ON THE APPROXIMATION OF SINGULAR INTEGRAL EQUATIONS
BY EQUATIONS WITH SMOOTH KERNELS

R. DUDUCHAVA! AND S. PROSSDORF

1. INTRODUCTION

Let I' C C be a finite union of closed or open, compact, oriented, smooth curves without
common points. Let ci,...,¢co,, € I' be the end points of open arcs where cg, 4, ..., o
represent the right end points and ¢y, cs, ..., co,,—1 the left ones. Introduce the weight
function

o(t) = H t—c;|%, 1<p<oo, -1<a;<p—1, c1,...,Com, Com1,..,cn €. (1)
j=1

By L,(I', o) we denote the Lebesgue space of functions ¢ equipped with the norm
el Lp(T, 0)]] == [l el La (T)]]

PC(I") will denote the algebra of piecewise—continuous functions a(t) on I' which have
finite limits a(t = 0) at any inner point ¢ # ¢y, ..., Cay and one-sides limits a(cyj—1) =
a(czj—1 +0), a(cg;j) = a(cg; — 0) at the end points cyj_1, c25 (j = 1,...,m), respectively.
LY(T,p) and PCV*N(I') stand for the space of vector-functions (o1, ..., on), ©; €
L,(T, o), and for the algebra of N x N matrix—functions a = ||ai||nxn, aj € PC(I),
respectively.
Consider the following singular integral equation

Ap = ap+bSrp+Tp=f,

1 T)dT
a,b € PCNXN<F), SFQD(t) = E r SO;_)t ) Spaf € L;)V(Fv Q)?

where T is a compact integral operator in Lév (T, 0):

Ty(t) == /F k(t, T)p(r)drT .
With (2) we associate the following family of Fredholm integral equations
Ay = ap+0Sp Yy +Ty = f,

Seolt) = 1 /F (1 —t)y(r)dr

miJr (1 —t)2 —n2(t)e?’

e>0,

(3)

!This work was fulfilled during the first author’s visit to Institut fiir Angewandte Analysis und Sto-
chastik, Berlin in October 1993.
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where n(t) = cosw(t) + isinw(t) = expliw(t)], 0 < w(t) < 27, is a continuous field of
unit vectors non—tangential to I" at ¢ for all ¢ € I". Thus w(t) — ¢(t) # 0 for all t € T
where 7 (t) = explie(t)], 0 < ¢(t) < 27, is the unit tangential vector to I" at ¢ € I.

The kernel function of Sr. is continuous and, moreover, belongs to C"}(T' x T') if T is
r—smooth.

Notice that the harmonic extension, applied in ([5]) for the definition of the index of
Toeplitz operators with quasicontinuous symbols, provides a similar method of regular-
ization of singular kernels by C'*°~kernels.

The next three examples show how n(t) can be selected in particular cases:

(a) if I' = [0, 1], we can take n(t) = i

(b) if T' = {¢ € C: |¢| = 1}, then n(t) =t has the necessary properties;

(c) if there exists a point z, ¢ [" such that ¢ — z, is non—tangential to I" for any ¢t € T,
then n(t) = |t — z,| 7' (t — 2,) can be chosen.

The main purpose of this paper is to solve the following approximation problem.

PROBLEM A. Let (2) be uniquely solvable for any given f € L;’?V(F, 0). Under what
conditions does there exist €, > 0 such that equations (3) have unique solutions ¢. for all
0 <& <&, and these solutions converge in L) (T',¢) to the solution ¢ of (1) :

p=limey, .

e—0

To formulate the theorem which solves Problem A we consider the following operators
associated with (2) and depending on the parameter ¢ € I":

A;Q = CLt] + 6tbtsﬂiz79 3 (4)

1 (y — 2)v(y)dy
i JRe (y — x)2 —e2exp20(t)i’

Suiz,ew(m) =

where 0(t) = w(t) — ¢(t) denotes the angle between the vector n(t) (see (3)) and the
tangent 7 (t) to I" at ¢t € ', while

g(t—0) for <0 and t=#cq,...,Com,
g(z) =<g(t+0) for x>0 and t+#cy,...,Com,
g(t) for te{c,...,com},

R {R:(—oo,oo) for t#c¢q,...,com,

Rt = [, 00) for t€{ci,...,com},

5 1 for t¢{co,cqy...,Com},
T 21 for te {co, ¢4y ..y Com} -

The operators A, will be considered in the space L) (Rx, [#1[*), where

0 for t=#cq,...cp.
2
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THEOREM 1. Problem A has a positive solution for equations (2) and (3) if and only
if the operator Ay 4 is invertible in the space L)Y (Rx, || for each t € T.

Proof follows from Lemma 5 and Theorem 6 proved below. |

Some equivalent reformulations of Theorem 1 with more explicit conditions can be
found in Section 3. The next theorem is one of such equivalent reformulations in the
particular case p = 2, o(t) = 1, N = 1, which in our opinion represents special interest,
since locally strongly elliptic operators play an outstanding role in different approximation
methods (see e.g. [2], [19]-[24], [29]). For this we need the following definition.

DEFINITION (see [20, 23, 29]). An operator

A LY() — LY(D)

1s said to be locally strongly elliptic if there exist an invertible matriz—function 6, €
PCN*N(T') and a compact operator T, such that

A=460,(A+1,),
where A, is strongly positive definite

Re(Aop, 0) > dl|¢||* for some § >0 and any ¢ € LY(T).

THEOREM 2. Let 0(t) = 7/2 (i.e. n(t) is the outer normal vector for allt € T'). The
following assertions are equivalent:

I. Problem A has a positive solution for equations (2), (3) in the space Lo(I') (i.e.
for N=1,p=2, and o(t) = 1).
II. The operator A is locally strongly elliptic in Lo(T).
III. There exists Gy € C(I") such that

d(t+0)#0, ReG; >0, ReGuc(t+0)d *(t+0)>0 foralltel.

IV. The following conditions are fulfilled:

inf {|[a(t +0) + ub(t £0)]| : t €D, pe[-1,1}>0,
inf{|[(1 — pw)e(t —0)d 't —0)+ (1 +p)ect+0)d ' (t+0)])|:tel, pel-1,1} >0,

where a(czj + 0) = a(cgj—1 — 0) := 1, b(cgj +0) = b(czj—1 —0) :=0 (j = 1,2,...,m) and
c(t) :=a(t) + b(t), d(t) :== a(t) — b(t).

Proof. The equivalence of conditions IT to IV is proved in [20]; the equivalence I
<= 1V follows from Theorem 1 and Lemma 8 since cothn(i/2 + &) = u € [—1,1], and

Sxy2(§) = —sgnéexp(—[¢]) = p € [-1,1]. u

REMARK 3. For the matriz—case N > 1 see Theorems 12 and 13 below.
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2. STABILITY
DEFINITION (cf. [23]). The sequence of operators {A.}. is called stable if:

I. it converges strongly to some bounded operator A:
lim A.tb = Ay) for all v € LY(T, o)

I1. there exists €, such that A, is invertible for each e, 0 < € < €,;
II1. the inverses are uniformly bounded

sup ||AZY] < My < o0
e<é€o

The next two assertions show the connection between the stability of {A.}. and the
solution of Problem A for equation (2).
LEMMA 4. The strong convergence
lir% Sret = Sry (6)
holds for all ¢ € LY (T, o) (see (2),(3)).

Proof follows immediately since

1 1 1
Sretlt) = Tm/r |j' —t—n(t)e i +n(t)e Ylr)dr (7)

and the Plemelj formulas

.1 Y(T)dT 1

lim — [ = £2y(t t

L p e S e R RAC L ¥
hold if the non-tangential vector n(t) points to the left of the oriented curve I' (for (8)
see e.g. [11]). ]

LEMMA 5. Problem A has a positive solution for equations (2), (3) if and only if the
sequence {A.}. is stable.

Proof is well-known (see e.g. [12, 18, 23]) and follows easily from the strong conver-
gence (cf. (6))

lim A-) = Ay for all e LT, o). (9)
|

Our main concern is now to get stability conditions for the operator in (3). The first
contribution to this topic is given by the following theorem.

THEOREM 6. The sequence {A.}. defined in (3) is stable if and only if the operator
Ay g is invertible in the space LY (Rx, |x]**) for eacht € T'.

Proof. Sufficiency. In this part we follow the proof of a similar assertion in [18],
where the operators St , are defined as follows

. _ 1 p(7)dr _ e — ~
Stov)= - [ FTT. T =TN{CeC:(-~>c. (1)
4



This proof makes use of the local principle of Gohberg—Krupnik (see [11]) together with
some ideas of [15] and [26]. Let ,(T") := A, (L)(T, 0)) denote the Banach algebra of
bounded sequences {A}o<.<1 of operators endowed with the pointwise composition (as
multiplication)

{Aa}a : {Ba}a = {AaBa}a

and the uniform norm
[{A}| = sup [ Ac]] -

Let further 2, (") := A, (L) (T, ¢)) denote the ideal in (L) (I, 0)) consisting of sequences
{A.} which converge to 0:

ln | 4.]| = 0.

It is known that the stability of {A.} is equivalent to the invertibility of the corre-
sponding quotient classes {A.}2 in the quotient algebra (L) (T, 0)) /(L) (T, 0)) (see
[15, 23, 26]). This observation makes it possible to apply the local principle to the inves-
tigation of stability (see [15, 18, 23, 26]). We stick here to the local principle suggested
in [18]. Introduce the notation

A(D) = {{B.+T}e: {B}. € %U(T), T is compact in L) (T, 0)},
A () = {{D:}e € Ap(I) : lim Do =0 forall pe LY(T,0)}.

Since
A1) NA(T) = 2A,(T)

the invertibility in the quotient algebra 20,(I")/24,(I") is equivalent to the invertibility of
the corresponding quotient classes in the quotient algebras 2, (I") /(") and 2, (T") /A(T)
(see [18], Lemma 7).

The invertibility of {A.}. in 2,(I")/As(T") is equivalent to the invertibility of the limit
operator Ay = lim._ A.1) since the strong convergence holds [18]. Thus we have to look
only for the invertibility conditions in the quotient algebra 24,(I") /().

Let M(I") denote the class of r—smooth cut—off functions on I' which are equal to
1 in some neighbourhood of ¢ € T' (r denotes the smoothness of the contour I'). By
M}MT') we denote the quotient class {g,I}" € Ay (T")/A(T) of stationary sequences where
gi € My(T'). Tt can be proved that {g,/}" and {A.}) commute (see [18]) and there holds
the quasiequivalence (cf. [18, 27, 28])

M@ MY (R=)
{A}: B {Af,)0, (11)
M}'(Rx) C A(Rx)/A(Rx), {AZp}) € ARL)/A(Rx),
where
Ay(Re) := ALN (R, [ %)), ARx) := ALY (R, [~]*))

and 3 : Uy — V,, denotes a diffeomorphism between the domains U, C I', t € Uy, V,, C Ry,

0 S ‘/07 6t(t) - 0
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If A}, is invertible, then

Itoy
Afy = HypAlyHo, H(t) == 7 t)(et) (12)

and, therefore, A7, have uniformly bounded inverses (note that || H.|L,(Rx, [ [*)|] = W,
e > 0). Thus, {AF,}. is invertible in ™A,(Rx) and this implies the invertibility of { Ay}
in the quotient algebra A,(Rx)/2A(Rx).

If Ai@ is invertible for all t € T, we get due to the local principle (see [11, 27, 28]) that
{A:}2 is invertible in 20,(T") /A (T).

Necessity. This part of the proof in [18] is given only for the case I' = R, R" which
simplifies the argumentation. Therefore we display here the detailed proof.

Due to the quasiequivalence (11) and the local principle we have to prove only that the
local invertibility of {A5,}) € A(R~)/A(Rx) at 0 € Ry implies the invertibility of Ajf,
in L) (R, [N[*=).

Suppose {A7,}. is locally invertible. Then there exist {L.}2, {R-}] € 2y(Rx)/A(Rx)
and g1, g2 € M;(Ry) such that

LaAi@gl] = 91] + Bg + T1 s (13)
GPAgRe = gl +D.+ 1, (14)
hr%HBEH:hI%HDEH = 0,

where T} and T are compact operators in L) (Rx, [»1[*=). Therefore g/, g{ can be chosen
aw/

so that ¢1¢7 = g191 = g1 and |[T1g]I|| + ||B:|| < 1 if € and suppg/ are sufficiently small.
Thus (see (13))

LAjggiI = (I+ B +Thg{I)gi 1
and due to the invertibility of I + B, + T1¢{I we get

LA g I = g1 1. (15)
Similarly from (14) we derive

G Aig Rl = gol . (16)
Due to (12), from (15) and (16) we get

LIAj 9,1 = ai.T, (17)

gé,eAtl,eRg = gé,sl’ (18>
where

+ay

gi(r) :==e "2 H.gi(x) = gj(ex), j=1,2,
ngl — HengHl/sa Rg = HER{EHUE :

(19)

From (19) it follows that
limg/. =1, j=1,2, (20)
sup|[L/]| < M < o0, sup||RY|| < M < oo 1)

6



Let now ¢, € Ker A;1. Then (see (20))
lim g 0o = o
and from (21) we get
o = lim LA} 9200 = 0.
Thus, Ker A}, = {0}. Similarly, due to (18), we get Ker (A{,)* = {0}.

Assume now that A,}ﬂ is not normally solvable; then there exists a sequence {¢;}7°,
|l;]| = 1, such that lim;_. Af g; = 0. For sufficiently small ¢; we get (see (20), (21))

1 1 1
1—d¢, )l < -min{ —, —— 1
10t )l < gmin{ 3+ 571
and therefore (see (17))
L= lgsll < llghe;ill + 111 = g1l <
1
< AL 2ill + 7 < (L2 Al + (22)
3

1
F L AL g el + 5 < ]

if 5 is sufficiently large so that

1
Al g, —.
kel < 7
The obtained contradiction in (22) proves that A;; is normally solvable. This together
with Ker Ajy = {0}, Ker(A;jy)* = {0} yields the invertibility of Aj,. ]

REMARK 7. Some sufficient conditions for the stability of sequences {\I + S}, where
AeC, J=10,1], n(t) =1, in the Lebesgue space L,(J) are announced in [25].

3. EQUIVALENT CONDITIONS

To reformulate the conditions of stability of the operator sequences { A.}., A = lim._,o A,
(see (2), (3)), i.e. tosolve Problem A we shall give invertibility conditions for the operators
(see Lemma 5 and Theorem 6)

B, = al +bSg4: L (R, [A[") — LR, [A[%),
By = o +dSgiy: LYRY, A% = LY(RT, %), ¥ <0<,
—l<a<p-1, 1<p<oo, a(z) = a_x_(z) + apx+(x), (23)

W
b<$> = b_X_<l’> + b+X+<$>’ A+, b:|:7 &) d e (C) X:I:(n) = E('Hé + Sgi f\) :

For this we notice that S%M, Sg+ o represent Fourier convolution operators with discon-
tinuous symbols

Sﬂl&eSO = WSOGSO = -IF?lSGfQD7
SHIQJF,QSO - T+Wg990 = WSQQO,

(24)



where 7 is the restriction r, ¢ = @|g+ and

sie) = Fole) = [ e T

—oo  mi(x? — exp 2i0)

A 1 1 ,
_ zﬁxd — 25
2mi /_oo (m—expi6’+x+expi€>€ . (25)

= —exp(i§expif)x+(§) + exp(—i expif)x_(§) = —sgn exp(i[¢| expif) .
Notice that the image of the function Sp(§) on the complex plane C represents two spiral—

like curves which start at —1 and +1 and twist around the origin (see Fig. 1 and 2 for
different values of 6). For § = 7/2 the curve degenerates into the interval [—1, 1].

LEMMA 8. Let N = 1. The operator B, in (23) is invertible if and only if the following
conditions hold (see (4)):
(1) ai+Sg(§)b:|: 7é0 fGR,
(i) gs(a,bit.€) #0, €€,
(iii) [arg h1ya(a, bit, §)leer + larg g, (a, bit, §)]cer = 0,
where
hpa(a,bit, ) = [a(t+0) + Sp()b(t + 0)][alt — 0) + Sp()b(t —0)] ", £ €R,

gp,(a,b;t, &) = ;[1 + coth w(iB; + €)]c(t + 0)d ' (t + 0) +

+ ;[1 — coth 7 (if + O)]e(t —0)d (1 —0), EeR

(26)
with (see (5))
c(t)

a(t) £ b(t), d(t) = a(t)—b(t), B =~ *};O‘t, £CR. (27)

FIGURE 1. 6 =10° and 8 = 20°

Proof. The operator B, can be represented as follows

BO - X_WCL07+50177 : X+W£++Sgb+ ‘ (28>



FIGURE 2. 0 = 45° and 6 = 85°

From the results on paired convolution equations with scalar discontinuous presymbols,
proved in [7], we get easily that the invertibility conditions for the operator (28) coincide
with (1)—(iii). [}

LEMMA 9. Ifa(x) = a,, b(x) = b, are constant N x N matrices then the operator B,
in (23) is invertible if and only if

det(a, + Sp(§)b,) #0, € €R. (29)
Proof follows immediately since B, = Wy ., and (29) is well-known invertibility
condition for this operator (see, e.g., [7, 14]). [

LEMMA 10. Let ¢,d € C (i.e. N =1). The operator B, in (23) is invertible if and
only if
(i) -+ So(€)d £ 0, € € R;
(ii) c—cothm (i +&)d#0, [f=(1+a)/p, {£€R;
(iii) [arg{c + Sp(§)d}eer + [arg {c — cothm (i + &) d}]¢cg = 0.

Proof follows from the results of [7], since (see (24))
By =W, = Wetas,
and the symbol ¢ + dSy(§) is piecewise—continuous with discontinuity at & = 0. [
Let ¢, " € C,0 < B < 1, and let Qg(c/, ")
denote the segment of the circle bounded

by the straight line wy (¢, ¢’) and by the
part of the circular arc (see Fig. 3)

/ /!
ws(¢ ) ={¢eCic=2F
J—
- th(i R\,
Figure 3 s ycothm(if+6), ¢ € }



COROLLARY 11. Let § = /2 and ¢,d € C (i.e. N =1). Then the operator B in
(23) is invertible if and only if 0 € Qz(c +d,c—d), =1+ a)/p.

THEOREM 12. Let T’ be a smooth closed curve and a,b € CN*N(T'). Suppose the
operator A in (2) is invertible in the space LY(T, 0); (see (1)). The sequence {A}. of
Fredholm operators in (3) is stable if and only if the symbol o4(x,&) = a(t) + b(t)sgn &
(t €T, £ € R) satisfies the following condition:

inf{|deta(t) + Sp(E)b()]| : t €T, € € R} > ¥, (30)

Proof follows from Theorem 1 and Lemma 9. ]

THEOREM 13. Let I be as in Section 1, 0(t) = 7/2, a,b € CV*N(T), and p = 2,
ot) =1 if N> 1 or
1 ; 1
l<peoo, % 2 i1  om (31)
P 2
if N = 1. Suppose the operator A in (2) is invertible in the space LIJDV(F, 0). The sequence
{A.}: of operators in (3) is stable if and only if the following condition holds

inf{|det[a(t) + pb(t)]| :tel, =1 <pu<1}. (32)

Proof. Due to Theorem 1 we have to check the invertibility conditions for the operators

Ao = alt) +0(0)Sk e = W, 9:(€) := al(t) + 52 5(E)b(2) (see (24)) in Ly (R, [~[*=) for

gt’?
t # ¢y, ..., Cop and for the operators

Aiﬂr/2 =a(t) + b(t)Sﬂlgtﬂ/# =Ws., » 9e, (&) == alc;) + (=1)771S, 2 (€)b(c;)
in L;V(Rﬂnaj) for j =1,2,...,2m.
Since Sy/9(§) = —sgnée ¥l = p € [—1, 1], condition (32) reads
inf{|det g:(§)| : £ e R} > ¥ forall =el. (33)

For the operators W the invertibility is ensured by (33) (see [7, 14]).

For the Wiener—Hopf operator Wy, in LY(RT, ~*) condition (33) is only necessary,
but not sufficient. For Fredholmness we have to impose the following restriction (see
8, 9])

inf{|det hj(N)] : A € R} > ¥, (34)
where
hi(\) = ;[1 — cothw(i3; + A)]g.; (0 — 0) + ;[1 + coth 7(i3; + A)]g.; (0 + 0)
= a(c;) + cothm(if; + A)b(¢;) = ale;) + pb(c;)
since §; = 1/2 (see (31)) and coth7(i/2+ ) = p € [—1,1]. Therefore (34) coincides with
2).
. F)or the index IndWj, . we have the formula (see [7, 8, 9])

1 1
IndW,, = 5 [arg det gc, (§)]eer + %[arg det hj(\)]eer = 0.

21
This already yields the invertibility of the operator Wgcj in the scalar case N = 1 (see

[7])-
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For the operator W, ., In the space LY (RT) we apply the strong ellipticity property: if
(32) holds, then

Re e (g, (£)n,n) = colnl® (35)

for any ¢ € R, n € CY and some constants 0 < 6, < 27, ¢, > 0. If we insert n = v €
LY (R), from (35) it follows after integrating that

Re e (ge,1h, ) > ool [ Ly (R)| (36)

where (-, -) stands now for the scalar product in LY (R).
Let {, be the extension operator by zero from R to R. Then /,o € LY (R) for any
¢ € LY(RT) and we proceed with the help of (24) and (36) as follows

Re ew"(Wgcjgo, @) = Ree' (r F 9o, Flop, ©)
= Re ew“(f_lgcjffogp,ﬁogb) —= Ree' (9e; Flow, Floh) > 2, ||| LY (R
(37)
since due to Parseval’s equality we have
IFC| Ly (R)]] = VET ||| Lz (R)]| = V||| L (R

The obtained inequality already implies that Ker W, == {0} and Wy, is normally
solvable (i.e. the image Wy, LY (RT) is closed). In fact, if one of these two properties

fails there exists a sequence {¢,}3° C LY(R™), ||on| LY (RT)|| =¥ (n = 1,2,...) such that
lim,, Wgcj on = 0 (we can take p = @1 = s = ..., p € Ker Wgcj if the latter is non—trivial).
This leads to a contradiction, since (37) implies

1 Wee, ol Ly RO = /xllolLiE (R -

The adjoint operator Wy = W; has a similar estimation. Therefore Coker Wgcj o~
J J
Ker Wy = {0} and W, is invertible in L3'(R*). n

COROLLARY 14. Let the conditions of Theorem 12 hold. The sequence {A:}. of
Fredholm operators in (8) is stable for any 0 < 0(t) < 7 if and only if

detla(t) + ¢b(t)] # 0 (38)
forallt €T and ( € {£1}U{¢ € C: (| < ¥}.

Forn =1 condition (38) can be rewritten as follows:

9+(t) :=a(t) £b(t) #0 and |argg,(t) —argg_(t)] <

forallt eT.

s
2

REMARK 15. See also [6, 17| for the factorization of strongly elliptic matriz—func-
tions and [10, Sect. 3.6] for more general assertions on pseudodifferential operators with
local-sectorial symbols.
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4. SOME REMARKS ON ERROR ESTIMATES

Since, for fixed € > 0, (3) is a Fredholm integral equation with smooth kernel, a wide
variety of approximation methods applies to the numerical solution of equation (3), e.g.,
projection methods (such as Galerkin or collocation methods) and quadrature (Nystrom)
methods (see e.g. [1, 3, 4, 13, 16, 23]).

Assume that such an approximation method is given by the sequence of equations

A = f, (n€N) (39)

where f, € X,, is known and 9. ,, € X,, is the approximate solution of equation (3) with
X, being a closed subspace of LIJDV (', 0). Then ., can be viewed as an approximate
solution of equation (2), too.

THEOREM 16. Suppose the sequence {A.}. and, for any fived €, the sequence {AM™},
are stable. Assume P, : L]]DV(F, 0) — X, is a projection. Then for the solutions of the
equations (2), (3) and (39) the error estimate

o — Veull < cl|Ap — Acp|| + [ — Potb|| + C(||f — fal| + || Ay — A P])  (40)
holds with
¢ = sup IJAZY],  C. =sup||[AL]7Y)].

Proof follows immediately from the identities
p—1 = AT (Ap— ),
Pop—then = [ATHAP Py — f)
and the triangle inequality
o = Vel <l = Wl + [[¢0 = Yeull -
[

Since for the aforementioned approximation methods estimates of the last three terms
are known (see e.g. [1, 3, 4, 13, 16, 23]) the problem of estimating || — 1. || is reduced
to estimating the term ||[Ap — A.¢||.

The following lemma gives a corresponding estimate in the particular case of a closed
curve I'. Notice that in this case the solution ¢ of (2) has the same regularity as f
provided a,b and I" are sufficiently smooth.

LEMMA 17. Assume that T is a closed curve and ¢ € C'(T'). Then there is a positive
constant C such that

_ < /
max [Ap(t) — Aep(t)] < eCmax[(1)] -
Proof. Since I' is closed we have the relation

Sevtt) - S = o ! U =)

) (T —1t)2 —n2(t)er 71—t
Thus, it remains to estimate the integral

/ |dT| / |dr|
|(T — )2 — n?(t €2|_ |T—t\2+62

T. (41)




Without loss of generality we may assume that, e.g., [/4 < s = |t| < 3[/4 where [ is the
length of the curve I'. Hence we get

|dT| ’ dy Cy l—s s
—<C’/—:— arc ta + arc tan —| < Cyr/e.
rlr—tP+e2 = Ph (y—s2+e e e T S 2/

Applying Holder’s inequality to (41), one obtains in a similar manner that
1
max |Ap(t) — Acp(t)] < & POl Ly )

provided ¢’ € L)Y(T') exists.

Concluding remarks. It was not the aim of this paper to give optimal estimates for
the term ||Ap — A-p||. In a forthcoming paper we will compare by numerical experiments
the efficiency of the method studied in the present paper with the efficiency of other well
known methods for approximately solving equation (2) (see e.g. [23]).
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