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Abstract

The linear model equations of elasticity give rise to oscillatory so-
lutions in some vicinity of interface crack fronts. In this paper we
apply the Wiener-Hopf method which yields the asymptotic behav-
iour of the elastic fields and, in adition, criteria to prevent oscillatory
solutions. The exponents of the asymptotic expansions are found as
eigenvalues of the symbol of corresponding boundary pseudodifferen-
tial equations. The method works for three—dimensional anisotropic
bodies and we demonstrate it for the example of two anisotropic bod-
ies, one of which is bounded and the other one is its exterior comple-
ment. The common boundary is a smooth surface. On one part of this
surface, called the interface, the bodies are bonded, while on the com-
plementary part there is a crack. By applying the potential method,
the problem is reduced to an equivalent system of boundary pseudo-
differential equations (BPE) on the interface with the stress vector as
unknown. The BPEs are defined via Poincaré-Steklov operators. We
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Introduction

It is well known that the solutions of elliptic boundary value problems in
domains with corners, edges and interfaces have singularities at these geo-
metrical and structural peculiarities regardless the smoothness properties of
the given data. Both, mathematicians [?, 7, 7, 7, 7 ? 7] and mechanists
[?,7,?,7, 7, 7] have analysed local asymptotic expansions for the elliptic sys-
tem of linear elasticity. In this paper we study interface cracks between three—
dimensional anisotropic composites. It should be emphasized that G.Fichera
with his fundamental work in elasticity [?], eigenvalue problems [?] and his
early work on the Zaremba problem [?] has significantly inspired this work.
The corresponding two—dimensional case has already been investigated thor-
oughly by many authors, see [?] and references therein.

In addition to existence, uniqueness and a priori estimates for solutions to
crack, punch and similar problems of mathematical physics [?, 7, 7], the ex-
plicit asymptotic expansion of the solution near singular submanifolds, such
as conical points, edges, crack fronts etc., provides important information for
applications in solid mechanics.

The linear elasticity model often gives rise to oscillatory solutions in some
vicinity of interface crack fronts. In some investigations the boundary condi-
tions are modified in the vicinity of crack front in order to prevent oscillatory
solutions (see [?, ?, ?]). Others formulate conditions for the elastic constants
which ensure absence of oscillations (see [?] and references therein). Mostly
these investigations are devoted to two-dimensional problems.

In this paper we present a method which yields criteria (i.e.necessary and
sufficient conditions) preventing oscillations in three-dimensional anisotropic
bodies. It is based on the Wiener-Hopf technique and provides asymptotics
of solutions. The corresponding exponents are found via eigenvalues of the
symbol of an associated boundary pseudodifferential equation. We demon-
strate the method for two anisotropic three-dimensional bodies, one of which
is bounded and the other one is its exterior complement. The common bound-
ary is a smooth surface. On one part of this surface, called the interface, the



The local leading edge asymptotics can e.g. be obtained by reduction
to the two—dimensional case [?, 7, ?]. Here we present a different rigorous
analysis of the three-dimensional case and find an explicit description of the
exponents in the asymptotics, which is based on the Wiener-Hopf method
and does not exploit the reduction to the two—dimensional case (see [?, §§9,
25], [7, 7, 7,7, 7]).

Although the method is general, in the present paper we apply the method
to a boundary—transmission problem for two anisotropic three-dimensional
bodies ©; and s, where €; is bounded and €, = R? \Q_1 The common
boundary manifold .¥ is supposed to be smooth and consists of two parts
S and Y% with . = S U S UL, where I' := 0.9 = 0.9 is a smooth
curve. On the part .#], called the interface, the bodies are bonded, while the
part S = .\ .#] models a crack.

After formulating the transmission-boundary value problem in Section
1 we recall some properties of potential operators in Subsection 2.1. In
Subsection 2.2 the boundary-transmission problem is equivalently reduced
to a system of boundary pseudodifferential equations of order —1 on the
interface .#;. The principal part of the corresponding operator is given by
Poincaré—Steklov operators corresponding to the different materials

9 1 2 -1 1 1 1 (=1
P_1 ::V—l (51— W*O) -+ V_1 (§]—|— W*[)) s (01)

where the second summand is a pseudoinverse. P_; is a pseudodifferen-
tial operator of order -1, is positive definite, however the symbol matrix
P_1(x, &1, &) does not possess a generalised transmission property

P_o(x) =[Py (2,0, +1)] " Py (2,0,-1)) #1, z€S. (0.2

It is proved that the eigenvalues A1 (c), A2(c), A3(o) of the matrix Z2_; ¢(0),
which we look for on the boundary I' = 0.7, have the properties

M(o)=1, (o) =X3'(0) =Xo(0), ImA(o)=0, oe€l. (0.3)



Everywhere in this paper the boldface Greek p# (or ¢* etc.) is used to
denote the diagonal matrix—function

pl' = diag {p",... p"}, = (1, ey fhn) - (0.4)

which is the vector exponent of the scalar variable p € R (or ¢ € C).
Then the resulting asymptotic expansion for the traction field on the
interface . reads (see Theorem ?7)
M k
1, ~
(o,0) = 30 A (0)p F O ()3 culo)loa'p + Tara(e,) . (05)
k=0 0

=
where IM-‘,—l € CM () for all sufficiently small p > 0,

_log Ao(o)

v(o) = (0,10(0), —10(0)), vo(o) 2m

and arbitrary integer M € Np; all 3—vectors ¢y and 3 x 3 matrix—functions
(o) belong to C*(0.%7). The vector ¢o(0) and the matrix £ (o) are given
by the principal symbol matrix of the BPE, while in the definition of vectors
cri (o) for k > 0 the full symbol is involved. The leading term for k£ = 0
in (0.4) does not contain log p. The logarithmic terms vanish completely
provided vy(o) =const:

o) =D H(0)p A (@)erl(0) + hrsalop) . (0.6)

This is the case when e.g. both materials in 2; and €2, are isotropic.
Moreover, we can present the full spatial asymptotic expansion for dis-
placement and stress fields in R? in the vicinity of the crack front I' = 9.%.
To this end let us extend the l.t.c.s. to the special local coordinate sys-
tem (s.l.c.s. in short) into the vicinity of the crack front T’ in R3; the
point z = (0,p,r) € I' x R? with ¢ € T and p,r € R will belong to

e N2 B Y S BN T DU R DU YR R LI T . L 72 N R DN



with @y € CMPHT x I2), S = (—¢,¢), smooth 3 X 3 matrix-functions
dy % (-, £) and 3-vectors ay; (9, ) € C°(I'). The scalar complex variables

Cm,fl = Zm,—I—l =P AT, Im ¢, #0.

are defined with the help of (all different) roots {7,,}!._, C 7, € C>(T)
of a certain polynomial equation, defined by the symbol of original partial
differential equation (more details cf. in Theorem ?? in the Appendix; for
the definition of the diagonal matrix ¢* see (0.4)).

With the displacement field available in (0.7), by differentiation and
Hooks law, applying Theorem 7?7, we also get the full asymptotics of the
stress tensor field in the form

P M+1

(o, p,r ZZZngiaﬁ r]CmQ;;VU ﬁkZbkliﬁalogp

Y=+1m=1 j=0 k=0
+ %o, pr) for +r>0 (0.8)

with Tyr1 € CM(I x £2), with smooth 3 x 3 matrix—functions AACES)
bl (9,) € C=(T)
As we see, again, logarithmic terms do not appear in the leading terms
of asymptotics in (0.7) and (0.8) and they vanish provided vy(o) =const.
The main conclusion for oscillating solutions can be formulated in the
following theorem.

Theorem 0.1 The displacement vector field u(x) and the stress tensor field
T(x) fields of the interface crack problem are non-oscillating solutions of

the linearised boundary value problem of anisotropic elasticity if and only if
P_10(0) =1 in (0.2) on the boundary o € I' = 0.7.

In Subsection 3.4 we investigate more detailed the interface crack problem
for isotropic bodies. As an important consequence of Theorem 0.1 we present
a criterion for non—o<cillatine <oliitions: if



For convenience we collect in the Appendix the definitions and results
from the theory of function spaces, pseudodifferential equations on manifolds
with smooth boundary and asymptotics of corresponding solutions from [?,
?, 7,7, 7], on which rely our results in Sections 1-3.

Such an asymptotic expansion of the displacement field can be obtained
by a different and well-known method going back to V. Kondratjev in [?] and
further developed e.g. in [?, 7, 7, ?]. This method is applicable in cases of
non—smooth boundary manifolds. However, the Wiener—Hopf method, pre-
sented here, provides more explicit formulae for the exponents and trans-
parent connections between the coefficients of the surface two—dimensional
asymptotics in (0.5) (of solutions to boundary pseudodifferential equations)
with spatial three-dimensional asymptotics in (0.7) and (0.8) (of solutions
to corresponding boundary value problems; see [?, 7, 7, 7, 7] and [?, ?]).

Some preliminary results of this paper have already been announced in

[7].

1 The boundary value problem

Let Q; C ]R_S be a simply connected bounded domain with 0 € €; and
0y :=R3\ ;. Let the surface .¥ = 9Q; = 09y, described above, be their
common boundary (see Fig.1).




k
The traces 7, ¢ on . are defined correspondingly (k,j = 1,2).
If a distribution ¢ is defined on the surface ., then we denote by

rep =1

v, for j=1,2 (1.2)

the restriction operator.

The domains €2; and €2y are occupied by possibly different elastic, ho-
mogeneous, anisotropic materials which are bonded along the interface .77,
while ., models a crack.

The displacement vector u(z) = (uq(z),u2(2),us(z)) of elastic media in
0 JQy satisfies the system of linear second order partial differential equa-
tions of anisotropic elasticity (see [?] and [?, Section 1])

Zi(D)u(z)+ )k( (2)=0 for z€Q, and k=12 (1.3)

k kok ok
with the given volume forces X= (X1, X2, X3) and the differential operators

k , o,
3x3

j7l7m7n

k
The elastic moduli ¢jj,,,,, are real-valued and satisfy the symmetry rela-

tions
k k k
Ciinm=Cjlmn=Cmnjl - (15)

The conservation of energy yields positive definiteness of the corresponding
quadratic forms; namely, there exist constants My, > 0 such that

k JR—
> Cljmn G3&mn = Mo > |7 forall §; =&y € Cand k=1,2. (1.6)

Ljmmn Lj

To formulate the boundarv valiie problem describine the displacement



By H',.(R?,)) we denote the Frechét—Sobolev space of vector—functions
0(2) = (1(2), a(2), 3(2)) " on R, := R3\ ¥ = Q; U Qy, equipped with
the seminorms

2

o ()] == /(\¢(2)|2+|V90(2)!2)dz < oo, (1.8)

&
Qy:Q\y:QlLJ(QQmQ), V§0:<81§0782907a390)7

defined for any compact domain Q @ R3.
1
For the definition of all other spaces used H! (R3,), H'(R?,), H*2(.%),

comp

H*2 (), H*2 (.%) we refer the reader to the Appendix.

k
In what follows we assume that X= 0 and consider the homogeneous

system
Ze(D)u(z) =0 for z€Q, and k=1,2; (1.9)

otherwise we superpose a corresponding particular elastic field.
Problem (the mixed transmission — Neumann problem): find a solution

u € HL . (R%) satisfying u(z) =o(1) as |z| — oo, (1.10)

which fulfils the equations (1.9) and the following boundary and transmission
conditions:

@zyk u(z) = gr(x) for z € S and k=1,2 (1.11)

Yo w(@)= Yy u(@) = folw)  for zE A, (1.12)

%ylﬂl u(z)— %/ylé u(z) = fi(x) for r €A (1.13)
with 71 = 7 (D,iix)).

Here the functions g1, g € H_%(yg) and fo, f1 € ]I—]I%—j(jﬂl) are given.



If volume forces are present )12'7& 0 (see equation (1.3)), in (1.11)—(1.13) we
should take g; = f; = 0, j = 1,2. The proposed superposition of some par-
ticular elastic fields, which eliminate the body forces in equation (1.9), results
in non-homogeneous boundary and transmission conditions g; # 0, f; # 0.

k
The traces 7., v are defined for functions v € Hj .(R%,), provided s > 1/2;

loc

k
therefore we should justify existence of the trace of 7 (D, n)u € L} (R?)

loc

from (1.11), (1.13). To this end we recall that u(z) is a solution to the elliptic
system (1.9) and, therefore, the following Green formula is valid:

/ oL+ & (u,0)] dz = (1) 0.4, F (D), (115)
Qi

(g)j(uv ’U) = Z é‘plmn 8pulamvn

pslm,n

for j,k = 1,2, where (-, -) » denotes the sesquilinear form

(0, ) = / P @) Ao for € Lo(.S).

By duality and density, relation (1.15) can be extended to pairs H2 (.7) x

1

H-2 (), H2 (%) x H 2(%%) and H™2(.%,) x H2 (%), respectively.
k j 1
If w is a solution of (1.9), then the trace Vyé (D,)u € H™2(.¥) exists

k 1
as a bounded linear functional: if v € H},,,(Q2), then 75 v € Hz(.*) and
(1.15) provides the estimate

Kook g .
(Vo v, 79T (D,M)u)y = /é’}(u,v)dz < M |Ju[Hi, (supp )| - [Jo[H" () -
Qp
(1.16)
k

2 ~
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2 Boundary pseudodifferential equations

2.1 Potential operators of elasticity

Let

fk(f) = ( Z éljmn §j§n> and 51,52 € R, k= 1,2
3x3

l.j,m;n

denote the symbol of the operator .Z;(D) in (1.9). Then
Gil(z) = 7,24 (2) for zeR’, k=12, (2.1)

where .Z is the Fourier transform (see (?77)) defines the fundamental solution
of equation (1.9)
2 (D) Gi(z) = 6(2)

with the Dirac §-function §(z).
The single and the double layer potentials, associated with the operator
%, are defined for z € R?, as follows:

\590(2) = /Gk(z—y)w(y)dyya (2.2)
o) = [ [éwy,ﬁ(y»@(y—@ o) dys . (23)

S

In our investigations we also use the following boundary (pseudodifferent-
ial) operators on . for k = 1,2:

Vavl) = [Gle-etd, . (2.4)
5

N
ko rfre N



k k k
T (D,n) V (see (1.7), (2.2)) on .7, respectively; the operator W{ is the

k
adjoint to Wy.
k k k . . . .
V_; and Wy, Wy are pseudodifferential operators and the subscript in-

dices 0, —1 indicate their orders (see Appendix, § A.3). Therefore the fol-
lowing boundedness properties are easy to verify (cf. §§ A.2, A.3):

k
Vo o H(Y) - WY, (2.7)
k

Wo, Wi+ HY(S) — H () forall scR. (2.8)

Moreover, the operators (2.7) are invertible, are positive definite for s =
1
2’ .
(Vorp.0) 2 Mol HT3(Z)P, My>0, k=12  (29)
(see [?, Theorem3.9]) and [?, Theorem 3] for more general spaces); and they
have positive definite symbols

k T 142
Vo (%f)n *n > M3|§| |T/‘ , T E ya (210)

EeR? neC® M;>0, k=12

(see [?, ?]; for the proof see [?, Subsection 3.2]).
The following jump relations are also well-known (see [?, ?]):

Fove)@) = Vo pla), (2.11)

m k (_1)m+1 k

(VoWe)(z) = 5 o(x)+ Wo p(x), (2.12)
Byg (Do) Vo) = "o we o), (213)



Theorem 2.1 Let s € R. Then the operator
2 1 2
Mo= 5[— Wi H () — H* () (2.15)
1s invertible. The homogeneous equation
1 1
5@—1— Wiv=0 (2.16)
and its conjugate homogeneous equation
1 1
§h+ Woh=0 (2.17)

have siz linearly independent solutions in H*(#) each and these solutions
have the form

v(x) = <1}_1>_ h(x) where h(z)=[¢ xz]+c&, ze€.7; (2.18)

h(x) is the trace of a rigid motion with arbitrary constant vectors ¢y, cy € R3
and [- x -] denotes the vector product.

1
For k =1 equation Mo @ = g has a solution g if and only if
(9. h)7 =0 (2.19)
for all h in (2.18) and then the general solution has the form
. -1
Y =®o+ (Vl) h (2.20)

with h from (2.18).



2 2
Proof (see [?]). We insert v = v =V M '¢ into (1.15) and recall that
2 2 2 2 2 2 2
Ly (D)YVM gl =0, and V0.7 (D,7) VM 5o = —¢ (see (2.13), (2.14))
to obtain the inequality

22 ) 2 22 . 2 2 22 2
HV VM, SO‘LZ(Q2>H < _<75’VM0 Vs T (Da”) VM 90>,5ﬂ = <P71 ®, 90>5ﬂ-

2 2
Thus, P_; is nonnegative; it is also invertible since both operators VV_; and
2 2
Mo, composing P_; (see (2.21)) are invertible as noted in (2.7) and in The-
2
orem 2.1). Therefore P_; is positive definite. n

An operator B : Y — X is called a pseudoinverse to A : X — Y if
BAB = B and ABA = A (cf. e.g. [?]). If Ais invertible, then A=' = A
is the only pseudoinverse of A. If there exist bounded projections onto the
image and onto the kernel of the operator A,

P()IY — ImA, POQIP(),
Ql X — KGI'A7 Q% :le (223)
X =KerAd Xy, Qo:=1—-0Q1: X — X, Q2= Qo,

then Ay = Alx, : Xo — ImA has the property Ker A, = {0} and is
invertible. Therefore we can define the pseudoinverse by

AT = AP, (2.24)

Consequently, every Fredholm operator has a pseudoinverse. This pseudoin-
verse A=Y becomes unique as soon as Py and Q are specified. In particular,
we have:

Corollary 2.3 The operator



Here hy, ..., hg and vy,...,vg are some orthonormal bases of the rigid mo-
tions

R ={[c, x x|+ : &, R} (2.27)

1
and transformed rigid motions V _y %°, respectively. Then (cf. Theorem 2.1
and (2.23)):

Y — () = Im Mo &%,

(2.28)
1
X :Hs(ﬁﬂ) :Xl@Xo, Xl :V—l %6.
Lemma 2.4 The Poincaré-Steklov operator
1 1 (1_1) 1 1 1\ D
P_1:=V_ 1My '=V_4 (§]+ WJ) , (2.29)
1
with the pseudoinverse M 6_1), 1S mon—negative:
1 1
(P_1¢,0)y >0 forall peH 2(). (2.30)

1 1
The left-hand side vanishes if and only if ¢ € Ker P_1= Ker M éﬁl) = %°.

11
Proof. We proceed as in Lemma 2.2. Let us insert u = v =V M (()_120 into

1 11
(1.15), k = j = 1, and recall that .4 (D)u = 0, %yﬂ (D,7l) V=My (see
(2.13), (2.25)). Due to (1.17), (2.11) we get

11 1 11 /. 1 111
IV VM 5 el La(Q)I? < (Vo VM o7 TVM ) s



2.2 Reduction to a boundary pseudodifferential equa-
tion

Let @ke H~2(.%) be some fixed extension of the boundary datum g, €

H~2(.%) in (1.11); then any other extension g € H™2(.#) of the same

AN ~ 1
boundary datum g is represented by gr =9 +tx, where t, € H 2()
(k =1,2). Now let us consider the following system, which is the key bound-
ary integral equation for the BVP (1.9)—(1.13):

6
Tylp_ltl + Zth? = fg s
1

A ) 2.31
<t17hj>:_<gl7hj>=77 ]:17"'767 ( 3)
b=t — f], )
where
p 1 2 1120 2
1 =P+ Pa=V_ 1My +V_1M, (2.32)

12
(see (2.21) and (2.29) for P_y, P_4). N

Unknowns in the system (2.31) are the vector—functions ¢, t, € H™2(.%))
and the constant vector ¢:= (cy,...,¢5)" € R, while the functions

. 1 A 2 A 1
fo = fo—rs Po191 —r9 P_192€ H2(S),

N N ~ 1

fl* = f1 — T 91 +re 92€ H_5(y1), (233)
2 1

for=f5 419 Poy fi € H2(A), B =ryh;

J

are all known boundary data (see (1.11), (1.13) and cf. Remark 1.1. Let us
remind, that hy, ..., hg is some fixed basis of rigid motions; see (2.27)).

Theorem 2.5 The function

V2 - - -



Remark 2.6 Let us note that the unknown functions t; in (2.31) do not
k k
coincide with the traces of the traction vectors t (x) =7 (D,7(z)) i (z)

on 7, but carry all singularities of the traction vectors on the interface

k
A1 provided the extended function @k is smooth, because ty(r) =t (z)— gk
(k=1,2; see (1.11)) .

Proof of Theorem 2.5. The function fb(z) clearly satisfies the requirements
(1.9) and (1.10), because it is represented by the single layer potentials.

Recalling the jump relations (2.13) with k£ = j and invoking Theorem 2.1
and Corollary 2.3 we get the following equalities

6 —1
1 1o 1 1 1 A
Vo T () = 7, Mo [Z ¢ (V‘l) byt M g V(9 )
j=1
1 1 (_1) AN N
=79 MoMy (91 +t) =79 91= g1,

2 2, 2 2 A A
Yo, TU (x) =19, MoM o (92 +t2) = 7.5, 9o= g2,

1 -1 1
because <V1) h; € Ker My (see (2.1)), ronty, =0, k= 1,2 and 91 +4 €

1 A
Im Mo, since 9, +t; satisfies the conditions (2.19) (see the second equation
in (2.31)). Thus, the conditions (1.11) are satisfied.

Next we invoke (2.11) and find the following equations,

6 -1

1 o 2 o 1 1 1 1 A

Vat (2)— Vpu (z) = E CiT (V1) V_oihj+rge VflM[() 1)(91 +t)
1

6
2 2 A 1 A 2 A
o VoM o' (92 +8) = Y ¢hS + 15 Poy (91 +4)+ Poy (92 +t)
1



6 0 2 N 1 A 2 A
= chhj +ro Pty —r9 Py f{i +79 P-191 +7r9 P-19>
1

2 " 1 A 2 A
= f2 _ryl P—l fl _I_Tyl P—lgl _I_TYI P—ng

N 1 A 2 A
= fo + 19 P_191 +r9 P_192= fo.

Thence, condition (1.12) is satisfied.
Finally, we invoke (2.13) and find the following relations,

1 1 o 2 2

Vyw7(DJﬁ@)ut@—ﬂvm7(DJﬂ$D&(@==§:%ﬁ%JQO(&4>_ h,

1 1 (71) N 2 2 1 A\ A N
+ro MoM (91 +4) —ro, MoM o (92 +t2) =15 (91 +t) — 79, (92 +12)

. 1 1 -1 1 1 (_1) AN A\
since Mo | V-1 h; =0and MoM o (91 +t1) =91 +t; (see Theorem 2.1,

2 2
(2.31) and Corollary 2.3) and MoM ,* = I (see Theorem 2.1). Further we
invoke (2.31), (2.33) and proceed as follows:

Vo T (D, ii(@)) @ ()= Yo T (D,71(x)) 7 (x) = 1.7, (01 +4,)

—ry1(§2 +h = f1) =74 61 —Ts 92 +fi=r-
This is the last boundary condition (1.13). n
The first two blocks of the system (2.31) can be written in short as
PO t° = O, (2.35)

where

0:=(t;,0) e H 2(A) + RS fOr=(fo,d) € H2(S") + RS,

FoeA(r, ) cTR6 dee Ilg h\N 16 ~T6



and L* is the adjoint operator to L:

(Lap, ) == Z(LQp)jcj = Z<¢’ hj>5ﬁcj = (¥, chhj>5” = (¥, L)

Lemma 2.7 The operator 1y Py : H2(#) — Hz(7) (see (2.32)) is
positive definite

(roP_1p,0) o > Myl|[H 2(HA)|?, My>0. (2.37)

Proof. Let ¢ € H™2(.#) be the zero-extension of ¢ € H~2(.#}). Invoking
(2.22) and (2.30) we get:

(roP_10,0) 9 = (PL19,0) 5, = (P-1 9, 0).9 +(P-1 0,0).7

> M||GIH2 ()] > M|l plH 2 ()] "
Lemma 2.8 P°, is a selfadjoint operator (P°,)* = PY,.
The operator
ro. Py HY(A) —» HY(A), seR, (2.38)
1s Fredholm if and only if the operator
PO, HY(A) + RS — B (A) +RE (2.39)

15 Fredholm and, if Fredholm, their indices coinside
Ind 74 P_; = Ind P°,.

If operator (2.38) is invertible, then (2.39) is also invertible!

Proof. The first assertion follows from the self-adjointness P*; = P_; (more-
over, P_; is positive definite (see (2.37)):



be the regulariser (see [?]); then from RP°, = I + T, P°, R = [ + Ty, where
T, Ty are compact, we find immediately

Rurs Py =1— RyoL + Ty, ro P 1Ry =1—L"Royy + T

with certain compact operators Ti; and T5. Since L and L* are finite—
dimensional, r4, P_; has a regulariser and is Fredholm.

Now let (2.38) be Fredholm and Ry be the regulariser Rory, Py = I +
Ty, ro P1Ry =1+ T,, where T}, T5 are compact operators. Then

([ Ro 0
()

is the regulariser for P°, and the latter is Fredholm.
Since R is a 6-dimensional extension of the operator Ry, their indices
coincide Ind R = Ind Ry, and we get the equality

Ind P°, =—Ind R=—Ind Ry = Ind ., P_; .

Furter we have

PO _ Tylp_l L* _ T{yflp_l 0 1 Tylp_lL*
= L 0 L I 0 —L(rsP_1)"'L*

and the first factor is invertible provided (2.38) is invertible:

raPa 0N (rsPa)t 0
L I LrsP)t T )
By similar reasoning the second factor is invertible if L(ry, P_1)"'L* :
RS — RS is invertible. Let ¢ € Ker L(ry,, P_;)"'L* and insert ¢ = L*¢ into
(2.37); then L*¢ = 0. The linear independence of hy---, hg implies ¢ = 0.

this yields the invertibility of the finite-dimensional operator L(rg P_;) ' L*.
Thus, invertibility of (2.38) yields the invertibility of (2.39). n



H-2 () — H: (-1). We shall extend this invertibility property to more gen-
eral spaces (namely, to the anisotropic Bessel potential spaces with weight;
see Theorem ?7). For this purpose and for investigations of the asymptotics
of solutions we need the symbol of the pseudodifferential operator P_;. Let

N
yl = UXj, r; = (%jla %jQ,%jg)T : Y; — Xj, Y} C Ra_ =R x R+ (31)
j=1

be some C'*®-smooth atlas of the surface .7, C R? and let
;f]?]%)?], }A;}:}/}X(—&“,E), ),Z]CR?’, )?JﬁylzX],
#j(2) = 54(2) — 20i(545(2))) 35ly, = 545(2,0) = 3(2") . (3.2)

z=(21,20,23) ER®, 2 =(z,2)€R?, j=1,2,....N

be extensions of the local diffeomorphisms in (3.1). By 5¢j(2") = (Or5¢je(2")) 45

and by 3(2) = (Or3je(2))s,4 for 2 € Yj and 2 € Y} we denote the corre-
sponding Jacoby matrices, respectively. s¢(z’) coincides with 3¢;(2’,0) for
2" €Y if we delete the last column, i. e. the entries (033¢j¢)(2,0), £ = 1,2, 3;
therefore 32j(2',0)(n, 0) = »(2')n for 2’ € Y}, n € R®.

Let us invoke lt.c.s. (o,p), introduced in Introduction and use g(o)
instead of g(c,0,0). Clearly,

%(0) = % (5(0),0) = (7 (0), &2(0), (0)) (33)

where the column—vectors €1(0), é(o) and é€3(0) on the boundary o =
»#;(21,0) € I' = 0.7 can be chosen mutually orthogonal. Moreover, €(c) =
—1i(o) coinsides with the invard unit normal vector, while €)(0), (o) are
tangential to ., €1(0) is tangential and €5(o) is cotangential (directed inside
A1) to 0.7 at 0 € 0.7. Therefore (€1(0), é3(0), €5(0)) is positively oriented,
orthonormal smooth vector—field on I". The unit vector-fields & (o, p) and
éy(o,p) on A are not orthogonal in general in the contrary to the pairs

€l (07 p>’ 6_»3(0-7 p) and 52(07 p)’ 6_35(0-7 p)

1 - 1 e o~y \ ~rs =17 N\ 1



Theorem 3.1 P_; in (2.32) is a pseudodifferential operator with the homo-
geneous principal symbol

1 1 C 1o -1
P_1(o,p;€) =¥ _1 (0, p;€) [§I+ i, (0, p; 5)}

-1

2 1 AT i 2
V(008 (5L —iWg(o.p&)| . oel, peRT, LeRY, (3.6)

k k
where the matriz—functions ¥ _1 (0, p; &), W ¢ (0, p;€), are real valued and

gien by:

Vs (056 = 5 j” :fkl 7.0) T €)) A
9..(0,p)
~srins /3 pIHC8) A,
Pl = st / Fo (7505 0.0)), 13 (0.0) (G, 6)

X"fk_l ([%;(Oﬂ I)T]_l(ga f)) dC )
since the symbol of the stress operator is pure imaginary (cf. (1.7))

k - ok k k
T (9,7i(0,p) = =i To (0,0:9),  F0(0,p:9) = | D Ciimn 1i(0,p)0n

‘7lzm7n 3x3

for k=12, ope. s =TxRY, JcR>.

Theo cornmd amd +he +hird lime—amtonratinnce are mnerfoarmned nlorno a e nnth



Proof After lifting the operator P_; in (2.32) from the surface .7} to the
half-space R? by means of the ”pull-back” operator

X320 (), i 2 €Y CRY,

s (2)) = {
0, if 2/ ¢Y;, XJ(2") = x;(54(¢))

N
x; € C*(F), suppy; C Xj, ij(a:) =1, ze.7 (3.8)
j=1

(see (3.1)) and the inverse %j_*l,
tween the lifted operator s, P_1;, and the pseudodifferential operator
P_(xj(#'),D"), D' := (Dy,D,) is an operator of order —2 (for details
see in [?, ?]). Therefore &2_,(2',§) is the symbol of P_; in accordance with
the definition (cf. Section 1.4 in [?]). Moreover, if we apply to (2.37) the
lifting and ”coefficient freezing method” (i.e. apply the quasi-equivalence;

see [?, Sect. 3.4], [?, Sect. 3.2]), we get

we can easily find that the difference be-
1

(XoP-1(20, D), )re = (P-1(25, D")x0¥, x0¥)r2 > %HXW&IQ(RQ)HZ,
(3.9)
where yo € C5°(R?) is an appropriate cut—off function with xo(2') = 1 in
some small neighbourhood of the point z, € R2. For ¢ € H~2(R?) there
holds

Y= \i(D)ghy with ¢ € Lo(R?) and  A3(€) = (1+[¢[*)1
(see [?, ?]). The commutators of pseudodifferential operators

1 1 1 1 . 1 1
XoAZ(D) = A2(D)xol and xo [A2(D) —Ag(D)|  with  Ag(£) == [¢]2

are bounded in H*(R2) — H* 2 (R2) (moreover, they are also bounded in
H*(R?) — H*~*(R?); see [?, ?] and [?, Lemma 1.8]); therefore

nN T



and, therefore, Py(z), D’) commutes with the dilation operator R.p(z') :=
@(e2"). This property together with (?7) yields

(Po(ahy Do s 2 5 ol La (R (.11)

From (??7) and the Plancherel theorem follows

AA Ms A T
(P0(y0, &) Yo, Yo)r2 = ?H Yo [L2(RO)[5, tho€ Fabo . (3.12)
Then (?7?) is an obvious consequence of (?7) (see (77)). n

Now we are able to investigate system (2.31). To get better regularity
results for solutions we will invoke anisotropic Bessel potential spaces with
weight HS" ’S)’m(yl), defined in § A.1. The reader can stay with the usual

spaces H*(.%) = Héo’s)’o(fl), but in these spaces one can find only weak
solutions.

Theorem 3.2 The operator

PO HY)™( ) + RS — HU-+Dm () + RS (3.13)

- P
(cf. (2.35)) is bounded for every 1 < p < oo, 1 —pu<s<u, m=0,1,...
and is Fredholm if and only if the conditions

—— - <s<—-—= (3.14)

are satisfied. Under these conditions P°, has index zero and the system
(2.35) has a unique solution t° = (t,0) € H](g“’s)’m(ﬂl) + RS for any given
fO e Héms-&-l),m(yl) i RS,

Proof. Since boundedness of operators L and L* in (2.36) are out of doubt,
we only have to check the boundedness of the pseudodifferential operator



conditions (??) hold (note, that in this particular case the order Kk = —1
and condition (??) reads as (??)). If Fredholm, (?7) has a trivial index
Ind r9, P4 =0.

Thus, P°, in (??) is Fredholm if and only if condition (??) holds and, if
fredholm, Ind P°, = 0 (see Lemma 2.8).

On the other hand, the homogeneous equation ry P_19 = 0 has only a
trivial solution 1 = 0 in the space H%(Yl) due to the positive definiteness
(2.37). This yields the invertibility of (??) and, consequently of (?7)), in all
spaces which fit into the conditions (??) (cf. Theorem ?? and Lemma 2.8).

n

Theorem 3.3 There is a one—to—one correspondence between the (unique)
solutions of the boundary pseudodifferential equation system (2.31) and the
solutions of the mized transmission— Neumann problem (1.9)—(1.13), given

by formulae (2.34). The inverse correspondence is given by the formula t, =

k
re 7 (D, M), k=1,2.

Proof Theorem 77 follows immediately from Theorems 2.5 and Remark 2.6.
]

Remark 3.4 The solutions ti, ty to the system (2.31) have the property
PH(0,p) € HP () CHH(A) € O E 0 () € O ()
for arbitrary ey < &5 (see Theorem 7?7 and embedding (7?)). Moreover pFt; €

C*2(.7) and even p2t; € C®(HA) provided vy(o) =const (see Theorem
?7).

3.2 Asymptotics of solutions to boundary pseudodif-
ferential equation



e(0,p) = (ex(0,p), ex2(0,p), exs(0,p) ", k=12,
det Zj(0) =1, G, (0)=1, o=(0,0)€T.

From (??7) and (?7) we find

-1
1 1 !
P_1(0;0,+1) =¥ _4 (0;0,1) 5[ +i ¥, (00, 1)]

2 1 2T !
+ 91 (0;0,1) | SIF #y (050,1) .

2

Due to Lemma ?7 the eigenvalues \i(0), A\a(0), A\3(0) of the matrix
P_10(0) = [P_1(0;0,+1)] ' Z_1(5;0, 1) (3.17)

are real positive numbers and Z_ (o) has no associated eigenvectors, hence
is diagonalisable:

P_1o(0) = H (o)A (o) # (o), det # (o) #0,

A(o) := diag {1 (0), Aa(0), A3(0)}, Ao, H € C(07). (3.18)

M) =1, (o) =A10) = Xo(0), ImAg(c) =0 (3.19)
(see [?] and cf. (?7) below). In fact, if A\g(o) is an eigenvalue,

det [P, o(0) — Ao(o)]] =0,



Theorem 3.5 Let 1l <p<oo, p€R and m,M € Ny. Then for any f, €
(1,3 45),m

H, (A1), the system of pseudodz’ﬁerential equations, given by (2.31),
has a unique solution t;,t; € H e m( A) zf and only if (?7?) holds.
(00, L s+ M+1),M (00,2 jits+M+1),M .
Let gj1 G Hp (#2), fi € (1) (5 =0,1).

(o0, +5+M+2

Then fy € H,) (5”1) (2.31), (2.33) and for any M € Ny the
solutions t,, of the system (2.31) have the form (cf. (0.4))

M
=Y A (o)prtMtk Zcmm )log’p + tmars1(o. p) (3.20)

with Gy 41 € ]HI(OO protAD A (A1) for sufficiently small p > 0, (m = 1,2).

The 3-vector cyoo € C™(I') is given by the principal symbol of (2.31), while
the 8-vectors cpi; € C(I') for k = 1,2,... are given by the full symbol of
the equation. Here

log Ao(0)

v(o) = (0,19(0), —1o(a)) " vy(o) == o
with \o(o) given by (??) and we refer (0.4) for the definition of the matrix
J+iv(o)
p :

For the displacement vector field u(z) = u(o, p,7) and the stress tensor
field T(z) = Z(o, p,r) we have the expansions (0.7) and (0.8), respectively.

Proof The proof follows from Theorems 77, 7?7, 77 in the Appendix if we
invoke (?7?), (??) and (?77). n

3.3 Example: two isotropic bodies

T.C.Ting, using an appropriate ansatz, obtained in [?] a criterion for the
absence of oscillations of the displacement field describing interface—cracks
between two anisotropic bodies. We shall derive this condition for the case



Theorem 3.6 The matriz # (o) in (??), (7?) has the following form

e11(0) esn(o) ni(o) 1 0 0
%(O’) = 612(0’) 622(0') 7”L2(0') 0 1 —1 . (322)
613(0') 623(0') nq (O’) 0 —2 1

The parameter vy = 0 in the asymptotic expansion (?7) vanishes if and
only if

1201 (3.23)
p2 1 —209 .
and then the asymptotic expansion (77) simplifies substantially
M
1
tn(o,p) :Zp5 o) + tmarsi(o,p), m=1,2. (3.24)

k=0

Proof. The fundamental solutions of the Lamé equations (?7?) (see (2.1))
are given by

1 3 — 4oy, ZjZm
G — 5m J )
£(2) 167 py (1 — o) ( 2| sm ¥ |2[3 >3><3

where o = A\ /2(Ar + 1) denotes the corresponding Poisson ratio for k& =

k
1,2. The symbols of the operators V' _; (see (2.4), (??7)) were given in [?] and

[7):



k
The symbols #," (o, p;€) can be found in [?, Section XIV.6],

k k

' (o, p:8) =540, p) |7 #41(§)5(0.0)

k 0 0 '1;3 &¢I
(€)= 0 0 Asalt |

k k
Vs &€l Vs &l 0

k 1—-20
Vs M k

- )\k+2ﬂk 2(1—0’16).
Now we can write the symbol &Z_(c, p; ) (see (?7)) in the explicit form

P _1(0,p;0, 1) = [0, p) "] Z_1(£1)5(0,p) T,

1
1 _ 2
9 %1 (I+7) 0 0 1= (73) 0 01
Pi(£)=—7F 0 10 0 1 +ivs
_ 2 1
1= (73) 0 0 1 0 Ti 73 1
2 -2 0 0
27, (1+72) 0 0 )
+ 5 0 10 0 1 TFis
_ 2 2
1= (1) 0 01 0 +4ivy 1
74 0 0
=2 0 5 =% )
0 Five s

where



1 0 0
Y4+ 20757

2 2 2 2
— ;r;(g) Y5 —% V5~ Vs %}(U)T
—9
0 : 275726 1
V5 — Ve
0 0
0 75— Ve 0 .
0 0 Y5 T Ve
Y5 — Ve

and % (o) is defined in (?7?). Comparing the representations (??) and (??),
we find the formulae for J# (), for the eigenvalues \i, Ao, A3 and for § = iv;
namely,

56 )\_75‘1'76_1

M=1, d= , _
! 2 Y5 + V6

3 — 9
V=T A2
(3.26)
1 Y5 — V6
= (0, — log 376
v ( ) VOvl/O)? %) 27 0og 75"_’)/6
As for (?7), the desired absence of oscillation follows if and only if Ay =

A3 =1, i.e. if 96=0 (see (77)); this can be rewritten in the form

1 (3—1001 +807)(3 —4o3) 1 —20y
po  (3—401)(3— 100y +802) 1—205°

A Appendix

In the Appendix we recall some results on pseudodifferential equations in
Bessel potential spaces, mostly from [?, 7, 7,7 7 7 7]).

A.1 Spaces



are bounded operators in both spaces S(R™) and S'(R"™), the convolution
operator

a(D)p =W2p = F 'aFp with ac€SR"), ¢cSR" (A.2)

is a bounded transformation from S(R") into S'(R™) (see [?, ?]).
The Bessel potential space H;(R") is defined as a subset of §'(R") en-
dowed with the norm ([?, ?7])

[l (R™) ]| == [[(D)*ul Ly(R™)|l,  where()* := (1+ [¢]*)2. (A.3)

For the Hilbert space H5(R"™), usually the index 2 is dropped and the
notation H*(R™) is used.

For Q C R", by C7(Q2) with c =m+4+pu, m=0,1,..., 0 < p <1 we
denote, as usual, the Holder space of continuous functions, having Holder
continuous (with exponent p) derivatives of the order m.

The space I?]I;(R’}r) C H(R™) is defined as the subspace of those functions
Y E H;(]R”), which are supported in the half space, i.e. supp ¢ C Ei whereas
H> (R} ) denotes the quotient space Hy (R} ) = H(R"™)/ IﬁIIS)(R’i), R™ :=R"™\
R? and can be identified with the space of distributions ¢ on R’} which admit
an extension (o € H>(R"). Therefore r ,H> (R™) = H; (R’ ).

For u,s € R, m € Ny and 1 < p < oo, the anisotropic Bessel potential
spaces with weight HI(,“ ’S)’W(R") consists of functions (of distributions when
< 0orpu+s<0) which have the following finite norm

[ (RM) || == (DY (D) zkul L(R™)||,
k=0 (A.4)

g:(g/’én)’ gleRn_la fnGR

For integer ¢,v = 0,1,... we get anisotropic Sobolev spaces with weight,
endowed with the norm

m
M ot l 9 1 s N 1] \N '\ N )\ A Al Lk s N T sTemN o]



If {X;}¢_, is a sufficiently refined covering of .#, the spaces HS(.#),
Co(M), B (M), CO(M), HY""™ () and HY""™ (M) can be defined by
a partition of the unity {t;}_, subordinated to the covering {X;}|_, and
local coordinate diffeomorphism

w0 Y; — X, Y; C RY. (A.5)

The space H""™ (_#) can also be defined as the subspace of H{*"™(.%)
of those functions ¢ € Hé“ 75)"”(5” ) for which suppy C .#. The space
HY“"™(#) is the quotient space HY*"™(.#) = HY"™ (%) /HY™ (7 \
') and can be identified with the space of distributions ¢ on .# which admit
an extension lp € HY*™(.#). Therefore r ,HY™ () = H"* ™ ().

If %* denotes the dual space to the space B and 0.4 # (), then the
following relations are valid (see [?]):

(Fy(a)) =wy(ar), (M) =y (), (A.6)

p P

1
provideds,rER,rz—,1<p<oo,p’:L1. If ™ C R" is an m-

dimensional C'"*°*—smooth submanifold, where m < n, then the trace operator

n—m _n—m

n—2am

Yom HYRY) = By, 7 (L™ CH, 7 (M) C O TR (AT)

< s and

is correctly defined and bounded, provided 1 < p < oo,
p
0 < &1 <&y Here By (#) denotes the Besov space (see [?]).

A.2 Pseudodifferential equations

If the convolution operator defined in (??7) has a bounded extension

WO . 7, (R™ — T, (R")



we get that the operator W, : H? (R") — H>~*(R") is bounded if and only if
a € M (R).
Let a € M{" (R™). Then the operator
Wo =rra(D) : Hp(RY}) — Hy7*(RY) (A.9)

is bounded, where r, := Ry 1S the restriction operator.
If the symbol a(t;€) depends on the variable ¢, then the corresponding
convolution operator (see (77))

a(t, D)p(t) = Wapy(t) = (F_a(t: §)-Fy—ep(v)) (¢) (A.10)

with the symbol a € C(R",S'(R")) is called a general pseudodifferential
operator (PsDO in short) acting on ¢ € S(R™). Here C(£2, &) denotes the
set of all continuous functions a : ) — £ with £ any metric space.

Let M (R™ x R™) denote the class of symbols a(t; ) for which the op-
erator in (??7) can be extended to a bounded mapping

a(t, D) : HY(R™) — H:™(R") forall seR.

Theorem A.1 [?, Theorem 5.3] Let @ C R", n € N and k € R. If for a
function a(t;€), t € Q, € € R™ there exist constants M, g such that

J1E) 020 a(t; €)|dt < Myz(E)~ P,
@ n (A.11)
for all o, 3= (3, 5,) € Ne, |3 < [5] +1, g<1

and all B3, =0,1,.., £ €R", thena c Mé”)(R” X R™) for all 1 < p < 0.

Definition A.2 Let S, (2, R") denote the class of functions a(t; &) which
satisfy condition (?7) and admit an asymptotic expansion

a(t; €) = ag(t; €) +ai(t;€) + -+, (A.12)

where:



Theorem A.3 [?, Theorem 1.5] Let m € No,k € R and 1 < p < oo. If
8§na € Méﬁ_k) (R™ R™) for every k =0,1,---,m, then the operator

a(t, D) : HI-*™(R™) — HY—~m(R") (A.13)
s bounded for all u,s € R.

In particular, if a € Sy x(R™,R™), then a(t, D) in (??) is bounded for all
m € Ny and p, s € R.

Let .# be an n-dimensional, C*°~smooth compact manifold with smooth
boundary I' := 0.# # 0 and 1 < p < oo, s,k € R.

It is easy to prove that the symbols of the class Sy (A, R!) are invariant
with respect to the diffeomorphism (¢;&) — (go(t;€), g1(t; €)) with positively
homogeneous g, € C°°(#,S'™!) of order k with respect to £ (k = 0,1; cf.
[?, Lemma 1.2]). Therefore the symbol class Sy (.7 *.4) is defined correctly
on the cotangent manifold .J*.# (see |7, Subsection A.3]).

Moreover, the principal symbol ag(¢; ) is defined invariantly and is inde-
pendent of the particular chart chosen.

Definition A.4 (see [?, ?] etc.). An operator
AHED™ () — Y™ () (A.14)

is called a pseudodifferential operator with the symbol a € Sq (T * M), if:

i. x1Axol : Hé“’s)’m(///) — CO®(A) are continuous for all pairs x1,x2 €
C®(A) with disjoint supports supp x1[) supp x2 = 0, i.e. x1Ax2I has the
order —oo;

1. The "pull-back” operators

%jV*A%j_y*lu = aY(t, D)u, u e Cg°(RY), j=1,../¢

(cf. (77)) and (??)) are pseudodifferential operators on R with the symbols

N - ~



If —oo <k <1 and a= Fk € Sy.(R?) is a classical N x N matriz—
symbol, where

a(€) = ao(€) + ar(§) + -, ax(N) = NFar(§), €€R*,A>0,
then the integral operator

anle,D)p@) = [ k(e —7)p(r)drtl for te.d,
: (A.15)
anle, D)« HPOT(a) - HSTT )

s a classical pseudodifferential operator
an(@:8) =Y apkt;€), ang€San(T M), §ER®  (A16)
k=0

and the homogeneous principal symbol reads

@ pr(%;8) 1= g 023 E)

_%/ao([%(m)T]_l(&,)\)>d>\, tey,.  (A.17)

—0o0

Here 9, (x) =9, (5 (x)), #(x) =33 " (z)), v €X; C.M and

J J I\

N

g%j(t) = [det(@kxj(t) . al%j(t))gxg] , te Y} C R?

with Oy = (8k%j1,8k%j2,8k%j3)T, denotes the square root of the Gram
determinant of the vector—function »; = (1, %9, 3¢j3) " for j=1,2,...,N.

A.3 Fredholm property and asymptotics



Theorem A.6 [?, Theorem 2.7], [?, Theorem 1.9]. Let the symbol a_,(x;€)
n (?7) be elliptic, i. e.

inf{|deta_so(z;€)| ;v € .4, || =1} >0, (A.19)

where a_y o(x; &) denotes the principal symbol (see Definition ??), and positive
definite on the boundary

ano(z;En - n" > M|E|%|n|?

(A.20)
forall xe€ oM, EER* and neCV
with some constant M > 0.
Then the system of equations (??) is Fredholm if and only if
1 & 1 &k
-4+-==-1 -4+ —. A.21
p+2 <s<p+2 (A.21)

If the symbol is strongly elliptic on A , i.e.
Re (a4 (z,9)n,n) > M >0, forall zc.4Z, |9 =y =1,

the Fredholm index of equation (?77) vanishes: Inda 4 (z, D) = 0.

If the conditions (??) hold, then (??) has one and the same kernel in all
the spaces HY" "™ (&), m € Ny, p € R. In particular if equation (7?)
18 uniquelly solvable in one of these spaces, it is uniquelly solvable in all of
them and

(NS IF]I](JOO,s),OO(.///) = ﬂ I?H;M,s),m(///) provided v € H}(}oo,s—n),oo(%)‘
w, m
Note that the Fredholm properties, the index and the kernel Kera_4(z, D)

of (??7) are independent of the parameters m € Ny and p € R.
To formulate results on the asymptotics of the solution ¥ (x) to the system



Lemma A.7 If the matrices a.4(w,=£1) are positive definite, then a’;, ,(w)
in (7?) has only positive eigenvalues Nj(w) > 0,---, Ny(w) > 0 and has the
stmple Jordan representation

ag//’o(w) = ,%/(w)A(w)Ji/_l(w) (A.23)
with
Aw) = diag{\(w), -, Anv(w)}, H € C®0A), detH (w)#0.

The numbers log A ()
og \i(w
vi(w) = —5—

are then real, i.e. Imv;(w)=0 for j=1,--- N.

(A.24)

Proof. Since the matrix a s o(w,+1) is positive definite, there exist the

1 1
square roots a?o ‘= [a.y.0(w, +1)]*2 which are positive definite as well. The
equivalent matrix

1 _1 _1 —
a}/ﬂo(w) = aﬁ/f,o“%,o(“)ak/,o = [a.no(w,+1)] 2 a?/(,o(“) [aojz,o(wﬂ'l)}

N|=

has the same eigenvalues, the same eigenvectors and the same Jordan rep-
resentation as a’, ,(w). Since al, (w) is selfadjoint, it has no associated
eigenvectors (i.e. is diagonalisable; see (??)) and . € C*(0.#) (see [?]).
Let n(w),...,ny(w) € CV be eigenvectors corresponding to the eigenvalues
A(w), ..., Ay(w); then

ag//,o(w)ﬂj(w) =\njw), j=1,...,N

and we get
(0% o(w, +1)n;(w), 1;(w))

Aj(w) = (a% o(w, =1)n;(w), m;(w))

>0




If v e BSOS M2° (i) then the solution has the following asymptotic
expansion ®

M
Y(w, p) = Z,/"i/ )p3 F@Tk -l chl )oglp+ Ui (w, p) (A.25)
k=0

for all sufficiently small p > 0, with Yyr; € HE D Ma#*). Here the
N-vectors cy; belong to C’OO(&///). coo depends only on the principal symbol of
equation (77), while ¢y, ¢y . .. depend on the full symbol of the equation. The
components of the vector v := (v1,---,vn)" are defined in (?7); the vector
exponent of the scalar variable is understood as a diagonal matrix

p19+w — dlag {pﬂ—‘rwl . ”019+il/N}
for arbitrary scalar ¥ € R (cf (0.4)).

If v(w) = const, the logarithmic terms in (?7?7) vanish and:

M

blw,p) = Y H (@)pT O T wW)en(w) + dara(w,p). (A26)

k=0

Note that the presence of an oscillation v(w) in the asymptotics (?7) can
be seen as a logarithmic singularity since

p— §+w(w)+k

= p 2 * diag {cos[v;(w)log p] + i sin[v;(w) log p] }jvzl :

Now let the closed manifold ., which contains .# as a part, be a com-
pact, smooth surface in R", .#Z C .¥ and .¥ be the common boundary of a
compact domain €2y and its outer complement €y (see Fig. 1in § 1).

We consider here some homogeneous N x N system of differential equa-
tions

A(D,) = Y ao, D



is elliptic: detA,.(§) # 0 for all |{] = 1, £ € R". Note, that we consider a
homogeneous operator and therefore the principal symbol coincides with the
complete symbol. The fundamental solution of the equation (??) (see [?])
can be written as the following matrix—function

Hy(z) = fé,iz {% AN T)eTdr | i Fz, >0, (A.29)
where z = (2,2,), 2/ = (21, ", 201), & = (&, ,&-1) € R The
contour .Z, (Z_) is disposed in the upper (lower) complex half-plane C* :=
R @iR* (in C7) and is oriented counterclockwise (clockwise) circumventing
all roots of the polynomial detA(¢’, 7) with respect to 7 in the corresponding
half-planes 7 € C*.

For the direct value of the single layer potential

on the surface . we use the notation

Vicomg(z /HA r—1y)g9(y)d,S, reS. (A.31)

Let B, be a differential operator with real C'*°—coefficients of order ¢ =
0,1,... on R™ with the symbol

q
=3 ba(2)€", BY (2.8 = Y ba(2)E", ba€C®R"),
|or|=0 loal=g—k

with B)(z,&) standing for the homogeneous principal symbol (z,£ € R™).
We are interested in the asymptotics of the following potential-type func-
tion



A local coordinate diffeomorphism s; : Y;(C R?) — X; C . is extended
to a diffeomorphism of "layers”

%jli\;}‘ﬁ)’zj‘, i}j:}/jx<—€,€), )Zjﬂ.%:Xj,
and #3 (w,p) == /;j(%j_l(w,p)), I (W) = F3,(w,0), denotes the image

of the Jacobian matrix £z (') under inverse diffeomorphism s '(w,p) :
Y; — X; C .M (cf §3.1).

Theorem A.9 Let the conditions of Theorem 77?7 be valid and let g, g—q, +

0,+1,...; let Y(w,p,r) be as in (??). The potential-type function T(w,p,r)
in (??) then has the following asymptotic expansion:

£(N) M+2m—qns(k) )mar2 i 2k
Etiv(w +2m—j+ s
NEVHEDIDY Z Z (w ez T aia(9,0)loglp
s=1 9==%1 = 7=0 =0
(@, o), T € HA 0 x RY), 4 > 0 (A.33)

for sufficiently small |p|+|r| and arbitrary M = 0,1, . ... Here dZ{i(-, V), ai{}i(-, +) €
C>®(0.4) and the coefficients of the leading terms aOOi(w,ﬁ) = Kj(w) are
independent of s,v, +.

In (77) by cf;;’(‘” we denote the diagonal matriz—functions (cf (0.4)),

which are vector exponents of the scalar variables
Cs = Cog1 1= Tpe1 + TpTs, (o1 = m, —T< Arg (, <m;  (A.34)
{TS}K(N C C®(0.4) are all different roots of the polynomial equation
detA([ 75! ()] (0,+1,7)) =0, Im7<0

in the complex lower half-plane and ng(0) is the multiplicity of the pole T4 of
the matriz-function By (w,0,0; [j;:jl(w)]T(O, 1, T))Afl([/;:jl(w)]T(O, 1,7)),
while for k =1,2,... we have the estimate ng(k) < k(ngs(0) — 1) + M — k.
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