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1. INTRODUCTION

Let Γ ⊂ C be a finite union of closed or open, compact, oriented, smooth curves without
common points. Let c1, ..., c2m ∈ Γ be the end points of open arcs where c2, c4, ..., c2m

represent the right end points and c1, c3, ..., c2m−1 the left ones. Introduce the weight
function

%(t) =
n∏

j=1

|t− cj|αj , 1 < p < ∞ , −1 < αj < p− 1 , c1, ..., c2m, c2m+1, ..., cn ∈ Γ . (1)

By Lp(Γ, %) we denote the Lebesgue space of functions ϕ equipped with the norm

||ϕ|Lp(Γ, %)|| := ||%|ϕ|p|L1(Γ)|| .
PC(Γ) will denote the algebra of piecewise–continuous functions a(t) on Γ which have
finite limits a(t ± 0) at any inner point t 6= c1, ..., c2m and one–sides limits a(c2j−1) :=
a(c2j−1 + 0), a(c2j) := a(c2j − 0) at the end points c2j−1, c2j (j = 1, ..., m), respectively.

LN
p (Γ, %) and PCN×N(Γ) stand for the space of vector–functions (ϕ1, ..., ϕN), ϕj ∈

Lp(Γ, %), and for the algebra of N × N matrix–functions a = ||ajk||N×N , ajk ∈ PC(Γ),
respectively.

Consider the following singular integral equation

Aϕ := aϕ + bSΓϕ + Tϕ = f ,

a, b ∈ PCN×N(Γ) , SΓϕ(t) :=
1

πi

∫

Γ

ϕ(τ)dτ

τ − t
, ϕ, f ∈ LN

p (Γ, %) ,

(2)

where T is a compact integral operator in LN
p (Γ, %):

Tϕ(t) :=
∫

Γ
k(t, τ)ϕ(τ)dτ .

With (2) we associate the following family of Fredholm integral equations

Aεψ := aψ + bSΓ,εψ + Tψ = f ,

SΓ,εψ(t) :=
1

πi

∫

Γ

(τ − t)ψ(τ)dτ

(τ − t)2 − n2(t)ε2
, ε > 0 ,

(3)

1This work was fulfilled during the first author’s visit to Institut für Angewandte Analysis und Sto-
chastik, Berlin in October 1993.
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where n(t) = cos ω(t) + i sin ω(t) = exp[iω(t)], 0 ≤ ω(t) < 2π, is a continuous field of
unit vectors non–tangential to Γ at t for all t ∈ Γ. Thus ω(t) − ϕ(t) 6= 0 for all t ∈ Γ
where T (t) = exp[iϕ(t)], 0 ≤ ϕ(t) < 2π, is the unit tangential vector to Γ at t ∈ Γ.

The kernel function of SΓ,ε is continuous and, moreover, belongs to Cr−1(Γ× Γ) if Γ is
r–smooth.

Notice that the harmonic extension, applied in ([5]) for the definition of the index of
Toeplitz operators with quasicontinuous symbols, provides a similar method of regular-
ization of singular kernels by C∞–kernels.

The next three examples show how n(t) can be selected in particular cases:

(a) if Γ = [0, 1], we can take n(t) ≡ i;
(b) if Γ = {ζ ∈ C: |ζ| = 1}, then n(t) ≡ t has the necessary properties;
(c) if there exists a point zo 6∈ Γ such that t− zo is non–tangential to Γ for any t ∈ Γ,

then n(t) = |t− zo|−1(t− zo) can be chosen.

The main purpose of this paper is to solve the following approximation problem.
PROBLEM A. Let (2) be uniquely solvable for any given f ∈ LN

p (Γ, %). Under what
conditions does there exist εo > 0 such that equations (3) have unique solutions ϕε for all
0 < ε < εo and these solutions converge in LN

p (Γ, ϕ) to the solution ϕ of (1) :

ϕ = lim
ε→0

ϕε .

To formulate the theorem which solves Problem A we consider the following operators
associated with (2) and depending on the parameter t ∈ Γ:

Aε
t,θ = atI + δtbtS

ε
R≈,θ , (4)

Sε
R≈,θψ(x) :=

1

πi

∫

R≈

(y − x)ψ(y)dy

(y − x)2 − ε2 exp 2θ(t)i
,

where θ(t) = ω(t) − ϕ(t) denotes the angle between the vector n(t) (see (3)) and the
tangent T (t) to Γ at t ∈ Γ, while

gt(x) :=





g(t− 0) for x < 0 and t 6= c1, ..., c2m ,

g(t + 0) for x ≥ 0 and t 6= c1, ..., c2m ,

g(t) for t ∈ {c1, ..., c2m} ,

R≈ :=




R = (−∞,∞) for t 6= c1, ..., c2m ,

R+ = [0,∞) for t ∈ {c1, ..., c2m} ,

δt :=





1 for t 6∈ {c2, c4, ..., c2m} ,

−1 for t ∈ {c2, c4, ..., c2m} .

The operators Aε
t,θ will be considered in the space LN

p (R≈, |x|α≈), where

αt :=





αj for t = cj ,

0 for t 6= c1, ...cn .
(5)
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THEOREM 1. Problem A has a positive solution for equations (2) and (3) if and only
if the operator A1

t,θ is invertible in the space LN
p (R≈, |x|α≈) for each t ∈ Γ.

Proof follows from Lemma 5 and Theorem 6 proved below.

Some equivalent reformulations of Theorem 1 with more explicit conditions can be
found in Section 3. The next theorem is one of such equivalent reformulations in the
particular case p = 2, %(t) ≡ 1, N = 1, which in our opinion represents special interest,
since locally strongly elliptic operators play an outstanding role in different approximation
methods (see e.g. [2], [19]–[24], [29]). For this we need the following definition.

DEFINITION (see [20, 23, 29]). An operator

A : LN
2 (Γ) → LN

2 (Γ)

is said to be locally strongly elliptic if there exist an invertible matrix–function θo ∈
PCN×N(Γ) and a compact operator To such that

A = θo(Ao + To) ,

where Ao is strongly positive definite

Re(Aoϕ, ϕ) ≥ δ||ϕ||2 for some δ > 0 and any ϕ ∈ LN
2 (Γ) .

THEOREM 2. Let θ(t) ≡ π/2 (i.e. n(t) is the outer normal vector for all t ∈ Γ). The
following assertions are equivalent:

I. Problem A has a positive solution for equations (2), (3) in the space L2(Γ) (i.e.
for N = 1, p = 2, and %(t) ≡ 1).

II. The operator A is locally strongly elliptic in L2(Γ).
III. There exists Gt ∈ C(Γ) such that

d(t± 0) 6= 0 , Re Gt > 0 , Re Gtc(t± 0)d−1(t± 0) > 0 for all t ∈ Γ .

IV. The following conditions are fulfilled:

inf {|[a(t± 0) + µb(t± 0)]| : t ∈ Γ , µ ∈ [−1, 1]} > 0 ,

inf{|[(1− µ)c(t− 0)d−1(t− 0) + (1 + µ)c(t + 0)d−1(t + 0)]| : t ∈ Γ , µ ∈ [−1, 1]} > 0 ,

where a(c2j + 0) = a(c2j−1 − 0) := 1, b(c2j + 0) = b(c2j−1 − 0) := 0 (j = 1, 2, ..., m) and
c(t) := a(t) + b(t), d(t) := a(t)− b(t).

Proof. The equivalence of conditions II to IV is proved in [20]; the equivalence I
⇐⇒ IV follows from Theorem 1 and Lemma 8 since coth π(i/2 + ξ) ≡ µ ∈ [−1, 1], and
Sπ/2(ξ) = −sgnξ exp(−|ξ|) ≡ µ ∈ [−1, 1].

REMARK 3. For the matrix–case N > 1 see Theorems 12 and 13 below.
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2. STABILITY

DEFINITION (cf. [23]). The sequence of operators {Aε}ε is called stable if:

I. it converges strongly to some bounded operator A:

lim
ε→0

Aεψ = Aψ for all ψ ∈ LN
p (Γ, %) ;

II. there exists εo such that Aε is invertible for each ε, 0 < ε < εo;
III. the inverses are uniformly bounded

sup
ε<εo

||A−1
ε || ≤ MA < ∞ .

The next two assertions show the connection between the stability of {Aε}ε and the
solution of Problem A for equation (2).

LEMMA 4. The strong convergence

lim
ε→0

SΓ,εψ = SΓψ (6)

holds for all ψ ∈ LN
p (Γ, %) (see (2), (3)).

Proof follows immediately since

SΓ,εψ(t) =
1

2πi

∫

Γ

[
1

τ − t− n(t)ε
+

1

τ − t + n(t)ε

]
ψ(τ)dτ (7)

and the Plemelj formulas

lim
ε→0

1

2πi

∫

Γ

ψ(τ)dτ

τ − [t± n(t)ε]
= ±1

2
ψ(t) + SΓψ(t) (8)

hold if the non–tangential vector n(t) points to the left of the oriented curve Γ (for (8)
see e.g. [11]).

LEMMA 5. Problem A has a positive solution for equations (2), (3) if and only if the
sequence {Aε}ε is stable.

Proof is well–known (see e.g. [12, 18, 23]) and follows easily from the strong conver-
gence (cf. (6))

lim
ε→0

Aεψ = Aψ for all ψ ∈ LN
p (Γ, %) . (9)

Our main concern is now to get stability conditions for the operator in (3). The first
contribution to this topic is given by the following theorem.

THEOREM 6. The sequence {Aε}ε defined in (3) is stable if and only if the operator
A1

t,θ is invertible in the space LN
p (R≈, |x|αt) for each t ∈ Γ.

Proof. Sufficiency. In this part we follow the proof of a similar assertion in [18],
where the operators Sε

Γ,θ are defined as follows

Sε
Γ,θψ(t) =

1

πi

∫

Γ(t,ε)

ϕ(τ)dτ

τ − t
, Γ(t, ε) = Γ ∩ {ζ ∈ C : |ζ −≈| ≥ ε} . (10)
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This proof makes use of the local principle of Gohberg–Krupnik (see [11]) together with
some ideas of [15] and [26]. Let Ab(Γ) := Ab(L

N
p (Γ, %)) denote the Banach algebra of

bounded sequences {Aε}0<ε≤1 of operators endowed with the pointwise composition (as
multiplication)

{Aε}ε · {Bε}ε := {AεBε}ε

and the uniform norm

||{Aε}|| := sup
ε
||Aε|| .

Let further Ao(Γ) := Ao(L
N
p (Γ, %)) denote the ideal in Ab(L

N
p (Γ, %)) consisting of sequences

{Aε}ε which converge to 0:

lim
ε
||Aε|| = 0 .

It is known that the stability of {Aε} is equivalent to the invertibility of the corre-
sponding quotient classes {Aε}∧ε in the quotient algebra Ab(L

N
p (Γ, %))/Ao(L

N
p (Γ, %)) (see

[15, 23, 26]). This observation makes it possible to apply the local principle to the inves-
tigation of stability (see [15, 18, 23, 26]). We stick here to the local principle suggested
in [18]. Introduce the notation

Ac(Γ) = {{Bε + T}ε : {Bε}ε ∈ Ao(Γ) , T is compact in LN
p (Γ, %)} ,

As(Γ) = {{Dε}ε ∈ Ab(Γ) : lim
ε→0

Dεϕ = 0 for all ϕ ∈ LN
p (Γ, %)} .

Since

Ac(Γ) ∩ As(Γ) = Ao(Γ) ,

the invertibility in the quotient algebra Ab(Γ)/Ao(Γ) is equivalent to the invertibility of
the corresponding quotient classes in the quotient algebras Ab(Γ)/Ac(Γ) and Ab(Γ)/As(Γ)
(see [18], Lemma 7).

The invertibility of {Aε}∧ε in Ab(Γ)/As(Γ) is equivalent to the invertibility of the limit
operator Aψ = limε→0 Aεψ since the strong convergence holds [18]. Thus we have to look
only for the invertibility conditions in the quotient algebra Ab(Γ)/Ac(Γ).

Let Mt(Γ) denote the class of r–smooth cut–off functions on Γ which are equal to
1 in some neighbourhood of t ∈ Γ (r denotes the smoothness of the contour Γ). By
M∧

t (Γ) we denote the quotient class {gtI}∧ ∈ Ab(Γ)/Ac(Γ) of stationary sequences where
gt ∈ Mt(Γ). It can be proved that {gtI}∧ and {Aε}∧ε commute (see [18]) and there holds
the quasiequivalence (cf. [18, 27, 28])

{Aε}∧ε
M∧

t (Γ)

˜ βt

M∧
o (R≈)

˜ {Aε
t,θ}∧ε , (11)

M∧
o (R≈) ⊂ A(R≈)/A(R≈) , {Aε

≈,θ}∧ε ∈ A(R≈)/A(R≈) ,

where

Ab(R≈) := A(LNp (R≈, |x|α≈)) , A(R≈) := A(LNp (R≈, |x|α≈))

and βt : Ut → Vo denotes a diffeomorphism between the domains Ut ⊂ Γ, t ∈ Ut, Vo ⊂ R≈,
0 ∈ Vo, βt(t) = 0.
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If A1
t,θ is invertible, then

Aε
t,θ = H1/εA

1
t,θHε , Hεψ(t) := ε

1+αt
p ψ(εt) (12)

and, therefore, Aε
t,θ have uniformly bounded inverses (note that ||Hε|Lp(R≈, |x|α≈)|| = 1,

ε > 0). Thus, {Aε
t,θ}ε is invertible in Ab(R≈) and this implies the invertibility of {Aε

t,θ}∧ε
in the quotient algebra Ab(R≈)/A(R≈).

If A1
t,θ is invertible for all t ∈ Γ, we get due to the local principle (see [11, 27, 28]) that

{Aε}∧ε is invertible in Ab(Γ)/Ac(Γ).
Necessity. This part of the proof in [18] is given only for the case Γ = R, R+ which

simplifies the argumentation. Therefore we display here the detailed proof.
Due to the quasiequivalence (11) and the local principle we have to prove only that the

local invertibility of {Aε
t,θ}∧ε ∈ Ab(R≈)/A(R≈) at 0 ∈ R≈ implies the invertibility of A1

t,θ

in LN
p (R≈, |x|α≈).

Suppose {Aε
t,θ}∧ε is locally invertible. Then there exist {Lε}∧ε , {Rε}∧ε ∈ Ab(R≈)/A(R≈)

and g1, g2 ∈ Mt(R≈) such that

LεA
ε
t,θg1I = g1I + Bε + T1 , (13)

g2A
ε
t,θRε = g2I + Dε + T2 , (14)

lim
ε→0

||Bε|| = lim
ε→0

||Dε|| = 0 ,

where T1 and T2 are compact operators in LN
p (R≈, |x|α≈). Therefore g′1, g

′′
1 can be chosen

so that g′1g
′′
1 = g′1g1 = g′1 and ||T1g

′′
1I|| + ||Bε|| < 1 if ε and suppg′′1 are sufficiently small.

Thus (see (13))

LεA
ε
t,θg

′
1I = (I + Bε + T1g

′′
1I)g′1I

and due to the invertibility of I + Bε + T1g
′′
1I we get

L′εA
ε
t,θg

′
1I = g′1I . (15)

Similarly from (14) we derive

g′2A
ε
t,θR

′
ε = g′2I . (16)

Due to (12), from (15) and (16) we get

L′′εA
1
t,θg

′
1,εI = g′1,εI , (17)

g′2,εA
1
t,θR

′′
ε = g′2,εI , (18)

where

g′j,ε(x) := ε−
1+αt

2 Hεg
′
j(x) = g′j(εx) , j = 1, 2 ,

L′′ε = HεL
′
εH1/ε , R′′

ε = HεR
′
εH1/ε .

(19)

From (19) it follows that

lim
ε→0

g′j,ε ≡ 1 , j = 1, 2 , (20)

sup
ε
||L′′ε || ≤ M < ∞ , sup

ε
||R′′

ε || ≤ M < ∞ . (21)
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Let now ϕo ∈ Ker At,1. Then (see (20))

lim
ε→0

g′2,εϕo = ϕo

and from (21) we get

ϕo = lim
ε→0

L′′εA
1
t,θgε,2ϕo = 0 .

Thus, Ker A1
t,θ = {0}. Similarly, due to (18), we get Ker (A1

t,θ)
∗ = {0}.

Assume now that A1
t,θ is not normally solvable; then there exists a sequence {ϕj}∞1 ,

||ϕj|| = 1, such that limj→∞ A1
t,θϕj = 0. For sufficiently small εj we get (see (20), (21))

||(1− g′1,εj
)ϕj|| < 1

4
min

{
1

M
,

1

M ||At,1|| , 1
}

and therefore (see (17))

1 = ||ϕj|| ≤ ||g′1,εj
ϕj||+ ||(1− g′1,εj

)ϕj|| ≤

≤ ||L′′εj
A1

t,θg
′
1,εj

ϕj||+ 1

4
≤ ||L′′εj

A1
t,θϕj||+ (22)

+ ||L′′εj
A1

t,θ(1− g′1,εj
)ϕj||+ 1

4
<

3

4
,

if j is sufficiently large so that

||A1
t,θϕj|| < 1

4M
.

The obtained contradiction in (22) proves that At,1 is normally solvable. This together
with Ker A1

t,θ = {0}, Ker(A1
t,θ)

∗ = {0} yields the invertibility of A1
t,θ.

REMARK 7. Some sufficient conditions for the stability of sequences {λI +SJ,ε}, where
λ ∈ C, J = [0, 1], n(t) ≡ i, in the Lebesgue space Lp(J) are announced in [25].

3. EQUIVALENT CONDITIONS

To reformulate the conditions of stability of the operator sequences {Aε}ε, A = limε→0 Aε

(see (2), (3)), i.e. to solve Problem A we shall give invertibility conditions for the operators
(see Lemma 5 and Theorem 6)

Bo = aI + bS1
R,θ : LN

p (R, |x|α) → LNp (R, |x|α) ,

B+ = cI + dS1
R+,θ : LN

p (R+,xα) → LNp (R+,xα) , 0 < θ < π ,

−1 < α < p− 1 , 1 < p < ∞ , a(x) = a−χ−(x) + a+χ+(x) , (23)

b(x) = b−χ−(x) + b+χ+(x), a±, b±, c, d ∈ C, χ±(x) =
1
2

(1± sgnx) .

For this we notice that S1
R,θ, S1

R+,θ represent Fourier convolution operators with discon-
tinuous symbols

S1
R,θϕ = W 0

Sθ
ϕ := F−1SθFϕ ,

S1
R+,θϕ = r+W 0

Sθ
ϕ := WSθ

ϕ ,

(24)
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where r+ is the restriction r+ϕ = ϕ|R+ and

Sθ(ξ) = Fg(ξ) =
∫ ∞

−∞
eiξx (−x)dx

πi(x2 − exp 2iθ)
=

= − 1

2πi

∫ ∞

−∞

(
1

x− exp iθ
+

1

x + exp iθ

)
eiξxdx = (25)

= − exp(iξ exp iθ)χ+(ξ) + exp(−iξ exp iθ)χ−(ξ) = −sgnξ exp(i|ξ| exp iθ) .

Notice that the image of the function Sθ(ξ) on the complex plane C represents two spiral–
like curves which start at −1 and +1 and twist around the origin (see Fig. 1 and 2 for
different values of θ). For θ = π/2 the curve degenerates into the interval [−1, 1].

LEMMA 8. Let N = 1. The operator Bo in (23) is invertible if and only if the following
conditions hold (see (4)):

(i) a± + Sθ(ξ)b± 6= 0 ξ ∈ R,
(ii) gβt(a, b; t, ξ) 6= 0, ξ ∈ R,
(iii) [arg h1/2(a, b; t, ξ)]ξ∈R + [arg gβt(a, b; t, ξ)]ξ∈R = 0,

where

h1/2(a, b; t, µ) := [a(t + 0) + Sθ(ξ)b(t + 0)][a(t− 0) + Sθ(ξ)b(t− 0)]−1 , ξ ∈ R ,

gβt(a, b; t, ξ) :=
1

2
[1 + coth π(iβt + ξ)]c(t + 0)d−1(t + 0) +

+
1

2
[1− coth π(iβt + ξ)]c(t− 0)d−1(t− 0) , ξ ∈ R

(26)

with (see (5))

c(t) = a(t) + b(t) , d(t) = a(t)− b(t) , βt =
1 + αt

p
, ξ ∈ R . (27)

Figure 1. θ = 10o and θ = 20o

Proof. The operator Bo can be represented as follows

Bo = χ−W 0
a−+Sθb− + χ+W 0

a++Sθb+
. (28)
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Figure 2. θ = 45o and θ = 85o

From the results on paired convolution equations with scalar discontinuous presymbols,
proved in [7], we get easily that the invertibility conditions for the operator (28) coincide
with (i)–(iii).

LEMMA 9. If a(x) ≡ ao, b(x) ≡ bo are constant N ×N matrices then the operator Bo

in (23) is invertible if and only if

det(ao + Sθ(ξ)bo) 6= 0 , ξ ∈ R . (29)

Proof follows immediately since Bo = W 0
ao+Sθbo

and (29) is well–known invertibility
condition for this operator (see, e.g., [7, 14]).

LEMMA 10. Let c, d ∈ C (i.e. N = 1). The operator B+ in (23) is invertible if and
only if

(i) c + Sθ(ξ)d 6= 0, ξ ∈ R;
(ii) c− coth π (iβ + ξ) d 6= 0, β = (1 + α)/p, ξ ∈ R;
(iii) [arg{c + Sθ(ξ)d}]ξ∈R + [arg {c− coth π (iβ + ξ) d}]ξ∈R = 0.

Proof follows from the results of [7], since (see (24))

B+ = r+W 0
c+dSθ

= Wc+dSθ

and the symbol c + dSθ(ξ) is piecewise–continuous with discontinuity at ξ = 0.

c′

c′′Figure 3

Ωβ (c′, c′′)

ω1/2 (c′, c′′)

ωβ (c′, c′′)
Let c′, c′′ ∈ C, 0 < β < 1, and let Ωβ(c′, c′′)

denote the segment of the circle bounded

by the straight line ω1/2(c
′, c′′) and by the

part of the circular arc (see Fig. 3)

ωβ(c′, c′′) =
{
ζ ∈ C : ζ =

c′ + c′′

2

−c′ − c′′

2
coth π(iβ + ξ), ξ ∈ R

}
.

r

r
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COROLLARY 11. Let θ = π/2 and c, d ∈ C (i.e. N = 1). Then the operator B+ in
(23) is invertible if and only if 0 6∈ Ωβ(c + d, c− d), β = (1 + α)/p.

THEOREM 12. Let Γ be a smooth closed curve and a, b ∈ CN×N(Γ). Suppose the
operator A in (2) is invertible in the space LN

p (Γ, %); (see (1)). The sequence {Aε}ε of
Fredholm operators in (3) is stable if and only if the symbol σA(x, ξ) = a(t) + b(t)sgn ξ
(t ∈ Γ, ξ ∈ R) satisfies the following condition:

inf{| det[a(t) + Sθ(ξ)b(t)]| : t ∈ Γ , ξ ∈ R} > 0 . (30)

Proof follows from Theorem 1 and Lemma 9.

THEOREM 13. Let Γ be as in Section 1, θ(t) ≡ π/2, a, b ∈ CN×N(Γ), and p = 2,
%(t) ≡ 1 if N > 1 or

1 < p < ∞ ,
1 + αj

p
=

1

2
, j = 1, 2, ..., 2m (31)

if N = 1. Suppose the operator A in (2) is invertible in the space LN
p (Γ, %). The sequence

{Aε}ε of operators in (3) is stable if and only if the following condition holds

inf{| det[a(t) + µb(t)]| : t ∈ Γ , −1 ≤ µ ≤ 1} . (32)

Proof. Due to Theorem 1 we have to check the invertibility conditions for the operators
A1

t,π/2 = a(t) + b(t)S1
R,π/2 = W o

gt
, gt(ξ) := a(t) + S1

π/2(ξ)b(t) (see (24)) in LN
p (R, |x|α≈) for

t 6= c1, ..., c2m and for the operators

A1
cj ,π/2 = a(t) + b(t)S1

R+,π/2 = Wgcj
, gcj

(ξ) := a(cj) + (−1)j+1Sπ/2(ξ)b(cj)

in LN
p (R+,xαג) for j = 1, 2, ..., 2m.

Since Sπ/2(ξ) = −sgnξe−|ξ| ≡ µ ∈ [−1, 1], condition (32) reads

inf{| det gt(ξ)| : ξ ∈ R} > 0 for all ≈ ∈ Γ . (33)

For the operators W o
gt

the invertibility is ensured by (33) (see [7, 14]).

For the Wiener–Hopf operator Wgcj
in LN

p (R+,xαג) condition (33) is only necessary,

but not sufficient. For Fredholmness we have to impose the following restriction (see
[8, 9])

inf{| det hj(λ)| : λ ∈ R} > 0 , (34)

where

hj(λ) =
1

2
[1− coth π(iβj + λ)]gcj

(0− 0) +
1

2
[1 + coth π(iβj + λ)]gcj

(0 + 0)

= a(cj) + coth π(iβj + λ)b(cj) = a(cj) + µb(cj) ,

since βj = 1/2 (see (31)) and coth π(i/2+λ) ≡ µ ∈ [−1, 1]. Therefore (34) coincides with
(32).

For the index IndWgcj
we have the formula (see [7, 8, 9])

IndWgcj
= − 1

2π
[arg det gcj

(ξ)]ξ∈R +
1

2π
[arg det hj(λ)]ξ∈R = 0 .

This already yields the invertibility of the operator Wgcj
in the scalar case N = 1 (see

[7]).
10



For the operator Wgcj
in the space LN

2 (R+) we apply the strong ellipticity property: if

(32) holds, then

Re eiθo(gcj
(ξ)η, η) ≥ co|η|2 (35)

for any ξ ∈ R, η ∈ CN and some constants 0 ≤ θo < 2π, co > 0. If we insert η = ψ ∈
LN

2 (R), from (35) it follows after integrating that

Re eiθo(gcj
ψ, ψ) ≥ co||ψ|LN

2 (R)||2 (36)

where (·, ·) stands now for the scalar product in LN
2 (R).

Let `o be the extension operator by zero from R+ to R. Then `oϕ ∈ LN
2 (R) for any

ϕ ∈ LN
2 (R+) and we proceed with the help of (24) and (36) as follows

Re eiθo(Wgcj
ϕ, ϕ) = Re eiθo(r+F−1gcj

F`oϕ, ϕ)

= Re eiθo(F−1gcj
F`oϕ, `oψ) = Re eiθo(gcj

F`oϕ,F`oψ) ≥ 2πco||ϕ|LN
2 (R+)||2

(37)

since due to Parseval’s equality we have

||F`oψ|LN
2 (R)|| =

√
2π||`oϕ|LN2(R)|| =

√
2π||ϕ|LN2(R+)|| .

The obtained inequality already implies that Ker Wgcj
= {0} and Wgcj

is normally

solvable (i.e. the image Wgcj
LN

2 (R+) is closed). In fact, if one of these two properties

fails there exists a sequence {ϕn}∞1 ⊂ LN
2 (R+), ||ϕn|LN

2 (R+)|| = 1 (n = 1, 2, ...) such that
limn Wgcj

ϕn = 0 (we can take ϕ = ϕ1 = ϕ2 = ..., ϕ ∈ KerWgcj
if the latter is non–trivial).

This leads to a contradiction, since (37) implies

||eiθoWgcj
ϕ|LN

2 (R+)|| ≥ √
o||ϕ|LN2(R+)|| .

The adjoint operator W ∗
gcj

= Wgcj
has a similar estimation. Therefore Coker Wgcj

'
Ker W ∗

gcj
= {0} and Wgcj

is invertible in LN
2 (R+).

COROLLARY 14. Let the conditions of Theorem 12 hold. The sequence {Aε}ε of
Fredholm operators in (3) is stable for any 0 < θ(t) < π if and only if

det[a(t) + ζb(t)] 6= 0 (38)

for all t ∈ Γ and ζ ∈ {±1} ∪ {ζ ∈ C : |ζ| < 1}.
For n = 1 condition (38) can be rewritten as follows:

g±(t) := a(t)± b(t) 6= 0 and | arg g+(t)− arg g−(t)| ≤ π

2

for all t ∈ Γ.

REMARK 15. See also [6, 17] for the factorization of strongly elliptic matrix–func-
tions and [10, Sect. 3.6] for more general assertions on pseudodifferential operators with
local–sectorial symbols.
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4. SOME REMARKS ON ERROR ESTIMATES

Since, for fixed ε > 0, (3) is a Fredholm integral equation with smooth kernel, a wide
variety of approximation methods applies to the numerical solution of equation (3), e.g.,
projection methods (such as Galerkin or collocation methods) and quadrature (Nyström)
methods (see e.g. [1, 3, 4, 13, 16, 23]).

Assume that such an approximation method is given by the sequence of equations

A(n)
ε ψε,n = fn (n ∈ N) (39)

where fn ∈ Xn is known and ψε,n ∈ Xn is the approximate solution of equation (3) with
Xn being a closed subspace of LN

p (Γ, %). Then ψε,n can be viewed as an approximate
solution of equation (2), too.

THEOREM 16. Suppose the sequence {Aε}ε and, for any fixed ε, the sequence {A(n)
ε }n

are stable. Assume Pn : LN
p (Γ, %) → Xn is a projection. Then for the solutions of the

equations (2), (3) and (39) the error estimate

||ϕ− ψε,n|| ≤ c||Aϕ− Aεϕ||+ ||ψ − Pnψ||+ Cε(||f − fn||+ ||Aεψ − A(n)
ε Pnψ||) (40)

holds with

c = sup
ε
||A−1

ε || , Cε = sup
n
||[A(n)

ε ]−1|| .

Proof follows immediately from the identities

ϕ− ψ = A−1
ε (Aεϕ− f) ,

Pnψ − ψε,n = [A(n)
ε ]−1(A(n)

ε Pnψ − fn)

and the triangle inequality

||ϕ− ψε,n|| ≤ ||ϕ− ψ||+ ||ψ − ψε,n|| .

Since for the aforementioned approximation methods estimates of the last three terms
are known (see e.g. [1, 3, 4, 13, 16, 23]) the problem of estimating ||ϕ− ψε,n|| is reduced
to estimating the term ||Aϕ− Aεϕ||.

The following lemma gives a corresponding estimate in the particular case of a closed
curve Γ. Notice that in this case the solution ϕ of (2) has the same regularity as f
provided a, b and Γ are sufficiently smooth.

LEMMA 17. Assume that Γ is a closed curve and ϕ ∈ C1(Γ). Then there is a positive
constant C such that

max
t∈Γ

|Aϕ(t)− Aεϕ(t)| ≤ εC max
t∈Γ

|ϕ′(t)| .
Proof. Since Γ is closed we have the relation

SΓ,εψ(t)− SΓψ(t) =
ε2n2(t)

πi

∫

Γ

1

(τ − t)2 − n2(t)ε2

ψ(τ)− ψ(t)

τ − t
dτ . (41)

Thus, it remains to estimate the integral
∫

Γ

|dτ |
|(τ − t)2 − n2(t)ε2| ≤ C1

∫

Γ

|dτ |
|τ − t|2 + ε2

.

12



Without loss of generality we may assume that, e.g., l/4 < s = |t| < 3l/4 where l is the
length of the curve Γ. Hence we get

∫

Γ

|dτ |
|τ − t|2 + ε2

≤ C2

∫ l

0

dy

(y − s)2 + ε2
=

C2

ε

[
arc tan

l − s

ε
+ arc tan

s

ε

]
≤ C2π/ε .

Applying Hölder’s inequality to (41), one obtains in a similar manner that

max
t∈Γ

|Aϕ(t)− Aεϕ(t)| ≤ ε1− 1
p C||ϕ′||LN

p (Γ)

provided ϕ′ ∈ LN
p (Γ) exists.

Concluding remarks. It was not the aim of this paper to give optimal estimates for
the term ||Aϕ−Aεϕ||. In a forthcoming paper we will compare by numerical experiments
the efficiency of the method studied in the present paper with the efficiency of other well
known methods for approximately solving equation (2) (see e.g. [23]).

Acknowledgement. The authors are grateful to A. Rathsfeld for valuable remarks
and to B. Kleemann for helping in preparing the graphical displays.
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