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Abstract
The linear model equations of elasticity give rise to oscillatory so-

lutions in some vicinity of interface crack fronts. In this paper we
apply the Wiener–Hopf method which yields the asymptotic behav-
iour of the elastic fields and, in adition, criteria to prevent oscillatory
solutions. The exponents of the asymptotic expansions are found as
eigenvalues of the symbol of corresponding boundary pseudodifferen-
tial equations. The method works for three–dimensional anisotropic
bodies and we demonstrate it for the example of two anisotropic bod-
ies, one of which is bounded and the other one is its exterior comple-
ment. The common boundary is a smooth surface. On one part of this
surface, called the interface, the bodies are bonded, while on the com-
plementary part there is a crack. By applying the potential method,
the problem is reduced to an equivalent system of boundary pseudo-
differential equations (BPE) on the interface with the stress vector as
unknown. The BPEs are defined via Poincaré–Steklov operators. We
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Introduction

It is well known that the solutions of elliptic boundary value problems in
domains with corners, edges and interfaces have singularities at these geo-
metrical and structural peculiarities regardless the smoothness properties of
the given data. Both, mathematicians [?, ?, ?, ?, ?, ?, ?] and mechanists
[?, ?, ?, ?, ?, ?] have analysed local asymptotic expansions for the elliptic sys-
tem of linear elasticity. In this paper we study interface cracks between three–
dimensional anisotropic composites. It should be emphasized that G.Fichera
with his fundamental work in elasticity [?], eigenvalue problems [?] and his
early work on the Zaremba problem [?] has significantly inspired this work.
The corresponding two–dimensional case has already been investigated thor-
oughly by many authors, see [?] and references therein.

In addition to existence, uniqueness and a priori estimates for solutions to
crack, punch and similar problems of mathematical physics [?, ?, ?], the ex-
plicit asymptotic expansion of the solution near singular submanifolds, such
as conical points, edges, crack fronts etc., provides important information for
applications in solid mechanics.

The linear elasticity model often gives rise to oscillatory solutions in some
vicinity of interface crack fronts. In some investigations the boundary condi-
tions are modified in the vicinity of crack front in order to prevent oscillatory
solutions (see [?, ?, ?]). Others formulate conditions for the elastic constants
which ensure absence of oscillations (see [?] and references therein). Mostly
these investigations are devoted to two–dimensional problems.

In this paper we present a method which yields criteria (i.e.necessary and
sufficient conditions) preventing oscillations in three–dimensional anisotropic
bodies. It is based on the Wiener–Hopf technique and provides asymptotics
of solutions. The corresponding exponents are found via eigenvalues of the
symbol of an associated boundary pseudodifferential equation. We demon-
strate the method for two anisotropic three–dimensional bodies, one of which
is bounded and the other one is its exterior complement. The common bound-
ary is a smooth surface. On one part of this surface, called the interface, the
b di h f ll ( h b d d) hil h l



The local leading edge asymptotics can e.g. be obtained by reduction
to the two–dimensional case [?, ?, ?]. Here we present a different rigorous
analysis of the three–dimensional case and find an explicit description of the
exponents in the asymptotics, which is based on the Wiener-Hopf method
and does not exploit the reduction to the two–dimensional case (see [?, §§ 9,
25], [?, ?, ?, ?, ?]).

Although the method is general, in the present paper we apply the method
to a boundary–transmission problem for two anisotropic three–dimensional
bodies Ω1 and Ω2, where Ω1 is bounded and Ω2 = R

3 \ Ω1. The common
boundary manifold S is supposed to be smooth and consists of two parts
S1 and S2 with S = S1 ∪ S2 ∪ Γ, where Γ := ∂S1 = ∂S2 is a smooth
curve. On the part S1, called the interface, the bodies are bonded, while the
part S2 = S \ S1 models a crack.

After formulating the transmission-boundary value problem in Section
1 we recall some properties of potential operators in Subsection 2.1. In
Subsection 2.2 the boundary–transmission problem is equivalently reduced
to a system of boundary pseudodifferential equations of order −1 on the
interface S1. The principal part of the corresponding operator is given by
Poincaré–Steklov operators corresponding to the different materials

P−1 :=
2

V −1

(
1

2
I−

2

W ∗
0

)−1

+
1

V −1

(
1

2
I+

1

W ∗
0

)(−1)

, (0.1)

where the second summand is a pseudoinverse. P−1 is a pseudodifferen-
tial operator of order -1, is positive definite, however the symbol matrix
P−1(x, ξ1, ξ2) does not possess a generalised transmission property

P−1,0(x) := [P−1(x, 0,+1)]−1 P−1(x, 0,−1)) �= I , x ∈ S1 . (0.2)

It is proved that the eigenvalues λ1(σ), λ2(σ), λ3(σ) of the matrix P−1,0(σ),
which we look for on the boundary Γ = ∂S1, have the properties

λ1(σ) ≡ 1 , λ2(σ) = λ−1
3 (σ) = λ0(σ) , Imλ0(σ) ≡ 0 , σ ∈ Γ . (0.3)



Everywhere in this paper the boldface Greek ρµ (or ζµ etc.) is used to
denote the diagonal matrix–function

ρµ := diag {ρµ1 , . . . , ρµ1} , µ := (µ1, . . . , µn) . (0.4)

which is the vector exponent of the scalar variable ρ ∈ R (or ζ ∈ C).
Then the resulting asymptotic expansion for the traction field on the

interface S1 reads (see Theorem ??)

t(σ, ρ) =
M∑

k=0

K (σ)ρ− 1
2
+iν(σ)+kK −1(σ)

k∑
l=0

ckl(σ) loglρ+ t̃M+1(σ, ρ) , (0.5)

where t̃M+1 ∈ CM(S1) for all sufficiently small ρ > 0,

ν(σ) = (0, ν0(σ),−ν0(σ)) , ν0(σ) :=
log λ0(σ)

2π

and arbitrary integer M ∈ N0; all 3–vectors ckl and 3 × 3 matrix–functions
K (σ) belong to C∞(∂S1). The vector c00(σ) and the matrix K (σ) are given
by the principal symbol matrix of the BPE, while in the definition of vectors
ckl(σ) for k > 0 the full symbol is involved. The leading term for k = 0
in (0.4) does not contain log ρ. The logarithmic terms vanish completely
provided ν0(σ) =const:

t(σ, ρ) =
M∑

k=0

K (σ)ρ− 1
2
+iν+kK −1(σ)ck(σ) + t̃M+1(σ, ρ) . (0.6)

This is the case when e.g. both materials in Ω1 and Ω2 are isotropic.
Moreover, we can present the full spatial asymptotic expansion for dis-

placement and stress fields in R
3 in the vicinity of the crack front Γ = ∂S .

To this end let us extend the l.t.c.s. to the special local coordinate sys-
tem (s.l.c.s. in short) into the vicinity of the crack front Γ in R

3; the
point x = (σ, ρ, r) ∈ Γ × R

2 with σ ∈ Γ and ρ, r ∈ R will belong to
Ω for ( 1)k+1r > 0 with |r| denoting the distance |r| =dist(x S ) while



with ũM+1 ∈ CM+1(Γ × I 2
ε ), Iε := (−ε, ε), smooth 3 × 3 matrix–functions

dmj
k,±(·,±) and 3–vectors asj

kl,±(ϑ, ·) ∈ C∞(Γ). The scalar complex variables

ζm,−1 = ζm,+1 := ρ+ τmr , Im ζm �= 0 .

are defined with the help of (all different) roots {τm}�
m=1 ⊂ τm ∈ C∞(Γ)

of a certain polynomial equation, defined by the symbol of original partial
differential equation (more details cf. in Theorem ?? in the Appendix; for
the definition of the diagonal matrix ζµ see (0.4)).

With the displacement field available in (0.7), by differentiation and
Hooks law, applying Theorem ??, we also get the full asymptotics of the
stress tensor field in the form

T(σ, ρ, r) =
∑
ϑ=±1

�∑
m=1

p′′m∑
j=0

M+1∑
k=0

gmj
k,±(σ, ϑ) rjζ

− 1
2
+iν(σ)−j+k

m,∓ϑ

2k∑
l=0

bsjkl,±(ϑ, σ) loglρ

+T̃M+1(σ, ρ, r) for ± r > 0 (0.8)

with T̃M+1 ∈ CM(Γ × I 2
ε ), with smooth 3 × 3 matrix–functions gmj

k,±(·,±),

bsjkl,±(ϑ, ·) ∈ C∞(Γ)
As we see, again, logarithmic terms do not appear in the leading terms

of asymptotics in (0.7) and (0.8) and they vanish provided ν0(σ) =const.
The main conclusion for oscillating solutions can be formulated in the

following theorem.

Theorem 0.1 The displacement vector field u(x) and the stress tensor field
T(x) fields of the interface crack problem are non-oscillating solutions of
the linearised boundary value problem of anisotropic elasticity if and only if
P−1,0(σ) = I in (0.2) on the boundary σ ∈ Γ = ∂S1.

In Subsection 3.4 we investigate more detailed the interface crack problem
for isotropic bodies. As an important consequence of Theorem 0.1 we present
a criterion for non–oscillating solutions: if



For convenience we collect in the Appendix the definitions and results
from the theory of function spaces, pseudodifferential equations on manifolds
with smooth boundary and asymptotics of corresponding solutions from [?,
?, ?, ?, ?], on which rely our results in Sections 1–3.

Such an asymptotic expansion of the displacement field can be obtained
by a different and well–known method going back to V. Kondratjev in [?] and
further developed e.g. in [?, ?, ?, ?]. This method is applicable in cases of
non–smooth boundary manifolds. However, the Wiener–Hopf method, pre-
sented here, provides more explicit formulae for the exponents and trans-
parent connections between the coefficients of the surface two–dimensional
asymptotics in (0.5) (of solutions to boundary pseudodifferential equations)
with spatial three–dimensional asymptotics in (0.7) and (0.8) (of solutions
to corresponding boundary value problems; see [?, ?, ?, ?, ?] and [?, ?]).

Some preliminary results of this paper have already been announced in
[?].

1 The boundary value problem

Let Ω1 ⊂ R
3 be a simply connected bounded domain with 0 ∈ Ω1 and

Ω2 := R
3 \ Ω1. Let the surface S = ∂Ω1 = ∂Ω2, described above, be their

common boundary (see Fig.1).
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The traces
k
γSj

ϕ on Sj are defined correspondingly (k, j = 1, 2).
If a distribution ψ is defined on the surface S , then we denote by

rSj
ψ := ψ|Sj

for j = 1, 2 (1.2)

the restriction operator.
The domains Ω1 and Ω2 are occupied by possibly different elastic, ho-

mogeneous, anisotropic materials which are bonded along the interface S1,
while S2 models a crack.

The displacement vector u(z) = (u1(z), u2(z), u3(z)) of elastic media in
Ω1

⋃
Ω2 satisfies the system of linear second order partial differential equa-

tions of anisotropic elasticity (see [?] and [?, Section 1])

Lk(D)u(z)+
k

X (z) = 0 for z ∈ Ωk, and k = 1, 2 (1.3)

with the given volume forces
k

X= (
k

X1,
k

X2,
k

X3) and the differential operators

Lk(D) :=

( ∑
j,l,m,n

k
cjlmn DjDn

)
3×3

and Dj := i∂j = i
∂

∂zj

. (1.4)

The elastic moduli
k
cjlmn are real-valued and satisfy the symmetry rela-

tions
k
cjlnm=

k
cjlmn=

k
cmnjl . (1.5)

The conservation of energy yields positive definiteness of the corresponding
quadratic forms; namely, there exist constants M0,i > 0 such that∑

l,j,m,n

k
cljmn ξljξmn ≥M0

∑
l,j

|ξlj|2 for all ξlj = ξjl ∈ C and k = 1, 2 . (1.6)

To formulate the boundary value problem describing the displacement



By H
1
loc(R

3
S ) we denote the Frechét–Sobolev space of vector–functions

ϕ(z) = (ϕ1(z), ϕ2(z), ϕ3(z))
� on R

3
S := R

3 \ S = Ω1 ∪ Ω2, equipped with
the seminorms

‖ϕ|H1(ΩS )‖ :=

⎡⎣∫
ΩS

(|ϕ(z)|2 + |∇ϕ(z)|2) dz
⎤⎦

1
2

<∞ , (1.8)

ΩS = Ω \ S = Ω1 ∪ (Ω2 ∩ Ω) , ∇ϕ = (∂1ϕ, ∂2ϕ, ∂3ϕ),

defined for any compact domain Ω � R
3.

For the definition of all other spaces used H
1
comp(R

3
S ), H

1(R3
S ), H

± 1
2 (S ),

H
± 1

2 (Sl), H̃
± 1

2 (Sl) we refer the reader to the Appendix.

In what follows we assume that
k

X= 0 and consider the homogeneous
system

Lk(D)u(z) = 0 for z ∈ Ωk and k = 1, 2; (1.9)

otherwise we superpose a corresponding particular elastic field.
Problem (the mixed transmission – Neumann problem): find a solution

u ∈ H
1
loc(R

3
S ) satisfying u(z) = o(1) as |z| → ∞, (1.10)

which fulfils the equations (1.9) and the following boundary and transmission
conditions:

k
γS2

k

T u(x) = gk(x) for x ∈ S2 and k = 1, 2 (1.11)
1
γS1 u(x)−

2
γS1 u(x) = f0(x) for x ∈ S1, (1.12)

1
γS1

1

T u(x)− 2
γS1

2

T u(x) = f1(x) for x ∈ S1 (1.13)

with
k

T : =
k

T (D,�n(x)) .

Here the functions g1, g2 ∈ H
− 1

2 (S2) and f0, f1 ∈ H
1
2
−j(S1) are given.



If volume forces are present
k

X �= 0 (see equation (1.3)), in (1.11)–(1.13) we
should take gj = fj = 0, j = 1, 2. The proposed superposition of some par-
ticular elastic fields, which eliminate the body forces in equation (1.9), results
in non–homogeneous boundary and transmission conditions gj �= 0, fj �= 0.

The traces
k
γSj

v are defined for functions v ∈ H
s
loc(R

3
S ), provided s > 1/2;

therefore we should justify existence of the trace of
k

T (D,�n)u ∈ L2
loc(R

3
S )

from (1.11), (1.13). To this end we recall that u(z) is a solution to the elliptic
system (1.9) and, therefore, the following Green formula is valid:∫

Ωk

[vLju+ Ej(u, v)] d z = (−1)k+1〈 k
γS v,

k
γS

j

T (D,�n)u〉S , (1.15)

Ej(u, v) :=
∑

p,l,m,n

j
cplmn ∂pul∂mvn

for j, k = 1, 2, where 〈·, ·〉S denotes the sesquilinear form

〈ϕ, ψ〉S :=

∫
S

ϕ(x)ψ(x) d xS for ϕ ∈ L2(S ).

By duality and density, relation (1.15) can be extended to pairs H
1
2 (S )×

H
− 1

2 (S ), H
1
2 (Sk) × H̃

− 1
2 (Sk) and H

− 1
2 (Sk) × H̃

1
2 (Sk), respectively.

If u is a solution of (1.9), then the trace
k
γS

j

T (D,�n)u ∈ H
− 1

2 (S ) exists

as a bounded linear functional: if v ∈ H
1
comp(Ω2), then

k
γS v ∈ H

1
2 (S ) and

(1.15) provides the estimate

〈 k
γS v,

k
γS

j

T (D,�n)u〉S =

∫
Ωk

Ej(u, v) d z ≤M1‖u|H1
loc( supp v)‖ · ‖v|H1(Ωk)‖.

(1.16)

Furthermore if supp
k
γS v ⊂ S then

2
γS v ∈ H̃

1
2 (S ) and by duality



2 Boundary pseudodifferential equations

2.1 Potential operators of elasticity

Let

Lk(ξ) :=

( ∑
l,j,m,n

k
cljmn ξjξn

)
3×3

and ξ1, ξ2 ∈ R , k = 1, 2

denote the symbol of the operator Lk(D) in (1.9). Then

Gk(z) = F−1
ξ→xL

−1
k (z) for z ∈ R

3, k = 1, 2 , (2.1)

where F is the Fourier transform (see (??)) defines the fundamental solution
of equation (1.9)

Lk(D)Gk(z) = δ(z)

with the Dirac δ-function δ(z).
The single and the double layer potentials, associated with the operator

Lk, are defined for z ∈ R
3
S as follows:

k

Vϕ(z) :=

∫
S

Gk(z − y)ϕ(y) d yS , (2.2)

k

Wϕ(z) :=

∫
S

[
k

T (Dy, �n(y))Gk(y − z)

]�
ϕ(y) d yS . (2.3)

In our investigations we also use the following boundary (pseudodifferent-
ial) operators on S for k = 1, 2:

k

V −1 ϕ(x) =

∫
S

Gk(x− y)ϕ(y) d yS , (2.4)

k

W ( )

∫ [
k

T (D � ( ))G ( )

]�
( ) d S (2 5)



k

T (D,�n)
k

V (see (1.7), (2.2)) on S , respectively; the operator
k

W ∗
0 is the

adjoint to
k

W 0.
k

V −1 and
k

W 0 ,
k

W ∗
0 are pseudodifferential operators and the subscript in-

dices 0,−1 indicate their orders (see Appendix, § A.3). Therefore the fol-
lowing boundedness properties are easy to verify (cf. §§ A.2, A.3):

k

V −1 : H
s(S ) → H

s+1(S ) , (2.7)

k

W 0,
k

W ∗
0 : H

s(S ) → H
s(S ) for all s ∈ R . (2.8)

Moreover, the operators (2.7) are invertible, are positive definite for s =

−1

2
,

〈 k

V −1 ϕ, ϕ〉 ≥M2‖ϕ|H− 1
2 (S )‖2, M2 > 0, k = 1, 2 (2.9)

(see [?, Theorem3.9]) and [?, Theorem 3] for more general spaces); and they
have positive definite symbols

k

V −1 (x, ξ)η · η� ≥M3|ξ|−1|η|2, x ∈ S , (2.10)

ξ ∈ R
2, η ∈ C

3, M3 > 0, k = 1, 2

(see [?, ?]; for the proof see [?, Subsection 3.2]).
The following jump relations are also well-known (see [?, ?]):

(
m
γS

k

Vϕ)(x) =
k

V −1 ϕ(x), (2.11)

(
m
γS

k

Wϕ)(x) =
(−1)m+1

2
ϕ(x)+

k

W 0 ϕ(x), (2.12)

(
m
γS

k

T (Dz, �n(z))
k

Vϕ(x) =
(−1)m

2
ϕ(x)+

k

W ∗
0 ϕ(x), (2.13)

∈ Hs(S ) f ∈ R k 1 2 ∈ S



Theorem 2.1 Let s ∈ R. Then the operator

2

M0=
1

2
I−

2

W ∗
0 : H

s(S ) → H
s(S ) (2.15)

is invertible. The homogeneous equation

1

2
v+

1

W ∗
0 v = 0 (2.16)

and its conjugate homogeneous equation

1

2
h+

1

W0 h = 0 (2.17)

have six linearly independent solutions in H
s(S ) each and these solutions

have the form

v(x) =

(
1

V −1

)−1

h(x) where h(x) = [�c1 × x] + �c2 , x ∈ S ; (2.18)

h(x) is the trace of a rigid motion with arbitrary constant vectors �c1,�c2 ∈ R
3

and [· × ·] denotes the vector product.

For k = 1 equation
1

M0 ϕ = g has a solution ϕ0 if and only if

〈g, h〉S = 0 (2.19)

for all h in (2.18) and then the general solution has the form

ϕ = ϕ0 +

(
1

V −1

)−1

h (2.20)

with h from (2.18).



Proof (see [?]). We insert u = v =
2

V
2

M
−1
0 ϕ into (1.15) and recall that

2

L 2 (D)
2

V
2

M
−1
0 ϕ = 0, and

2
γS

2

T (D,�n)
2

V
2

M
−1
0 ϕ = −ϕ (see (2.13), (2.14))

to obtain the inequality

‖∇ 2

V
2

M
−1
0 ϕ|L2(Ω2)‖2 ≤ −〈 2

γS

2

V
2

M
−1
0 ϕ,

2
γS

2

T (D,�n)
2

V
2

M
−1
0 ϕ〉S = 〈 2

P−1 ϕ, ϕ〉S .

Thus,
2

P−1 is nonnegative; it is also invertible since both operators
2

V −1 and
2

M0, composing
2

P−1 (see (2.21)) are invertible as noted in (2.7) and in The-

orem 2.1). Therefore
2

P−1 is positive definite.

An operator B : Y → X is called a pseudoinverse to A : X → Y if
BAB = B and ABA = A (cf. e.g. [?]). If A is invertible, then A−1 = A(−1)

is the only pseudoinverse of A. If there exist bounded projections onto the
image and onto the kernel of the operator A,

P0 : Y → ImA, P 2
0 = P0 ,

Q1 : X → KerA, Q2
1 = Q1 ,

X = KerA⊕X0 , Q0 := I −Q1 : X → X0, Q2
0 = Q0 ,

(2.23)

then A0 := A|X0 : X0 → ImA has the property KerA0 = {0} and is
invertible. Therefore we can define the pseudoinverse by

A(−1) := A−1
0 P0. (2.24)

Consequently, every Fredholm operator has a pseudoinverse. This pseudoin-
verse A(−1) becomes unique as soon as P0 and Q0 are specified. In particular,
we have:

Corollary 2.3 The operator



Here h1, . . . , h6 and v1, . . . , v6 are some orthonormal bases of the rigid mo-
tions

R6 := {[�c1 × x] + �c2 : �c1,�c2 ∈ R
3} (2.27)

and transformed rigid motions
1

V −1 R6, respectively. Then (cf. Theorem 2.1
and (2.23)):

Y = H
s(S ) = Im

1

M0 ⊕R6 ,

X = H
s(S ) = X1 ⊕X0, X1 =

1

V −1 R6 .

(2.28)

Lemma 2.4 The Poincaré–Steklov operator

1

P−1:=
1

V −1

1

M
(−1)
0 =

1

V −1

(
1

2
I+

1

W ∗
0

)(−1)

, (2.29)

with the pseudoinverse
1

M
(−1)
0 , is non–negative:

〈 1

P−1 ϕ, ϕ〉S ≥ 0 for all ϕ ∈ H
− 1

2 (S ) . (2.30)

The left–hand side vanishes if and only if ϕ ∈ Ker
1

P−1= Ker
1

M
(−1)
0 = R6.

Proof. We proceed as in Lemma 2.2. Let us insert u = v =
1

V
1

M
(−1)
0 ϕ into

(1.15), k = j = 1, and recall that L1(D)u = 0,
1
γS

1

T (D,�n)
1

V=
1

M0 (see
(2.13), (2.25)). Due to (1.17), (2.11) we get

‖∇ 1

V
1

M
−1
0 ϕ|L2(Ω1)‖2 ≤ 〈 1

γS

1

V
1

M
(−1)
0 ϕ,

1
γS

1

T
1

V
1

M
(−1)
0 ϕ〉S

1 1 1 1 1 1



2.2 Reduction to a boundary pseudodifferential equa-
tion

Let
∧
gk∈ H

− 1
2 (S ) be some fixed extension of the boundary datum gk ∈

H
− 1

2 (S2) in (1.11); then any other extension g̃k ∈ H
− 1

2 (S ) of the same

boundary datum gk is represented by g̃k =
∧
gk +tk, where tk ∈ H̃

− 1
2 (S1)

(k = 1, 2). Now let us consider the following system, which is the key bound-
ary integral equation for the BVP (1.9)–(1.13):

rS1P−1t1 +
6∑
1

cjh
0
j = f2 ,

〈t1, hj〉 = −〈∧g1, hj〉S , j = 1, . . . , 6 ,

t2 = t1 − f ∗
1 ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.31)

where

P−1 :=
1

P−1 +
2

P−1=
1

V −1

1

M
(−1)
0 +

2

V −1

2

M
−1
0 (2.32)

(see (2.21) and (2.29) for
1

P−1,
2

P−1).

Unknowns in the system (2.31) are the vector–functions t1, t2 ∈ H̃
− 1

2 (S1)
and the constant vector �c := (c1, . . . , c6)

� ∈ R, while the functions

f ∗
0 := f0 − rS1

1

P−1

∧
g1 −rS1

2

P−1

∧
g2∈ H

1
2 (S1) ,

f ∗
1 := f1 − rS1

∧
g1 +rS1

∧
g2∈ H̃

− 1
2 (S1) , (2.33)

f2 := f ∗
0 + rS1

2

P−1 f
∗
1 ∈ H

1
2 (S1) , h0

j := rS1hj

are all known boundary data (see (1.11), (1.13) and cf. Remark 1.1. Let us
remind, that h1, . . . , h6 is some fixed basis of rigid motions; see (2.27)).

Theorem 2.5 The function⎧ [
1

]



Remark 2.6 Let us note that the unknown functions tk in (2.31) do not

coincide with the traces of the traction vectors
k
t (x) =

k

T (D,�n(x))
k
u (x)

on S1, but carry all singularities of the traction vectors on the interface

S1 provided the extended function
∧
gk is smooth, because tk(x) =

k
t (x)− ∧

gk

(k=1,2; see (1.11)) .

Proof of Theorem 2.5. The function
◦
u(z) clearly satisfies the requirements

(1.9) and (1.10), because it is represented by the single layer potentials.
Recalling the jump relations (2.13) with k = j and invoking Theorem 2.1

and Corollary 2.3 we get the following equalities

1
γS2

1

T
◦
u (x) = rS2

1

M0

[
6∑

j=1

cj

(
1

V −1

)−1

hj+
1

M
(−1)
0 (

∧
g1 +t1)

]

= rS2

1

M0

1

M
(−1)
0 (

∧
g1 +t1) = rS2

∧
g1= g1 ,

2
γS2

2

T
◦
u (x) = rS2

2

M0

2

M
−1
0 (

∧
g2 +t2) = rS2

∧
g2= g2 ,

because

(
1

V −1

)−1

hj ∈ Ker
1

M0 (see (2.1)), rS2tk = 0, k = 1, 2 and
∧
g1 +t1 ∈

Im
1

M0, since
∧
g1 +t1 satisfies the conditions (2.19) (see the second equation

in (2.31)). Thus, the conditions (1.11) are satisfied.
Next we invoke (2.11) and find the following equations,

1
γS1

◦
u (x)− 2

γS1

◦
u (x) =

6∑
1

cjrS1

(
1

V −1

)−1
1

V −1 hj + rS1

1

V −1

1

M
(−1)
0 (

∧
g1 +t1)

+rS1

2

V −1

2

M
−1
0 (

∧
g2 +t2) =

6∑
1

cjh
0
j + rS1

1

P−1 (
∧
g1 +t1)+

2

P−1 (
∧
g2 +t2)



=
6∑
1

cjh
0
j + rS1P−1t1 − rS1

2

P−1 f
∗
1 + rS1

1

P−1

∧
g1 +rS1

2

P−1

∧
g2

= f2 − rS1

2

P−1 f
∗
1 + rS1

1

P−1

∧
g1 +rS1

2

P−1

∧
g2

= f ∗
0 + rS1

1

P−1

∧
g1 +rS1

2

P−1

∧
g2= f0 .

Thence, condition (1.12) is satisfied.
Finally, we invoke (2.13) and find the following relations,

1
γS1

1

T (D,�n(x))
◦
u (x)− 2

γS1

2

T (D,�n(x))
◦
u (x) =

6∑
1

cjrS1

1

M0

(
1

V −1

)−1

hj

+rS1

1

M0

1

M
(−1)
0 (

∧
g1 +t1) − rS1

2

M0

2

M
−1
0 (

∧
g2 +t2) = rS1(

∧
g1 +t1) − rS1(

∧
g2 +t2) ,

since
1

M0

(
1

V −1

)−1

hj = 0 and
1

M0

1

M
(−1)
0 (

∧
g1 +t1) =

∧
g1 +t1 (see Theorem 2.1,

(2.31) and Corollary 2.3) and
2

M0

2

M
−1
0 = I (see Theorem 2.1). Further we

invoke (2.31), (2.33) and proceed as follows:

1
γS1

1

T (D,�n(x))
◦
u (x)− 2

γS1

2

T (D,�n(x))
◦
u (x) = rS1(

∧
g1 +t1)

−rS1(
∧
g2 +t1 − f ∗

1 ) = rS1

∧
g1 −rS1

∧
g2 +f ∗

1 = f1 .

This is the last boundary condition (1.13).

The first two blocks of the system (2.31) can be written in short as

P 0
−1t

0 = f 0 , (2.35)

where

t0 := (t1,�c) ∈ H̃
− 1

2 (S1) � R
6 f 0 := (f2, �d) ∈ H

1
2 (S 1) � R

6 ,

�c := (c1, . . . , c6) ∈ R
6 �d :=−{〈g1, hj〉S }6

1 ∈ R
6 ,



and L∗ is the adjoint operator to L:

〈Lψ,�c〉 :=
6∑
1

(Lψ)jcj =
6∑
1

〈ψ, hj〉S cj = 〈ψ,
6∑
1

cjhj〉S = 〈ψ,L∗�c〉S .

Lemma 2.7 The operator rS1P−1 : H̃
− 1

2 (S1) → H
1
2 (S1) (see (2.32)) is

positive definite

〈rSP−1ϕ, ϕ〉S1 ≥M4‖ϕ|H̃− 1
2 (S1)‖2, M4 > 0 . (2.37)

Proof. Let ϕ̃ ∈ H
− 1

2 (S ) be the zero-extension of ϕ ∈ H̃
− 1

2 (S1). Invoking
(2.22) and (2.30) we get:

〈rSP−1ϕ, ϕ〉S1 = 〈P−1ϕ̃, ϕ̃〉S1 = 〈 1

P−1 ϕ̃, ϕ̃〉S + 〈 2

P−1 ϕ̃, ϕ̃〉S
≥M3‖ϕ̃|H− 1

2 (S )‖2 ≥M3‖ϕ|H̃− 1
2 (S1)‖2.

Lemma 2.8 P 0
−1 is a selfadjoint operator (P 0

−1)
∗ = P 0

−1.
The operator

rS1P−1 : H̃
s(S1) → H

s+1(S1) , s ∈ R , (2.38)

is Fredholm if and only if the operator

P 0
−1 : H̃

s(S1) � R
6 → H

s+1(S1) � R
6 (2.39)

is Fredholm and, if Fredholm, their indices coinside

Ind rS1P−1 = Ind P 0
−1 .

If operator (2.38) is invertible, then (2.39) is also invertible.1)

Proof. The first assertion follows from the self–adjointness P ∗
−1 = P−1 (more-

over, P−1 is positive definite (see (2.37)):



be the regulariser (see [?]); then from RP 0
−1 = I + T1, P

0
−1R = I + T2, where

T1, T2 are compact, we find immediately

R11rS1P−1 = I −R12L+ T11 , rS1P−1R11 = I − L∗R21 + T21

with certain compact operators T11 and T21. Since L and L∗ are finite–
dimensional, rS1P−1 has a regulariser and is Fredholm.

Now let (2.38) be Fredholm and R0 be the regulariser R0rS1P−1 = I +
T1, rS1P−1R0 = I + T2, where T1, T2 are compact operators. Then

R =

(
R0 0
0 0

)
is the regulariser for P 0

−1 and the latter is Fredholm.
Since R is a 6–dimensional extension of the operator R0, their indices

coincide Ind R = Ind R0, and we get the equality

Ind P 0
−1 = − Ind R = − Ind R0 = Ind rS1P−1 .

Furter we have

P 0
−1 =

(
rS1P−1 L∗

L 0

)
=

(
rS1P−1 0
L I

)(
I rS1P−1L

∗

0 −L(rS1P−1)
−1L∗

)
and the first factor is invertible provided (2.38) is invertible:(

rS1P−1 0
L I

)−1

=

(
(rS1P−1)

−1 0
−L(rS1P−1)

−1 I

)
.

By similar reasoning the second factor is invertible if L(rS1P−1)
−1L∗ :

R
6 → R

6 is invertible. Let �c ∈ KerL(rS1 , P−1)
−1L∗ and insert ϕ = L∗�c into

(2.37); then L∗�c = 0. The linear independence of h1 · · · , h6 implies �c = 0.
this yields the invertibility of the finite–dimensional operator L(rS1P−1)

−1L∗.
Thus, invertibility of (2.38) yields the invertibility of (2.39).



H̃
− 1

2 (S1) → H
1
2 (S1). We shall extend this invertibility property to more gen-

eral spaces (namely, to the anisotropic Bessel potential spaces with weight;
see Theorem ??). For this purpose and for investigations of the asymptotics
of solutions we need the symbol of the pseudodifferential operator P−1. Let

S1 =
N⋃

j=1

Xj, κj = (κj1,κj2,κj3)
� : Yj → Xj, Yj ⊂ R

2
+ = R × R

+ (3.1)

be some C∞-smooth atlas of the surface S1 ⊂ R
3 and let

κ̃j : Ỹj → X̃j, Ỹj = Yj × (−ε, ε), X̃j ⊂ R
3, X̃j ∩ S1 = Xj,

κ̃j(z) := κj(z
′) − z3�n(κj(z

′)) κ̃j|Yj
= κ̃j(z

′, 0) = κj(z
′) , (3.2)

z = (z1, z2, z3) ∈ R
3 , z′ = (z1, z2) ∈ R

2 , j = 1, 2, . . . , N

be extensions of the local diffeomorphisms in (3.1). By κ
′
j(z

′) = (∂kκj�(z
′))2×3

and by κ̃
′
j(z) = (∂kκ̃j�(z))3×3 for z′ ∈ Yj and z ∈ Ỹj we denote the corre-

sponding Jacoby matrices, respectively. κ
′
j(z

′) coincides with κ̃
′
j(z

′, 0) for
z′ ∈ Yj if we delete the last column, i. e. the entries (∂3κ̃j�)(z

′, 0), � = 1, 2, 3;
therefore κ̃

′
j(z

′, 0)(η, 0) = κ
′
j(z

′)η for z′ ∈ Yj, η ∈ R
2.

Let us invoke l.t.c.s. (σ, ρ), introduced in Introduction and use g(σ)
instead of g(σ, 0, 0). Clearly,

κ̃
′
j(σ) := κ̃

′
j(κ

−1
j (σ), 0) = (�e1(σ), �e2(σ), �e3(σ)) , (3.3)

where the column–vectors �e1(σ), �e2(σ) and �e3(σ) on the boundary σ =
κj(z1, 0) ∈ Γ = ∂S1 can be chosen mutually orthogonal. Moreover, �e3(σ) =
−�n(σ) coinsides with the invard unit normal vector, while �e1(σ), �e2(σ) are
tangential to S1, �e1(σ) is tangential and �e2(σ) is cotangential (directed inside
S1) to ∂S1 at σ ∈ ∂S1. Therefore (�e1(σ), �e2(σ), �e3(σ)) is positively oriented,
orthonormal smooth vector–field on Γ. The unit vector–fields �e1(σ, ρ) and
�e2(σ, ρ) on S1 are not orthogonal in general in the contrary to the pairs
�e1(σ, ρ), �e3(σ, ρ) and �e2(σ, ρ), �e3(σ, ρ).

As a consequence the Jacob matri ˜ ′ ( ρ) ˜ ′ ( −1( ρ)) becomes



Theorem 3.1 P−1 in (2.32) is a pseudodifferential operator with the homo-
geneous principal symbol

P−1(σ, ρ; ξ) =
1

V −1 (σ, ρ; ξ)

[
1

2
I + i

1

W �
0 (σ, ρ; ξ)

]−1

+
2

V −1 (σ, ρ; ξ)

[
1

2
I − i

2

W �
0 (σ, ρ; ξ)

]−1

, σ ∈ Γ , ρ ∈ R
+ , ξ ∈ R

2 , (3.6)

where the matrix–functions
k

V −1 (σ, ρ; ξ),
k

W �
0 (σ, ρ; ξ), are real valued and

given by:

k

V −1 (σ, ρ; ξ)=
Gκj

(σ, ρ)

2π det κ̃′
j(σ, ρ)

∞∫
−∞

L −1
k

(
[κ̃′

j(σ, ρ)
�]−1(λ, ξ)

)
dλ

=
Gκj

(σ, ρ)

2π det κ̃′
j(σ, ρ)

∫
C±

L −1
k

(
[κ̃′

j(σ, ρ)
�]−1(ζ, ξ)

)
d ζ ,

k

W �
0 (σ, ρ; ξ)=

Gκj
(σ, ρ)

2π det κ̃′
j(σ, ρ)

∫
C±

k

T 0

(
κ̃j(κ

−1
j (σ, ρ)), [κ̃′

j(σ, ρ)
�]−1(ζ, ξ)

)
×L −1

k

(
[κ̃′

j(0, x)
�]−1(ζ, ξ)

)
d ζ ,

since the symbol of the stress operator is pure imaginary (cf. (1.7))

k

T (ϑ,�n(σ, ρ)) = −i k

T 0 (σ, ρ;ϑ) ,
k

T 0 (σ, ρ;ϑ) =

[ ∑
j,l,m,n

k
cjlmn nj(σ, ρ)ϑn

]
3×3

for k = 1, 2 , σ, ρ ∈ S +
1 = Γ × R

+ , ϑ ∈ R
3 .

The second and the third line–integrations are performed along a smooth



Proof After lifting the operator P−1 in (2.32) from the surface S1 to the
half-space R

2
x by means of the ”pull–back” operator

κj∗ψ(z′) :=

{
χ0

j(z
′)ψ (κj(z

′)) , if z′ ∈ Yj ⊂ R
2
+ ,

0, if z′ �∈ Yj , χ0
j(z

′) := χj(κj(z
′)) ,

χj ∈ C∞(S1) , suppχj ⊂ Xj ,
N∑

j=1

χj(x) ≡ 1 , x ∈ S (3.8)

(see (3.1)) and the inverse κ
−1
j∗ , we can easily find that the difference be-

tween the lifted operator κj∗P−1κ
−1
j∗ and the pseudodifferential operator

P−1(κj(z
′), D′) , D′ := (D1, D2) is an operator of order −2 (for details

see in [?, ?]). Therefore P−1(z
′, ξ) is the symbol of P−1 in accordance with

the definition (cf. Section 1.4 in [?]). Moreover, if we apply to (2.37) the
lifting and ”coefficient freezing method” (i.e. apply the quasi–equivalence;
see [?, Sect. 3.4], [?, Sect. 3.2]), we get

〈χ0P−1(z
′
0, D

′)ψ, ψ〉R2 = 〈P−1(z
′
0, D

′)χ0ψ, χ0ψ〉R2 ≥ M5

2
‖χ1ψ0|L2(R

2)‖2 ,

(3.9)
where χ0 ∈ C∞

0 (R2) is an appropriate cut–off function with χ0(z
′) = 1 in

some small neighbourhood of the point z′0 ∈ R
2. For ψ ∈ H

− 1
2 (R2) there

holds

ψ = λ
1
2 (D)ψ0 with ψ0 ∈ L2(R

2) and λ
1
2 (ξ) := (1 + |ξ|2) 1

4

(see [?, ?]). The commutators of pseudodifferential operators

χ0λ
1
2 (D) − λ

1
2 (D)χ0I and χ0

[
λ

1
2 (D) − λ

1
2
0 (D)

]
with λ

1
2
0 (ξ) := |ξ| 12

are bounded in H
s(R2) → H

s− 1
2 (R2) (moreover, they are also bounded in

H
s(R2) → H

s−1(R2); see [?, ?] and [?, Lemma 1.8]); therefore

M



and, therefore, P0(z
′
0, D

′) commutes with the dilation operator Rεϕ(z′) :=
ϕ(εz′). This property together with (??) yields

〈P0(z
′
0, D

′)ψ0, ψ0〉R2 ≥ M5

3
‖ψ0|L2(R

2)‖2. (3.11)

From (??) and the Plancherel theorem follows

〈P0(y0, ξ)
∧
ψ0,

∧
ψ0〉R2 ≥ M5

3
‖

∧
ψ0 |L2(R

2)‖2,
∧
ψ0∈ Fψ0 . (3.12)

Then (??) is an obvious consequence of (??) (see (??)).

Now we are able to investigate system (2.31). To get better regularity
results for solutions we will invoke anisotropic Bessel potential spaces with
weight H

(µ,s),m
p (S1), defined in § A.1. The reader can stay with the usual

spaces Hs(S1) = H
(0,s),0
2 (S1), but in these spaces one can find only weak

solutions.

Theorem 3.2 The operator

P 0
−1 : H̃

(µ,s),m
p (S1) � R

6 → H
(µ,s+1),m
p (S1) � R

6 (3.13)

(cf. (2.35)) is bounded for every 1 < p < ∞, 1 − µ ≤ s ≤ µ, m = 0, 1, . . .
and is Fredholm if and only if the conditions

1

p
− 3

2
< s <

1

p
− 1

2
(3.14)

are satisfied. Under these conditions P 0
−1 has index zero and the system

(2.35) has a unique solution t0 = (t1,�c) ∈ H̃
(µ,s),m
p (S1) � R

6 for any given

f 0 ∈ H
(µ,s+1),m
p (S1) � R

6.

Proof. Since boundedness of operators L and L∗ in (2.36) are out of doubt,
we only have to check the boundedness of the pseudodifferential operator

˜



conditions (??) hold (note, that in this particular case the order κ = −1
and condition (??) reads as (??)). If Fredholm, (??) has a trivial index
Ind rS1P−1 = 0.

Thus, P 0
−1 in (??) is Fredholm if and only if condition (??) holds and, if

fredholm, IndP 0
−1 = 0 (see Lemma 2.8).

On the other hand, the homogeneous equation rS1P−1ψ = 0 has only a
trivial solution ψ = 0 in the space H

1
2 (S1) due to the positive definiteness

(2.37). This yields the invertibility of (??) and, consequently of (??)), in all
spaces which fit into the conditions (??) (cf. Theorem ?? and Lemma 2.8).

Theorem 3.3 There is a one–to–one correspondence between the (unique)
solutions of the boundary pseudodifferential equation system (2.31) and the
solutions of the mixed transmission– Neumann problem (1.9)–(1.13), given
by formulae (2.34). The inverse correspondence is given by the formula tk =

rS1

k

T (D,�n)u, k = 1, 2.

Proof Theorem ?? follows immediately from Theorems 2.5 and Remark 2.6.

Remark 3.4 The solutions t1, t2 to the system (2.31) have the property

ρktj(σ, ρ) ∈ H
(µ,s+k),m
p (S1) ⊂ H

s+k
p (S1) ⊂ Cs+k− 1

p
−ε1(S1) ⊂ Ck− 1

2
−ε2(S1)

for arbitrary ε1 < ε2 (see Theorem ?? and embedding (??)). Moreover ρktj ∈
Ck− 1

2 (S1) and even ρ
1
2 tj ∈ C∞(S1) provided ν0(σ) =const (see Theorem

??).

3.2 Asymptotics of solutions to boundary pseudodif-
ferential equation



�ek(σ, ρ) := (ek1(σ, ρ), ek2(σ, ρ), ek3(σ, ρ))
� , k = 1, 2 ,

det �κ′
j(σ) = 1, Gκj

(σ) = 1, σ = (σ, 0) ∈ Γ .

From (??) and (??) we find

P−1 (σ; 0,±1) =
1

V −1 (σ; 0, 1)

[
1

2
I ± i

1

W �
0 (σ; 0, 1)

]−1

+
2

V −1 (σ; 0, 1)

[
1

2
I∓

2

W �
0 (σ; 0, 1)

]−1

.

Due to Lemma ?? the eigenvalues λ1(σ), λ2(σ), λ3(σ) of the matrix

P−1,0(σ) := [P−1(σ; 0,+1)]−1 P−1(σ; 0,−1) (3.17)

are real positive numbers and P−1,0(σ) has no associated eigenvectors, hence
is diagonalisable:

P−1,0(σ) = K (σ)Λ(σ)K −1(σ) , det K (σ) �= 0 ,

Λ(σ) := diag {λ1(σ), λ2(σ), λ3(σ)} , λ0,K ∈ C∞(∂S1) . (3.18)

Moreover,

λ1(σ) ≡ 1 , λ2(σ) = λ−1
3 (σ) = λ0(σ) , Imλ0(σ) ≡ 0 (3.19)

(see [?] and cf. (??) below). In fact, if λ0(σ) is an eigenvalue,

det [P−1,0(σ) − λ0(σ)I] = 0 ,



Theorem 3.5 Let 1 < p < ∞, µ ∈ R and m,M ∈ N0. Then for any f2 ∈
H

(µ, 1
p
+s),m

p (S1), the system of pseudodifferential equations, given by (2.31),

has a unique solution t1, t2 ∈ H̃
(µ, 1

p
−1+s),m

p (S1) if and only if (??) holds.

Let gj+1 ∈ H
(∞, 1

p
+s+M+1),M

p (S2), fj ∈ H
(∞, 1

p
+j+s+M+1),M

p (S1) (j = 0, 1).

Then f2 ∈ H
(∞, 1

p
+s+M+2),M

p (S1) in (2.31), (2.33) and for any M ∈ N0 the
solutions tm of the system (2.31) have the form (cf. (0.4))

tm(σ, ρ) =
M∑

k=0

K (σ)ρ− 1
2
+iν(σ)+kK −1(σ)

k∑
j=0

cmkj(σ) logjρ+ t̃m,M+1(σ, ρ) (3.20)

with t̃m,M+1 ∈ H̃
(∞, 1

p
+s+M),M

p (S1) for sufficiently small ρ > 0, (m = 1, 2).
The 3–vector ck00 ∈ C∞(Γ) is given by the principal symbol of (2.31), while
the 3–vectors cmkj ∈ C∞(Γ) for k = 1, 2, . . . are given by the full symbol of
the equation. Here

ν(σ) := (0, ν0(σ),−ν0(σ))� ν0(σ) :=
log λ0(σ)

2π
.

with λ0(σ) given by (??) and we refer (0.4) for the definition of the matrix
ρϑ+iν(σ).

For the displacement vector field u(z) = u(σ, ρ, r) and the stress tensor
field T(z) = T(σ, ρ, r) we have the expansions (0.7) and (0.8), respectively.

Proof The proof follows from Theorems ??, ??, ?? in the Appendix if we
invoke (??), (??) and (??).

3.3 Example: two isotropic bodies

T.C.Ting, using an appropriate ansatz, obtained in [?] a criterion for the
absence of oscillations of the displacement field describing interface–cracks
between two anisotropic bodies. We shall derive this condition for the case

h b h b di i i b i h f h i i (



Theorem 3.6 The matrix K (σ) in (??), (??) has the following form

K (σ) =

⎛⎝ e11(σ) e21(σ) n1(σ)
e12(σ) e22(σ) n2(σ)
e13(σ) e23(σ) n1(σ)

⎞⎠⎛⎝ 1 0 0
0 1 −i
0 −i 1

⎞⎠ . (3.22)

The parameter ν0 = 0 in the asymptotic expansion (??) vanishes if and
only if

µ1

µ2

=
1 − 2σ1

1 − 2σ2

(3.23)

and then the asymptotic expansion (??) simplifies substantially

tm(σ, ρ) =
M∑

k=0

ρ− 1
2
+kck(σ) + t̃m,M+1(σ, ρ) , m = 1, 2 . (3.24)

Proof. The fundamental solutions of the Lamé equations (??) (see (2.1))
are given by

Gk(z) =
1

16πµk(1 − σk)

(
3 − 4σk

|z| δjm +
zjzm

|z|3
)

3×3

,

where σk = λk/2(λk + µk) denotes the corresponding Poisson ratio for k =

1, 2. The symbols of the operators
k

V −1 (see (2.4), (??)) were given in [?] and
[?]:

k k



The symbols
k

W �
0 (σ, ρ; ξ) can be found in [?, Section XIV.6],

k

W �
0 (σ, ρ; ξ) = [κ̃′

j(σ, ρ)
�]−1

k

W �
0 (ξ)κ̃′

j(σ, ρ)
�

k

W �
0 (ξ) =

⎛⎜⎜⎝
0 0

k
γ3 ξ1|ξ|−1

0 0
k
γ3 ξ2|ξ|−1

k
γ3 ξ1|ξ|−1

k
γ3 ξ2|ξ|−1 0

⎞⎟⎟⎠ ,

k
γ3=

µk

λk + 2µk

=
1 − 2σk

2(1 − σk)
.

Now we can write the symbol P−1(σ, ρ; ξ) (see (??)) in the explicit form

P−1(σ, ρ; 0,±1) = [κ̃′
j(σ, ρ)

�]−1P−1(±1)κ̃′
j(σ, ρ)

�,

P−1(±1) =
2

1
γ1

1 − (
1

γ3)2

⎛⎜⎝ (1+
1
γ2) 0 0

0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎜⎝ 1 − (

1
γ3)

2 0 0

0 1 ±i 1
γ3

0 ∓i 1
γ3 1

⎞⎟⎟⎠

+
2

2
γ1

1 − (
2

γ3)2

⎛⎜⎝ (1+
2
γ2) 0 0

0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎜⎝ 1 − (

2
γ3)

2 0 0

0 1 ∓i 2
γ3

0 ±i 2
γ3 1

⎞⎟⎟⎠

= 2

⎛⎝ γ4 0 0
0 γ5 ±iγ6

0 ∓iγ6 γ5

⎞⎠ ,

where



= κ̃
′
j(σ)

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

0
γ2

5 + γ2
6

γ2
5 − γ2

6

−2iγ5γ6

γ2
5 − γ2

6

0
−2iγ5γ6

γ2
5 − γ2

6

1

⎞⎟⎟⎟⎟⎟⎟⎠ κ̃
′
j(σ)�

= K (σ)

⎛⎜⎜⎜⎝
1 0 0

0
γ5 − γ6

γ5 + γ6

0

0 0
γ5 + γ6

γ5 − γ6

⎞⎟⎟⎟⎠K −1(σ) (3.25)

and K (σ) is defined in (??). Comparing the representations (??) and (??),
we find the formulae for K (σ), for the eigenvalues λ1, λ2, λ3 and for δ = iν;
namely,

λ1 = 1, λ2 =
γ5 − γ6

γ5 + γ6

, λ3 =
γ5 + γ6

γ5 − γ6

=
1

λ2

,

ν := (0,−ν0, ν0), ν0 =
1

2π
log

γ5 − γ6

γ5 + γ6

.

(3.26)

As for (??), the desired absence of oscillation follows if and only if λ2 =
λ3 = 1, i.e. if γ6=0 (see (??)); this can be rewritten in the form

µ1

µ2

=
(3 − 10σ1 + 8σ2

1)(3 − 4σ2)

(3 − 4σ1)(3 − 10σ2 + 8σ2
1)

=
1 − 2σ1

1 − 2σ2

.

A Appendix

In the Appendix we recall some results on pseudodifferential equations in
Bessel potential spaces, mostly from [?, ?, ?, ?, ?, ?, ?]).

A.1 Spaces



are bounded operators in both spaces S(Rn) and S
′(Rn), the convolution

operator

a(D)ϕ = W 0
aϕ := F−1aFϕ with a ∈ S

′(Rn), ϕ ∈ S(Rn) (A.2)

is a bounded transformation from S(Rn) into S
′(Rn) (see [?, ?]).

The Bessel potential space H
s
p(R

n) is defined as a subset of S
′(Rn) en-

dowed with the norm ([?, ?])

‖u|Hs
p(R

n)‖ := ‖〈D〉su|Lp(R
n)‖, where〈ξ〉s := (1 + |ξ|2) s

2 . (A.3)

For the Hilbert space H
s
2(R

n), usually the index 2 is dropped and the
notation H

s(Rn) is used.
For Ω ⊂ R

n, by Cσ(Ω) with σ = m + µ, m = 0, 1, . . . , 0 < µ < 1 we
denote, as usual, the Hölder space of continuous functions, having Hölder
continuous (with exponent µ) derivatives of the order m.

The space H̃
s
p(R

n
+) ⊂ H

s
p(R

n) is defined as the subspace of those functions

ϕ ∈ H
s
p(R

n), which are supported in the half space, i.e. suppϕ ⊂ R
n

+ whereas

H
s
p(R

n
+) denotes the quotient space H

s
p(R

n
+) = H

s
p(R

n)/H̃s
p(R

n
−), R

n
− := R

n \
R

n
+ and can be identified with the space of distributions ϕ on R

n
+ which admit

an extension �ϕ ∈ H
s
p(R

n). Therefore rM H
s
p(R

n) = H
s
p(R

n
+).

For µ, s ∈ R, m ∈ N0 and 1 < p < ∞, the anisotropic Bessel potential
spaces with weight H

(µ,s),m
p (Rn) consists of functions (of distributions when

µ < 0 or µ+ s < 0 ) which have the following finite norm

‖u|H(µ,s),m
p (Rn)‖ :=

m∑
k=0

‖〈D′〉µ〈D〉s+kzk
nu|Lp(R

n)‖,

ξ = (ξ′, ξn) , ξ′ ∈ R
n−1 , ξn ∈ R .

(A.4)

For integer �, ϑ = 0, 1, . . . we get anisotropic Sobolev spaces with weight,
endowed with the norm

‖ |H(�,ϑ),m(Rn)‖
m∑ ∑ ∑

‖∂α∂β k ( )|L (Rn)‖



If {Xj}�
j=1 is a sufficiently refined covering of M , the spaces H

s
p(M ),

Cσ(M ), H̃
s
p(M ), C̃σ(M ), H

(µ,s),m
p (M ) and H̃

(µ,s),m
p (M ) can be defined by

a partition of the unity {ψj}�
j=1 subordinated to the covering {Xj}�

j=1 and
local coordinate diffeomorphism

κj : Yj → Xj, Yj ⊂ R
n
+. (A.5)

The space H̃
(µ,s),m
p (M ) can also be defined as the subspace of H

(µ,s),m
p (S )

of those functions ϕ ∈ H
(µ,s),m
p (S ) for which suppϕ ⊂ M . The space

H
(µ,s),m
p (M ) is the quotient space H

(µ,s),m
p (M ) = H

(µ,s),m
p (S )/H̃

(µ,s),m
p (S \

M ) and can be identified with the space of distributions ϕ on M which admit

an extension �ϕ ∈ H
(µ,s),m
p (S ). Therefore rM H

(µ,s),m
p (S ) = H

(µ,s),m
p (M ).

If B∗ denotes the dual space to the space B and ∂M �= ∅, then the
following relations are valid (see [?]):(

H̃
s
p(M )

)∗
= H

−s
p′ (M ),

(
H

r
p(M)

)∗
= H̃

−r
p′ (M ) , (A.6)

provided s, r ∈ R, r ≥ 1

p
, 1 < p < ∞, p′ =

p

p− 1
. If S m ⊂ R

n is an m-

dimensional C∞–smooth submanifold, where m < n, then the trace operator

γS m : H
s
p(R

n) → B
s−n−m

p
p,p (S m) ⊂ H

s−n−m
p

−ε1

p (S m) ⊂ Cs−n−2m
p

−ε2(S m) (A.7)

is correctly defined and bounded, provided 1 < p < ∞ ,
n−m

p
< s and

0 < ε1 < ε2. Here B
s
p,q(S

m) denotes the Besov space (see [?]).

A.2 Pseudodifferential equations

If the convolution operator defined in (??) has a bounded extension

W 0
a : Lp(R

n) → Lp(R
n),



we get that the operator W 0
a : H

s
p(R

n) → H
s−κ
p (Rn) is bounded if and only if

a ∈M
(κ)
p (Rn).

Let a ∈M
(κ)
p (Rn). Then the operator

Wa := r+a(D) : H̃
s
p(R

n
+) → H

s−κ
p (Rn

+) (A.9)

is bounded, where r+ := rR
n
+

is the restriction operator.
If the symbol a(t; ξ) depends on the variable t, then the corresponding

convolution operator (see (??))

a(t,D)ϕ(t) = W 0
a(t;·)ϕ(t) :=

(
F−1

ξ→ta(t; ξ)Fy→ξϕ(y)
)
(t) (A.10)

with the symbol a ∈ C(Rn,S′(Rn)) is called a general pseudodifferential
operator (PsDO in short) acting on ϕ ∈ S(Rn). Here C(Ω,B) denotes the
set of all continuous functions a : Ω → B with B any metric space.

Let M
(κ)
p (Rn × R

n) denote the class of symbols a(t; ξ) for which the op-
erator in (??) can be extended to a bounded mapping

a(t,D) : H
s
p(R

n) → H
s−κ
p (Rn) for all s ∈ R .

Theorem A.1 [?, Theorem 5.3] Let Ω ⊂ R
n, n ∈ N and κ ∈ R. If for a

function a(t; ξ), t ∈ Ω, ξ ∈ R
n there exist constants Mα,β such that∫

Ω

|(ξ′)β′
∂α

t ∂
β
ξ a(t; ξ)|dt ≤Mα,β〈ξ〉κ−βn ,

for all α, β = (β′, βn) ∈ N
n
0 , |β′| ≤

[n
2

]
+ 1 , β′ ≤ 1

(A.11)

and all βn = 0, 1, .. , ξ ∈ R
n, then a ∈M

(κ)
p (Rn × R

n) for all 1 < p <∞.

Definition A.2 Let Scl,µ(Ω,Rn) denote the class of functions a(t; ξ) which
satisfy condition (??) and admit an asymptotic expansion

a(t; ξ) � a0(t; ξ) + a1(t; ξ) + · · · , (A.12)

where:



Theorem A.3 [?, Theorem 1.5] Let m ∈ N0,κ ∈ R and 1 < p < ∞. If

∂k
ξn
a ∈M

(κ−k)
p (Rn,Rn) for every k = 0, 1, · · · ,m, then the operator

a(t,D) : H
(µ,s),m
p (Rn) → H

(µ,s−κ),m
p (Rn) (A.13)

is bounded for all µ, s ∈ R.
In particular, if a ∈ Scl,κ(R

n,Rn), then a(t,D) in (??) is bounded for all
m ∈ N0 and µ, s ∈ R.

Let M be an n-dimensional, C∞–smooth compact manifold with smooth
boundary Γ := ∂M �= ∅ and 1 < p <∞, s, κ ∈ R.

It is easy to prove that the symbols of the class Scl,κ(M ,Rl) are invariant
with respect to the diffeomorphism (t; ξ) �→ (g0(t; ξ), g1(t; ξ)) with positively
homogeneous gk ∈ C∞(M , Sl−1) of order k with respect to ξ (k = 0, 1; cf.
[?, Lemma 1.2]). Therefore the symbol class Scl,κ(T ∗M ) is defined correctly
on the cotangent manifold T ∗M (see [?, Subsection A.3]).

Moreover, the principal symbol a0(t; ξ) is defined invariantly and is inde-
pendent of the particular chart chosen.

Definition A.4 (see [?, ?] etc.). An operator

A : H̃
(µ,s),m
p (M ) → H

(µ,s−κ),m
p (M ) (A.14)

is called a pseudodifferential operator with the symbol a ∈ Scl,κ(T ∗M ), if:

i. χ1Aχ2I : H
(µ,s),m
p (M ) → C∞(M ) are continuous for all pairs χ1, χ2 ∈

C∞(M ) with disjoint supports suppχ1

⋂
suppχ2 = ∅, i.e. χ1Aχ2I has the

order −∞;
ii. The ”pull–back” operators

κj,∗Aκ
−1
j,∗u = a(j)(t,D)u, u ∈ C∞

0 (Rn
+), j = 1, ..., �

(cf. (??)) and (??)) are pseudodifferential operators on R
n
+ with the symbols

(j)( (t) ξ) ψ0(t) ( (t) ξ)ψ0(t) h ψ0(t) ψ ( (t)) d t Y



If −∞ ≤ κ < 1 and a = Fk ∈ Scl,κ(R
3) is a classical N × N matrix–

symbol, where

a(ξ) = a0(ξ) + a1(ξ) + · · · , ak(λξ) = λκ−kak(ξ) , ξ ∈ R
3 , λ > 0 ,

then the integral operator

aM (x,D)ϕ(x) =
∫
M

k(x− τ)ϕ(τ)dτM for t ∈ M ,

aM (x,D) : H̃
(µ,s),m
p (M ) → H

(µ,s−κ−1),m
p (M )

(A.15)

is a classical pseudodifferential operator

aM (x; ξ′) �
∞∑

k=0

aM ,k(t; ξ
′) , aM ∈ Scl,κ(T

∗M ) , ξ′ ∈ R
2 (A.16)

and the homogeneous principal symbol reads

aM ,pr(x; ξ) := aM1,0(x; ξ
′)

=
Gκj

(x)

2πdetκ̃′
j(x)

∞∫
−∞

a0

([
κ̃

′
j(x)

�]−1
(ξ′, λ)

)
dλ , t ∈ Yj . (A.17)

Here Gκj
(x) := Gκj

(κ−1
j (x)) , κ̃

′
j(x) := κ̃

′
j(κ

−1
j (x)) , x ∈ Xj ⊂ M and

Gκj
(t) := [det(∂kκj(t) · ∂lκj(t))2×2]

1
2 , t ∈ Yj ⊂ R

2

with ∂kκj := (∂kκj1, ∂kκj2, ∂kκj3)
�, denotes the square root of the Gram

determinant of the vector–function κj = (κj1,κj2,κj3)
� for j = 1, 2, . . . , N .

A.3 Fredholm property and asymptotics



Theorem A.6 [?, Theorem 2.7], [?, Theorem 1.9]. Let the symbol aM (x; ξ)
in (??) be elliptic, i. e.

inf{| det aM ;0(x; ξ)| : x ∈ M , |ξ| = 1} > 0 , (A.19)

where aM ,0(x; ξ) denotes the principal symbol (see Definition ??), and positive
definite on the boundary 2)

aM ,0(x; ξ)η · η� ≥M |ξ|κ|η|2

for all x ∈ ∂M , ξ ∈ R
n and η ∈ C

N

(A.20)

with some constant M > 0.
Then the system of equations (??) is Fredholm if and only if

1

p
+
κ

2
− 1 < s <

1

p
+
κ

2
. (A.21)

If the symbol is strongly elliptic on M , i.e.

Re (aM (x, ϑ)η, η) ≥M > 0 , for all x ∈ M , |ϑ| = |η| = 1 ,

the Fredholm index of equation (??) vanishes: Ind aM (x,D) = 0.
If the conditions (??) hold, then (??) has one and the same kernel in all

the spaces H̃
(µ,s),m
p (M ), m ∈ N0 , µ ∈ R. In particular if equation (??)

is uniquelly solvable in one of these spaces, it is uniquelly solvable in all of
them and

ψ ∈ H̃
(∞,s),∞
p (M ) :=

⋂
µ, m

H̃
(µ,s),m
p (M ) provided v ∈ H

(∞,s−κ),∞
p (M ) .

Note that the Fredholm properties, the index and the kernel Ker aM (x,D)
of (??) are independent of the parameters m ∈ N0 and µ ∈ R.

To formulate results on the asymptotics of the solution ψ(x) to the system



Lemma A.7 If the matrices aM (ω,±1) are positive definite, then a0
M ,0(ω)

in (??) has only positive eigenvalues λ′1(ω) > 0, · · · , λ′N(ω) > 0 and has the
simple Jordan representation

a0
M ,0(ω) = K (ω)Λ(ω)K −1(ω) (A.23)

with

Λ(ω) := diag {λ1(ω), · · · , λN(ω)} , K ∈ C∞(∂M ) , det K (ω) �= 0 .

The numbers

νj(ω) =
log λj(ω)

2π
(A.24)

are then real, i.e. Im νj(ω) = 0 for j = 1, · · · , N .

Proof. Since the matrix aM ,0(ω,+1) is positive definite, there exist the

square roots a
± 1

2

M ,0 := [aM ,0(ω,+1)]±
1
2 which are positive definite as well. The

equivalent matrix

a1
M ,0(ω) := a

1
2

M ,0a
0
M ,0(ω)a

− 1
2

M ,0 = [aM ,0(ω,+1)]−
1
2 a0

M ,0(ω)
[
a0

M ,0(ω,+1)
]− 1

2

has the same eigenvalues, the same eigenvectors and the same Jordan rep-
resentation as a0

M ,0(ω). Since a1
M ,0(ω) is selfadjoint, it has no associated

eigenvectors (i.e. is diagonalisable; see (??)) and K ∈ C∞(∂M ) (see [?]).
Let η(ω), . . . , ηN(ω) ∈ C

N be eigenvectors corresponding to the eigenvalues
λ1(ω), . . . , λN(ω); then

a0
M ,0(ω)ηj(ω) = λjηj(ω), j = 1, . . . , N

and we get

λj(ω) =

(
a0

M ,0(ω,+1)ηj(ω), ηj(ω)
)(

a0
M ,0(ω,−1)ηj(ω), ηj(ω)

) > 0

since a (ω ±1) is positive definite



If v ∈ H
(∞,s−µ+M),∞
p (M ), then the solution has the following asymptotic

expansion 3)

ψ(ω, ρ) =
M∑

k=0

K (ω)ρ
κ
2
+iν(ω)+kK −1(ω)

k∑
l=0

ckl(ω) loglρ+ ψ̃M+1(ω, ρ) (A.25)

for all sufficiently small ρ > 0, with ψ̃M+1 ∈ H̃
(∞,s+M+1),M
p (M +). Here the

N–vectors ckl belong to C∞(∂M ). c00 depends only on the principal symbol of
equation (??), while c1l, c2l . . . depend on the full symbol of the equation. The
components of the vector ν := (ν1, · · · , νN)� are defined in (??); the vector
exponent of the scalar variable is understood as a diagonal matrix

ρϑ+iν := diag
{
ρϑ+iν1 , · · · , ρϑ+iνN

}
for arbitrary scalar ϑ ∈ R (cf (0.4)).

If ν1(ω) = const, the logarithmic terms in (??) vanish and:

ψ(ω, ρ) =
M∑

k=0

K (ω)ρ
κ
2
+iν(ω)+kK −1(ω)ck(ω) + ψ̃M+1(ω, ρ) . (A.26)

Note that the presence of an oscillation ν(ω) in the asymptotics (??) can
be seen as a logarithmic singularity since

ρ−κ
2
+iν(ω)+k = ρ−

κ
2
+k diag {cos[νj(ω) log ρ] + i sin[νj(ω) log ρ]}N

j=1 .

Now let the closed manifold S , which contains M as a part, be a com-
pact, smooth surface in R

n, M ⊂ S and S be the common boundary of a
compact domain Ω1 and its outer complement Ω2 (see Fig. 1 in § 1).

We consider here some homogeneous N ×N system of differential equa-
tions

A(Dz)u = 0 in Ω1 ∪ Ω2 , (A.27)

A(Dz) :=
∑

aαD
α
z



is elliptic: detApr(ξ) �= 0 for all |ξ| = 1, ξ ∈ R
n. Note, that we consider a

homogeneous operator and therefore the principal symbol coincides with the
complete symbol. The fundamental solution of the equation (??) (see [?])
can be written as the following matrix–function

HA(z) = F−1
ξ′→z′

[
1

2π

∫
L±

A−1(ξ′, τ)e−iτzndτ

]
if ∓ zn > 0 , (A.29)

where z = (z′, zn), z′ = (z1, · · · , zn−1), ξ
′ = (ξ1, · · · , ξn−1) ∈ R

n−1. The
contour L+ (L−) is disposed in the upper (lower) complex half–plane C

+ :=
R ⊕ iR+ (in C

−) and is oriented counterclockwise (clockwise) circumventing
all roots of the polynomial detA(ξ′, τ) with respect to τ in the corresponding
half–planes τ ∈ C

±.
For the direct value of the single layer potential

V g(z) =

∫
S

HA(z − y)g(y)dyS , z ∈ Ω1 ∪ Ω2 (A.30)

on the surface S we use the notation

V1−2mg(x) =

∫
S

HA(x− y)g(y)dyS , x ∈ S . (A.31)

Let Bq be a differential operator with real C∞–coefficients of order q =
0, 1, . . . on R

n with the symbol

Bq(z, ξ) =

q∑
|α|=0

bα(z)ξα , B0
q−k(z, ξ) :=

∑
|α|=q−k

bα(z)ξα , bα ∈ C∞(Rn) ,

with B0
q (z, ξ) standing for the homogeneous principal symbol (z, ξ ∈ R

n).
We are interested in the asymptotics of the following potential–type func-

tion



A local coordinate diffeomorphism κj : Yj(⊂ R
2) → Xj ⊂ S is extended

to a diffeomorphism of ”layers”

κj : Ỹj → X̃j, Ỹj = Yj × (−ε, ε), X̃j ∩ M = Xj,

and J

�κj
(ω, ρ) := J

�κj
(κ−1

j (ω, ρ)), J

�κj
(ω) := J

�κj
(ω, 0), denotes the image

of the Jacobian matrix J

�κj
(z′) under inverse diffeomorphism κ

−1
j (ω, ρ) :

Yj → Xj ⊂ M (cf. § 3.1).

Theorem A.9 Let the conditions of Theorem ?? be valid and let
κ

2
,
κ

2
−q, �=

0,±1, . . .; let ψ(ω, ρ, r) be as in (??). The potential–type function T(ω, ρ, r)
in (??) then has the following asymptotic expansion:

T(ω, ρ, r) =

�(N)∑
s=1

∑
ϑ=±1

M+2m−q∑
k=0

ns(k)∑
j=0

dsj
k,±(ω, ϑ)xj

nζ
κ
2
+iν(ω)−q+2m−j+k

s,∓ϑ

2k∑
l=0

asj
kl,±(ϑ, σ) loglρ

+T̃M+1(ω, ρ, r) , T̃M+1 ∈ H
s+M+ 1

p
com,p (∂M × R

2), ±r > 0 (A.33)

for sufficiently small |ρ|+|r| and arbitrary M = 0, 1, . . .. Here dsj
k,±(·, ϑ), asj

kl,±(·,±) ∈
C∞(∂M ) and the coefficients of the leading terms asj

00,±(ω, ϑ) = Kj(ω) are
independent of s, ϑ,±.

In (??) by ζ
ϑ+iν(ω)
s,∓ϑ we denote the diagonal matrix–functions (cf (0.4)),

which are vector exponents of the scalar variables

ζs = ζs,+1 := xn−1 + xnτs, ζs,−1 := ζs,+1 , −π < Arg ζs < π ; (A.34)

{τs}�(N)
s=1 ⊂ C∞(∂M ) are all different roots of the polynomial equation

detA([J −1

�κj
(ω)]�(0,+1, τ)) = 0 , Im τ < 0

in the complex lower half–plane and ns(0) is the multiplicity of the pole τs of
the matrix–function B0

q (ω, 0, 0; [J −1

�κj
(ω)]�(0, 1, τ))A−1([J −1

�κj
(ω)]�(0, 1, τ)),

while for k = 1, 2, . . . we have the estimate ns(k) ≤ k(ns(0) − 1) +M − k.
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Functions, Birkhäuser Verlag, Basel 1987.

[41] L. E. Malvern, Introduction to the Mechanics of a Continuous Medium,
Prentice-Hall Inc., Englewood Cliffs, New Jersey 1969.

[42] V. Maz´ya, Boundary Integral Equations, Encyclopedia of Mathematical
Sciences, v. 27, Springer, Heidelberg 1991.

[43] V. G. Maz´ya, B. A. Plamenevski, The first boundary value problem for
classical equations of mathematical physics in domains with piecewise
smooth boundary’s, Zeitschr. f. Anal. Anw. 2, 335–359 and 523–551,
1983.

[44] V. G. Maz´ya, B. A. Plamenevski, Lp-estimates of solutions in domains
with edges, Trudy Moskov. Mat. Obs. 37, 49–93, 1978, in Russian.
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