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Abstract
In the present paper we study the mapping properties of the non-
linear Boltzmann collision operator on a scale of weighted Sobolev
spaces.

Introduction

We consider the classical Boltzmann equation for a simple, dilute gas of
particles [2]

fe+ (v, grad, f) = Q(f, f) (1)

which describes the time evolution of the particle density f(¢,z,v)

f R xOxR = R,.

Here R, denotes the set of non-negative real numbers and Q C R? is a
domain in physical space. The right-hand side of the equation (1), known as
the collision integral or the collision term, is of the form

. NW = [ [ B (1)) - 1)) dedw. @

R3 52

Note that Q(f, f) depends on ¢ and z only as parameters, so we have omitted
this dependence in (2) for conciseness. The following notations have been
used in (2): v,w € R® are the pre-collision velocities, e € S? C R® is a
unit vector, v, w' € R® are the post-collision velocities and B(v,w, €) is the
collision kernel. The operator Q(f, f) represents the change of the distri-
bution function f(¢,x,v) due to the binary collisions between particles. A
single collision results in a change of the velocities of the colliding partners
v,w — v, w with
! 1 / ]'
v = §(v+w+\u|e), w' = §(v+w— \u|e>.

where u = v — w denotes the relative velocity. The Boltzmann equation (1)
is subjected to an initial condition

f(0,2,0) = fo(z,v), z€Q, veR’

and to the boundary conditions on I' = 9€2. The kernel B(v,w,e) can be
written as

B(v,w,¢) = B(lul, 1) = [ulo(Jul, 1), 1 = cos(6) = (j‘;f’ .




The function o : Ry x [-1,1] — Ry is the differential cross-section and 6 is
the scattering angle. Some special models for the kernel are as follows:

1. The hard spheres model is described by the kernel

d2

where d denotes the diameter of the particles.
2. The kernel
B(jul, 1) = [u! =Y Mg (), m>1. (3)

corresponds to the inverse power cut-off potential [5] of the inter-
action. m denotes the order of the potential and g,, € L; ([-1,1]) is a
given function of the scattering angle only.

3. The special case of m = 4 in (3) corresponds to the Maxwell pseudo-
molecules with

B(lul, p) = ga(p) -

The collision kernel B(|u|, x) here does not depend on the relative speed
Jul.

4. The Variable Hard Sphere model [1](VHS) has an isotropic kernel
B(u|, p) = Cylul*, =3 <A< 1. (4)

The model includes, as particular cases the hard spheres model for
A =1 and a the Maxwell pseudo—molecules with A = 0.

The collision integral (2) decomposes into the natural gain and the loss parts

Q(fa f)(U) = Q—i—(fa f)(?)) - Q*(fa f)(?)),

where the bilinear operators Q. (-,-), @_(-,-) are

0= [ [ Blul.w) gt dedu (5)

R3 S2

= [ [ Bl s @)gtw) dedu. (6)

R3 S2
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We will also consider the linear operators Q. (f)[-] and Q_(f)[-] acting on ¢
for a fixed function f. Before we begin the study of the mapping properties
of the operators Q. (f) and @ _(f), we discuss the results known from the
literature.

T. Gustafson [6] considered the weighted spaces

L) =LY (R)={g: B = C.()'geL,[®)}, () :=1+@f)?
and the following kernels
B(lul, ) = [ul*g(n), 0 <A< 1, g €Li([-1,1]). (7)

He proved the boundednesses
Qi+ (L& L) x (L L) - 1) ®)

for the weighted L, spaces with 1 < p < oo and 0 < v < co. As we see,
T. Gustafson proved that ), is an operator of the order 0.
P.L. Lions [8] proved the estimates

|Q+(f,9) W < CIf[Lall llg|Lell , (9)
1Q+(f,9) W < CIf Ll llg|Lal ,

provided the collision kernel B(|u|, 1) satisfies

B(lul, p) € CF (Ry. x [-1,1]); (10)

i.e. kernels are infinitely smooth with respect to both variables |u| and p and
have compact supports with respect to the variable w.

It is easy to ascertain that the conditions in (10) are too restrictive to cover
the models of interaction described above.

The estimates (9) can be written in an equivalent and compact form as the
continuity of the mapping

Qs : Ly xLy - W', (11)

where W' := W' (R?) is the Sobolev space (see § 1). If f € L; is fixed, the
boundedness (9) shows that @, (f) is an operator of the order —1.

B. Wennberg [13] proved that the boundedness property of the operator
Q@+ (f) similar to (11) for the collision kernel (7)

Q. (]Lf’“) ﬂLéuH)) % (LY“) ﬂ]L](JuH)) s WL

3



but under the restrictions

1
—<A<1l,p> .
2 S = PN

J. Struckmeier [9] proved the following boundedness property of the gain
term of the Boltzmann collision operator in the case B(|u|, ) = const which
corresponds to the Maxwell molecules

Q. : (Looﬂ]Ll) X (]Looﬂ]Ll) S L.

In the present paper we prove the following boundedness property of the
operator @ (f) in the scale of weighted Bessel potential spaces

Q, (]HI?’O’H) ﬂHZ(i) < TSNy L) (12)

(see § 1 for the definitions of spaces) under the minor restrictions on the
collision kernel (7)

3

0<A<1, p>——0.
A= ProT

0>0, |s|<0,vs>0
and v > 0 if s = 0 (see Theorem 13).A similar result for the operator @ _(f)
reads:

Q_ : H;s(u) X H?(N) — H;;(V_’\)

under the following restriction (see Corollary 18)
3
O<AN+3—=-<p, 1<p, g<oc0, 08>0, s<0,veR.
q

The paper is organised as follows. In Section 1 we introduce the function
spaces, the three-dimensional Fourier transform and the pseudodifferential
operators. Furthermore we formulate the mapping properties of the pseudo-
differential operators using the asymptotic behaviour of their symbols. Then,
in Section 2, we deal with the gain part of the collision operator, construct its
adjoint and prove that it is a pseudodifferential operator with a given symbol.
Then we estimate the symbol and finally prove the main boundedness result
formulated in (12). In Section 3 we consider the loss part of the collision
operator.



1 Preliminaries

Let g : R® — C be a complex-valued function, @ = (a1, 0,3) € N} a
multi-index of nonnegative integers and |o| = a3 + a9 + 3. We use 0%g to
denote a mixed partial derivative of g of the order |af

dlelg
8ag = 021, 02 o )
U1 V90373

We will use the inequality o < § for two multi-indices in the following sense

Later we will need the Leibnitz formula for the multidimensional derivative
of the product of two functions f and g

0°(f - g) = ) @) - (@ Fg) (13)
>(5)

with the binomial coefficients

O!l!O,’Q!Olg!

a J—
( B ) B B! Ba! B3! (a1 — B1)! (a2 — Bo)! (3 — SB3)! .

1.1 Function spaces

Let 1 < p < oo. The classical L, = L, (R®) spaces consists of functions g
having the property that the following Lebesgue integral is finite

Lpzle(]R?’):{g: R® - C, /|g(v)|pdv<oo}.

The L, norm of the function g is defined by
/p

lg| Lyl = (m/ gw)Pdv| (14)

For p = 0o, we use the canonical generalisation of (14)

|9 | Lo || = ess sup |g(v)] .
vERS3

The following abbreviation will often be used

(WY =1+Ww?»"?, veR®, veR.



The symbol |v| = (v + vZ + v2)Y/? denotes here the length of the three-
dimensional vector v. The weighted ]Lf,”) spaces are defined for 1 < p < o0
as follows

V) __ v 3\ . 3 v
LY =L (&) ={g: B > C, (YgeL}.
The corresponding norm is

g 1L =119l Lyl -

The classical Sobolev space W = W' (R?) consists of functions with the
following property

W,":\W;"(Rg’):{g: R* - C, 9*g€eL,, Ya: |a|§m}. (15)
The norm in the Sobolev space W' is defined as follows

1/p

la 1wl =1{ D lo°g Lel” | (16)

la|<mn

The corresponding weighted Sobolev space Wy’ = Wi")(R3) is de-
fined via

W) = WO (R) = {g: B - C, 0°()"0) €L, Ya: o] <m} (17)

and has the norm
1/p
g 1w = [ S 10°(6) ) IL,@)IP | (18)

\al<m

For the Sobolev spaces W' and W) the notations W™ and W™®) are
used respectively.

Remark 1 The following norm in M"’<V> is equivalent to the norm (18):

1/p

lg W = D 1) 0% [ Ly )P

la|<m



The Schwartz space S = S(R®) of rapidly decreasing smooth test functions
is defined as follows:

S=8(&) = {g € C°(®): [0)"9(0)| < s}

with arbitrary m € Ny, 8 € N3, v € R® and with some positive constants
Cmp-

A sequence {g,}, n € N of functions from S is said to converge to zero
(gn — 0) in S if for each compact set Q@ C R?, and for allm € Ny , 8 € NJ the
sequences {(v)™9%g,}, n € N converge to zero uniformly in . The adjoint
space S’ = S'(R?) is called the space of tempered distributions. If, for
example, ¢ € C(R?) is a continuous function with the property

pv) =0((v)*), [v] =00

for some a € R, then ¢ defines a regular distribution over S as follows:

(g,so)=/g(v)@dv, Vg€S.

R3

We will reserve the same notation even for a non-regular distribution ¢ € S/,
bearing in mind the duality between the space of test functions and the space
of distributions under the integral.

The space C° = C (R?) of smooth test functions with compact supports is
a proper subset of S and its dual space of distributions D = D(R?) contains
the space of tempered distributions as a proper subset

C2(R?) € S(R®) € S'(R®) € IV (R?).

Let 4 = m + v, where m = 0,1,... is an integer and 0 < v < 1. The space
of Holder functions C* is defined as follows

¢ =C®)={geC®) : |lg|C| <o}
and is endowed with the norm

lg|C|l:= Y sup |[0%g(z)| + D lo%g[C|l

3
la|<m zeR

|a|=m
h _
lo|C ]l = sup [oa)| + sup LA @@
wERs $,hER3 |h|u
h#0




1.2 The Fourier transform and further spaces
The three-dimensional Fourier transform of the function g is defined as
96 = Fanelo(©) = [ 9! ao.
R3

where (v, &) denotes the three-dimensional scalar product. The correspond-
ing inverse Fourier transform is then

o) = FRLON0) = oz [ 9€) 6 e,

R3

The Fourier transform ¢ exists, at least, for g € ;. It is well known that
the Schwartz space S is invariant under the Fourier transform F and under
its inverse F~!

F. S8, (19)
The further properties of the Fourier transform are

Fosel079(0)](€) = (=28)* Fuselgl(€) , (20)
0 Fuselg()](€) = (1) 1 Fuse[vg (v)](E) ,

which hold for the arbitrary test function g € S.
From the celebrated Plancherel equality

U\ 9)e = / f@) 9(0) dv = 27)(f, )i, (21)

which holds for every f, g € L, we obtain the well known Parseval identity

1f | Le|l = (2m) =%/

FiLa| - (22)

Thus, the mappings (27)3/2F and (27)%2F ! are isometrical isomorphisms
in Iy. The Fourier transform of a tempered distribution ¢ € S’ is given by
the following definition

(9,0) =(3,9), Vg €S
and has the property

FH: 8= 8



With the help of the Fourier transform we define the Bessel potential space
Hy = ]HI;(R?’) , SER, 1< p< oo of the tempered distributions by

B =H®)={¢cS : |o|H| <o},
where the norm in HJ is defined as follows:

P

lelm = { [ 17, Kere@1 G ay

In a particular case p = 2, due to (22), the norm in the space H* = H;(R?)
acquires a simpler form

N[

lo | BP|| = / (€)% |6(6)[? de

3

Finally, for all s, € R we define the weighted Bessel potential space
H" = 1% (R?) (or B = Hy*) (R?) when p = 2) via

B =W (R) = {p e : o BmW | = () |m| <oof. (23)

For an integer s = m € N the Bessel potential spaces H* and H become

the classical Sobolev spaces W* and Hy™ (see (15) and (17) respectively)
with the equivalent norms (16) and (18) (see [12, § 2.5.6]).

The following embedding property of the weighted Bessel potential spaces is
almost trivial:

Hy CH, CHY™, VseR, WYvr>0, Vu<0, Vpell,o0),

while the next one is less trivial and is known as the Sobolev lemma (see [11,
§ 2.7.1]):

H * (R} c C'(R}), Vs>0, Vpell, ). (24)

Note that if X* denotes the dual (adjoint) space to a Banach space X, then

() =8, v oy (25)

*

and, in particular, (HZ’(U)> _ ]I‘HQ_S’<_">.

9



We will also apply the interpolation properties of the spaces ]I-]If,’<'j>, which
can be found in [11, § 2.4.2] for the case v = 0; the case of the weighted
spaces v # 0 can easily be reduced to the case v = 0. To formulate a very
short version of the interpolation property, we will use the notation £(X,Y)
for the set of all linear bounded operators A : X — Y. Then, in particular,

A€ E(]I{ZO’(”>, H;OJ”"’(”)) ﬂL(H;“(”),]I-H;lJ’T’(”)) , 7,5,51 €ER, 1<p< oo
yields
Ae€ E(H;’<”>,H;+T’<”>) , Vs € [so, s1] (26)

(see [11, § 2.4.2] for this and much more general interpolation theorems).

1.3 Pseudodifferential operators

In this subsection we give some basic definitions and properties of pseudodif-
ferential operators for our subsequent applications. For more details we refer
the reader to [3],[7],[10].

For a symbol a € C(R?,S’) the pseudodifferential operator

A=A@wD): S8

is defined as follows

A(v, D)[g](v) = ﬁ / a(0,6) Foselg () E N dg vges. (1)

The definition (27) is correct because of the following facts. The function
g = Flg] € S corresponding to (19) and a(w,-)g € S’ for all w € R® since
the dependence of the symbol a on w is continuous. The inverse Fourier
transform b(w,v) = F~a(w,-)g] € S’ is therefore a well defined distribution
for all values of the parameter w and depends on w continuously in the
topology of the Freshet space S’. Therefore,

x(v)b(v,v) € §', Vx e CyP
i.e. b(v,v) € S],, C IV and therefore the operator A is continuous .A(v, D) :

loc
S — IY. As an immediate consequence of the isomorphism (21) we get: a

pseudodifferential operator
A(v,D): Ly = Ly
is bounded, provided the symbol a is uniformly bounded
la(v,8)| < C <00, Wu,é€R.

The main result we will need later is

10



Theorem 2 Let m € Ny, r,v € R and assume
05a(v, )| < Calv)™(€)", VYaeN, laf<m. (28)
Then the pseudodifferential operators

A B BT (29)
A o HE S HS

are bounded for all0 < s < m+r.

Proof. According to the definition (23) of the weighted Bessel potential
space H>® the first boundedness in (29) is equivalent to the boundedness

AV W - BT,

where the symbol of the operator A® is (v)*a(v,&). This symbol obviously
satisfies the estimate (28) with v =0

107 ((v)"a(v,€))| < Calg)", Vo €N, l|af <m.

Thus, we can suppose v = 0. First, we take s = k € Ny, k < m. Using the
formula (13) we obtain from the definition (27) and using (20) for |a| < k

0 A(v, D)[g](v) = 2 ) AP (v, D) [0°4] (v),
>(5)

where the operator A® (v, D) has the symbol 8%a(v, £). With the equivalent
norm (16) we then obtain the boundedness

A(v,D): """ - HF | k=0,1,...,m. (30)
From (30), by the interpolation (26), we get the boundedness
A(wv,D): ' ", 0<s—r<m (31)

i.e. the first statement in (29). Now we can prove the second statement in
(29) by the duality arguments (cf. (25)).
This proof is based on the boundedness of the adjoint operator

A*(v,D): B* - H "  0<s—r<m. (32)

The definition of the adjoint operator A*(v, D) is as follows:

A (v, D)[g(v) = Feh, / a(w, g(w)e W) dw| (v), VgeS. (33)

3

11



Now the boundedness (32) can be proved similarly to (30),(31) provided
0 < —s < m. Since A(v, D) is, in its turn, adjoint to A*(v, D), the operator
should be bounded in the dual pair of spaces

.A(’U,D) : H—s—l—r,(—l/) — (Hs—r,(u))* S H = (Hs)*
| ]

Remark 3 One can define more general pseudodifferential operators which
contain both operators (27) and (33) as particular cases (i.e. the algebra of
such operators is closed with respect to the duality). For this we take

Aw, D)g)(v) = F22, /a(u,w,g)g(w)e@(w,f)dw (v), Vges.

3

If the symbol a(v,w,&) is chosen rigorously, than A(v,D) = Ag(v, D)+ T,
where Ay(v, D) is the pseudodifferential operator defined in (27) with the
symbol ay(v, &) = a(v,v,€) and T : H — S is a smoothing operator of the
order —oo (see [7],[10]).

2 The gain part of the collision integral

Let us first mention here the equality which we apply to prove the bounded-
ness (12) and which is, probably, of interest in its own right.

Lemma 4 An arbitrary partial derivative of the functions Q+(f, g)(v) can
be represented as

PQu(f,)0) =3 ( i ) Qu(0°f,0° 7 g)(v). (34)

p=a

Proof. By direct calculation we get

0
e CRUIT)

R3 S§2

// (ful, 1) ( aw)f(v')g(w’)dedw.

R3 §2

12



Here we have used the convolution property of the collision kernel

—immm=£f0w-ﬁ”w@)=—imwm

0v; v — w| ow;
and the integration by parts which transports the derivative from the kernel
B(|ul, 1) to the product f(v')g(w'). Now we compute the sum of the partial
derivatives as follows:

0 0 ! n o __ ! a_?}l aUI !
(a—% + a—w]) f(0)g(w') = ((gradf)(v ), v, awj) 9(w')
ow' 8w’) of dg

5o ) = 5o 90+ SW) 5L ),

) (<gradg)«un,

where the obvious identity

8_1)’ N o' ow'  ow'
an 8’11)]' a 8’Uj Bwj

has been used; e; denotes here the j—th column of the three-dimensional
identity matrix. Thus, we have proved (34) for the case o = e;

Qu(f.00) = () Q@)+ (G ) Qo).
where

0
0% = 0% :%, J=123.
J

The general case can then be concluded by induction with respect to |«
The operator _ in (6) can be written as follows:

Q-(f,9)(v) = f(v) Blg(v), (35)
where the linear integral operator
Blgl(v) = [ Bua(lul) gl
R3
is of the convolution type and has the kernel
Bualfu) = [ Bl ) de
S2

13



Thus, by using the convolution property

0
~— Biot(|u|) =

0
o ~ g Bua([u) (36)

8’wj
and the integration by parts, we get

99Q(f,9)(v) = (9%f(v)) Blgl(v) + f(v) (09 Blg](v))
= (09f(v)) Blgl(v) + f(v) B[0% ] (v)

= (7)o@ o+ (G )e-trow).

v

v

A/—\

)
)

The proof of the lemma can be accomplished as in the foregoing case by
induction. [

Corollary 5 The following important boundedness properties hold:

QRQi, Q_, Q : SxS—S. (37)

Proof. Since the proofs for the operators (), ) and @ are verbatim the
same, we will consider only the operator ().
Due to the definition (18) and to the property (34) we get

222‘

la<m+1

- > X (§)e@ne

la|<m+1 || f=a

< > lX ( p ) |@: @ plo—g) LY

la|<m+1 \B=a

0. v

9°Q+(f)9]

)2

0%g | Ly H2

Now using the boundedness (8) we obtain the estimate

< > o]

laf,|B]<m

e W M

e v

for some positive constant C. (38) can be interpreted as the following bound-
edness property

Qy @ W oWt Wty e Ny, Vv € R, .

14



Due to the Sobolev embedding lemma (see (24))

Wy c W e=m— g : (39)

WT’<U> c @ , =m—3,
ie.

0 € W — (1)p e O = p e O™,
Therefore,
ﬂ W;ﬂ&l/) _ ﬂ ) —§
meNy, veR eNy, vER,

and from (39) we get the required boundedness (37). "

Lemma 6 Let G € S(R®) x S(R®) x C(S?) and h € S(R®) be given test
functions. Then the following formula holds:

///G(v,w,e)mdedwdvz///G(v’,w',e’)mdedwdv (40)

R3 R3 §2 R3 R3 52

with

! 1 ! 1
v :§(v+w+|v—w|e>, w :§(U+w—|v—w|e>, e
Proof. Using the change of variables
1
U:§(v+w), u=v—w, dwdv=dUdu

we get for the right integral in (40)

///G(UJF%'“'@U—%|UIe,e)h(U+%u) de dU du.

R3 R3 §2
Switching to the spherical coordinates

u=ré r€l0,00), € €S? du=ridrdé

leads to

o0

/TQ///G<U+ %'re, U - %T'e,e) h(U—i— %’ré) dedUdedr .

0 S2 R3 S2

15



Putting 7 and e together to the new three-dimensional variable & = re we
now get

1. 1. u 1.\ . -
///G(U+ Si,U = S, W) h,(U+ §|u\e> dé dU dii .
R3 R3 $2
Substituting & = v —w, U = (v + w)/2 we obtain the identity (40). n

Corollary 7 Using the equation (40) it is possible to define the distribution
h(v') € (S(R) x S(R®) x C(S?))" for an arbitrary distribution h € (S(R®))’
by

(G(v,w,e) // (W', w' €', h(v)) dwde
R3 S2
with v',w' and €' defined in (41).

From (40) we immediately derive two known identities for the bilinear oper-

ator Q+(f, 9)

@19, 0= [ [ [ Bl s g i dedwdr (@2

R3 R3 §2

and

@:(9), w0 = [ [ [ Blalwfw) o) Hwhdedvdu. (43

The second formula is obtained by exchanging v > w and e <> —e in (42).
In order to study the mapping properties of the linear operator Q. (f) we
find the explicit form of the adjoint operator Q* (f).

Lemma 8 The adjoint operator Q* (f) to Q4 (f) defined in (5) is a pseu-

dodifferential operator

QL (o)) =

s [ 0 OF oD g

]RS

with the symbol

¢ (f: 0,6) = / Flo— wblu, €) du. (44)
b(u,€) = 12 () / B(Jul, ) e211(e ) ge

where B is the collision kernel.

16



Proof. Using the identity (43) we obtain
(Q+(Nlgl, M, = (g, Q4 (HA])r,

= [ [ Bul, w7 ') de . (45)

R3 S2

with

Using the Dirac d—distribution, § € ', we rewrite (45) as follows

— [ ] Bl o) (e = o) de duw dz,

R3 R3 2

where the notation
p 1 , 1
vzzi(z+w+|z—w\e), wz:§(z+w—|z—w\e), U, =2 —w

has been used. Using the property (43) in the opposite direction we get

QL(NIHw) / k/wm )@mm4m

3 g2
and therefore with (21)
Q3 (M) = (h,a(v, i, = (2m) > (h,G(v, )1, (46)
The function § in (46) can be evaluated in the following way

q(v, &) = Fusela(v, w)](€)

/ 1w, €) L// (s, 1) f (') 50" v)dedz] dw

3 g2

// (lul, ) f z(w’,ﬁ) de dw

R3 S2

ICRI) /f(v - u)e_zé(u’ £) / B(|ul, u) 6_2%|u|(6’ €) de duw .

In the concluding step we have used the substitution w = v —u, dw = du
and the identity (43) for the third time before removing the J—distribution.
The final result reads as follows

i(v,€) = (Vg (9,

17



where the symbol ¢} (v, &) is defined in (44). The operator Q% (f) is then

QLN = @n il D, = s [ b€ de

N (271T)3/qi(f’7):§) h() e_z(vaf)dg

R3
and, therefore, @, is a pseudodifferential operator (cf. (27)) with the symbol
(44). The proof is herewith accomplished. "

Remark 9 The property (34) is also valid for the operator Q*.(f). This can
be checked directly using the representation (47).

Q" (f)[hl(v)
- ﬁﬁz ( ; ) / 0 (¢2(f3,€)) Fuselh(w))(€)0° (7% 8)) dg

N (2%); ( ; ) [ 6@ 510,016 PR )™ O e
> ( 3 ) Q070" "h](v) (48)
Be

We have used the formulae (44) and (20).

Remark 10 For the VHS model (4) the symbol ¢’ (f;v,§) can be written
more explicitly

(750, =15y [ T = aluPers Osine (i) au. (o)
R3

In fact, the integral over the unit sphere in (44) can be now evaluated ana-
lytically

/el%|u|(€, 5)B(|u\, 1) de = 4nCy|u|sinc <1\u|\£\> ,
J 2
where the notation
sin(y)
Yy

sinc(y) =

has been used.

18



The main result for the VHS model is the following.

Theorem 11 Let

and f €L, N L™ . (51)

3
0<A<1, p>
=A== 5P 24\

Then, for the VHS model, the operators
QL(f) : H' LTV,
Qi(f) + LY oW
are bounded.

Proof. Due to Theorem 2 it is sufficient to have the estimate

@ (50,8 < O (| F10] + 1P 1L 1) )M ) (52)
uniform with respect to v,£ € R3. For |£| < 1 we apply the inequalities
V2 1 .

to (49) and obtain the estimate

L (F;0,8)] < 2P Cy (m/f(v—U)luAdU) €

= 25270, (‘R/f(w)v w)‘dw) €. (54)

With the rough estimate [v — w|? < 2(v)%(w)? we obtain for A > 0
v —w]* < 222 (v) N (w) (55)
and, therefore,

% (f50,6)] < 26V Oy (m/ f(w)W)Adw) (Mo~

=C

FILP | Mo < o (IF 1Ll + | 1282 ) oo

19



Now let [¢] > 1. Then |¢|7! < +/2(£)! and we get the following (cf. (49),
(50)):

(750 ©)| = smCalel [ T = a3 D sin (Sule) ao
RS

<92y / Fo =)l [uPtdu | (1. (56)
€R3

Since A — 1 < 0 the integrand in (56) has a singularity at v = 0. Therefore
we decompose this integral into two parts

/If(v—u)llulk‘ldw / f (v — )| [u]*" du. (57)
u<1 |u[>1

and estimate each of them separately. Using the Holder inequality we obtain
the estimate for the first integral in (57)

1/p 1/p
[f(v —u)||u*tdu < |f(v—u)[Pdu |u\pl()"1)du
u!l u{l u{l
= Con I | Lp(B1(0)| < Gy || £ 1L, (R?)]| - (58)

The constant Cj ) in (58) is well-defined due to condition p'(A —1) > —3 (cf.
(51)):
1/p’
] 47 L/p'
Cpr = PO g = :
PA / i " PO —1)+3
u|<1
Using the inequality 1 < (v)*, which obviously holds for A > 0, we obtain
the estimate for the first integral in (57)
/ (v = w)[ul* du < Coa |l [Tyl ().
lul<1

For the estimation of the second integral in (57) we apply (55) and proceed
as follows:

[ e =wilr =< [ 15— w)lup du

u[>1 u[>1

20



< [ f(w)]jo — w] dw < 2V2 || f LY || (v)*.
R[ w)||v—w|” aw H 1 H v

Thus, for |£] > 1 we get

450,91 < G (IF 1Ll + | £1L0]]) )2

with Cy = 27/27Cy max(C, »,2"/?) and the estimate (52) holds for all £ € R3
with C' = max(C1, Cy). =

Corollary 12 The estimate of the symbol obtained in the foregoing lemma
can be extended to the collision kernels of the inverse power potential typ (cf.

(3))

4
having the additional property
g € H([-1,1]), a>1. (60)

Proof. Due to the proof of the above lemma it suffices to show the esti-
mates (54) for [£] <1 and (56) for || > 1. The Sobolev lemma reads in the
one-dimensional case as follows (cf. (24))

H," *(R) ¢ C*(R), s> 0, pe[l,00).

Thus the condition (60) means that the function g, is continuous on [—1,1]
and therefore |gy(p)| < Cp. Assuming |[£| < 1 and using (53) from the
definition of the symbol ¢% in (49) we immediately obtain the estimate

(5 0,6)] < 277 Gy / Fw)[[o = w dw | €)7

The estimate for || > 1 is a little more delicate. The main problem is to
evaluate the integral over the unit sphere

1
52 !
We use the following parametrisation of the unit sphere in (61)
cos ¢ sin @
e=Q | sinpsing | , 0<p<2r, 0<0<7, de=sinfdpdl.
cosf
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where the orthogonal matrix

QZ((gxu)x§: EXu é)
€ xul €] 7 [€xul g

is written columnwise. Thus we get

Q"e=161(0.0.1)", @"u= (e xul.0. (6 w)

€l
and
(we) 1 .
w=p(p,0) = m = €l (\5 X u| cos sin@ + (&, u) cosH) .
The integral (61) transforms into
//g)\ e 2|u| |§|cosgs1n9dg0d0

Integrating by parts with respect to 6 leads to

[ os (st 0))etsl Il 0% smpap — [gh(,ﬁ)ezam € 0]
0 |ul [€] 0

Ou(,0) alul €] cost
|u|\s\/ oo © .

Using the inequalities (cf. (60))

‘9,\(,“(%079))‘ | < Co, /07r

we get the estimate

<2

g (e, 0)) |0 < 1,

Ou(p,0)
00

1
/g)\(u)elﬁ|u|(e’ &) de < %, C =271(4Cy + 47w C})

S2
and therefore (cf. (56))

|43 (f;0,6)| < V20 (m/ [f(w)Jv — w*™ dw) "

The proof is completed.
Now we can prove the main result of the paper.
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Theorem 13 Let the collision kernel be of the form (4) or (59) and

0<A<1, 0>0, |[s|<@, vs>0

> 0>
P59

and v > 0 if s=0. Then the operators

Q+ : (]Hri,(u-kz\) ﬂ ]H[g) x ]H[S,(l/*)\) N Hs+1,(l/), (62)

Q*—l— . (Hf,(u—f—)\) ﬂ ]HI;0> % H—l—s,(—u) N H—s,(—u—f—)\) (63)

are bounded.

Proof. Since the spaces ]Lgm and ]Lé_“), H>® and H-*~#) with s, u € R are
dual (i.e. are conjugate to each other), the boundedness properties (62),(63)

are equivalent, provided Q4 (f,9) = Q+(f)[g] and Q% (f,9) = Q*(f)[g] are
considered as operators operating on g for a fixed f. Thus, on each step it

is sufficient to prove one of the inequalities (62) or (63).
Now let & = m = 0, which yields s = 0, v > 0. Then the proposed
boundedness property (62) writes as

0 - (87 ) g o) o
We can rewrite (64) as follows

O (LY OL,) x LY s B (65)
where the operator QSF'A has the form (cf. [13, Corollary 4.3])

QV(19) = [ [ B0 w0709l dedu
R3 S2
with
v (v)”
B< )('U,’LU,E) = WB(|U|’M) :

Since

(0 _ L+ Jvf? "
Wyl \T+ P+ [P+ oPlw?) =
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the boundedness (65) follows as the boundedness in the Theorem 11.
Recalling now the definition of the Sobolev norm (16) in Wi using the
property (48) and applying the already proved properties (62) and (63) for
s = 0 we easily obtain the boundedness (62) and (63) for all integer s = k =
1,2,...,m.

By the interpolation (see [12, § 2.4.2] and (26), (26)) we obtain the bound-
edness (62) and (63) for allreal 0 < s <m =180, v > 0.

Next we fix g € H*®~* and prove the boundedness (62) and (63) by inter-
polation for arbitrary 6 > 0.

To complete the proof, we recall the duality arguments described at the
beginning of this proof and extend the boundedness (62) and (63) to negative
—-0<s<0. n

Remark 14 Since A > 0 the space H>=N in (62) (H*{—*N in (63)),
perhaps, can not be replaced by H*V) (H_5’<_">).

To justify the asserted proposition let us show that if the following physical
conditions hold for some wy € R? and € > 0

fr R =Ry, flw)>e, Yw:|w—wl<4
then the symbol ¢* (f;,v,&) allows the following estimate from below
@5 (f3, 0.0 2 (), WeR, [¢(<e (66)

for some &' > 0.

In fact, it suffices to prove (66) for & = 0 and then apply continuity of
¢ (f;v, &) with respect to £ to get (66) for small [£].

We have ¢* (f;v,0) € R and using (49) obtain

qi(f;,v,()):47?0,\/f(v—u)|u|)‘du:47rC',\/f(w)|v—w\’\du (67)
R3 R3

> 4w C) / fw)|v —w|* dw > 4w Cye / v — w|*dw > c(v)*.

|[w—wo|<d |w—wo|<d

Thus if we choose a function g € Ly with supp(§) inside the ball |£] < e, we
can easily obtain the following estimate

|@(lgl 11| = e llg Lo

for sufficiently small ¢ > 0.
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3 The loss part of the collision integral

The bilinear operator () _, which corresponds to the loss part of the collision
integral defined in (6), can be written in the following form (cf. (35))

Q-(f,9)(v) = / Bur(lo — w]) f(0)g(w) dw = f(v) Blg)(0),

R3

where the linear integral operator B

Blgl(v) = [ Buu(lo ~ wi)g(w) du (68)
R3
is of the convolution type. For the study of the mapping properties of the op-

erator (68) we need to investigate the kernel. For the inverse power potential
model (cf. (3)) the kernel By, is

—4/m u, € —4/m
Bu = [u]'™" / 9’”((|u|))d€=9m,tot|u|l v (69)
S2

1

Imtot = 27T/gm(/1') dl’l'

-1
and with A =1 — 4/m the operator B takes the following form
Blg](v) = gm,tot/ lv —wrg(w)dw, —3<A<1.
R3

In the special case of the Maxwell pseudo-molecules the integral operator
(68) degenerates into the functional

Blg)(v) = g0 / o(w) dw = 01301,
R3

where ¢ denotes the “density” which corresponds to the function g.
The mapping properties of the operator B can now be formulated as follows.

Lemma 15 Assume

3 3 3
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with ¢' = q—Ll and 1 < g < oo. Then

. 1 —-A
7:3 Cont’[:nuous a/nd the Znequallty

1Blg] ILEA || < Cupa |19 1147 |

holds for all g(v) € L.

Proof. We suppose 1 < ¢ < oo. For ¢ = oo the proof is essentially the
same with obvious modifications concerning the supremum norm

g |1 || = sup [(v)#g(v)|.
vER3
We proceed with the Holder inequality as follows:

B = g [ )0 = 0 w) ) g(w) do

R3
p-wP\ )"
< Gmytot (m/ (W> dw H9|Ll(1M)H .

For A > 0 we use the substitution w = v — w, dw = dw in the last integral.
Removing the tilde sign it results with (cf. (55))

lw|* < 25/%(v —w)*(W)*, s >0,
the integral

[ () o = [ io—yan

R3
2% (v —w)A W dy < o0

R3

is finite because of the assumption of the lemma (u — \)¢' > 3.
For A < 0 we similarly find with

o[ * <270 —w) " v)*, s <0
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and using the substitution w = v — w, dw = dw again

w—w\* (v — w)~4>
/ ((UV(UJ)“ o= / o = W[ () Oy W < 0
R3

R3

The last integral converges for w — v because of the assumption —¢'\ < 3
and for w — oo because ¢'(A + p) > 3 (see (70)).

The remark that for A = 0 the function B[g](v) is constant (see (70)) com-
pletes the proof with the final estimate

() Blg](v)] < Crapug |9 1L, -3 <A< 1.
|

Remark 16 The condition (70) is not restrictive for the solution of the
Boltzmann equation f(t,x,v) > 0 which represents the distribution of par-
ticles in the phase space Q x R® and, therefore, f(t,x,v) maintains a finite

kinetic energy
// w2 f(t, z,v) dvdr < co.

Q R3
Corollary 17 If the condition (70) holds, the operator
B : Hy" — Y
s bounded for all s > 0.

Proof. For an integer s = m € Ny the proof is a direct consequence of the
foregoing lemma because

0*Blgl(v) = B[0g](v), @ € N, || <m

(see Corollary 5 and Theorem 13). For arbitrary s > 0 the proof follows then
by the interpolation (see (26) and (26)). "

Corollary 18 Let (70) hold and s,0 > 0, 1 < p < oo, v € R. Then the
bilinear operator

Q_ : H;:(“) X Hg’<l’> - Hf;’oj_)‘) (71)

is bounded for ¢ = min(s, 6).
In particular, the loss term (6) of the Boltzmann equation (2) has the follow-
1ng boundedness property

Q, : H;7<V> X H;7<V> - H;’<V_’\> ,

provided the conditions (70) hold with ¢ = p and p = v.
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Proof. First let us prove the following assertion:
ac WX e ]I-llﬁ’<”> yield ap € H£’<”+7> . (72)

The assertion can easily be verified for integers § = m, s =n € Ny. Let, for
the sake of definity, s < 0. We fix « € W interpret (72) as a boundedness
of the multiplication operator al, and extend the boundedness property to
an arbitrary 0 < s < m by the interpolation (26) and (26). After this we

fix p € Hf,é“), and extend similarly the boundedness property for arbitrary
6 > s. This completes the proof of (72).

For integers s = n, § = m € Ny the proof of the asserted boundedness (71)
is a direct consequence of the property

*Q_(f,9)(w) =) | ( g ) Q-(2°f,0°7"g)(v)
BRa

(see (34) and Corollary 5) and the property (72).
For arbitrary 0 < s < 6 the proof then follows by the interpolation, applied
twice as in the proof of the assertion (72). ]

Remark 19 It can be proved that the operator
B - H N Hs+3+/\

q,com q,loc

is bounded for arbitrary s € R. In fact, the symbol a(€) of the operator of
the convolution type B

Blol(v) = [ Bual(v — w)f(w) du

R3

can be computed as the Fourier transform of its kernel

a(§) = Fuore[Bror(|u])](£)
(cf- (68),(69)). Thus the symbol of the operator By can be written as

a(§) = Gm,tot |U\’\€Z(u’ £) du .
/

The result is (see e.g. [4])

_(27T)294,t0t 6,|(£-é|-|) 3 fO’l’ A= Oa

a(§) =

—4r (A+ 1)I'(A + 1) sin (’\Tﬁ)gm,tot |§|1\+3 , for X\#0.
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In the case of the hard spheres model (A =1) we get
8mid?
4.
Thus the symbol a(§) always has singularity at & = 0. By cutting out the

netghborhood of 0, with the help of a cut-off function with a compact support
we decompose the operator B in a sum

a(§) =

B=BY+BY,
where BY has no more singularity at 0 and, having order —3 — X, maps

BY : W, — HI3

q,com q,loc
The operator B(()Z) 15 smoothing

B®: H,, — C* C H 3

q,com q,loc

because the symbol has a compact support, but functions BP[f](v) might have
problems with integration at infinity.
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