a solution ϕ ∈ C(Ṙ+, (1 + x)β)
for all f ∈ C(Ṙ+, (1 + x)β) and the homogeneous equation f = 0 has
exactly −κ linearly independent solutions;

iii. if κ = ind a > 0 equation (2.19) has a solution ϕ ∈ C(Ṙ+, (1 + x)β)
only for those right-hand sides f ∈ C(Ṙ+, (1 + x)β) for which

∞∫
0

f(y)gj(y)dy = 0 , j = 1, . . . ,κ ,
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where g1, . . . , gκ are all solutions to the dual homogeneous equation

c g(x) +

∞∫
−∞

k(y − x)g(y)dy = 0 (2.20)

in the dual space C(Ṙ+, (1 + x)−β).

If the solution exists it is unique.

Proof. The proof is standard and based on Lemmata 2.3, 2.4 (see [Du1,
GF1, GK1, Kr1] for similar proofs, except the last claim).

Concerning the last claim–we replaced the adjoint space C∗(Ṙ+, (1+x)β)
by the dual one C(Ṙ+, (1 + x)−β); this is possible since the equation (2.20)
has the same solutions in these two spaces (see [Du5] for a similar assertion).

The last claim follows also from Lemma 1.21. which states that equation
has the same solutions in two spaces B1 ⊂ B2 provided the embedding is
dense and the equation has a common regularizer in B1 and inB2.

Now let a ∈ V1(R); then Wa can be written as integral convolution (2.19)
only conventionally–the kernel k(t) is a distribution. If a(λ) possesses a
single jump, operator Wa is not bounded in C(Ṙ+, (1 + x)β) because the
Hilbert transform (2.18) is not bounded in these space.

Thus, we should consider equation (2.19) with a ∈ PCp(R)in the Le-
besgue space Lp(R+, xα(1 + x)γ−α) with weight under conditions (2.7).
With equation (2.19) we associate the symbol

aω(λ, ξ) :=
1 + cothπ[iβ(λ) + ξ]

2
a(λ− 0)

+
1− cothπ[iβ(λ) + ξ]

2
a(λ+ 0) , λ ∈ Ṙ , ξ ∈ R , (2.21)

where (note, that a ∈ PCp(R) has limits a(λ± 0), λ ∈ Ṙ including infinity
a(∞± 0) := a(∓∞)). ω := (p, α, γ) reminds the space and

β(λ) :=


1
p , if λ 6= 0,∞ ,

1
p + α, if λ = 0,

1
p + γ, if λ = ∞ .

Theorem 2.6 Let a ∈ PCp(R); the weight ρ(t) be defined by (1.2) and
satisfy appropriate (namely the first) condition in (1.4).

Equation (2.32) is Fredholm in the space Lp(R+, xα(1+x)γ−α) if and
only if the symbol aω(λ, ξ) is elliptic

inf
λ∈Ṙ, ξ∈R

|det aω(λ, ξ)| > 0 .
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If this is the case, then

Ind Wa = − 1
2πi

∞∑
j=1

{
[arg a(λ)]λ∈[λj ,λj+1] + [arg aω(λj , ξ)]ξ∈R

}
, (2.22)

where {λj}∞j=1 ⊂ Ṙ denotes the set of all points where a ∈ V1(R) has jumps
a(λj − 0) 6= a(λj + 0) and 8) [arg g(t)]t∈I denotes the increment of any
continuous branch of arg g(t) as t ranges through I in the positive direction.

If, in addition, (2.19) is a scalar equation N = 1, then:

i. equation (2.19) is unuquelly solvable for all f ∈ Lp(R+, xα(1+x)γ−α)
provided Ind Wa = 0;

ii. if κ = Ind Wa > 0 (2.19) has a solution ϕ ∈ Lp(R+, xα(1 + x)γ−α)
for all f ∈ Lp(R+, xα(1+x)γ−α) and the homogeneous equation f = 0
has exactly κ linearly independent solutions;

iii. if κ = ind Wa < 0 (2.19) has a solution ϕ ∈ Lp(R+, xα(1 + x)γ−α)
only for those right-hand sides f ∈ Lp(R+, xα(1 + x)γ−α) for which

∞∫
0

f(y)gj(y)dy = 0 , j = 1, . . . ,−κ ,

where g1, . . . , g−κ are all solutions of the dual homogeneous equation

c g(x) +

∞∫
−∞

k(y − x)g(y)dy = 0 (2.23)

in the dual space Lp′(R+, x−α(1 + x)−γ+α) with p′ :=
p

p− 1
.

If solution exists it is unique.

Proof. For the proof we quote [Du1] (the case α = γ = 0) and [Sc1] (the
case α 6= 0, β 6= 0).

2.3 Some proofs

Proof of Lemma 1.1. Let, for definiteness, consider the domain Ω+. Since
Φ ∈ X (Ω+) we have

Φ(z) = c0 +
1

2πi

∫
Γ

Φ+
0 (τ)dτ
τ − z

, z ∈ Ω+ ,

8)The set {λj}∞j=1 is at most countable and the sum in (2.22) is convergent (see, e.g.,

[Du1]).
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where Φ+
0 ∈ X(Γ) is the trace of Φ0(z) := Φ(z)− c0 on Γ from Ω+. On the

other hand

Φ(z) = c0 +
1

2πi

∫
Γ

ϕ(τ)dτ
τ − z

, z ∈ Ω+ ,

for some ϕ ∈ X(Γ) (see (1.3)) and we get∫
Γ

Φ+
0 (τ)− ϕ(τ)
τ − z

dτ ≡ 0 , z ∈ Ω+ .

The obtained equality means

Φ+
0 (t)− ϕ(t) = Ψ−(t) , t ∈ Γ , (2.24)

where Ψ ∈ X (Ω−); therefore,

Ψ(z) = −CΓϕ(z) := − 1
2πi

∫
Γ

ϕ(τ)dτ
τ − z

, z ∈ Ω−,

and Ψ(z) → 0 as |z| → ∞, since CΓΦ+
0 (z) ≡ 0 for z ∈ Ω−. In fact, P+

Γ Φ+
0 =

Φ+
0 yields P−Γ Φ+

0 = 0 (we remind that P−Γ + P+
Γ = I; see (1.50)). On the

other hand, due to the Plemelji formula for CΓϕ in (1.25) (CΓΦ+
0 )− =

P−Γ Φ+
0 = 0 and the analytic function CΓΦ+

0 (z), z ∈ Ω− vanishing on the
boundary vanishes everywhere in Ω−.

(2.24) can be written as follows

Re (−iΨ−)(t) = Im Ψ+(t) = Im Φ+
0 (t) , t ∈ Γ

if ϕ(t) = Re ϕ(t) = Re Φ+
0 (t)− Re Ψ−(t) is pure real and

Re Ψ−(t) = Re Φ+
0 (t) , t ∈ Γ,

if ϕ(t) = i Im ϕ(t) = i Im Φ+
0 (t) − i Im Ψ−(t) is pure imaginary. Since

Φ+
0 (t) is known, solvability of the obtained Riemann–Hilbert problems is

equivalent to the claimed representations.

Proof of Lemma 1.2. If (0.2) holds and Ω± has no outward peak (Tow =

∅), u± ∈ W
1
2
2 (Γ) due to theorem on traces (see, e.g., [Tr1])). Although

∂~νu ∈ W 0
2,com(Ω±), we can not claim (∂~νu)± ∈ W

− 1
2

2 (Γ) because the trace
does not exists. But u is harmonic ∆u(z) = 0 in Ω± and from the Green
formula (1.13) we get∮

Γ

∂~ν(τ)u(τ)v(τ)dτ = ±
2∑

j=1

∫
Ω±

∂ju(y)∂jv(y)dy . (2.25)
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Taking arbitrary v ∈ W 1
2,com(Ω±), which implies v± ∈ W

1
2
2 (Γ) due to theo-

rem on traces, by duality of spaces from (2.25) follows (∂~νu)± ∈W
− 1

2
2 (Γ).

Since u(z) is a harmonic function, due to representation formula (1.15)

u(z) = Re u(z) = χ−(z)u(∞)±WΓu
±(z)∓ VΓ(∂~νu)±(x)

= χ−(z)u(∞)±WΓu
±(z)∓ Re (∂zVΓ)v±(z) (2.26)

= χ−(z)u(∞) + Re (CΓu±)(z) , u±(t) := ±u±(t) + iRe v±(t) ,

v±(t) :=
∫
^
ct

(∂~ν(τ)u)±(τ)dτ , z ∈ Ω± , t ∈ Γ .

From (2.26) we get the inclusion into the Smirnov class u ∈ w
1
2
2 (Ω±) with

the complex valued density u± ∈W
1
2
2 (Γ) because u±, v± ∈W

1
2
2 (Γ).

Vice versa, u ∈ w
1
2
2 (Ω±), also for Ω± with peaks, implies the represen-

tation

u(z) = u(∞) + Re CΓϕ(z) , z ∈ Ω± , ϕ ∈W
1
2
2 (Γ) .

Then u(z) is harmonic in Ω± and u(z) = u(∞)+O((1+ |z|)−1) as |z| → ∞
and, due to Theorem 1.8, u ∈W 1

2 (Ω±).

Proof of Theorem 1.5. The first and the second claims for s = m = 0
follows from representations (1.17), (1.18) and boundedness of the singular
integral operator SΓ (see (1.5)) in Lp(Γ, ρ) (see, e.g., [GK1, Kh1, Pr1]) and
in H0

µ(Γ, ρ) (see [Du6, Du7] and also [Du3, Du5]).
The operators

W
(k)
Γ,0ϕ(t) :=

1
4
(
SΓ + V hkSΓh

−kV
)
ϕ(t)

=
1

4πi

∫
Γ

ϕ(τ)

[
dτ

τ − t
− hk(t)

hk(τ)

dτ

τ − t

]
(2.27)

are bounded in Lp(Γ, ρ) and in H0
µ(Γ, ρ) by the same reason.

For a closed contour ∂tSΓϕ = SΓ∂tϕ and we get

∂tWΓ,0ϕ :=
1
4

(
∂tSΓ + V

dt

dt
∂tSΓV

)
ϕ

=
1
4
(
SΓ + V h2SΓh

−2V
)
∂tϕ = W

(2)
Γ,0∂tϕ (2.28)

(cf. (1.17)–(1.21), (1.26)); therefore WΓ,0 is bounded in W 1
p (Γ, ρ) and in

H0
1+µ(Γ, ρ). By interpolation (see [Tr1]) we get boundedness of WΓ,0 in

W s
p (Γ, ρ) for 0 ≤ s ≤ 1.
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Since the operator W ∗Γ,0 is adjoint to WΓ,0, it is automatically bounded
in adjoint space W s

p (Γ, ρ) (see, e.g., [Tr1]) to W−s
p′ (Γ, ρ) for −1 ≤ s ≤ 0 and

p′ := p/(p− 1).
Let us prove the last claim.
VΓ has a weak singular kernel and, therefore,

‖VΓϕ
∣∣Lp(Γ, ρ)‖ ≤ C1‖ϕ

∣∣Lp(Γ, ρ)‖ ;

on the other hand, due to (1.19),

‖∂tVΓϕ
∣∣Lp(Γ, ρ)‖ = ‖(SΓ + V SΓV )ϕ

∣∣Lp(Γ, ρ)‖ ≤ C2‖ϕ
∣∣Lp(Γ, ρ)‖ .

and we get the final estimate

‖VΓϕ
∣∣W 1

p (Γ, ρ)‖ = ‖VΓϕ
∣∣Lp(Γ, ρ)‖+ ‖∂tVΓϕ

∣∣Lp(Γ, ρ)‖ .

Similarly for the Hölder spaces H0
µ(Γ, ρ) → H0

1+µ(Γ, ρ).

Proof of Theorem 1.6. It suffices to show that W (k)
Γ,0 are bounded in

PC(Γ, ρ) for even k = 0, 2, . . . and W
(0)
Γ,0 = WΓ,0 is bounded in C(Γ, ρ). In

fact, h±I are bounded in PC(Γ, ρ) and boundedness of W ∗Γ,0 in PC(Γ, ρ)
follows since

W ∗Γ,0 = −hW (2)
Γ,0hI

(cf. (1.18), (2.27)). By virtue of (1.22) we get

‖WΓ,0ϕ
∣∣PC1(Γ, ρ)‖=‖WΓ,0ϕ

∣∣C(Γ, ρ)‖+ ‖∂tWΓ,0ϕ
∣∣PC(Γ, ρ)‖ ,

=‖WΓ,0ϕ
∣∣C(Γ, ρ)‖+ ‖W (2)

Γ,0∂tϕ
∣∣PC(Γ, ρ)‖ .

which means boundedness of WΓ,0 in PC1(Γ, ρ).
Integral operator K with a weak singular kernel

|k(t, τ)| ≤ C|t− τ |ν−1 , 0 < ν ≤ 1 , t, τ ∈ Γ, (2.29)

is bounded (moreover, is compact) in spaces C(Γ, ρ) and in PC(Γ, ρ).
In fact, this is easy to ascertain for ρ(t) ≡ 1. For ρ(t) 6≡ 1 we have to

prove that K1 := ρKρ−1I −K is compact in C(Γ) and in PC(Γ).
The kernel k1(t, τ) of K1 has the following estimate

|k1(t, τ)| = |ρ(t)− ρ(τ)|k(t, τ)
ρ(τ)

≤ C
gρ(t, τ)
ρ(τ)

|t− τ |ν−1 ;

here gρ(t, τ) = |t − τ |δj when both t and τ are close to the knot tj , j =
1, . . . , n and gρ(t, τ) = |t− τ | otherwise. Thus, k1(t, τ) is weak singular and
compactness (in C(Γ) and in PC(Γ)) follows.
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Let Γ′ be another Ljapunov contour and ω : Γ → Γ′ be a diffeomor-
phism with analytic continuation in some neighbourhood of cuspidal wedge
Uj ⊂ Ω+ (outward peak of Ω+) of cusps cj with γj = 0. Then the operator

Kω := ω−1
∗ SΓω∗ − SΓ , ω∗ϕ(t) = ϕ(ω(t)) , t ∈ Γ , (2.30)

where ω−1 : Γ → Γ′ is the inverse diffeomorphism, has a weak singular
kernel (2.29) (see [DLS1, § 3.5] and [Kh1, GK1]).

Due to representations (1.17)–(1.19), (2.27) and to boundedness of op-
erator Kω in C(Γ, ρ) and in PC(Γ, ρ) (see (2.29) and further) the contour Γ
can be replaced by another one Γ′ for which we can find a diffeomorphism
ω : Γ → Γ′ with local analytic continuation in the vicinity of cusps.

-

���
���

���
���� - -r rπγj

tj Γ+
j

Γ−j

Γ+
j

Γ+
jtj tj

Γ−j

Γ−j
0 < γj < 2 γj = 0 γj = 2

Fig. 2

Due to this we can suppose Γj has rectilinear parts Γ+
j and Γ−j+1 in

some neighbourhoods of the endpoints tj and tj+1 except cusps; for a cusp
γj = 0, 2 the right neighbourhood Γ+

j ⊂ Γj is rectilinear in the vicinity
of tj , while the left neighbourhood Γ−j ⊂ Γj−1 is not (we remind, that
{tj} = Γj−1

⋃
Γj ; see Fig. 2). Let

Γ0
j = Γ−j

⋃
Γ+

j , Γ0 =
n⋃

j=1

Γ0
j , Γ0 = Γ \ Γ0 . (2.31)

Let v0 ∈ C1(Γ) be a cut-off function with supp v0 ⊂ Γ0 and v0(t) = 1
in some neighbourhoods of all knots t1, . . . , tn. Then

W
(k)
Γ,0 = (1− v0)W

(k)
Γ,0 + v0W

(k)
Γ0,0 + v0W

(k)
Γ0,0 . (2.32)

Γ0 is free of knots t1, . . . , tn and operators (1 − v0)W
(k)
Γ,0 , v0W

(k)
Γ0,0 have

weak singular kernels. In fact, kernels of these operators read

k2(t, τ)= [1− v0(t)]k0(t, τ) ,

k3(t, τ)= v0(t)χ0(t)k0(t, τ) , t, τ ∈ Γ ,
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where χ0(t) is the characteristic function of Γ0 and

k0(t, τ)=
1
πi

[
1

τ − t
− hk(t)

hk(τ)

1
τ − t

dτ

dτ

]

=
1
πi

[
1

τ − t
− 1
τ − t

dτ

dτ

]
− hk(t)− hk(τ)

hk(τ)(τ − t)

dτ

dτ
. (2.33)

k0(t, τ) = k1(t, τ) = 0 if t, τ 6∈ Γ0; therefore we can suppose t, τ ∈ Γ0

because otherwise k2(t, τ) and k2(t, τ) are bounded. Γ0 consists of n disjoint
smooth arcs and k0(t, τ) is the kernel ofW (k)

Γ,0 = SΓ−V hkSΓh
−kV ; therefore

we can apply a diffeomorphism ω : Γ0 → ΓR ⊂ R which transforms Γ0 to
the finite union of intervals on the real axes. Since ω−1

∗ W
(k)
Γ0,0ω∗ differs from

W
(k)
ΓR,0 by a compact operator with weak singular kernel, we can consider

W
(k)
ΓR,0. But the first summand in representation (2.33) of the kernel of

operator W (k)
ΓR,0 vanishes

1
τ − t

− 1
τ − t

dτ

dτ
= 0 , t, τ ∈ ΓR ⊂ R ,

while the second summand is weak singular, because the function hk(ω−1(t))
is C1+ν-continuous.

Thus, we have to consider only operator v0W
(k)
Γ0,0 in (2.32). This can be

simplified further and we need to treat only operators W (k)

Γ0
j ,0

, because the
difference

T0 = v0

W (k)
Γ0,0 −

n∑
j=1

W
(k)

Γ0
j ,0


is compact (has a bounded kernel).

Let 0 < γj < 2. Without loss of generality we can suppose that

Γ0
j = Γ−j

⋃
Γ+

j , Γ+
j = (0, 1] , Γ−j =

{
eiγjx : 0 ≤ x ≤ 1

}
.

Consider the transformation

Zγj ,δj
ϕ(x) :=

[
e−δjxϕ(e−x)

e−δjxiϕ(eπγj−x)

]
, x ∈ R+, (2.34)

and its inverse

Z −1
γj ,δj

[
ψ1

ψ2

]
(t) = χ0

+(t)t−δjψ1(− log t)

+χ0
−(t)eπγjδjit−δjψ2(πγj − log t) , t ∈ Γ0

j ,
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where χ0
+ and χ0

− are the characteristic functions of Γ+
j and Γ−j , respectively.

Zγj ,δj arranges the isomorphism of the space PC(Γ0
j , t

δj ) = PC(Γ0
j , ρ)

with the vector-space [C(Ṙ+)]2 = C(Ṙ+) × C(Ṙ+) (see § 1.1). The trans-
formed operator acquires the form

Zγj ,δj
W

(k)

Γ0
j ,0

Z −1
γj ,δj

=

[
0 Wa+

γj,δj ,k

Wa−γj,δj ,k
0

]
,

where

Wa±γj,δj ,k
ϕ(x) =

∞∫
0

k±γj ,δj ,k(x− y)ϕ(y)dy ,

a±γj ,δj ,k(λ) :=Ft→λ

[
k±γj ,δj ,k(t)

]
, λ, x ∈ R ,

k±γj ,δj ,k(t) = −e
±πγjk−δjt sinπγj + e−(δj+1)t sinπγj

2π(1− 2e−t cosπγj + e−2t)

:=
e−δjt

4πi

[
1

1− e−πγji−t
− e±πγjki

1− eπγji−t

]
.

Obviously,
k±γj ,δj ,k ∈ L1(R) iff 0 < δj < 1 (2.35)

and, due to Lemma 2.2, the transformed operator Zγj ,δjW
(k)

Γ0
j ,0

Z −1
γj ,δj

is

bounded in [C(Ṙ+)]2 because 0 < γj < 2 , 0 < δj < 1.
Now let γj = 0, 2. We can suppose without loss of generality that tk = 0

and

Γ+
j = J = (0, 1] ⊂ R+ ,

Γ−j = {zj(x) = x+ igj(x) : 0 ≤ x ≤ 1} ,

gj ∈ C1+ν(J ) , gj(0) = g′j(0) = 0 , gj(x) ≥ 0 ,

h(zj(x)) = 1 + igj(x) , h(x) = 1 , x ∈ J (see (2.21)) .

The transformation

Bjϕ(x) =
[

ϕ(x)
ϕ(zj(x))

]
, zj(x) = x+ igj(x) , x ∈ J , (2.36)

arranges the isomorphism

B : PC(Γ0
j , |t|δj ) −→ [C(J , |t|δj )]2
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and

BjW
(k)
Γj ,0B

−1
j =

[
0 −Ṽigj

Vigj
0

]
+
[

0 T12

T21 T22

]
,

where

T12 = Ñ−igj [(1− ig′j)
−k − 1] , T12 = [(1− ig′j)

k − 1]N−igj ,

T21 =−Kzj−(1− ig′j)
kKzj (1− ig′j)

−kI + (1− ig′j)
kSJ (1− ig′j)

−kI−SJ ,

VigjNigj −N−igj , Ṽigj = Ñigj (1 + ig′j)I − Ñ−igj (1− ig′j)I ,

N±igj

1
πi

1∫
0

ϕ(y)dy
y − x± igj(x)

, Ñ±igj
=

1
πi

1∫
0

ϕ(y)dy
y − x± igj(y)

and Kzj is defined in (2.30) (zj(x) see in (2.36)). Operators T12, T21, T22

all have weak singular kernels and there is left to prove boundedness of
operators Vigj

and Ṽigj
only.

It is easy to ascertain that

v(x) := Vigj
1(x)=−2gj(x)

π

1∫
0

dy

(y − x)2 + g2
j (x)

=
1
πi

log
[x+ igj(x)][1− x+ igj(x)]
[x− igj(x)][1− x− igj(x)]

,

ṽ(x) := Ṽigj
1(x)=

1
πi

1− x+ igj(x)
1− x− igj(x)

, x ∈ J ,

and v, ṽ ∈ C(J ). Functions

Vigjϕ(x)=Vigj [ϕ(y)− ϕ(x)] + ϕ(x)v(x) ,

Ṽigjϕ(x)= Ṽigj [ϕ(y)− ϕ(x)] + ϕ(x)ṽ(x)

are continuous provided ϕ ∈ C1(J ). On the other hand we get

∣∣Vigj
ϕ(x)

∣∣ = 2gj(x)
π

∣∣∣∣∣∣
1∫

0

ϕ(y)dy
(y − x)2 + g2

j (x)

∣∣∣∣∣∣
≤
‖ϕ
∣∣C(J )‖
π

∣∣∣∣∣∣
1∫

0

[
1

y − x+ igj(x)
− 1
y − x− igj(x)

]
dy

∣∣∣∣∣∣
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=
‖ϕ
∣∣C(J )‖
π

|v(x)| ,

∣∣∣Ṽigj
ϕ(x)

∣∣∣ = 2
π

∣∣∣∣∣∣
1∫

0

(y − x)g′j(y)− gj(y)
(y − x)2 + g2

j (y)
ϕ(y)dy

∣∣∣∣∣∣
≤ 2
π
‖ϕ
∣∣C(J )‖

{∣∣∣∣∣
1∫

0

[(y − x)g′j(y)− gj(y)][g2
j (x)− g2

j (y)]
[(y − x)2 + g2

j (y)][(y − x)2 + g2
j (x)]

dy

+g2
j (x)

1∫
0

(y − x)g′j(y)− gj(y)
(y − x)2 + g2

j (x)
dy

∣∣∣∣∣
}

≤ ‖ϕ
∣∣C(J )‖

[
(1 + ‖g′j

∣∣C(J )‖)2‖g′j
∣∣C(J )‖

+‖gj

∣∣C(J )‖(‖g′j
∣∣C(J )‖+ ‖g′j

∣∣C(J )‖)
] ∣∣∣∣∣∣ 1π

1∫
0

2igj(x)dy
(y − x)2 + g2

j (x)

∣∣∣∣∣∣
= Cgj

‖ϕ
∣∣C(J )‖|v(x)| ,

Cgj =
[
(1 + ‖g′j

∣∣C(J )‖)2‖g′j
∣∣C(J )‖

+‖gj

∣∣C(J )‖(‖g′j
∣∣C(J )‖+ ‖g′j

∣∣C(J )‖)
]
.

Obtained inequalities prove that Vigj
and Ṽigj

can be extended as continuous
operators from C1(J ) −→ C(J ) to C(J ) −→ C(J ).

3 Equations with non-elliptic symbols

3.1 Convolutions on R+

Let α, γ and p be as in (2.7) and the symbol a ∈ PCp(R) be non-elliptic
(vanishing at 0):

a(λ) =
λ

λ− i
a(−)(λ) , a(−) ∈ PCp(R) , inf

λ∈R
|det a(−)(λ)| > 0 . (3.1)

Then equation (2.19) is not Fredholm in Lp(R+, xα(1 + x)γ−α) due
to Theorem 2.6. Namely the image of the operator Im Wa is not closed in
Lp(R+, xα(1 + x)γ−α) (see [Du4, § 4]).
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In the present section, similarly to [Pr1, § 5.2], we define the spaces
→
Lp (R+, xα(1 + x)γ−α) and

←
Lp (R+, xα(1 + x)γ−α) such that the operators

Wa : Lp(R+, xα(1 + x)γ−α) −→
→
Lp (R+, xα(1 + x)γ−α) , (3.2)

Wa :
←
Lp (R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α) (3.3)

would be Fredholm.
Let

U0ϕ(x) :=

x∫
0

ϕ(y)dy , V∞ϕ(x) :=

∞∫
x

ϕ(y)dy , (3.4)

where we have to deal with an usual improper integral

∞∫
x

ϕ(y)dy := lim
t→∞

t∫
x

ϕ(y)dy . (3.5)

The operator V∞ in (3.5), Ṽζj in (1.90) and Ṽtj in (1.75) are equivalent
modulo isomorphism of the corresponding spaces (see Lemmata 1.27 and
3.8).

Let
→
Lp (R+, xα(1 + x)γ−α) :=

{
ϕ : ϕ,V∞ϕ ∈ Lp(R+, xα(1 + x)γ−α)

}
, (3.6)

←
Lp (R+, xα(1 + x)γ−α) :=

{
ψ + U0ϕ : ϕ,ψ ∈ Lp(R+, xα(1 + x)γ−α)

}
.

On defining the norms

‖ϕ
∣∣ →Lp (R+, xα(1 + x)γ−α)‖ := ‖ϕ

∣∣Lp(R+, xα(1 + x)γ−α)‖

+‖V∞ϕ
∣∣Lp(R+, xα(1 + x)γ−α)‖ ,

‖ϕ+ U0ψ
∣∣ ←Lp (R+, xα(1 + x)γ−α)‖ := ‖ϕ

∣∣Lp(R+, xα(1 + x)γ−α)‖

+‖ψ
∣∣Lp(R+, xα(1 + x)γ−α)‖

we make
→
Lp (R+, xα(1 + x)γ−α) and

←
Lp (R+, xα(1 + x)γ−α) into Banach

spaces.
The embedding

C∞0 (R+) ⊂
→
Lp (R+, xα(1 + x)γ−α) ⊂ Lp(R+, xα(1 + x)γ−α)

⊂
←
Lp (R+, xα(1 + x)γ−α) (3.7)
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are dense and follow from definitions.
Let

G± := Wg± , g± :=
λ

λ± i
. (3.8)

Then

G−ϕ(x) = ϕ(x)−
∞∫

x

ex−yϕ(y)dy , G+ϕ(x) = ϕ(x)−
x∫

0

ey−xϕ(y)dy (3.9)

and we can give equivalent description of spaces (3.6) in form of the following
lemma (see [Pr1, § 5.2] for a similar assertion).

Lemma 3.1 The following definitions of spaces are equivalent:
→
Lp (R+, xα(1 + x)γ−α) :=

{
G−ϕ : ϕ ∈ Lp(R+, xα(1 + x)γ−α)

}
= Im Lp(R+,xα(1+x)γ−α)G− ,

←
Lp (R+, xα(1 + x)γ−α) :=

{
ϕ : G+ϕ ∈ Lp(R+, xα(1 + x)γ−α)

}
= Im Lp(R+,xα(1+x)γ−α)G

−1
+ .

Proof. It suffices to prove that

‖ψ
∣∣ →Lp (R+, xα(1 + x)γ−α)‖0 := ‖G−1

− ψ
∣∣Lp(R+, xα(1 + x)γ−α)‖ , (3.10)

‖ϕ
∣∣ ←Lp (R+, xα(1 + x)γ−α)‖0 := ‖G+ϕ

∣∣Lp(R+, xα(1 + x)γ−α)‖ (3.11)

define equivalent norms. To check this let us prove that the operators

Wg−1
−
ψ = G−1

− ψ = ψ + V∞ψ , Wg−1
+
ψ = G−1

+ ψ = ψ + U0ψ (3.12)

represent inverses to G− and to G+, respectively. Let us check G−(I +
V∞)ϕ = ϕ, because all other cases are similar.

Due to the density of embedding (3.7) we have to check the claimed
equality only for ϕ ∈ C∞0 (R+). Then

V∞ϕ(x) =

∞∫
x

ϕ(y)dy

and integrating by parts we find

G−(I + V∞)ϕ(x) = ϕ(x) +

∞∫
x

ϕ(s)ds− e−x

∞∫
x

e−yϕ(y)dy

−e−x

∞∫
x

e−ydy

∞∫
0

ϕ(s)ds = ϕ(x) .
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By the definition of ϕ ∈
←
Lp (R+, xα(1+x)γ−α) we get G−1

− ϕ = ϕ+V∞ϕ ∈
Lp(R+, xα(1 + x)γ−α); therefore the mappings

G− : Lp(R+, xα(1 + x)γ−α) −→
→
Lp (R+, xα(1 + x)γ−α) ,

G−1
− :

→
Lp (R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α)

are one-to-one and continuous. Equivalence of the norm in
→
Lp (R+, xα(1 +

x)γ−α) and of the norm in (3.10) follows from the Banach theorem.
As we already know

G+(ϕ+ U0ϕ) = G+G−1
+ ϕ = ϕ ;

on the other hand ϕ ∈ Lp(R+, xα(1 + x)γ−α) implies G+ϕ ∈ Lp(R+, xα(1 +
x)γ−α) (see (3.8), (3.9)) and therefore G+U0ϕ = G+(ϕ + U0ϕ) − G+ϕ =
ϕ− G+ϕ ∈ Lp(R+, xα(1 + x)γ−α). Thus, the mappings

G+ :
→
Lp (R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α) ,

G−1
+ : Lp(R+, xα(1 + x)γ−α) −→

→
Lp (R+, xα(1 + x)γ−α)

are one-to-one and continuous. Equivalence of the norms in (3.11) and of
this in

←
Lp (R+, xα(1 + x)γ−α) follows from the Banach theorem.

Corollary 3.2 The spaces
→
Lp (R+, xα(1 + x)γ−α) and

←
Lp′ (R+, x−α(1 +

x)−γ+α), where p′ =
p

p− 1
, are dual.

Proof. The operators

Wg− = G− : Lp(R+, xα(1 + x)γ−α) −→
→
Lp (R+, xα(1 + x)γ−α) ,

Wg+ = G+ :
←
Lp (R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α)

(3.13)

define isomorphisms (see Lemma 3.1) and they are dual (conjugate) W ∗g± =
Wg∓ . The claimed result follows since the spaces Lp(R+, xα(1+x)γ−α) and
Lp′(R+, x−α(1 + x)−γ+α) are dual as well.

Lemma 3.3 The embedding

Lp(R+, xα(1 + x)1+γ−α) ⊂
→
Lp (R+, xα(1 + x)γ−α) ⊂ Lp(R+, xα(1 + x)γ−α)

⊂
←
Lp (R+, xα(1 + x)γ−α) ⊂ Lp(R+, xα(1 + x)−1+γ−α) (3.14)

are continuous and dense.
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Proof (see [Pr1, Ch. 5, Theorem 2.3]). We have to prove only the first and
the last embedding (see (3.7)).

Density of embedding follow from the density of C∞0 (R+) in all these
spaces.

First we check the embedding in (3.14). Obviously,

Lp(R+, xα(1 + x)1+γ−α) = Lp([0, 1], xα)
·
+ Lp([1,∞), (1 + x)1+γ) ,

→
Lp (R+, xα(1 + x)γ−α) = Lp([0, 1], xα)

·
+ Lp([1,∞), (1 + x)γ)

and it suffices to prove the embedding

Lp([1,∞), (1 + x)1+γ) ⊂
→
Lp ([1,∞), (1 + x)γ) . (3.15)

If we prove the inequality

‖V∞ϕ
∣∣Lp([1,∞), (1 + x)γ)‖ ≤ c1‖ϕ

∣∣Lp([1,∞), (1 + x)1+γ) , (3.16)

due to the norm definition in
→
Lp ([1,∞), (1 + x)γ) (see (3.6)) there will

follow the embedding (3.15).
Invoking the Hölder inequality we proceed as follows

|V∞ϕ(x)| =

∣∣∣∣∣∣
∞∫

x

ϕ(y)dy

∣∣∣∣∣∣ ≤
 ∞∫

x

y−(1+γ)p′dy

 1
p′
 ∞∫

x

∣∣y1+γϕ(y)
∣∣p dy

 1
p

≤ 1
(1 + γ)p′ − 1

‖ϕ
∣∣Lp([1,∞), (1 + x)1+γ)‖ ,

since −p′(1 + γ) < −1 (see (2.7)). Thus, V∞ϕ(x) exists as an ordinary
Lebesgue integral for arbitrary ϕ ∈ Lp([1,∞), (1 + x)1+γ).

For the function

f(s, t) := t |ϕ(st)| , s, t ∈ [1,∞),

we have
∞∫
1

f(s, t)ds =

∞∫
t

|ϕ(y)dy| ≥ |V∞ϕ(x)| ,


∞∫
1

[tγf(s, t)]pdt


1
p

= t−
1
p−γ−1


∞∫
t

∣∣y1+γϕ(y)
∣∣p

1
p

dy .

The latter equalities, inserted in the following well-known inequality
∞∫
1

 ∞∫
1

tγf(s, t)ds

p

dt


1
p

≤
∞∫
1


∞∫
1

[tγf(s, t)]p dt


1
p

ds
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(see [HLP1, Theorem 202]) yield

‖V∞ϕ
∣∣Lp([1,∞), (1 + x)γ)‖ ≤ 2γ

∞∫
1

s−
1
p−γ−1


∞∫
1

∣∣y1+γϕ(y)
∣∣p dy


1
p

dt

≤ 2γ

1
p + γ

‖ϕ
∣∣Lp([1,∞), (1 + x)1+γ)‖

since − 1
p − γ < 0 (see (2.7)).

Thus, (3.16) is proved and implies continuity of the first embedding in
(3.14).

The second embedding in (3.14) follows by density. In fact, as we already
proved the embedding

Lp′(R+, x−α(1 + x)1−γ+α) ⊂
→
Lp′ (R+, x−α(1 + x)−γ+α)

is continuous and dense. The spaces are reflexive and the embedding of the
dual spaces

←
Lp (R+, xα(1 + x)γ−α) ⊂ Lp(R+, xα(1 + x)−1+γ−α)

are continuous and dense as well.

Corollary 3.4 Let a ∈ C(Ṙ+); then

aI ∈ L
(→
Lp (R+, xα(1 + x)γ−α)

)
, aI ∈ L

(←
Lp (R+, xα(1 + x)γ−α)

)
,

provided

|a(x)− a(∞)| ≤M(1 + x))−1 , x ∈ R+ M <∞ .

Proof. It suffices to represent

aϕ = [a− a(∞)]ϕ+ a(∞)ϕ

and apply Lemma 3.3 to the first summand, because the second summand,
multiplication by a constant, is obviously continuous operator.

Theorem 3.5 Let a(λ) be given by (3.1) and (1.4) hold. Then operators
(3.2) and (3.3) are continuous.

Operators (3.2) and (3.3) are Fredholm or are invertible if and only if
the corresponding operators

Wa(−) : Lp(R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α) , (3.17)

Wa(+) : Lp(R+, xα(1 + x)γ−α) −→ Lp(R+, xα(1 + x)γ−α) , (3.18)

a(+)(λ) :=
λ+ i

λ
a(λ)
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are Fredholm or are invertible, respectively.
The pairs of operators (3.2) and (3.17), (3.3) and (3.18) have the kernels

and cokernels of equal dimension and equal indices.

Proof (see [Pr1, § 5.2.3] for a similar proof). Let b, d ∈ V1(R) and either
b(λ) has a bounded analytic continuation b(λ − iσ) in the lower half-plane
σ > 0 or d(λ) has a bounded analytic continuation d(λ + iσ) in the upper
half-plane σ > 0; then

Wbd = WbWd (3.19)

(see[Du1, GF1]). Since

a(λ) =
λ

λ− i
a(−)(λ) =

λ

λ+ i
a(+)(λ)

(see (3.1), (3.17) and (3.18)), we get

Wa = G−Wa(−) = G+Wa(+) (3.20)

(see (3.8) and (3.19)).
All claimed assertions follow from (3.20) since the operators

G− : Lp(R+, xα(1 + x)γ−α) −→
→
Lp (R+, (1 + x)γ−al) ,

G+ :
←
Lp (R+, xα(1 + x)γ−α) −→ Lp(R+, (1 + x)γ−al)

establish isomorphism (see Lemma (3.1)).

Remark 3.6 Defining the spaces
→
C (Ṙ+, (1 + x)β) :=

{
ϕ : ϕ,V∞ϕ ∈ C(Ṙ+, (1 + x)β)

}
,

←
C (Ṙ+, (1 + x)β) :=

{
ψ + U0ϕ : ϕ,ψ ∈ C(Ṙ+, (1 + x)β)

}
,

for β ∈ R and taking in (3.1) a, a(−) ∈Wβ(R), full analogies of Lemma 3.1
and of Theorem 3.5 can be proved for the convolution operators

Wa : C(Ṙ+, (1 + x)β) −→
→
C (Ṙ+, (1 + x)β) ,

Wa :
←
C (Ṙ+, (1 + x)β) −→ C(Ṙ+, (1 + x)β) .

As for the analogies of Lemma 3.3 and Corollary 3.4 we easily find that
continuity

[g − g(∞)]I : C(Ṙ+, (1 + x)β) −→
→
C (Ṙ+, (1 + x)β) ,

[g − g(∞)]I :
←
C (Ṙ+, (1 + x)β) −→ C(Ṙ+, (1 + x)β) ,

gI ∈ L
(→
C (Ṙ+, (1 + x)β)

)
, gI ∈ L

(←
C (Ṙ+, (1 + x)β)

)
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follows if

g ∈ C(Ṙ) , |g(x)− g(∞)| ≤M(1 + x))−1−ε , x ∈ R+ , M <∞ .

3.2 Convolutions on R
Let a ∈ PCp(R) be non-elliptic, namely, as in (3.1). Then operator W 0

a is
not Fredholm in Lp(R) and, moreover, has non-closed image Im W 0

a (see
[Du4, § 4]).

Let us consider the operators

V∞ϕ(x) :=

∞∫
x

ϕ(y)dy , dstV−∞ϕ(t) :=

t∫
−∞

ϕ(y)dy , (3.21)

F0ϕ :=

∞∫
−∞

ϕ(τ)dτ , t ∈ R ,

where the integrals are understood all as improper (see (3.5)). We define
the space

→
Lp (R) := {ϕ ∈ Lp(R) : V∞ ∈ Lp(R)}

= {ϕ ∈ Lp(R) : V±∞ ∈ Lp(R), F0ϕ = 0} (3.22)

and endow it with the norm

‖ϕ
∣∣ →Lp (R)‖ := ‖ϕ

∣∣ Lp(R)‖+ ‖V∞ϕ
∣∣ Lp(R)‖ .

To justify the second definition in (3.22) let us prove that the conditions

V−∞ϕ ∈ Lp(R) , F0ϕ = 0

follow from the principal condition V∞ϕ ∈ Lp(R). In fact, the inclusion
V−∞ϕ ∈ Lp(R) follows from the principal condition and from F0ϕ = 0,
since

V−∞ϕ(t) = F0ϕ− V∞ϕ(t) = −V∞ϕ(t) .

Thus, we have to prove only F0ϕ = 0. Since

F0ϕ = lim
t→−∞

V∞ϕ(t) ,

V∞ϕ ∈ Lp(R) is absolutely continuous with derivative (V∞ϕ) = ϕ ∈ Lp(R),
we get the result.

The embedding

{ϕ ∈ C∞0 (R) : F0ϕ = 0} ⊂
→
Lp (R)
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is dense.
Let us prove that the convolution operator

G− := W 0
g− : Lp(R) −→

→
Lp (R) , g−(λ) :=

λ

λ− i
. (3.23)

with vanishing symbol is bounded and, moreover, defines an isomorphism
with the inverse operator written as follows

(W 0
g−)−1 = Wg−1

−
= I + V∞ :

→
Lp (R) −→ Lp(R) (3.24)

(cf. Lemma 3.1). In fact, by the definition (3.22) the operator (3.24) is
bounded and, due to obvious equality W 0

gW
0
h = W 0

gh (see (2.1)) Wg−1
−

is the

inverse from the right to W 0
g− :

W 0
g−Wg−1

−
= W 0

g−g−1
−

= I .

Let us prove that the inverse operator (3.24) is bounded. According to
the definition (3.22) it suffices to prove that

V∞W
0
g−ϕ ∈ Lp(R) provided ϕ ∈ Lp(R) .

Since

W 0
g−ϕ(t) = ϕ(t)−

∞∫
x

et−τϕ(τ)dτ ,

we proceed as follows

V∞W
0
g−ϕ(t) = V∞ϕ(t)−

∞∫
t

dτ

∞∫
τ

eτ−yϕ(y)dy

= V∞ϕ(t)−
∞∫
t

ϕ(y)dy

y∫
t

eτ−ydy=V∞ϕ(t)−
∞∫
t

(1− eτ−y)ϕ(y)dy

=

∞∫
t

eτ−yϕ(y)dy = ϕ(t)−W 0
g−ϕ(t) (3.25)

and get the inclusion V∞W 0
g−ϕ ∈ Lp(R) because ϕ, W 0

g−ϕ ∈ Lp(R). More-
over, (3.25) can also be written as follows

(I + V∞)W 0
g−ϕ = ϕ ,

which means, due to (3.24), W 0
g−1
−
W 0

g− = I and W 0
g− is invertible from the

left.
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Similarly to (3.14) is proved that the embeddings

{ϕ ∈ Lp(R, 1 + |x|) : F0ϕ = 0} ⊂
→
Lp (R) ⊂ Lp(R, (1 + |x|)−1)

are continuous and dense.
If g ∈ L∞(Ṙ) has the estimate

|g(x)− g(∞)| ≤M(1 + |x|))−1 , x ∈ R , M <∞ , (3.26)

the following multiplication operators are bounded

[g − g(∞)]I : Lp(R) −→
→
Lp (R) , gI :

→
Lp (R) −→

→
Lp (R) . (3.27)

Theorem 3.7 Let a(λ) be as in (3.1). Operator W 0
a : Lp(R) −→

→
Lp (R)

is Fredholm if and only if W 0
a(−) is Fredholm in the space Lp(R), which

reads
inf
λ∈R

|a(−)(λ)| > 0 (3.28)

(see (2.5)). If (3.28) holds, (a(−))−1 ∈ PCN×N
p (Ṙ) and the inverse is

(W 0
a )−1 := W 0

(a(−))−1(I + V∞) :
→
Lp (R) −→ Lp(R) . (3.29)

Proof. Due to (3.23), (3.24) the proof can immediately be reduced to the
investigation of the operator W 0

a(−) in the space Lp(R). In this case the
Fredholm criteria is known (see (2.5)).

3.3 Operators V±∞, Vtj

We remind that Γ1 := {ζ ∈ C : |ζ| = 1} is the unit circumference,
Ξ := {ζ1, . . . , ζn} ⊂ Γ1 is the conformal image of all knots of Γ and Ξow

is the subset of Ξ (conformal image of all outward peaks of Γ; see (1.74)–
(1.91)); Γ1ζj

= Γ−1ζj
∪Γ+

1ζj
is a fixed neighbourhood of ζj (see (1.74)–(1.91)).

We use Lp(Γ1, {ζj}) for the space Lp(Γ1,Ξow) when Ξow = {ζj} consists of
a single knot.

For a Banach space X by Xn we denote the spaces of vector–elements
Ψ = (ψ1, . . . , ψn) with components ψj ∈ X. Let

L2
p(R, {∞}) :=

{
Φ = (ϕ1, ϕ2) ∈ L2

p(R) : Ṽ∞Φ ∈ Lp(R+)
}
, (3.30)

Ṽ∞Φ :=
[
e

2π
p iV∞ −V∞
0 0

] [
ϕ1

ϕ2

]
= V∞[e−

π
p iϕ1 − ϕ2]

(see (3.4) for V∞) denote the subset of L2
p(R) with the appropriate norm

‖Φ
∣∣L2

p(R, {∞})‖ := ‖Φ
∣∣Lp(R)‖+ ‖Ṽ∞Φ

∣∣Lp(R+)‖ .
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Lemma 3.8 There exists an isomorphism of spaces

Zpζj
: Lp(Γ1) −→ L2

p(R) ,

Zpζj : Lp(Γ1, {ζj}) −→ L2
p(R, {∞}) ,

(3.31)

such that the operators Ṽζj in (1.90) and Ṽ∞ in (3.4) are equivalent

Zpζj
Ṽζj

Z −1
pζj

= gjṼ∞hjI = gjṼ∞ +Rj , (3.32)

where the functions g±1
j , h±1

j ∈ C∞(Ṙ) are non-vanishing

gj(x) :=
(

1− ie−x

1 + e−2x

) 1
p

, hj(x) :=
(1 + e−2x)

1
p

(1− ie−x)1+
1
p

and the operator Rj : Lp(R) → Lp(R) is bounded.

Proof. The transformations

Zζj
ϕ(x) := |κ′ζj

(x)|
1
pϕ(κζj

(x)) = 2
1
p (x2 + 1)

1
pϕ

(
−ζj

x− i

x+ i

)
,

Zpψ(λ) :=
(
e−

λ
pψ(e−λ), e−

λ
pψ(−e−λ)

)
, x, λ ∈ R,

(3.33)

where the first one is based on the Kelly transformation

κζj (x) := −ζj
x− i

x+ i
: R −→ Γ1 , κζj (0) = ζj ,

establish isometric isomorphisms

Zζj
: Lp(Γ1) → Lp(R) , ‖Zζj

ϕ
∣∣Lp(R)‖ = ‖ϕ

∣∣Lp(Γ1)‖ ,

Zp : Lp(R) → L2
p(R) , ‖Zpψ

∣∣L2
p(R)‖ = ‖ψ

∣∣Lp(R)‖
(3.34)

and have the following inverses

Z −1
ζj

ψ(ζ) := |(κ−1
ζj

)′(x)|
1
pψ(κ−1

ζj
(x)) = |ζ + ζj |−

2
pψ

(
−i ζ − ζj
ζ + ζj

)
, (3.35)

Z −1
p Φ(x) := χ−(x)(−x)−

1
pϕ2(− log(−x)) + χ+(x)x−

1
pϕ1(− log x) ,

where Φ = (ϕ1, ϕ2)> and χ±(x) are the characteristic functions of R± ⊂ R.
The transformation

Zpζj
:= ZpZζj

(3.36)

establishes the first of the claimed isomorphisms in (3.31).
To prove that Zpζj

arranges the second isomorphisms in (3.31) as well,
let us consider the following intermediate space

L2
p(R, {0}) :=

{
ψ ∈ Lp(R) : Ṽ0ψ ∈ Lp(R+)

}
, (3.37)

Ṽ0ψ(x) := V0[e−
π
p iψ(x)− ψ(−x)] ,
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where the operator V0 is defined as follows (cf. (3.4)):

V0ψ(x) :=

x∫
0

(y
x

) 1
p

ψ(y)
dy

y
. (3.38)

It is easy to verify directly the following connection

ZpṼ0Z
−1

p = Ṽ∞ (3.39)

(see (3.34)). Moreover, Zp establishes isometric isomorphisms

Zp : Lp(R, {0}) → L2
p(R, {∞}) ,

‖Zpψ
∣∣L2

p(R, {∞})‖ = ‖ψ
∣∣Lp(R, {0})‖ .

(3.40)

Therefore, to justify the second isomorphism in (3.31) we just need to
verify

Zζj
Vζj

Z −1
ζj

= g0V0h0I , (3.41)

where g±1
0 , h±1

0 ∈ C∞(R) are non-vanishing functions

g0(x) :=
(

1− ix

1 + x2

) 1
p

, h0(x) :=
(1 + x2)

1
p

(1− ix)1+
1
p

because applying equivalence (3.39) to equality (3.41) we get (3.32) immea-
diately.

To prove the second isomorphism in (3.31) we proceed as follows:

(Zζjχζj Vζj Z
−1

ζj
ψ)(x) =

∣∣∣κ′ζj
(x)
∣∣∣ 1p∫)

ζjκζj
(x)

[
τ − ζj

κζj
(x)− ζj

] 1
p

×
∣∣∣(κ−1

ζj
)′(τ)

∣∣∣ 1p ψ(κ−1
ζj

(τ))
dτ

τ − ζj
; (3.42)

inserting τ = κζj
(y), dτ = κ′ζj

(y)dy and taking into account the equalities

(κ−1
ζj

)′(κζj
(y)) = [κ′ζj

(y)]−1 ,
κζj (x)− ζj

κζj
(x) + ζj

= ix ,

κζj
(x)− ζj =

−2ζjx
x+ i

, κ′ζj
(x) =

−2iζj
(x+ i)2

, (3.43)

we continue as follows

(Zζj
χζj

Vζj
Z −1

ζj
ψ)(x) =

x∫
z

[
κζj (y)− ζj

κζj
(x)− ζj

] 1
p

∣∣∣∣∣κ
′
ζj

(x)

κ′ζj
(y)

∣∣∣∣∣
1
p κ′ζj

(y)ψ(y)dy

κζj
(y)− ζj
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= g0(x)

x∫
0

(y
x

) 1
p

h0(y)ψ(y)
dy

y
g0V0h0ψ(x) ,

g0(x) :=
(

1− ix

1 + x2

) 1
p

, h0(x) :=
(1 + x2)

1
p

(1− ix)1+
1
p

(3.44)

and we get (3.41).
Boundedness of

Rj := gjṼ∞[hj − 1]I : L2(R) −→ L2(R)

follows since hj(x) − 1 = hj(x) − hj(+∞) = O
(
e−

x
p

)
as x → +∞ which

yields the boundedness [hj − 1]I : L2(R) →
→
L 2(R) (see (3.27)).

Proof of Lemma 1.25. Let us apply the isomorphism Zpζj , defined in
(3.31), (3.33). Then ϕ, log(ζ − ζj)ϕ ∈ Lp(Γ1ζj

) for all ζj ∈ Ξow imply

Zpζjϕ ∈ L2
p(R+), (Zpζj log(ζ − ζj)ϕ)(x)=log

(
−ζj

e−x

e−x + i

)
(Zpζjϕ)(x)

=
(
−x+ log

−ζj
e−x + i

)
(Zpζj

ϕ)(x) ∈ L2
p(R+)

(see (3.33)); due to Lemma 3.3 Zpζj
ϕ ∈

→
L 2

p(R+). Applying the inverse iso-

morphism Z −1
pζj

(see (3.31), (3.35)) we find ϕ = Z −1
pζj

Zpζj
ϕ ∈

→
L 2

p(Γ1ζj
, {ζj}).

The remainder claims of the Lemma (see (1.98)) follow from the proved
part as Corollary 3.4 from Lemma 3.3.

Remark 3.9 Due to the above established isomorphism (3.40) and to Corol-
lary 3.4 if a function g(x) has the property

g ∈ C(J ), g(x)− g(0) = O((1− log x)−1) , J := (−c, c) ⊂ R (3.45)

the following multiplication operators (see (3.37))

gI : Lp(J , {0}) −→ Lp(J , {0}) ,

[g − g(0)]I : Lp(J ) −→ Lp(J , {0})

are bounded.

3.4 Equations on the circumference (example)

Let Γ1, Ξ := {ζ1, . . . , ζn} ⊂ Γ1, Ξow ⊂ Ξ, Γ1ζj
and Γ±1ζj

be the same as in
§ 3.3.
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We us consider, as an example, the following operator with fixed singu-
larities at Ξ in the kernel

AΞϕ(ζ) = ϕ(ζ)

+
n∑

j=1

χ+
ζj

(ζ)µjζj

π

∫
Γ+

1ζj

(
ζ−ζj

τ−ζj

)γj ϕ(τ)dτ
ζ2

j−τt
, ζ ∈ Γ1 , (3.46)

where χ+
ζj

(t) is the characteristic function of the arc Γ+
1ζj

⊂ Γ1ζj
⊂ Γ1 and

µj =


sinπ

(
1
p

+ γj

)
for ξ ∈ Ξow ,

sinπ
(

1
p

+ γ′j

)
for ξ 6∈ Ξow ,

(3.47)

−1
p
< γj < 1− 1

p
, ξ ∈ Ξow ,

−1
p
< γ′k 6= γk < 1− 1

p
, ξ 6∈ Ξow . (3.48)

Theorem 3.10 Let conditions (3.47) and (3.48) hold. Then the operator

AΞ : Lp(Γ1) → Lp(Γ1,Ξow) , 1 < p <∞ (3.49)

is Fredholm provided

1
p

+ γj 6=
1
2

for all j = 1, . . . , n (3.50)

and then

dim Ker AΞ =
∑
σj>0

σj , dim Coker AΞ = −
∑
σj<0

σj , (3.51)

where

σj =



0 for
1
2
<

1
p

+ γj < 1 , ζj ∈ Ξow ,

0 for γj ∈ (γ′j , 1− γ′j) , ζj 6∈ Ξow ,

−1 for 0 <
1
p

+ γj <
1
2
, ζj ∈ Ξow ,

1 for γj > max{γ′j , 1− γ′j} , ζj 6∈ Ξow ,
−1 for γj < min{γ′j , 1− γ′j} , j = m+ 1, . . . , n .

(3.52)

In particular, AΞ in (3.49) is invertible provided

1
2
<

1
p

+ γj < 1 for all ξ ∈ Ξow

and γj ∈ (γ′j , 1− γ′j) for all ξ 6∈ Ξow . (3.53)
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Proof. Note that since Γ+
1ζk

∩ Γ+
1ζj

= ∅ for k 6= j, we have

AΞ =
n∏

j=1

Aζj
,

Aζj
:= ϕ(ζ) + χ+

ζj
(ζ)

µjζj
π

∫
Γ+

1ζj

(
ζ − ζj
τ − ζj

)γj ϕ(τ)dτ
ζ2
j − τt

, ζ ∈ Γ1 . (3.54)

Therefore it suffices to prove the Theorem for a single knot Ξ = {ζj}.
We will apply the isomorphisms of spaces

Zζj : Lp(Γ+
1ζj

) −→ Lp(I ) ,

Z̃p : Lp(I ) −→ Lp(R+) ,
(3.55)

where I = [0, 1] and Zζj
is defined in (3.33), while

Z̃pϕ(x) := e−
x
pϕ(e−x) . (3.56)

We have assumed, without loss of generality, that

Γ+
1ζj

=
{
eiϑζj : 0 < ϑ < π

}
is the half-circumference; otherwise we will use another Kelly transforma-
tion

κζj
(x) := −ζj

x− i cot ϑj

2

x+ i cot ϑj

2

: I = [0, 1] −→ Γ+
1ζj

=

)
ζj(ζjeiϑj )⊂ Γ1

while defining the isomorphism Zζj
in (3.33). The operators Zζj

and Z̃p,
besides (3.55) and similarly to (3.31), (3.40), establish the following isomor-
phisms

Zζj : Lp(Γ+
1ζj
, {ζj}) −→ Lp(I , {0}) ,

Z̃p : Lp(I , {0}) −→
→
L p(R+) .

(3.57)

Lifting the operator (3.54) to the equivalent operator first by the iso-
morphism Zζj

, we get, by applying (3.43),

B̃ζj
ψ(x) := (Zζj

Aζj
Z −1

ζj
ψ)(x)=ψ(x)+

µjζj

∣∣∣κ′ζj
(x)
∣∣∣ 1p

π

∫
Γ1ζj

(
κζj (x)− ζj

τ − ζj

)γj

×
∣∣∣(κ−1

ζj
)′(τ)

∣∣∣ 1p ψ(κ−1
ζj

(τ))
dτ

ζ2
j − τκζj

(x)

= ψ(x) +
µjζj
π

1∫
0

∣∣∣∣∣κ
′
ζj

(x)

κ′ζj
(y)

∣∣∣∣∣
1
p (κζj (x)− ζj

κζj
(y)− ζj

)γj κ′ζj
(y)ψ(y)dy

ζ2
j − κζj

(y)κζj
(x)
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= ψ(x)− µj

π

1∫
0

[
x

y

]γj
[
x+ i

y + i

]1−γj
[
x2 + 1
y2 + 1

] 1
p ψ(y)dy
y + x

=gjBζjg
−1
j ψ(x)

for x ∈ I , where

gj(x) :=
(x+ i)1−γj

(1 + x2)
1
p

, Bζjψ(x) := ψ(x)− µj

π

1∫
0

[
x

y

]γj ψ(y)dy
y + x

(3.58)

and g±j ∈ C∞(I ) satisfy condition (3.45). Therefore we can detach invert-
ible operators g±1

j I and study the equivalent operators

Bζj
: Lp(I ) −→ Lp(I , {0}) for ζj ∈ Ξow ,

Bζj
: Lp(I ) −→ Lp(I ) for ζj 6∈ Ξow .

The operator Bζj
can be lifted further, now by Zp, to the following equiv-

alent operator

WBζj
= ZpBζj Z

−1
p : Lp(R+) −→ ~Lp(R+) for ζj ∈ Ξow ,

WBζj
= Z1Bζj

Z −1
1 : Lp(R+) −→ Lp(R+) for ζj 6∈ Ξow

(3.59)

(see (3.56)), which turn out to be convolutions. In fact,

(Z1Bζj Z
−1
1 ϕ)(x) = ϕ(x)− µj

π

1∫
0

e−
x
p

[
e−x

y

]γj z−
1
pϕ(− log z)dz
z + e−x

= ϕ(x)− µj

π

∞∫
0

e(y−x)( 1
p +γj) ϕ(y)dy

1 + ey−x
= WBζj

ϕ(x) ,

where

Bζj
(λ) := 1− µj

π
Ft→λ

[
e−( 1

p +γj)t

1 + e−t

]
= 1− µji

sinhπ
[(

1
p + γj

)
i+ λ

]
= 1− µj

sinπ
(

1
p + γj − iλ

) , λ ∈ R , j = 0, . . . , n (3.60)

(see [Du1, Ch. II, § 1]).
First let ζj 6∈ Ξow; then (see (3.47))

Bζj (λ) := 1−
sinπ

(
1
p + γ′j

)
sinπ

(
1
p + γj − iλ

) , λ ∈ R , γ′j 6= γj .
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From the property Bζj
(λ) = Bζj

(−λ) we easily conclude that Bζj
(λ) = 0

implies λ = 0 and, due to conditions (3.48),

inf
λ∈R

|Bζj
(λ)| > 0 for ζj 6∈ Ξow .

Since Bζj
(λ) depends continuously on the parameter βj := 1

p + γj , 0 <
βj < 1, the index indBζj

might have at most 3 different values. For
γj ∈ (γ′j , 1− γ′j) we apply the homotopy

Bj,µ(λ) := 1− µ
sinπ

(
1
p + γ′j

)
sinπ

(
1
p + γj − iλ

) 6= 0 for λ ∈ Ṙ , 0 ≤ µ ≤ 1 ,

since Bj,µ(λ) 6= 0 for all λ ∈ Ṙ and µ ∈ [0, 1] we conclude ind Bζj
=

ind Bj,1 = ind Bj,0 = 0.
For γj < min{γ′j , 1 − γ′j} and for γj > max{γ′j , 1 − γ′j} it is sufficient

to calculate the index only for one value of parameters in each case. The
images of the test functions on the complex plane are plotted on Fig. 5 in
the Appendix with the arrows showing the orientation of the image when
the argument λ ranges through R from −∞ to ∞.

Finally we get

ind Bζj
=


1 if γj < min{γ′j , 1− γ′j} ,
0 if γj ∈ (γ′j , 1− γ′j) ,
−1 if γj > max{γ′j , 1− γ′j} ,

(3.61)

for ζj 6∈ Ξow (cf. [Du1, Du3]).
Next let ζj ∈ Ξow. Then (see (3.47))

Bζj (λ) := 1−
sinπ

(
1
p + γj

)
sinπ

(
1
p + γj − iλ

) =
λ

λ− i
B0

j (λ)

and

B0
j (0) = lim

λ→0

λ− i

λ
B0

j (λ) = −iB′j(0)

= −π cotπ
(

1
p

+ γj

)
6= 0 iff

1
p

+ γj 6=
1
2
.

Therefore,

inf
λ∈R

|B0
j (λ)| > 0 iff

1
p

+ γj 6=
1
2
, ζj ∈ Ξow . (3.62)

Further we find easily that ind B0
j might have at most two different values,

B0
j (±∞) = 1, ±B0

j (0) > 0 for ±
(

1
p + γj − 1

2

)
> 0 and ± Im B0

j (λ) > 0 for



75

±λ > 0. The images of the test functions on the complex plane are plotted
on Fig. 6 in Appendix with the arrows showing the orientation of the image
when the argument λ ranges through R from −∞ to ∞. These tests show
that

ind B0
j =

{
1 if 0 < 1

p + γj <
1
2 ,

0 if 1
2 <

1
p + γj < 1 for ζj ∈ Ξow .

According to Theorems 2.5 and 3.5 we get: the operator WBζj
in (3.59)

is Fredholm iff conditions (3.48) and (3.50) hold (see (3.51) and (3.62))
and Ind WBζj

= − ind B0
j = σj for ζj ∈ Ξow (see (3.61)), Ind WBζj

=
− ind Bζj

= σj for ζj 6∈ Ξow (see (3.61)), where σj is defined in (3.52).

4 Elliptic boundary integral equations

Let Γ be as in § 1.1, the weight function ρ(t) be defined in (1.2).
For our purposes we need to define the order of cusp: σj > 0 is called

the order of a cusp tj ∈ Γ if there exists qj 6= 0 such that

arg
τ−(tj , r)− tj
τ+(tj , r)− tj

= qjr
σj + o (rσj ) as r → 0,

where τ−(tj , r) ∈ Γj−1 and τ+(tj , r) ∈ Γj are equidistant points |τ±(tj , r)−
tj | = r (see Fig. 3).

````````````̀

aaaaaaaaaaaa- -
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qq q

q
qq qq x+x− x+ x− xxtj tj

τ+

τ−
τ−

τ+

Γj−1

Γj

Γj−1

Γj

r

r

Fig. 3

The obvious equivalent condition is

τ−(tj , r)− τ+(tj , r) = qjr
1+σj + o

(
r1+σj

)
as r → 0 .

Further equivalent definitions of the order can be found in [DLS1].
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Throughout this section we assume the orders of cusps are all equal 1

if γj = 0 or γj = 2 , then σj = σ(tj) = 1 (4.1)

for all j = 1, . . . , n

(see (3.2)) and will investigate the following integral equations:

A0ϕ = a0ϕ+ a1SΓ + a2WΓ,0ϕ+ a3W
∗
Γ,0ϕ+ a4∂tVΓϕ = f (4.2)

with N × N matrix coefficients a0, a1, a2, a3, a4 ∈ PCN×N (Γ) (a0, a1,
a2, a3, a4 ∈ PHN×N

µ (Γ)) in the vector space LN
p (Γ, ρ) (in the vector space

(H0
µ)N (Γ, ρ), respectively, provided Γ has no cusps 0 < γj < 2, j = 1, . . . , n)

A1ϕ = a0ϕ+ a1WΓ,0ϕ+ a2W
∗
Γ,0ϕ = f , a0, a1, a2 ∈ PCN×N (Γ) (4.3)

in the vector spaces LN
p (Γ, ρ) and PCN (Γ, ρ),

B0ϕ = b0ϕ+ b1WΓ,0ϕ = g , b0, b1 ∈ (PC1)N×N (Γ) ⊂ CN×N (Γ) (4.4)

in the vector spaces (W 1)N
p (Γ, ρ), CN (Γ, ρ), (PC1)N (Γ, ρ) and in

(H0)N
µ+1(Γ, ρ) (in the latter case cusps are absent and coefficients belong

to PHN×N
µ (Γ)).

Due to Theorems 1.5 and 1.6 respective conditions in (1.4) ensure bound-
edness of operators A0, A1, B0 in spaces listed above.

4.1 Equation (4.2) in the spaces LN
p (Γ, ρ) and H0

µ(Γ, ρ)

Let X(Γ) denote the space LN
p (Γ, ρ) or, if cusps are absent, the space

H0
µ(Γ, ρ) and appropriate condition in (1.4) hold. Symbol of equation (4.2)

in the space X(Γ) reads as follows

(A0)X(Γ) := ã0 + ã1SX(Γ) + ã2WX(Γ) + ã3W
∗
X(Γ) + ã4(∂tV )X(Γ) , (4.5)

where

ã :=

[
a(t+ 0) 0

0 a(t− 0)

]
, a ∈ PCN×N (Γ) , t ∈ Γ ,

WX(Γ)(t, λ, ξ) :=
1
4

[
SX(Γ)(t, λ, ξ) + SX(Γ)(t,−λ,−ξ)

]
, λ, ξ ∈ R ,

(∂tV )X(Γ)(t, λ, ξ) :=
i

4

[
SX(Γ)(t, λ, ξ)− SX(Γ)(t,−λ,−ξ)

]
,

W ∗X(Γ)(t, λ, ξ) := −1
4

[
h̃−1(t)SX(Γ)(t, λ, ξ)h̃(t) + h̃(t)SX(Γ)(t,−λ,−ξ)h̃−1(t)

]
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h̃(t) :=



[
1 0

0 1

]
if t 6= t1, . . . , tn ,[

1 0

0 eπ(γj−1)i

]
if t = tj , j = 1 . . . , n ,

SX(Γ)(t, λ, ξ) :=



 cothπ(iβt + λ) − eπ(γt−1)(iβt+λ)

sinhπ(iβt + λ)
eπ(1−γt)(iβt+λ)

sinhπ(iβt + λ)
− cothπ(iβt + λ)


if 0 < γt < 2 ,

(γj − 1)

[ − sign λ 2χ−(λ)e2λ

2χ+(λ)e−2λ signλ

]
if t = tj , γt = γj = 0, 2 , λ 6= 0 ,

(γj−1)

[ − cothπ(iβt + ξ) 1+cothπ(iβt + ξ)

1−cothπ(iβt + ξ) − cothπ(iβt + ξ)

]
if t = tj , γt = γj = 0, 2, λ = 0 ,

(4.6)

βt :=



1
p if t 6= t1, . . . , tn , X(Γ) = Lp(Γ, ρ) ,
1
2 if t 6= t1, . . . , tn , X(Γ) = H0

µ(Γ, ρ) ,

1
p + αt if t = tj , X(Γ) = Lp(Γ, ρ) ,

αj − µ if t = tj , X(Γ) = H0
µ(Γ, ρ) ,

γt :=

{
1 if t 6= t1, . . . , tn ,

γj if t = tj ,
χ±(λ) :=

1
2
(1 + sign λ) .

Due to constraints (1.4) 0 < βt < 1 for all t ∈ Γ and the symbol
(A0)X(Γ)(t, λ, ξ) represents piecewise-continuous uniformly bounded func-
tion of all variables.

Although h(tj − 0) = h(tj + 0)eπ(γj−1)i (see (1.20)), we have dropped
the factor h(tj + 0) for t = tj and the factor h(t) for t 6= t1, . . . , tn in
the definition of the symbol matrix h̃(t) above since it cancels out in the
combined symbol (A0)X(Γ)(t, λ, ξ). In fact, h̃(t) and h̃−1(t) enter the symbol
(A0)X(Γ)(t, λ, ξ) only as the combination h̃−1(t)SX(Γ)h̃(t) and the constant
factors h−1(tj + 0), h(tj + 0) cancel out.
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Theorem 4.1 Let X(Γ) = LN
p (Γ, ρ) or, if Γ has no cusps, X(Γ) =

(H0
µ)N (Γ, ρ)). Equation (4.2) is Fredholm in the space X(Γ) if and only

if
inf

t∈Γ, λ,ξ∈R

∣∣ det (A0)X(Γ)(t, λ, ξ)
∣∣ > 0 . (4.7)

If condition (4.7) holds, then

Ind A0 = − 1
2π
[
arg det (A0)X(Γ)(t,+∞, 0)

]
Γ

−
n∑

j=1

1
2π

{ [
arg det (A0)X(Γ)(tj , λ, 0)

]
R\{0}

+
[
arg det (A0)X(Γ)(tj , 0, ξ)

]
R

}
. (4.8)

Proof. Due to Lemma 3.1

A0 = a0I + a1SΓ +
a2

4
(SΓ + V SΓV ) +

a3

4
(S∗Γ + V S∗ΓV ) +

a4

4
(SΓ − V SΓV )

and the claimed result follows from [DLS1, Theorem 1.1] for the case X(Γ) =
LN

p (Γ, ρ) and from [Du6, Du7] for the case X(Γ) = (H0
µ)N (Γ, ρ) (when cusps

are absent) if we take into account the following:

I. The symbol of operator A0 defined in [DLS1] and in [Du8] (see also
[Du3, Du5]) has a block-diagonal form (A0)X(Γ)(t, λ, ξ) 0

0 (A0)X(Γ)(t,−λ,−ξ)


and it suffices to consider only the first block as a symbol of A0. Due

to this change we should multiply the index formula by factor
1
2
.

Let us note that symbol would be a full matrix-function if the corre-
sponding operator contains terms V SΓ, V aI, aV or SΓV .

II. The dual operator W ∗Γ,0 to WΓ,0 is defined in (3.9) and the symbol
for it is composed according to the usual rule (see (4.5)) with h̃(t)
denoting the symbol of hI (see (3.7) for h(t)).

III. If B(t, λ, ξ) is the symbol of B, the symbol of B0 = V BV reads as
follows

B0(t, λ, ξ) = B(t,−λ,−ξ) (4.9)

(see [DLS1, § 1]).
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Corollary 4.2 For the operator

A0 = a0I+a1SΓ = (ao+a1)(P++GP−), P± :=
1
2
(I±SΓ), G :=

ao − a1

ao + a1
,

following conditions are equivalent to (4.7):

(i) inf
t∈Γ

|a0(t)± a1(t)| > 0;

(ii′) −2πβtj
< arg

G(tj − 0)
G(tj + 0)

< 2π(1 − βtj
), j = 1, . . . , n, where βtj

is

defined in (4.6);

(ii′′) (equivalent to ii’) G(t) has the representation

G(t) = G0(t)
n∏

j=1

(t− z0)
νj

tj
, Go ∈ C(Γ1) ,

z0 ∈ Ω+ , −βtj
< νj < 1− βtj

, j = 1, . . . , n

and (t− z0)
νj

tj
has the jump only at the point tj ∈ Γ.

If conditions (i) and (ii’) (or (i) and (ii”)) hold,

Ind A = ind G0 .

4.2 Equation (4.3) in the spaces LN
p (Γ, ρ) and PCN(Γ, ρ)

Although equation (4.3) is a particular case of equation (4.2), in this case
we can define substantially simpler symbol and consider equations also in
the space PCN (Γ, ρ).

Let X(Γ) denote either LN
p (Γ, ρ) or PCN (Γ, ρ) and (1.4) hold.

Symbol of equation (4.3) in the space X(Γ) reads as follows

(A1)X(Γ)(t, λ) :=

[
a0(t+ 0) A+(t, λ)

A−(t, λ) a0(t− 0)

]
, (4.10)

where

A±(t, λ) := a1(t± 0)wX(Γ)(t, λ) + a2(t± 0)w∗X(Γ)(t, λ) , t ∈ Γ, λ ∈ R ,

wX(Γ)(t, λ) =



0 if t 6= t1, . . . , tn ,

sinhπ(1− γj)(iβj + λ)
sinhπ(iβj + λ)

if t = tj , 0 < γj < 2 ,

γj − 1
2

e−|λ| if t = tj , γj = 0, 2 ,
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w∗X(Γ)(t, λ) =



0 if t 6= t1, . . . , tn ,

sinhπ(1− γj)[(βj + 1)i+ λ]
sinhπ(iβj + λ)

if t = tj , 0 < γj < 2 ,

γj − 1
2

e−|λ| if t = tj , γj = 0, 2 ,

βj :=


1
p

+ αj if X(Γ) = LN
p (Γ, ρ) ,

αj if X(Γ) = PCN (Γ, ρ) .

Since 0 < βj < 1, j = 1, . . . , n (see (1.4)) the symbol (A1)X(Γ)(t, λ) is a
correctly defined 2N × 2N matrix-function, is continuous and

(A1)X(Γ)(tj ,−∞) = (A1)X(Γ)(tj ,+∞) = diag {a0(tj − 0), a0(tj + 0)} .

Theorem 4.3 Let X(Γ) denote either LN
p (Γ, ρ) or PCN (Γ, ρ) and (1.4)

hold.
Equation (4.3) is Fredholm in X(Γ) if and only if

inf
t∈Γ, λ∈R

∣∣ det (A1)X(Γ)(t, λ)
∣∣ > 0 . (4.11)

If condition (4.11) holds, then

Ind A1 =
n∑

j=1

1
2π
[
arg det (A1)X(Γ)(tj , λ)

]
R . (4.12)

Remark 4.4 It is easy to ascertain that condition (4.11) for a cusp tj (with
γj = 0, 2) reads as follows

a0(tj−0)a0(tj+0)−[a1(tj−0)+a2(tj−0)][a1(tj+0)+a2(tj+0)]e−λ 6= 0, λ∈R,

or, equivalently,[
a0(tj − 0)a0(tj + 0)

[a1(tj − 0) + a2(tj − 0)][a1(tj + 0) + a2(tj + 0)]

]
> 1 .

Proof of Theorem 4.3. For X(Γ) = LN
p (Γ, ρ) the proof can be derived

from Theorem 4.1 (see (4.36) how to get symbol (4.10) from (4.6)). We
expose independent proof to cover the case X(Γ) = PCN (Γ, ρ) which is not
covered by Theorem 4.1.

We suppose, as in the proof of Theorem 1.6 in § 2.3, that Γ has rectilinear
parts Γ−j , Γ+

j in some neighbourhood of all knots t1, . . . , tn except cusps;
for a cusp γj = 0, 2 the right neighbourhood Γ+

j is rectilinear, while the



81

left one Γ−j is not (cf. (2.31) and Fig. 2). Such changes of the contour Γ
cause a compact perturbation of equation (4.3) and does not influence the
Fredholm properties as well as the index of equation (see [DLS1]).

Next we notice that operators WΓ0,0 and W ∗Γ0,0 are compact due to
Corollary (1.6) since Γ0 has no angular points and cusps.

Applying the “macro localization”, described in [DLS1, Theorem 1.1,
§ 3.2], we find that A1 is Fredholm in X(Γ) iff det a0(t) 6= 0 for t ∈
Γ \ {t1, . . . , tn} and operators

A1,Γ0
j

= a0,jI + a1,jWΓ0
j ,0 + a2,jW

∗
Γ0

j ,0 , Γ0
j = Γ−j ∪ Γ+

j , (4.13)

ak,j(t) :=


ak(tj − 0) if t ∈ Γ−j ,

ak(tj + 0) if t ∈ Γ+
j , k = 0, 1, 2

are Fredholm in X(Γ0
j ) for all j = 1, . . . , n; for the index we have

Ind A1 =
n∑

j=1

Ind A1,Γ0
j
. (4.14)

First let us consider the space X(Γ) = LN
p (Γ, ρ) and 0 < γj < 2; without

loss of generality tj = 0.
The transformation Zγj ,βj with βj := 1

p +αj has the inverse Z −1
γj ,βj

(see
(2.34)) and arranges an isomorphism

Zγj ,βj : LN
p (Γ0

j , |t|αj ) −→ L2N
p (R+) . (4.15)

Obviously,

Zγj ,βjA1,Γ0
j
Z −1

γj ,βj
=

[
a0(tj + 0) 0

0 a0(tj − 0)

]

+
1
2

[
a1(tj + 0) 0

0 a1(tj − 0)

] 0 N0
γj
−N0

−γj

N0
γj
−N0

−γj
0



+
1
2

[
a2(tj + 0) 0

0 a2(tj − 0)

]

×

 0 e−π(γj−1)iN0
γj
−eπ(γj−1)iN0

−γj

e−π(γj−1)iN0
γj
−eπ(γj−1)iN0

−γj
0

 ,
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where

N0
±γj

ϕ(x) :=
1

2πi

∞∫
0

e−(x−y)βjϕ(y)dy
1− e−(x−y)±πγji

(4.16)

(see (4.6) where the symbols of hI, SΓ and of V SΓV is possible to pick up).

Thus, we get a convolution operator

Zγj ,βj
A1,Γ0

j
Z −1

γj ,βj
= W(A1)X(Γ)(tj ,·) : L2N

p (R+) −→ L2N
p (R+) (4.17)

(cf. (2.6)) with the symbol (A1)X(Γ)(tj , λ) defined in (4.10). In fact, N0
±γj

in (4.16) are convolutions with the symbols

N 0
±γj

(λ) :=
1

2πi

∞∫
−∞

eiλy−βjydy

1− e−y±πγji
=

1
2πi

∞∫
0

tβj−iλ−1dt

1− e±πγjit
(4.18)

=
e±π(1−γj)(βj−iλ)

sinhπ(iβj + λ)
=

e±π(1−γj)Λtj
i

sinhπ(iβj + λ)
, βj =

1
p

+ αj , λ ∈ R ,

since −π < π − πγj < π (see [GR1, 3.194.4]). Thus, N0
±γj

= WN 0
±γj

and

from (4.18) we get (4.17).

From (4.17) and from Theorem 2.6 follows: A1,Γj
is Fredholm iff

inf
∣∣ det (A1)X(Γ)(tj , λ)

∣∣ > 0 , λ ∈ R (4.19)

and, for 0 < γj < 2

Ind A1,Γj
= − ind det (A1)X(Γ)(tj , ·) . (4.20)

Now let γj = 0 or γj = 2. Then Γ+
j = [0, 1] and, due to condition

(4.1) Γ−j can be taken as the quarter part of the circumference centered at
z0 = 1−γj

2 i, starting at z1 = i
2 + 1−γj

2 i and terminating at z2 = 0 (see Fig.
4).
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Fig. 4

The transformations

Z0ϕ(x) :=


1

x+ 1
ϕ

(
1

x+ 1

)
1

x− i+ 1
ϕ

(
1

x− i+ 1

)
 if γj = 0 ,

Z2ϕ(x) :=


1

x+ 1
ϕ

(
1

x+ 1

)
1

x+ i+ 1
ϕ

(
1

x+ i+ 1

)
 if γj = 2 , x ∈ R+, (4.21)

define isomorphisms

Zγj
: LN

p (Γ0
j , |t|αj ) −→ L2N

p (R+, (1 + x)α̃j ) , α̃j := p− αj − 2 (4.22)

and their inverses read

Z −1
0

 ψ1

ψ2

 (t) = χ0
+(t)

1
t
ψ1(t− 1) + χ0

−(t)
1
t
ψ2(

1
t

+ i− 1) ,

Z −1
2

 ψ1

ψ2

 (t) = χ0
+(t)

1
t
ψ1(t− 1) + χ0

−(t)
1
t
ψ2(

1
t
− i− 1) ,

where χ0
+ and χ0

− are the characteristic functions of Γ+
j and Γ−j , respectively.
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Obviously 1 < α̃j < p− 1 and

Zγj
A1,Γ0

j
Z −1

γj
=

 a0(tj + 0) 0

0 a0(tj − 0)



+
γj − 1

2

 a1(tj + 0) + a2(tj + 0) 0

0 a1(tj − 0) + a2(tj − 0)



×

 0 Ni −N−i

Ni −N−i 0

 ,
where

N±iϕ(x) :=
1

2πi

∞∫
0

ϕ(y)dy
y − x± i

= WN±i
ϕ(x) (4.23)

are convolutions with the symbols

N±i(λ) :=
1

2πi

∞∫
−∞

eiλydy

±i− y
= ∓χ±(λ)e∓λ , (4.24)

χ±(λ) :=
1
2
(1± signλ) , λ ∈ R .

Therefore,

ZγjA1,Γj Z
−1

γj
=

 a0(tj + 0) 0

0 a0(tj − 0)



+
γj − 1

2

 a1(tj + 0) + a2(tj + 0) 0

0 a1(tj − 0) + a2(tj − 0)



×

 0 WNi−N−i

WNi−N−i
0

 = W(A1)X(Γ)(tj ,·)

and, due to Theorem 2.6, A1,γj
is Fredholm iff (4.19) holds; the index

formula (4.20) remains valid for γj = 0, 2.
Now let X(Γ) = PCN (Γ, ρ).
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For 0 < γj < 2 we consider the transformation Zγj ,δj
, defined in (3.20).

Similarly to (4.15)–(4.18) we find that

Zγj ,δj
: CN (Γ0

j , |t|δj ) −→ C2N (Ṙ+)

defines an isomorphism and

Zγj ,δj
A1,Γ0

j
Z −1

γj ,δj
= W(A1)X(Γ)(tj ,·)

is a Fredholm operator in the space C2N (Ṙ+) iff

inf
∣∣ det (A1)PC(Γ,ρ)(tj , λ)

∣∣ > 0 , λ ∈ R (4.25)

and

Ind A1,Γ0
j

= −
[
arg det (A1)PC(Γ,ρ)(tj , λ)

]
R , (4.26)

provided 0 < γj < 2.
For γj = 0 and γj = 2 (see Fig. 4) the transformation

Zγj
: PCN (Γ0

j , |t|δj ) −→ C2N (Ṙ+, (1 + x)−δj+1) , Γ0
j = Γ−j ∪ Γ+

j ,

defined in (4.21), arranges an isomorphism and

Zγj
A1,Γ0

j
Z −1

γj
= W(A1)P C(Γ,ρ)(tj ,·)

is Fredholm in the space PC2N (Ṙ+, (1+x)−δj+1) iff condition (4.25) holds
(see Theorem 2.6); again the index is defined by (4.26).

Remark 4.5 If SX(Γ)(t, λ) is the symbol of SΓ (see (4.5), (4.6), (4.10)),
the symbol of V SΓV is SX(Γ)(t,−λ). We know the symbol of aI for a ∈
PCN×N (Γ) (X(Γ) = LN

p (Γ, ρ) or X(Γ) = PCN (Γ, ρ)). Therefore we can
compose the symbol of equation

a0ϕ+ a1WΓ,0ϕ+ a2W
∗
Γ,0ϕ+

M∑
k=1

a2+kW
(k)
Γ,0ϕ = f , (4.27)

a0, . . . , a2+M ∈ PCN×N (Γ)

and prove Theorem 4.3 for equation (4.27).

4.3 Equation (4.4) in the spaces (W 1
p )N(Γ, ρ),

(H0
µ+1)

N(Γ, ρ), CN(Γ, ρ) and (PC1)N(Γ, ρ)

Let X(Γ) denote one of the spaces mentioned in the headline.
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To equation (4.4) in the space X(Γ) with smooth matrix coefficients we
assign the symbol

(B0)X(Γ)(t, λ) :=

 b0(t) b1(t)e−π(1−γj)iwX(Γ)(t, λ)

b1(t)eπ(1−γj)iwX(Γ)(t, λ) b0(t)

 , (4.28)

where

wX(Γ)(t, λ) =


0 if t 6= t1, . . . , tn ,

γj − 1
2

e−|λ| if t = tj , γj = 0, 2

and wX(Γ)(tj , λ) has following values for the different spaces X(Γ):

wW 1
p (Γ,ρ)(tj , λ) =

sinhπ(1− γj)
(

i
p + αji− i+ λ

)
2 sinhπ

(
i
p + αji+ λ

) ,

wH0
µ+1(Γ,ρ)(tj , λ) =

sinhπ(1− γj) (αji− µi− i+ λ)

2 sinhπ
(

i
p + αji+ λ

) ,

wPC1(Γ,ρ)(tj , λ) =
sinhπ(1− γj)(αji− i+ λ)

2 sinhπ(αji+ λ)
,

wC(Γ,ρ)(tj , λ) =
sinhπ(1− γj)(αji+ λ)

2 sinhπ(αji+ λ)
.

Due to conditions (1.4) the symbol (B0)X(Γ)(t, λ) is correctly defined,
i.e., is a piecewise-continuous and uniformly bounded function of all vari-
ables.

Theorem 4.6 Let X(Γ) denote one of the following spaces (W 1
p )N (Γ, ρ),

(H0
µ+1)

N (Γ, ρ) (if cusps are absent), (PC1)N (Γ, ρ) or CN (Γ, ρ) and condi-
tions (1.4) hold.

Equation (4.4) is Fredholm in the space X(Γ) if and only if 9)

inf
t∈Γ, λ∈R

∣∣ det (B0)X(Γ)(t, λ)
∣∣ > 0 . (4.29)

If condition (4.29) holds, then (cf. (4.12))

Ind B0 = −
n∑

j=1

1
2π
[
arg det (B0)X(Γ)(tj , λ)

]
R . (4.30)

9)An equivalent condition for a cusp see in Remark 4.4.
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Proof. For the space X(Γ) = CN (Γ, ρ) the proof is verbatim the case
X(Γ) = PCN (Γ, ρ), exposed in Theorem 4.3.

Let

g(s) : [0, `] −→ Γ , r(t) := g−1(t) : Γ −→ [0, `] , g(r(t)) ≡ t

be some parametrisation of Γ and the inverse to the parametrisation. The
operator

Λ1
Γϕ(t) := ∂tϕ(t) + r′(t)

2πi
`

[ϕ(t)− ϕ(tn)] + ϕ(tn)e−
2πi

` r(t)

= ∂sϕ0(s) +
2πi
`

[ϕ0(s)− ϕ0(0)] + ϕ0(0)e−
2πi

` s , (4.31)

s = r(t) , ϕ0(s) = ϕ(g(s)) , 0 ≤ s ≤ ` , t ∈ Γ

(see [Du3, § 2.2]) defines an isomorphism of spaces

Λ1
Γ : (W 1

p )N (Γ, ρ) −→ LN
p (Γ, ρ) . (4.32)

and the inverse operator reads

Λ−1
Γ ψ(t) := e−

2πi
` r(t)

∫
tnt

e
2πi

` r(τ)ψ(τ)dτ

+
1
`

[
1− r(t)e−

2πi
` r(t)

] ∫
Γ

e
2πi

` r(τ)ψ(τ)dτ . (4.33)

Namely,

Λ−1
Γ Λ1

Γψ = ψ , ψ ∈ LN
p (Γ, ρ) , Λ1

ΓΛ−1
Γ ϕ = ϕ , ϕ ∈ (W 1

p )N (Γ, ρ)

and
Λ1

Γ = ∂t + R , ∂t,R : (W 1
p )N (Γ, ρ) −→ LN

p (Γ, ρ) ,

where R is a compact operator.
Then the equation

B1ψ := Λ1
ΓB0Λ−1

Γ ψ = u , (4.34)

u, ψ ∈ LN
p (Γ, ρ) , ψ := Λ1

Γϕ , u = Λ1
Γf

is equivalent to (4.3). Since

∂tΛ−1
Γ = I +K , K : LN

p (Γ, ρ) −→ LN
p (Γ, ρ)
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where K is a compact operator, applying (2.27). we get

B1 = (∂t + R)(a0I + a1WΓ,0)Λ−1
Γ = a0I + a1W

(2)
Γ,0 + T

= a0I + a1[SΓ + h−2V SΓV h2I] + T , (4.35)

T = (a′0I + a′1WΓ,0)Λ−1
Γ + R(a0I + a1WΓ,0)Λ−1

Γ

+(a0I + a1W
(2)
Γ,0)K : LN

p (Γ, ρ) −→ LN
p (Γ, ρ) .

T is a compact operator because Λ−1
Γ , R and K are compact in LN

p (Γ, ρ).
Symbol of the operator B1 in LN

p (Γ, ρ), according to (4.6) and to Remark
4.5, reads

(B1)Lp(Γ,ρ)(t, λ) :=

[
b0(t) 0

0 b0(t)

]
if t 6= t1, . . . , tn ,

while for the knots t = tj we get

(B1)Lp(Γ,ρ)(tj , λ) =

[
b0(tj) 0

0 b0(tj)

]
+

[
b1(tj) 0

0 b1(tj)

]

×


 cothπ(iβj + λ) −e

−π(1−γj)(iβj+λ)

sinhπ(iβj + λ)
eπ(1−γj)(iβj+λ)

sinhπ(iβj + λ)
− cothπ(iβj + λ)

+

[
1 0

0 e2π(1−γj)i

]

×

 − cothπ(iβj + λ)
eπ(1−γj)(iβj+λ)

sinhπ(iβj + λ)

−e
−π(1−γj)(iβj+λ)

sinhπ(iβj + λ)
cothπ(iβj + λ)


[

1 0

0 e−2π(1−γj)i

] (4.36)

=

[
b0(t) b1(t)e−π(1−γj)iwW 1

p (Γ,ρ)(tj , λ)

b1(t)eπ(1−γj)iwW 1
p (Γ,ρ)(tj , λ) b0(t)

]
,

wW 1
p (Γ,ρ)(tj , λ) :=

sinhπ(1− γj)[i(βj − 1) + λ)
sinhπ(iβj + λ)

,

where βj is defined in (1.79). Thus, we get the symbol defined in (4.28).
As proved above, the operator B1 (see (4.35)) in the space LN

p (Γ, ρ)
is equivalent (as a Fredholm operator) with B0 (see (4.4)) in the space
(W 1

p )N (Γ, ρ) and their indices are equal Ind B0 = Ind B1 (see (4.34)).
Thus, the symbol (B0)Lp(Γ,ρ)(tj , λ) := (B1)Lp(Γ,ρ)(t, λ) defined in (4.36)
is responsible for the Fredholm properties and the index of B0 in the
space (W 1

p )N (Γ, ρ). Now the assertion follows from Theorem 4.1 (and from
Theorem 4.3).
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In the cases X(Γ) = (H0
µ+1)

N (Γ, ρ) and X(Γ) = (PC1)N (Γ, ρ) the proofs
follow verbatim the above exposed case X(Γ) = (W 1

p )N (Γ, ρ).

5 Conformal mapping and BVPs

Through this section we use the notation from § 1.1: for domains Ω±, for
their boundary Γ = ∂Ω±, for the weight function ρ(t) (see (1.2), (1.4)), for
the unit disk D1 and the unit circumference Γ1 = ∂D1.

5.1 The Cisotti formula and its applications

In the present subsection we prove the Cisotti formula (5.5). It was pub-
lished in 1921 (see [LS1, Ch. III, § 1, no. 44, Example 5]) and was rediscov-
ered in [PK1] for piecewise-smooth curves by a different method (namely,
by reducing the problem to the Riemann–Hilbert BVP for analytic func-
tions). This formula has several interesting applications (see [KKP1]) and
we will give some further applications below. Returning to the original
method (see [LS1]) we prove the Cisotti formula for arbitrary domain
bounded by a rectifiable Jordan curve.

Next Theorem is easy to ascertain if properties of conformal mapping
ω : D1 −→ Ω+ and of the inverse to it ω−1 : Ω+ −→ D1 are taken into
account: it suffices to change variables in the integrals ζ = ω(z), z = ω−1(ζ).
(see (1.47) and [Ev1, Ch. V, § 1]).

Theorem 5.1 The derivatives ω′(z) and (ω−1)′(ζ) of conformal mapping
(1.46) and its inverse are both square integrable∫

Ω+

|(ω−1)′(ζ)|2|dζ| = π2 ,

∫
D1

|ω′(z)|2|dz| = ( mes Ω+)2 , (5.1)

while restricted to the boundaries they become absolutely integrable∫
Γ

|(ω−1)′(ζ)||dζ| = 2π ,
∫
Γ1

|ω′(z)||dz| = mes Γ . (5.2)

Next Theorem is a far non-trivial and subtle consequence of the foregoing
theorem and we quote [Go1, p.p. 405–411] (see also [Ko1, Ch. I, II]) for
rigorous proofs.

Theorem 5.2 If ω(z) in (5.1) is a conformal mapping of the unit disk D1

onto a simply connected domain Ω+ with the rectifiable Jordan boundary,
then:

i. ω ∈ W 1
1 (D1) (see § 1.1).

ii. ω(z) is absolutely continuous on the boundary Γ1.
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iii. For almost all t0 ∈ [0, 2π] there exists an angular (i.e., non-tangential)
boundary limit ∧→ of the function ω′(z)

lim
reit ∧→eit0

ω′(reit) = −ie−it0
dω(eiτ )
dτ

∣∣∣∣
τ=t0

. (5.3)

The limit is denoted again by ω′(eit0).

Theorem 5.3 The derivatives ω′(z) of the conformal mapping ω : D1 →
Ω+ has the following representation

ω′(z) = ω′(0) exp

 1
π

∫
|ζ|=1

β(ζ)dζ
ζ − z

− 1
π

∫
|ζ|=1

β(ζ)
dζ

ζ

 , z ∈ D1 , (5.4)

β(eit) := α(t)− t− π

2
= ϑ(t)− t for a.a. t ∈ [−π, π] , (5.5)

where α(t) and ϑ(t) = ϑω(eit) = arg ~ν(ω(eit)) denote the inclinations with
respect to the abscissa axes of the tangent and the outer unit normal vectors
at the point ω(eit), respectively (see Fig. 1).

Proof. Due to (5.3) β0(t) := β(eit) in (5.5) exists for almost all t ∈ (−π, π]
and for those t we have

ω′(eit) = −ie−it dω(eit)
dt

= eiβ0(t)

∣∣∣∣dω(eit)
dt

∣∣∣∣ .
Since ω′(eit) 6= 0 (ω(z) is a conformal mapping!)

Re [−i logω′(eit)] = Im log ω′(eit) = β0(t) = β(eit) for a.a. t ∈ (−π, π]

and the Schwartz integral recovers the analytic function −i logω′(z) ∈
w1

1(D1) by its real part on the boundary

−i logω′(z) = iC +
1
2π

π∫
−π

eiτ + z

eiτ − z
β(eiτ )dτ

(see [Ko1, Ch. I, II], [LS1, §. 44]); therefore

ω′(z) = exp(−C) exp

 i

2π

π∫
−π

eiτ + z

eiτ − z
β(eiτ )dτ


= C0 exp

− i

2π

π∫
−π

β(eiτ )dτ +
i

π

π∫
−π

β(eiτ )eiτdτ

eiτ − z


= C1 exp

 1
π

∫
|ζ|=1

β(ζ)dζ
ζ − z


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and taking z = 0 easily locate the constant C1:

C1 = ω′(0) exp

− 1
π

∫
|ζ|=1

β(ζ)
dζ

ζ

 .

It is sometimes helpful to have the Cisotti formula (5.4) in the following
equivalent form

ω′(reit) = ω′(0) exp

i(Prβ0)(reit)− (P̃rβ0)(reit)− i

2π

π∫
π

β0(τ)dτ

 ,(5.6)

0 < r < 1 , −π < t ≤ π ,

where Prϕ(z) is the Poisson operator and P̃rϕ(z) defines the adjoint
harmonic function to Prϕ(z) (|z| < 1; see [Ko1, Ch. I]):

Prϕ(reit) :=
1
2π

π∫
−π

1− r2

1− 2r cos(t− τ) + r2
ϕ(τ)dτ ,

P̃rϕ(reit) =
1
2π

π∫
−π

r sin(t− τ)
1− 2r cos(t− τ) + r2

ϕ(τ)dτ .

(5.7)

In the next theorem we have collected properties of the Poisson op-
erator Pr and its adjoint P̃r from [Ko1, Ch.I] and [Ko1, Ch. V, §D.1o],
necessary for further investigations.

Theorem 5.4 Let ϕ ∈ Lp(Π), Π := [−π, π], 1 ≤ p <∞. Then

i. Prϕ(z) is harmonic in D1 and

‖Prϕ
∣∣Lp(Π)‖ ≤ ‖ϕ

∣∣Lp(Π)‖ , 0 ≤ r < 1 , lim
r→0

‖Prϕ− ϕ
∣∣Lp(Π)‖ = 0

ii. If ϕ(t) is continuous at some t0 ∈ Π, then

lim Prϕ(z) = ϕ(t0) as z = reit → eit0 , r < 1. (5.8)

In particular, if ϕ ∈ C(Π), ϕ(−π) = ϕ(π), then the convergence in
(5.8) is uniform (including convergence across tangent paths) with re-
spect to t0 ∈ Π.

iii. If Im g(t) ≡ 0, |g(t)| ≤ λπ
2 for all t ∈ Π and λ < 1, then

π∫
−π

exp
[∣∣∣P̃rg(eit)

∣∣∣] ≤ 4π
cos π

2λ
. (5.9)
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Remark 5.5 Easy to check that

Prϕ(z) = Im CΓϕ(z)− 1
2π

π∫
π

ϕ(τ)dτ ,

P̃rϕ(z) = −Re CΓϕ(z) for Imϕ(t) ≡ 0

(5.10)

(see (1.3)). Therefore for P̃rϕ we can apply the Plemelji formulae and
get

lim
z
∧→eit

P̃rϕ(z) = −1
2
ϕ(t)− 1

2π

π∫
π

cot
t− τ

2
ϕ(τ)dτ , (5.11)

where the limit is angular (see (1.25)).

Corollary 5.6 If the inclination of the tangent vector to the boundary curve
Γ is continuous on the entire boundary, derivative ω′(ζ) of the conformal
mapping in (1.46) belongs to the Smirnov–Lebesgue space ω′ ∈ ep(D1)
for all 1 < p <∞.

Proof. Due to the asserted conditions β0(t) = β(eit) in (5.5) is a continuous
function β0 ∈ C(Π) and β0(π) = β0(−π); then

β0(t) = β1(t) + β2(t) , β1 ∈ C1(Π) , β1(π) = β1(−π) ,

|β2(t)| ≤
π

4p
=

1
2p
π

2
for all t ∈ Π .

From (5.6) and (5.9) we get

π∫
−π

|ω′(reiτ )|pdτ =

π∫
−π

| exp
[∣∣∣pP̃rβ1(eiτ ) + pP̃rβ2(eiτ )

∣∣∣] dτ
≤ 4πC0

cos π
4

for all 0 < r ≤ 1 ,

where

C0 =

π∫
−π

exp
[∣∣∣pP̃rβ1(eiτ )

∣∣∣] dτ <∞

since β1 ∈ H1(Γ1) and Prβ1(ζ) is uniformly bounded with respect to 0 <
r ≤ 1 (see (5.8)).

Let us formulate several consequences of the foregoing results. First of
them is a weak form of the Lindelöf theorem; in full generality it can be
found e.g. [Ko1] and deals with arbitrary domain with Jordan boundary.
For a domain with the smooth boundary it is proved e.g in [Go1] by a
different method and in [KKP1, p. 141]–as here, by using the Cisotti
formula, but for piecewise-smooth curves.
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Theorem 5.7 Let Ω± be a simply connected domain with the rectifiable
Jordan boundary Γ and ω(z) be a conformal mapping of the unit disk D1

onto the domain Ω+. If the tangent exists at some point of the boundary t0 ∈
Γ, then the argument argω′(z) of the derivative of the conformal mapping
is continuous at eiϑ0 ∈ Γ1 = ∂D1, where t0 = ω(eiϑ0):

lim argω′(z) = argω′(eiϑ0) = eiα(ϑ0) as z → eiϑ0 and z ∈ Ω+.

In particular, if the tangent exists at each point of the boundary Γ, then
argω′(x) is a continuous function on the closed domain Ω+.

Proof. The proof follows from Theorem 5.4.ii and from the equality

argω′(z) = argω′(0) + Prβ0(t)−
1
2π

π∫
π

β0(τ)dτ , (5.12)

z = reiϑ , 0 < r < 1 , −π < t ≤ π

(see (5.6)), where β0(t) := β(eit) is defined in (5.5).

Let 0 < µ <∞ and X be a compact sufficiently smooth manifold (we can
take X = [0, 1], X = Ω+ or even X = Γ if the latter is sufficiently smooth).
Norm in the Zygmund space Zµ(X) is defined as follows

||ϕ|Zµ(X)|| = ||f |C [µ]−(X)||

+
∑

|α|=[µ]−

sup
x,x±h∈X

|(∂αϕ)(x+ h)− 2(∂αϕ)(x) + (∂αϕ)(x− h)|
|h|{µ}+

,

µ = [µ]− + {µ}+ [µ]+ ∈ N0, 0 < {µ}+ ≤ 1,

where
‖f |Cm(X)‖ =

∑
|α|≤m

sup
x∈X

|∂αf(x)|.

For µ ∈ R+ \N the space Zµ(X) coincides with the generalized Hölder
space Hµ(X) (see [St1]), where (cf. § 1.1)

||ϕ
∣∣Hµ(X)|| = ||f |C [µ](X)||+

∑
|α|=[µ]

sup
x,y∈X,x 6=y

|(∂αϕ)(y)− (∂αϕ)(x)|
|y − x|{µ}

,

µ = [µ] + {µ}, [µ] ∈ N0, 0 < {µ} < 1.

Zµ(Γ) coincides with the Besov space Bµ
∞,∞(Γ) (see [Tr1]) and the

next theorem represents very particular case of [Du10, Theorem 3.2] (cf.
Theorem 1.8 above). The assertion can readily be derived from the Mus-
khelishvili–Privalov theorem (the case µ < 1), proved in [Mu1, § 21],
for non-integer µ ∈ R and extended to integer values µ = 1, 2, . . . by the
interpolation of Zygmund spaces (see [St1, Tr1] for theorems on interpola-
tion).
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Theorem 5.8 Let 0 < µ < ∞ and the boundary Γ = ∂Ω± be m-smooth,
where m ∈ N0, m ≥ µ.

The potential operators

CΓ : Zµ(Γ) −→ Zµ(Ω±) ,
WΓ : Zµ(Γ) −→ Zµ(Ω±) ,
VΓ : Zµ(Γ) −→ Zµ+1(Ω±)

(5.13)

(see (1.3) and (1.16)) are bounded.
In particular, if Γ is piecewise-smooth, we should restrict 0 < µ < 1.

Kellogg proved that if the inclination of the tangent vector is a Höl-
der continuous function with some exponent 0 < µ < 1 (so called Ljapunov
boundary), then the derivative ω′(x) of the conformal mapping ω :;D1 →
Ω+ also is Hölder continuous with the same exponent µ. The simple proof
of this assertion is exposed in [KKP1, p. 143] and is based on the Cisotti
formula. The next theorem generalizes Kellogg’s theorem for µ ≥ 1.

Theorem 5.9 Let Ω be a simply connected domain and the inclination of
the tangent to the boundary Γ = ∂Ω with respect to some fixed direction
belongs to the Zygmund space Zµ([0, `]) for some 0 < µ <∞.

If ω(z) is a conformal mapping of the unit disk D1 onto the domain Ω,
then ω ∈ Zµ+1(D1).

Proof. Let us consider the natural parametrisation of the curve Γ by the
arc length parameter ζ(s) [0, `] → Γ, ζ(0) = ζ(`) (cf. (1.21)). The derivative
ζ ′(s) coincides with the unit tangent vector to Γ and the condition of the
theorem can be written as follows

arg ζ ′(·) ∈ Zµ([0, `]) , arg ∂k+1
s ζ(`−0) = arg ∂k+1

s ζ(0+0) , k = 0, . . . , [µ] .

By the definition (see (5.5))

β(eit(s)) = α(t(s))− t(s)− π

2
,

where t(s) : [0, `] → [−π, π] is a continuous function of the arc length
parameter, defined by the equality ω(eit(s)) = ζ(s). Thus, we need to prove
the implication

t′(·) ∈ Zµ([0, `]) ⇒ t′(s(ω(·))) ∈ Zµ(Γ1) .

From the asserted conditions β ∈ C(Γ1) and from the Corollary 5.6 we
get ω′ ∈ e2(D1). Then

|s(ω(ζ2))− s(ω(ζ1))| =

∣∣∣∣∣∣∣
ζ2∫

ζ1

|ω′(ζ)||dζ|

∣∣∣∣∣∣∣ ≤
 ζ2∫

ζ1

|ω′(ζ)|2|dζ|


1
2
 ζ2∫

ζ1

|dζ|


1
2

= C0|ζ2 − ζ1|
1
2 . (5.14)
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Thus, s(ω(·)) ∈ H 1
2
(Γ1) and we find the first crude inclusion β(s(ω(·))) ∈

Zν1(Γ1) = Hν1(Γ1) with ν1 = min
{

1
2 ,

µ
2

}
. Due to Theorem 5.8 and to the

Cisotti formula (5.4) we get another crude result ω′ ∈ Zν1(D1). We return
to (5.14) and find

|s(ω(ζ2))− s(ω(ζ1))| =
ζ2∫

ζ1

|ω′(ζ)||dζ| ≤ C1|ζ2 − ζ1| , ζ1, ζ2 ∈ Γ ,

where C1 = sup
ζ∈Γ1

|ω′(ζ)|. The obtained estimate and the inclusion β(·) ∈

Zµ([0, `]) give the second crude inclusion β(s(ω(·))) ∈ Zν2(Γ1) with ν2 =
min{1, µ}. Due to Theorem 5.8 and the formula (5.4) this inclusion yields
ω′ ∈ Zν2(D1), which is the final result provided 0 < µ ≤ 1.

If µ > 1 we take the derivative in (5.4)

ω′′(z) = ω′(0) exp [CΓ1β(z)−B0]CΓ1β
′(z) , (5.15)

B0 :=
1
π

∫
|ζ|=1

β(ζ)
dζ

ζ
, z ∈ D1 .

On the other hand,

(∂ζβ)(s(ω(ζ))) :=
dβ(s(ω(ζ)))

dζ
= β′(s(ω(ζ)))(∂ζs)(ω(ζ)) . (5.16)

Since —s’(t)—=1, we find that

(∂ζs)(ω(ζ))| = |ω′(ζ)|

and from the inclusion ω′ ∈ Z1(Γ1) ⊂ H1(Γ1) we conclude (∂ζs)(ω(·)) ∈
H1(Γ1). This inclusion, together with β′(·) ∈ Zµ−1([0, `]) yields ∂ζβ(s(ω(·))) ∈
Zν3(Γ1) (see (5.16)) with ν3 = min{1, µ− 1}.

Again, we derive ω′′ ∈ Zν3(Ω+) ⇒ ω ∈ Zν3+2(Ω+) from (5.15) and from
Theorem 5.8. The final result is obtained if µ ≤ 2 which implies ν3 = µ.

If µ > 2 we repeat the foregoing proof, taking further derivatives in
(5.15) and accomplish the proof by the mathematical induction.

Corollary 5.10 (see also [KKP1]). The inequality

0 < C1 ≤
∣∣∣∣ log[ω(ζ)− ω(ζj)]

log[ζ − ζj ]

∣∣∣∣ ≤ C2 <∞ (5.17)

holds for all |ζ| = 1 provided tj = ω(ζj) is not a cusp of Γ, i.e., if 0 < γj < 2.
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Proof. Invoking the Lagrange theorem and Cisotti formula (5.5) with
the Plemelji formula (the last one in (1.25)) we get

log[ω(ζ)− ω(ζj)] = log(ζ − ζj) + logω′(ζ ′)

= C0 + log(ζ − ζj) + β(ζ ′) +
1
π

∫
|τ |=1

β(τ)dτ
τ − ζ ′

,

where ζ ′ = ζ ′(ζ, ζj) ∈
^

ζjζ and

C0 := logω′(0)− 1
π

∫
|τ |=1

β(τ)
dτ

τ
= const .

The density β(τ) in the Cauchy integral is piecewise-Hölder continuous
β ∈ Hν(Γ1ζj

\ {ζj}) by condition and has the following jump at ζj ∈ Ξow

β(ζj + 0)− β(ζj − 0)
π

= 1− γj .

Applying the estimates

1
π

∫
|τ |=1

β(τ)dτ
τ − ζ ′

= −β(ζj + 0)− β(ζj − 0)
π

log(ζj − ζ ′) + β1(ζ ′)

= (γj − 1) log(ζ ′ − ζj) + β1(ζ ′) = (γj − 1) log(ζ − ζj) + β2(ζ ′)

as ζ → ζj , |ζ ′ − ζj |/|ζ − ζj | ≤ 1, where β1, β2 ∈ Hν(Γ1ζj
\ {ζj}) (see [Mu1,

§ 26]) we find

log[ω(ζ)− ω(ζj)] = γj log(ζ − ζ ′) + β3(ζj , ζ)

with uniformly bounded β3(ζj , ·) ∈ Hν(Γ1ζj
\ {ζj}) when ζ → ζj and (5.17)

follows.

5.2 Proof of Lemma 1.11

Repeating verbatim the arguments exposed in the proof of Theorem 1.16
(see (1.51)–(1.56)) we find easily that the Riemann–Hilbert problem (1.35)
in the space Ψ ∈ Ep(Ω±, ρ), g ∈ Lp(Γ, ρ) is equivalent to the singular integral
equation (1.50) in the space Lp(Γ).

Let, for definiteness, consider the domain Ω+. The case of outer domain
differs only by angles: we should replace all γj by 2−γj (i.e., by the measure
of the complementary angle).

First let us prove that G ∈ PC(Γ1); namely,

G(ζj − 0)
G(ζj + 0)

= exp
[
−2π
p
i+ 2π

(
1
p

+ αj

)
γji

]
, j = 1, . . . , n . (5.18)
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In fact, in the vicinity of tj ∈ Γ we get

ρ0(ω(ζ)) = ρj(ζ) [ω(ζ)− ω(ζj)]
αj = ρj(ζ)

[
ω′(ζ ′j)

]αj (ζ − ζj)αj , ζ → ζj ,

ζ ′j := λjζj + (1− λj)ζ , 0 < λj < 1 , ρj(ζ) =
∏
k 6=j

[ω(ζ)− ω(ζk)]αk

(see (1.46), (1.48)) and ρj(t) is continuous at tj : ρj(tj − 0) = ρj(tj + 0).
Therefore,

G(ζj − 0)
G(ζj + 0)

=
ρ0(ω(ζj − 0))
ρ0(ω(ζj − 0))

ρ0(ω(ζj + 0))
ρ0(ω(ζj + 0))

[
ω′(ζj − 0)
ω′(ζj − 0)

ω′(ζj + 0)
ω′(ζj + 0)

] 1
p

=
(ζj − 0− ζj)αj

(ζj − 0− ζj)αj

(ζj + 0− ζj)αj

(ζj + 0− ζj)αj

[
ω′(ζj − 0)
ω′(ζj − 0)

ω′(ζj + 0)
ω′(ζj + 0)

] 1
p +αj

= exp
{

2παji+ 2
(

1
p

+ αj

)
[arg ω′(ζj − 0)− arg ω′(ζj + 0)]i

}
.

We proceed with the help of (1.66) (see also (5.6) and (5.8))

G(ζj − 0)
G(ζj + 0)

= exp
{

2παji+ 2
(

1
p

+ αj

)
[arg β(ζj − 0)− arg β(ζj + 0)]i

}

= exp
[
2παji− 2π

(
1
p

+ αj

)
(1− γj)i

]
= exp

[
−2π
p
i+ 2π

(
1
p

+ αj

)
γji

]
.

The function ζ−νj

ζj
with

νj := −1
p

+
(

1
p

+ αj

)
γj , j = 1, . . . , n, (5.19)

has discontinuity on the unit circumference if νj 6= 0,±1, . . . and this dis-
continuity we fix at the point ζj ∈ Γ1; then

(ζj − 0)−νj

ζj

(ζj + 0)−νj

ζj

= exp(−2πνji) = exp
[
2π
p
i− 2π

(
1
p

+ αj

)
γji

]
and consider the function

G0(ζ) := G(ζ)
n∏

j=1

ζ
−νj

ζj
, ζ ∈ Γ1 . (5.20)
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Let us prove that

G0 ∈ C(Γ1) , |G0(ζ)| = 1 for all |ζ| = 1 and ind G0 = 0 . (5.21)

Continuity on Γ1 follows from (5.18) G0(ζj − 0) = G0(ζj + 0), j = 1, . . . , n,
while from (1.51), (5.20) we find immediately that the function is unimod-
ular |G0(ζ)| = 1.

To prove the last claim ind G0 = 0 we rewrite (5.20) as follows

G0(ζ) = G(ζ)
n∏

j=1

(
− ζ − ζj

ζj
(
ζ − ζj

))−νj

ζj

= G(ζ)
n∏

j=1

(−ζj)νj

(
ζ − ζj

ζ − ζj

)−νj

= c0
ρ0(ω(ζ))
ρ0(ω(ζ))

[
ω′(ζ)
ω′(ζ)

] 1
p (

ζ − ζj

ζ − ζj

)−νj

, ζ ∈ Γ1 , c0 :=
n∏

j=1

(−ζj)νj .

Thus, G0(ζ) has a continuous extension inside the unit disk

G0 ∈ C(D1) , G0(z)| 6= 0 for all z ∈ D1

and the homotopy

G0,r(ζ) := G0(rζ) , |ζ| = 1 , 0 ≤ r ≤ 1

is continuous, non-vanishing and connects the function G0 = G0,1 with the
constant G0,0 = G0(0), confirming ind G0 = 0.

Let us rewrite (5.20) in the form

G(ζ) := G0(ζ)
n∏

j=1

ζ
νj

ζj
, ζ ∈ Γ1 . (5.22)

From (5.22), (5.21) and Corollary 4.2 we find that conditions (1.36) (1.32)
are necessary and sufficient the singular integral equation (1.50) to have a
solution, because under these conditions A is Fredholm in Lp(Γ1) and has
the following index

Ind A =
∑
νj>1

1 ,

since ind ζνj
ζj

= 0 when νj < 1 and ind ζνj
ζj

= 1 when νj > 1.
In conclusion it is worth mentioning that the problem has alwayes non-

negative index Ind Lp(Γ1)A ≥ 0, i.e., is surjective if it is Fredholm.

5.3 Proof of Theorem 1.26

As in the proof of Lemma 1.11 in § 5.2 we treat, for definiteness, the domain
Ω+. In the case of outer domain we have just to replace all γj by 2− γj .
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First we suppose Ξow = ∅. Then

G(ζ) := G̃0(ζ)
n∏

j=1

ζ
ν̃j

ζj
, ζ ∈ Γ1 , (5.23)

ν̃j :=

{
νj for 1

p ≤ νj ,

νj − 1 for 1
p > νj ,

G̃0(ζ) := G0(ζ)ζσ , σ :=
∑

ζj 6∈Ξow
νj>1

1

(see (5.22) and (1.93)–(1.95)). Due to Corollary 4.2 equation (1.50) is Fred-
holm in Lp(Γ1) if and only if conditions (1.94) hold and then

Ind A = ind G̃0 = σ =
∑

ζj 6∈Ξow
νj>1

1

(see (5.23)). Proposition (1.95) follows because the equivalent Riemann–
Hilbert BVP (1.55) has non-negative index σ ≥ 0 and has the trivial
kernel dim Ker A = 0 (if the index is positive, BVP (1.55) would have the
trivial cokernel dim Coker A = 0; cf. [GK1, Kh1, Mu1]).

Now let Ξow 6= ∅ and consider equation (1.50) for g0 ∈ Lp(Γ1,Ξow),
ϕ ∈ Lp(Γ1) or, what is equivalent, consider operator (1.93). We should
start by proving boundedness of (1.93). First note that due to Lemma 1.25
the operator

G− 1
2

K : Lp(Γ) −→ PC(Γ) ⊂ Lp(Γ,Ξow)

is bounded and since is one-dimensional influences neither the Fredholm
property nor the index of the operator

A = P+
Γ1

+G(ζ)P−Γ1
+
G(ζ)− 1

2
K .

Therefore, in what follows, we ignore this summand in the operator A and
put

A = P+
Γ1

+G(ζ)P−Γ1
.

Let Γ±1j := {ζ ∈ Γ1 : ± Im (ζ/ζj) > 0} be the semi-circles having ±ζj as
endpoints and χ±ζj

(ζ) be the corresponding characteristic functions (ζ ∈ Γ1).
Boundedness of the operator in (1.93) follows from the boundedness of

the restrictions

Aζj := (1− χζj )I + g1χζjAχζjg
−1
1 I : Lp(Γ1ζj ) −→ Lp(Γ1ζj , {ζj}) , (5.24)

g1(ζ) :=
|ζ + ζj |

2
p

ζ + ζj
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for all ζj ∈ Ξow. Easy to ascertain that if

Gζj
(ζ) := G(ζj − 0)χ−ζj

(ζ) +G(ζj + 0)χ+
ζj

(ζ) ,

then
G(ζ)−Gζj

(ζ) = O(|ζ − ζj |) as ζ → ζj ∈ Ξow . (5.25)

Due to Lemma 1.22 the operator

Aζj
−A0

ζj
= g1[G(ζ)−Gζj

]P−Γ1
g−1
1 I : Lp(Γ1ζj

) −→ Lp(Γ1, {ζj}) ,

A0
ζj

:= g1[P+
Γ1

+Gζj
P−Γ1

]g−1
1 I (5.26)

is bounded. Moreover, if ε > 0 and χζj ,ε is the characteristic function of
the neighbourhood Γ1ζj ,ε ⊂ Γ1ζj

, contracting to {ζj} as ε→ 0, then

‖χζj ,ε(Aζj
−A0

ζj
)
∣∣L (Lp(Γ1), Lp(Γ1, {ζj}))‖

≤M0‖χζj ,ε(G−Gζj )
∣∣L∞(Γ1)‖1−δ ,

which yields

lim
ε→0

‖χζj ,ε(Aζj −A0
ζj

)
∣∣L (Lp(Γ1), Lp(Γ1, {ζj}))‖ = 0 as ε→ 0

since δ > 0 is arbitrary. Thus, boundedness of operator (1.93) follows from
the boundedness of the operator

A0
ζj

: Lp(Γ1) −→ Lp(Γ1, {ζj}) .

The boundedness of A0, in its turn, follows from the estimates

‖Ṽζj
A0

ζj
ϕ
∣∣Lp(Γ+

1 )‖ ≤Mj‖ϕ
∣∣Lp(Γ1)‖ , Mj <∞ for all ζj ∈ Ξow

(see (1.90), (1.91)).
We can suppose, that

Gζj
(ζ) =

{
e

2π
p i for ζ ∈ Γ+

1 ,

1 for ζ ∈ Γ−1
(5.27)

In fact, the operator

Bj := P+
Γ1

+G−1(ζj − 0)P−Γ1
(5.28)

has constant coefficients G(ζj − 0) =const6= 0 and due to the following
well-known properties of the singular projections

(P±Γ1
)2 = P±Γ1

, P+
Γ1
P−Γ1

= P−Γ1
P+

Γ1
= 0 , P−Γ1

+ P+
Γ1

= I (5.29)



101

is invertible B−1
j = P+

Γ1
+G(ζj − 0)P−Γ1

, B−1
j Bj = BjB

−1
j = I. Therefore it

suffices to prove boundedness of the operator

ABj = P+
Γ1

+G−1(ζj − 0)GP−Γ1
: Lp(Γ1) −→ Lp(Γ1,Ξow) (5.30)

instead of (1.93). The coefficient G0(ζ) := G−1(ζj − 0)G(ζ) of the operator
(5.30) has limits G0(ζj − 0) = 1 and G0(ζj + 0) = e

2π
p i and corresponding

local representative G0
ζj

(ζ) has the form (5.27).
Let us apply the isomorphisms Zpζj

= ZpZζj
defined in (3.31)–(3.36).

Since

A0,ζj
:= Zpζj

A0
ζj

Z −1
pζj

=
1
2
(I + Zpζjg1SΓ1g

−1
1 Z −1

pζj
)

+
1
2

[
e

2π
p i 0
0 1

]
(I −Zpζjg1SΓ1g

−1
1 Z −1

pζj
) (5.31)

it suffices to find Zpζj
g1SΓ1ζj

g−1
1 Z −1

pζj
. Applying (3.43) we proceed as fol-

lows

Zζj
g1SΓ1g

−1
1 Z −1

ζj
ψ(x) =

1
πi

∞∫
−∞

∣∣∣∣∣κ
′
ζj

(x)

κ′ζj
(y)

∣∣∣∣∣
1
p κζj

(y)
κζj

(x)

κ′ζj
(y)ϕ(y)dy

κζj
(y)− κζj

(x)

=
1
πi

∞∫
−∞

ϕ(y)dy
y − x

= SRϕ(x)

and further

ZpζjSΓ1Z
−1

pζj
= Zp(ZζjSΓ1Z

−1
ζj

)Z −1
p =

 Sp −Np

Np −Sp

 ,
where

Spϕ(x) :=
1
πi

∞∫
−∞

e−
x−y

p ϕ(y)dy
1− e−(x−y)

= W 0
sp
,

sp(λ) := cothπ
(
i

p
+ λ

)
, λ, x ∈ R,

Npϕ(x) :=
1
πi

∞∫
−∞

e−
x−y

p ϕ(y)dy
1 + e−(x−y)

= W 0
np
,

np(λ) :=
1

sinhπ
(

i
p + λ

) . (5.32)
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Easy to ascertain that

A0,ζj
:= Zpζj

A0
ζj

Z −1
pζj

=
[

1
2 (I + Sp) + e

2π
p i 1

2 (I − Sp) 1
2 (e

2π
p i − 1)Np

0 I

]
= WA0(ζj ,·) (5.33)

(see (5.31)–(5.32)), where A0(ζj , ·) is the symbol. Since

cosh z sinh w − sinh z cosh w = sinh(w − z) , z, w ∈ C ,

we find the symbol

A0(ζj , λ) :=

[
e

π
p i
[
cosh π

p i− sinh π
p i cothπ

(
i
p + λ

)]
e

π
p i sinh π

p i

sinh π( i
p +λ)

0 1

]

=

[
e

π
p i sinh πλ

sinh π( i
p +λ) e

π
p i sinh π

p i

sinh π( i
p +λ)

0 1

]
(5.34)

Applying (3.30), (3.32) we get

Zpζj Ṽζj Z
−1

pζj
= gjṼ∞I=gj

[
e−

π
p iV∞ −V∞
0 0

]
+Rj =gjWṽ0 +Rj (5.35)

ṽ0 :=
[
e−

π
p i
[
1− g−1

− (λ)
]

g−1
− (λ)− 1

0 0

]
=
[
e−

π
p i i

λ − i
λ

0 0

]
(see (3.8)). From (5.33) and (5.35) we have

Zpζj ṼζjA
0
ζj
ϕ = gjṼ∞A0,ζj (ψ1, ψ2)> +RjA0,ζj (ψ1, ψ2)> = (V∞W 0

a1j
ψ1

+V∞W
0
a2j
ψ2, 0)> = (W 0

b1j
ψ1 +Wb2j

ψ2, 0)> +RjA0,ζj
(ψ1, ψ2)> , (5.36)

where (ψ1, ψ2)> := Zpζjϕ and

a1j(λ) :=
sinhπλ

sinhπ
(

i
p + λ

) , b1j(λ) :=
−i sinhπλ

λ sinhπ
(

i
p + λ

) , (5.37)

a2j(λ) :=
sinh π

p i

sinhπ
(

i
p + λ

) , b2j(λ) :=
i
[
sinh π

p i− sinhπ
(

i
p + λ

)]
λ sinhπ

(
i
p + λ

) ,

because V∞ = W 0
g−1
−
− I = W 0

g−1
− −1

(see (3.23)) and g−1
− (λ) − 1 = −i/λ.

The functions bkj(λ) satisfy conditions (3.4) and, therefore, bkj ∈ PCp(Ṙ).
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This yields the estimate

‖ṼζjA
0
ζj
ϕ
∣∣Lp(Γ+

1ζj
)‖ ≤ ‖Z −1

pζj
‖‖Zpζj ṼζjA

0
ζj
ϕ
∣∣Lp(R+)‖ (5.38)

= ‖Z −1
pζj

‖‖gjṼ∞A0,ζj (ψ1, ψ2)>
∣∣L2

p(R)‖+ ‖RjA0,ζj (ψ1, ψ2)>
∣∣L2

p(R)‖

≤ ‖Z −1
pζj

‖

 ∑
k=1,2

‖gjW
0
bkj
ψk

∣∣Lp(R)‖+ ‖RjA0,ζj (ψ1, ψ2)>
∣∣L2

p(R)‖


≤M0

j ‖(ψ1, ψ2)>
∣∣L2

p(R)‖ = M0
j ‖Zpζjϕ

∣∣L2
p(R)‖ ≤Mj‖ϕ

∣∣Lp(Γ1ζj )‖ .

Estimates (5.30) follow and imply the boundedness in (1.93).
To prove the Fredholm criteria (1.94) we apply the localization method,

due to I.Gohberg and N.Krupnik (see [GK1, RS1]) modified for operators
between two different spaces (see [Du9, § 3]). We skip over exposing details
of the method because they are well-known and even modified version is
operating with similar objects–localization classes, local equivalence, local
representatives, local invertibility etc.

We choose a standard covering system of localizing classes {Mζ}ζ∈Γ1 ,
where Mζ consists of all multiplication operators vI by smooth functions
v ∈ C∞(Γ1), |v(t)| ≤ 1 (t ∈ Γ1) which are equal 1 in some neighbourhood
of ζ. Boundedness of operators vI ∈ Mζ in the space Lp(Γ1) is trivial,
while in Lp(Γ1.Ξow) follows from Lemma 1.22. Another essential property–
compactness of commutators

[vI,A] = vA−AvI : Lp(Γ1) −→ Lp(Γ1.Ξow) ,

which is a bounded operator already, follows from the well-known criteria
of compactness in Lp(Γ1) space modified with the help of Lemma 1.22

∫
Γ1

∫
Γ1

| log(ζ − ζj)k(ζ, τ)|p
′
|dτ |


p
p′

|dζ| <∞ ,

since the kernel k(ζ, τ) of the commutator [vI,A] is a uniformly bounded
function.

As a local representative of A at a regular point ζ0 6= ζ1, . . . ζn we choose
the following operator

A
Mζ0∼ Aζ0 := P+

Γ1
+G(ζ0)P−Γ1

, Aζ0 : Lp(Γ1) −→ Lp(Γ1) (5.39)

with the constant (“frozen” at ζ0) coefficient. This operator is invertible
A−1

ζ0
:= P+

Γ1
+G−1(ζ0)P−Γ1

(see (5.28), (5.29)).
Before localizing at the point ζj , where the coefficient has discontinuity

G(ζj+0) 6= Gj(ζj−0) 6= 0 let us simplify the operator by taking composition
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with the invertible operator Bj in (5.28). The composition ABj has the
same image Im Aj = Im A and due to invertibility of Bj we can consider
the composition

Aj := P+
Γ1

+G−1(ζj − 0)GP−Γ1
: Lp(Γ1) −→ Lp(Γ1,Ξow) (5.40)

instead of (1.93). The local representative of the operator (5.40) at the
point ζj ∈ Γ1 is chosen as follows

Aj

Mζj∼ A0
γj ,ζj

:= g1[P+
Γ1

+Gζj
P−Γ1

]g−1
1 I , Gζj

(t) := e2πνjiχ+
j + χ−j ,(5.41)

νj =
1
p
−
(

1
p

+ αj

)
γj ,

since G−1(ζj−0)G(ζj +0) = e2πνji (see (5.18) and note that in (5.24)–(5.27)
we have taken the outward peak which means γj = 0); χ±j in (5.41) are the
characteristic functions of the semi-circumference ± Im (ζ/ζj) ≥ 0.

The localized operator A0
γj ,ζj

should be considered in the appropriate
local spaces:

A0
γj ,ζj

: Lp(Γ1) −→ Lp(Γ1) if 0 < γj ≤ 2 ,

A0
0,ζj

: Lp(Γ1) −→ Lp(Γ1, {ζj}) if γj = 0, (i.e., ζj ∈ Ξow) .
(5.42)

The lifted operators (cf. (5.33))

Aγj ,ζj
:= Zpζj

A0
γj ,ζj

Z −1
pζj

=: L2
p(R) −→ L2

p(R) if 0 < γj ≤ 2 ,

A0,ζj := ZpζjA
0
0,ζj

Z −1
pζj

=: L2
p(R) −→ L2

p(R, {∞}) if γj = 0
(5.43)

are convolutions
Aγj ,ζj

= W 0
Aγj

(ζj ,·) (5.44)

(cf. (5.33)) with the symbols

Aγj (ζj , λ) :=
[

1
2 (I + sp(λ)) + e2πνji 1

2 (I − sp(λ)) 1
2 (e2πνji − 1)np(λ)

0 I

]

=
[
eπνji 0

0 1

] sinh π( i
p−νji+λ)

sinh π( i
p +λ)

sinh πνji

sinh π( i
p +λ)

0 1



=
[
eπνji 0

0 1

] sinh π(λ−( 1
p +αj)γji)

sinh π( i
p +λ)

sinh π[ i
p−( 1

p +αj)γj]
sinh π( i

p +λ)
0 1

 . (5.45)
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The operator Aγj ,ζj
= W 0

Aγj
(ζj ,·) for γj 6= 0 is invertible in L2

p(R) iff

A0(ζj , λ)=eπνji
sinhπ

(
λ−
(

1
p + αj

)
γji
)

sinhπ
(

i
p + λ

) 6= 0=⇒
(

1
p

+αj

)
γj 6= 1, (5.46)

as it follows from (5.45) and (2.5). Condition (1.94) is justified.
Now let γj = 0; then νj = 1

p and (see (5.45))

A0(ζj , λ) :=

[
e

π
p i sinh πλ

sinh π( i
p +λ) e

π
p i sinh π

p i

sinh π( i
p +λ)

0 1

]
(5.47)

(cf. (5.36), (5.37)). The operator

Ṽ∞ :=
[
I + V∞ 0

0 I

] [
e−

π
p iI −I
0 I

]
=
[
e−

π
p i(I + V∞) −(I + V∞)

0 I

]

= W 0
v0

: L2
p(R, {∞}) −→ L2

p(R) , v0(λ) :=
[
e−

π
p i λ−i

λ −λ−i
λ

0 1

]
(5.48)

arranges an isomorphism (see (1.91) and (5.35)). Therefore, the operator
A0,ζj

in (5.43), (5.44) (the case γj = 0) is equivalent to the operator

Ṽ∞W
0
A0(ζj ,·) = W 0

v0
W 0

A0(ζj ,·) = W 0
A 1

0 (ζj ,·) : L2
p(R) −→ L2

p(R) , (5.49)

where

A 1
0 (ζj , λ) := v0(λ)A0(ζj , λ) :=

 (λ−i) sinh πλ

λ sinh π( i
p +λ)

(λ−i)[sinh π
p i−sinh π( i

p +λ)]
λ sinh π( i

p +λ)
0 1


Obviously, A 1

0 (ζj , ·) ∈ PC2×2
p (R) (see (3.4)) and

det A 1
0 (ζj , λ) =

(λ− i) sinhπλ

λ sinhπ
(

i
p + λ

) 6= 0 for all λ ∈ Ṙ .

WA 1
0 (ζj ,·) is invertible in L2

p(R) and yields invertibility of the local represen-
tatives Aζj

in (5.42) for all ζj ∈ Ξow.
Thus, under conditions (1.94), all local representatives of the operator

(1.93) are invertible, which implies that (1.93) is Fredholm.
To prove the index formula (1.95) we recall the representation (5.23)

and arrange a homotopy sending the function G(ζ) to

g(ζ) := g0(ζ)
∏

ζj∈Ξow

gj(ζ) , ζ ∈ Γ1 , (5.50)
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where the functions g0(ζ) and gj(ζ) have the same images (accept the same

values) as G̃0(ζ) and ζ−1
j ζ

1
p

ζj
, respectively, when ζ ranges over Γ1 (we remind

that ν̃j = νj = 1
p as soon as γj = 0). More of this, supports of g0− 1 and of

gj − 1 are “squeezed” and belong to Γ10 and Γζj
, respectively. Therefore,

supp (gk − 1) ∩ (ζ) supp (gj − 1) := ∅ for all k 6= j ,

g0 ∈ C1(Γ1) , ind g0 = ind G̃0 = σ .

gj ∈ C1(Γ1 \ {ζj}) ,
gj

ζ
1
p

ζj

∈ C1(Γ1) , ind
gj

ζ
1
p

ζj

= 0 .
(5.51)

To arrange such homotopy we just define

Gϑ(ζ) := G̃0(ζ)

[
g0(ζ)

G̃0(ζ)

]ϑ ∏
ζj∈Ξow

gj(ζ)

ζ
1
p

ζj

ϑ

ζ
1
p

ζj

∏
ζj 6∈Ξow

ζ
(1−ϑ)νj

ζj
(5.52)

for 0 ≤ ϑ ≤ 1. Since the functions [g0(ζ)/G̃0(ζ)]ϑ and [gj(ζ)/ζ
1
p

ζj
]ϑ are

continuous for all 0 ≤ ϑ ≤ 1 (see (5.51)) and the exponents (1 − ϑ)ν̃j

continue to satisfy conditions (1.94) when ζj 6∈ Ξow, we get the operators

Aϑ := P+
Γ1

+GϑP
−
Γ1

: Lp(Γ1) −→ Lp(Γ1,Ξow)

which are Fredholm for all 0 ≤ ϑ ≤ 1. Then these operators maintain the
index

Ind A = Ind A0 = Ind A1 = Ind (P+
Γ1

+G1P
−
Γ1

) . (5.53)

Due to the disjoint supports of gj − 1 (see (5.51)) we get

A1 = P+
Γ1

+G1P
−
Γ1

= D0

∏
ζj∈Ξow

Dj ,

D0 := P+
Γ1

+ g0P
−
Γ1

: Lp(Γ1) −→ Lp(Γ1) , (5.54)

Dj := P+
Γ1

+ gjP
−
Γ1

: Lp(Γ1) −→ Lp(Γ1, {ζj})

and the operators commute DjDk = DkDj . Therefore

Ind A1 = Ind D0 +
∑

ζj∈Ξow

Ind Dj = ind G̃0 +
∑

ζj∈Ξow

Ind Dj (5.55)

and to justify the index formula (1.95) we just have to show that

Ind Dj = 0 for all ζj ∈ Ξow . (5.56)

By the condition the image of gj(ζ) coincides with the image of ζ−1
j ζ

1
p

ζj

which means that

|gj(ζ)| = 1 , gj(ζj − 0) = e
2π
p i , gj(ζj + 0) = +1 . (5.57)
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Let us consider the operator

Hζj = I + Z −1
pζj

W 0
H Zpζj = Z −1

pζj
W 0

1+H Zpζj : Lp(Γ1) −→ Lp(Γ1, {ζj}) ,

1 + H (λ) =
[
e

π
p i λ

λ−i e
π
p i

0 1

]
. (5.58)

The lifted operator (see (3.37)–(3.40))

ZpζjHζj Z
−1

pζj
= W 0

1+H : L2
p(R) −→ L2

p(R, {∞}) (5.59)

is invertible. In fact,

[1 + H (λ)]−1 =
[
e−

π
p i λ−i

λ −λ−i
λ

0 1

]
= v0(λ)

(cf. (5.48)) and therefore Ṽ∞ in (5.48) is the inverse operator to (5.58)

Ṽ∞W
0
1+H = W 0

v0(1+H ) = I (5.60)

(see (3.23)).
For the parameter-dependent operator

Rϑ := (1− ϑ)Dj − ϑeµiHζj
: Lp(Γ1) −→ Lp(Γ1, {ζj}) , 0 ≤ ϑ ≤ 1 ,

(5.61)
where 2π

p ≤ µ ≤ 2π will be chosen later, the local representatives for ζ0 6∈
Ξow read

Rϑ

Mζ0∼ Rϑ,ζ0 = g−1
1 [(1− ϑ)P+

Γ1
+ (1− ϑ)gj(ζ0)P−Γ1

]g1I − ϑeµiI

=]g−1
1 [(1− ϑ− ϑeµi)P+

Γ1
+ [(1− ϑ)gj(ζ0)]]g1 − ϑeµi]P−Γ1

: Lp(Γ1) −→ Lp(Γ1) , (5.62)

while for ζj ∈ Ξow we get

Rϑ

Mζj∼ Rϑ,ζj =]g−1
1 [(1− ϑ)P+

Γ1
+ (1− ϑ)Gζj (ζ0)P

−
Γ1

]]g1I

−ϑeµiZ −1
pζj

W1+H Zpζj

= Z −1
pζj

WRϑ(ζj ,·)Zpζj
: Lp(Γ1) −→ Lp(Γ1, {ζj}) (5.63)

(cf. (5.39), (5.41), (5.42)–(5.47)), where Gζj
(ζ) = +1 for Im (ζζ−1

j ) > 0

and Gζj
(ζ) = e

2π
p i for Im (ζζ−1

j ) < 0 (cf. (5.27), (5.41)) and

Rϑ(ζj , λ) = (1− ϑ)A (ζj , λ)− ϑeµi[1 + H (λ)] . (5.64)
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The operators Rϑ,ζ0 in (5.62) are invertible having constant non-vani-
shing coefficients

1− ϑ(1 + eµi) 6= 0 , (1− ϑ)gj(ζ0)− ϑeµi 6= 0 for all 0 ≤ ϑ ≤ 1 , ζ0 6= ζj

provided µ > π (we remind that gj(ζ0) = eµi with 2π
p ≤ µ ≤ 2π is impossible

since ζ0 6= ζj). The inverse operator is written as in (5.28)–(5.30).
The operators Rϑ,ζj

in (5.63) are also invertible because the lifted oper-
ators

W 0
Rϑ(ζj ,·) = Zpζj

Rϑ,ζj
Z −1

pζj
: L2

p(R) −→ L2
p(R, {∞}) (5.65)

are invertible. To verify this we should apply the isomorphism Ṽ∞ from
(5.48)

Ṽ∞W
0
Rϑ(ζj ,·) = W 0

v0Rϑ(ζj ,·) : L2
p(R) −→ L2

p(R) (5.66)

(see (3.23)), where

v0(λ)Rϑ(ζj , λ) = (1− ϑ)A 1
0 (ζj , λ)− ϑeµiv0(λ)[1 + H (λ)]

= (1− ϑ)A 1
0 (ζj , λ)− ϑeµiI

=

 (1− ϑ) (λ−i) sinh πλ

λ sinh π( i
p +λ) − ϑeµi (1− ϑ)(λ− i)

sinh π
p i−sinh π( i

p +λ)
λ sinh π( i

p +λ)
0 1− ϑ(1 + eµi)


(see (5.49), (5.60)). The image of the function

hp(λ) :=
(λ− i) sinhπλ

λ sinhπ
(

i
p + λ

) =
sinhπλ
λ

λ sinhπλ cos π
p − coshπλ sin π

p∣∣∣sinhπ
(

i
p + λ

)∣∣∣2

−i
sinhπλ cos π

p + λ coshπλ sin π
p∣∣∣sinhπ

(
i
p + λ

)∣∣∣2
 , hp(λ) = hp(−λ)

on the complex plane C when λ ranges through R is a continuous curve
connecting points hp(±∞) = e±

π
p i on the unit circumference and passing

through hp(0) = − π
sin π

p
< 0 on the negative semi-axes. Easy to ascertain,

that π
p ≤ arg hp(λ) ≤ 2π − π

p and the constraints

max
{
π, 2π − π

p
,
2π
p

}
< µ ≤ 2π

on the parameter µ ensure the ellipticity

det v0(λ)Rϑ(ζj , λ) = [(1− ϑ)hp(λ)− ϑeµi][1− ϑ(1 + eµi)] 6= 0

for all 0 ≤ ϑ ≤ 1 , λ ∈ Ṙ,
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which yields invertibility of the operator in (5.66) (see (2.5)).
Thus, the operator Rϑ in (5.61) depends on the parameter ϑ ∈ [0, 1]

continuously and connects the operator Bj with the invertible one −eµiHζj

in the group of Fredholm operators, which yields equality of indices

Ind Dj = Ind R0 = Ind R1 = Ind Hζj
= 0 .

5.4 Proof of Theorem 1.23

First suppose Γ has no peaks Tpk = ∅.
Let us write the symbols of equations (1.39) and (1.40) in the spaces

Xm(Γ, ρ) = Wm
p (Γ, ρ),H0

µ+m(Γ, ρ), C(Γ, ρ), PCm(Γ, ρ) according to (4.6),
(4.10) and (4.28)

(A±)Xm(Γ,ρ)(t, λ) :=


1
p

[
±1 0

0 ±1

]
if t 6= t1, . . . , tn ,

1
p

[
±1 Hm,j(λ)

Hm,j(λ) ±1

]
if t = tj ,

where m = 0, 1, βj is defined in (1.79) and

Hm,j(λ) :=
sinhπ(1− γj)(iβj −mi+ λ)

sinhπ(iβj + λ)
. (5.67)

According to Theorems 4.1, 4.3 and 4.6 equations (1.39) and (1.40) are
Fredholm in Xm(Γ, ρ) if and only if

inf
λ∈R

∣∣ det (A±)Xm(Γ,ρ)(t, λ)
∣∣ = 1

4
inf
λ∈R

∣∣1−H 2
m,j(λ)

∣∣ 6= 0 . (5.68)

Invoking the formulae

sinh2 a− sinh2 b = sinh(a− b) sinh(a+ b) ,

sinh(a+ 2πk) = sinh a , a, b ∈ C , k = 0,±1, . . . .

we find easily

1
4
(1−H 2

m,j(λ)) =
sinh2 π(iβj + λ)− sinh2 π(1− γj)(iβj −mi+ λ)

4 sinh2 π(iβj + λ)

= − sinhπ[(2− γj)(iβj + λ)−mi+ 2γji] sinhπγj(iβj + λ−mi)
sinh2 π(iβj + λ)

= − sinhπ(2− γj)(iβj + λ−mi) sinhπγj(iβj + λ−mi)
sinh2 π(iβj + λ)

. (5.69)
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Due to (5.69) condition (5.68) holds if and only if

(2− γj)(iβj + λ−mi) 6= 0,±i, . . . , γj(iβj + λ−mi) 6= 0,±i, . . . .

Since 0 < βj < 1, m = 0, 1 the latter conditions can be written as follows

βj 6=

{
γ0

j if m = 0 ,

1− γ0
j if m = 1 .

(5.70)

and the condition of the theorem is justified.
On the other hand due to (5.70) the group of non-degenerate symbols

(5.68) is divided in four homotopy groups (two for each m = 0, 1); the
symbols inside each group have equal indices and it suffices to find the
value for one representative of the group. Since

det (A±)Xm(Γ,ρ)(t, λ) =
1
4
[1−H 2

m,j(λ)] =
1
4
[1−Hm,j(λ)][1 + Hm,j(λ)]

it is sufficient to investigate simpler functions 1±Hm,j(λ). Images on the
complex plane of representatives

γj =
1
p
, βj =

1
4
,
3
4
, m = 0, 1

are plotted on Fig. 7–Fig.10 in Appendix. The result can be summarized
as follows:

ind det (A±)Xm(Γ,ρ)(tj , ·) =



0 for βj < 1− γ0
j and m = 0 ,

−1 for βj > 1− γ0
j and m = 0 ,

1 for βj < γ0
j and m = −1 ,

0 for βj > γ0
j and m = −1 .

From Theorems 4.1, 4.3 and 4.6 we get the index formula (we remind that
Tpk = ∅)

Ind A±= −
n∑

j=1

ind det (A±)Xm(Γ,ρ)(tj , ·)=



∑
tj 6∈Tpk
βj>γ0

j

1 for m=0,

−
∑

tj∈T
βj<1−γ0

j

1 for m=1

(see (1.81)).
Now we need information about the kernels dim Ker A± to derive the

remainder equalities in (1.81).
Solvability results follow from from (1.81) provided (1.82) or (1.83) hold.
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First of all note, that due to Lemma 1.21 it suffices to establish values
of dim Ker XA± and dim Coker XA± only for one space among those where
operators A± have equal indices.

Equalities dim Ker A± = ε±, dim Coker A− = ε± under condition
(1.82) and, in general, equalities in (1.81) can be derived from the equiva-
lence of BVPs and our BIEs stated in Theorem 1.12 by invoking Remark
1.10, Lemma 1.15 and equivalence of BVPs with the Riemann–Hilbert
problem, stated in Theorem 1.16, because either the kernel or the cokernel
of the Riemann–Hilbert problem (and of characteristic singular integral
equation) are trivial (see [Du1, GK1, Kh1]).

If one of conditions of the theorem is missing we can apply above men-
tioned equivalence with the Riemann–Hilbert problem to find that our
BIEs are not Fredholm. Moreover, since in all cases the kernels and coker-
nels are finite dimensional dim Ker A± ≤ n+1 and dim Coker A∗± ≤ n+1,
the images Im A± can not be closed.

Now suppose Γ has peaks Tpk 6= ∅.
Localization method applied in §,5.3, can be applied in the present sit-

uation as well. Due to Corollary 1.7 local representatives of operators A±
in (1.39) at t0 6∈ Tpk are

A±
Mt0∼ ±1

2
I

and are invertible in Lp(Γ).
At the inward peak tl 6∈ Tiw we should localize the operator A± to the

same one, but replace the curve Γ by a new one Lj which coincides with Γ
in the vicinity of tj and has tj as a single outward peak. Therefore we can
suppose, without restricting generality, that Γ has a single knot T = {t1},
which is either an angular point or an outward peak.

WARNING! While changing from the inward peak to outward, we change
the orientation of the curve. Then operators A± and B± are replaced by
∓A∓ and ∓B∓, respectively. We should also interchange one-side neigh-
bourhoods Γ−tj

and Γ+
tj

which leads, due to non-equal rights of these neigh-
bourhoods in the definition of the space Lp(Γ, ρ,Tiw) (see (1.76)) to differ-
ences, which should be taken into consideration.

Due to Lemma 1.13 the Riemann–Hilbert problem is surjective and we
can enjoy equivalent reduction of (1.39) and of (1.44) to the corresponding
BVPs (1.6)–(1.8) for the domain Ω+ justified in Theorems 1.12 and 1.14.
Due to equivalence established in Theorems 1.16 and 1.17 we find that
equation (1.39) is equivalent to (1.50) while (1.44)–to (1.60). By applying
Theorem 1.26 and 1.29 we accomplish the proof of Fredholm properties.

The same equivalence can be used to prove the index formulae for the
case of one knot. In case of multiple knots we can use exactly the same
approac as in (5.51)–(5.54) and reduce the proof to the case of one knot.

For equations (1.40) and (1.45) we make conclusions as for dual equations
to (1.39) and to (1.44), respectively.
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As for dim Ker A± and dim Ker B± in (1.39)–(1.40) and in (1.44)–
(1.45), the formulae can be derived from the index formulae and above
mentioned results on kernels in Lp(Γ) spaces (see Remark 1.10).

Remark 5.11 Due to Lemma 1.21 any integrable solutions ϕ± ∈ Lp(Γ, ρ)
of integral equations (1.39) and (1.40) are continuous (are Hölder contin-
uous with the exponent 0 < µ < 1 or even belong to the Zygmund space
Zν(Γ) for 0 < ν <∞) provided the right-hand sides are continuous (belong
to Hµ(Γ) or to Zν(Γ), respectively and, in the latter cases, Γ sufficiently
smooth).

Moreover, invoking Theorem 5.8 we find that the solution u(x) to the
Dirichlet BVP (1.6), (1.7) is continuous on Ω± (is Hölder continuous
with the exponent 0 < µ < 1 or even belongs to the Zygmund space Zν(Γ)
for 0 < ν <∞) provided the same condition holds for the date g(t) on Γ.

Similar assertions for Lp-spaces and continuous solutions can be found
in [Mi2, § 14] and in [Ma1, Ch. I, Theorems 3 and 5].

Remark 5.12 Non-equal rights of curves Γ±tj
in the definition of the space

Lp(Γ, ρ,Tpk) in (1.76) originates in the behavior of the convolution opera-
tor with 2 × 2 matrix symbol which is a local representative of the bound-
ary integral operator and can easily be traced in the proof of Theorem 1.26
in § 5.3 (see (5.42)–(5.47)). Difference of conditions on the function ϕ ∈
Lp(Γ, ρ,Tpk) at outward and inward peaks in the definition (1.76) reflected
in εj = ±1, is due to the above-mentioned non-equal rights of curves Γ±tj

and can be explained by the change of domain Ω+ to some outer domain by
localization to make an inward peak outward (see the proof of Theorem 1.23
above).
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Appendix

��*
���

r r(0, 0) (0, 0)

Bj(λ) = 1− sin π
4

sin π( 6
25−iλ) Bj(λ) = 1− sin π

4

sin π( 19
25−iλ)

ind Bj = 1 indBj = −1
Fig. 5

��� ���

r r(0, 0) (1, 0)

B0
j (λ) = λ−i

λ

[
1− sin π

8

sin π( 1
8−iλ)

]
B0

j (λ) = λ−i
λ

[
1− sin 9π

10

sin π( 9
10−iλ)

]
indB0

j = 1 indB0
j = 0

Fig. 6

���
HHY

r r(0.44, 0) (1, 0)

1−Hj(λ) = 1− sinh π
4 ( i

4+λ)
sinh π

4 ( i
4+λ) 1 + Hj(λ) = 1 +

sinh π
4 ( i

4+λ)
sinh π

4 ( i
4+λ)

ind (1−H 2
j ) = 0

Fig. 7
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��	 @@I

r r(0, 0) (1, 0)

1−Hj(λ) = 1− sinh π
4 ( 3i

4 +λ)
sinh π

4 ( 3i
4 +λ) 1 + Hj(λ) = 1 +

sinh π
4 ( 3i

4 +λ)
sinh π

4 ( 3i
4 +λ)

ind (1−H 2
j ) = −1

Fig. 8

���

��*

r r(0, 0) (1, 0)

1−Hj(λ) = 1− sinh π
4 ( 3i

4 −λ)
sinh π

4 ( i
4+λ) 1 + Hj(λ) = 1 +

sinh π
4 ( 3i

4 −λ)
sinh π

4 ( i
4+λ)

ind (1−H 2
j ) = 1

Fig. 9

��*
HHj

r r(0.46, 0) (1, 0)

1−Hj(λ) = 1− sinh π
4 ( i

4−λ)
sinh π

4 ( 3i
4 +λ) 1 + Hj(λ)1 +

sinh π
4 ( i

4−λ)
sinh π

4 ( 3i
4 +λ)

ind (1−H 2
j ) = 0

Fig. 10
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Töplitz matrices. Akademie Verlag, Berlin, 1983.

[BG1] M. Budjani and I. Gohberg, General theorems on the factor-
ization if matrix-functions, II. Certain tests and their consequences.
Matematicheskie Issledovania 3, 3–18, iss. 3, Stiinca, Kishinjov, 1968.

[CG1] K. Clancey and I.,Gohberg, Factorization of matrix-functions
and singular integral operators. Operator Theory: Advances and Appli-
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