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BASIC BOUNDARY VALUE PROBLEMS OF
THERMOELASTICITY FOR ANISOTROPIC BODIES

WITH CUTS II

R. DUDUCHAVA, D. NATROSHVILI AND E. SHARGORODSKY

AND

Abstract. In the first part [1] of the paper the basic boundary
value problems of the mathematical theory of elasticity for three-
dimensional anisotropic bodies with cuts were formulated. It is as-
sumed that the two-dimensional surface of a cut is a smooth manifold
of an arbitrary configuration with a smooth boundary. The existence
and uniqueness theorems for boundary value problems were formu-
lated in the Besov (Bs

p,q) and Bessel-potential (H∼p ) spaces. In the

present part we give the proofs of the main results (Theorems 7 and
8) using the classical potential theory and the nonclassical theory of
pseudodifferential equations on manifolds with a boundary.

This paper continues [1]. After recalling some auxiliary results, we prove
Theorems 7 and 8 formulated in §3.

§ 4. Auxiliary Results

4.1. Convolution Operators. S(Rn) denotes the space of C∞-smooth
fast decaying functions, while S′(Rn) stands for the dual space of tempered
distributions. The Fourier transform and its inverse

Fϕ(§) =
∫

Rn

e〉§ξϕ(ξ)dξ, F−∞ϕ(ξ) = (∈π)−\
∫

Rn

e−〉§ξψ(§)d§

are continuous operators in both spaces S(Rn) and S′(Rn). Hence the
convolution operator

a(D)ϕ = F−∞aFϕ, a ∈ S′(Rn), ϕ ∈ S(Rn) (4.1)

is a continuous transformation

a(D) : S(Rn) → S′(Rn)

(cf. [2], [3]).
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If operator (4.1) has a bounded extension

a(D) : Lp(Rn) → Lp(Rn), 1 ≤ p ≤ ∞,

we write a ∈ Mp(Rn) and a(ξ) is called the (Fourier) Lp-multiplier. Let

M (r)
p (Rn) =

{
(1+ |ξ|2)r/2a(ξ) : a ∈Mp(Rn)

}
.

Recall that the Bessel potential space H∼p (Rn) is defined as a subset of
S′(Rn) endowed with the norm

‖u|H∼p (Rn)‖ = ‖Is(D)u|Lp(Rn)‖,
Is(ξ) := (1 + |ξ|2)s/2.

(4.2)

Therefore due to the obvious property

a1(D)a2(D) = (a1a2)(D), aj ∈ M(rj)
p (Rn) (4.3)

we easily find that the operator

a(D) : H∼p (Rn) → H∼−rp (Rn), ∼,r ∈ R, 1 ≤ p ≤ ∞,
(4.4)

is bounded if and only if a ∈ M
(r)
p (Rn).

The interpolation property

B∼p,q(Rn) =
[
H∼1p (Rn), H∼2p (Rn)

]
θ,q,

1 < p < ∞, 1 ≤ p ≤ ∞, s1, s2 ∈ R, (4.5)

s = (1− θ)s1 + θs2, 0 ≤ θ ≤ 1

(see [4], [5]), a ∈ M
(r)
p (Rn) ensures the boundedness of the operator

a(D) : B∼p,q(Rn) → B∼−rp,q (Rn), 1 ≤ q ≤ ∞. (4.6)

Equality (4.2) and boundedness (4.4) imply that the operator

Ir : H∼p (Rn) → H∼−rp (Rn) (4.7)

arranges an isometrical isomorphism.
Further, it is well known that the operators

Ir
+ : H̃s

p(Rn+) → H̃∼−rp (Rn+), Rn+ = Rn−1 × R+, R+ = [0, +∞),

Ir
− : H∼p (Rn+) → H∼−rp (Rn+), Ir

±(ξ) = (ξn ± i|ξ′| ± i)r,

ξ = (ξ′, ξn) ∈ Rn, ξ′ ∈ Rn−1,
(4.8)

also arrange isomorphisms (though not isometrical ones; see, for example,
[3], [6]). Isomorphisms similar to (4.8) exist for any smooth manifold with
a Lipschitz boundary (for details see [3], [7]).
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The equality M2(Rn) = L∞(Rn) is well-known and trivial. A reasonable
description of the class Mr

p (Rn) for p 6= 2 is less trivial and the problem
still remains unsolved.

Theorem 12 (see [8], Theorem 7.9.5; [9]). Let 1 < p < ∞ and
∑

|β|<[n/2]+1
0≤β≤1

sup
{|ξβDβa(ξ)|, ξ ∈ Rn} ≤M < ∞,

where for the multi-index β = (β1, . . . , βn) the inequality 0 ≤ β ≤ 1 reads
as 0 ≤ βj ≤ 1, j = 1, . . . , n. Then a ∈ ∩

1<p<∞
Mp(Rn).

If a ∈ M
(r)
p (Rn), the operators

r+a(D) : H̃s
p(R

n
+) → H∼−rp (Rn+)

: B̃s
p,q(R

n
+) → B∼−rp,q (Rn+)

(4.9)

are bounded (1 < p < ∞, s, r ∈ R, 1 ≤ q ≤ ∞); here r+ϕ = ϕ
∣∣
Rn+

denotes
the restriction operator.

An equality similar to (4.3)

r+a1(D)`0r+a2(D) = r+(a1a2)(D), aj ∈ M(rj)
p (Rn),

(4.10)

where `0 is extension by 0 from Rn+ to Rn, fails to be fulfilled in general.
However, (4.10) holds if there is an analytic extension either a1(ξ′, ξn − iλ)
or a2(ξ′, ξn + iλ), which can be estimated from above by C(1 + |ξ| + λ)N

with N > 0, λ > 0, C = const.

4.2. Pseudodifferential operators. If the symbol a(x, ξ) depends on the
variable x, the corresponding convolution (cf. (4.1))

a(x,D)ϕ(x) := F−∞ξ→§a(§, ·)F†→ξϕ(ξ) (4.11)

is called the pseudodifferential operator (ϕ ∈ S(Rn), |a(x, ξ)| < C(1+ |ξ|)N ,
N > 0, C = const).

Let M
(s,s−r)
p (Rn×Rn) denote a class of symbols a(x, ξ) for which oper-

ator (4.11) can be extended to the bounded mapping

a(x,D) : H∼p (Rn) → H∼−rp (Rn). (4.12)
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By Sr(Ω × Rn) (Ω ⊂ Rn, r ∈ R) is denoted the Hörmander class of
symbols a(x, ξ) if

∣∣Dα
x Dβ

ξ a(x, ξ)
∣∣ ≤ Mα,β

(
1 + |ξ|)r−|β|

, ∀x ∈ Ω, ∀ξ ∈ Rn,
(4.13)

where Mα,β is independent of x and ξ.
By Sl,m

r (Ω × Rn) (Ω ⊂ Rn, l, m ∈ Z+, r ∈ R) we denote the class of
symbols a(x, ξ) having the estimations

∫

Ω

∣∣Dα
x (ξDξ)βa(x, ξ)

∣∣dx ≤ M ′
α,β

(
1 + |ξ|)r

∀ξ ∈ Rn, |α| ≤ l, |β| ≤ m,

where

(ξDξ)β := (ξ1Dξ1)
β1 . . . (ξnDξn)βn

.

If Ω ⊂ Rn is compact, then Sr(Ω×Rn) ⊂ Sl,m
r (Ω×Rn). Such an inclusion

does not hold for non-compact Ω.

Theorem 13. Let s, r ∈ R, l,m ∈ Z+, m > [n/2] + 1; then

Sr(Rn × Rn) ⊂M(∼,∼−r)
p (Rn × Rn).

If, additionally, −l + 1 + 1/p < s− r < l + 1/p, then

Sl+n,m
r (Rn × Rn) ⊂M(∼,∼−r)

p (Rn × Rn).

Proof. When a symbol a ∈ S0(Rn×Rn) has a compact support with respect
to x, then the continuity of a(x,D) in Lp(Rn) follows from Theorem 12, as
shown in [10].

For an arbitrary a ∈ S0(Rn × Rn) the above statement is proved for
Lp(Rn) using the arguments involved in the proof of Theorem 3.5 from [12].
In the general case the continuity of the mapping H∼p (Rn) → H∼−rp (Rn)
is established with the aid of the order reduction operator (4.7) (see [4],
[10]), while the continuity of the mapping a(x,D) : B∼p,q(Rn) → B∼−rp,q (Rn)
is proved by interpolation (see [4]).

For a different proof of the first claim see [11].
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To prove the second claim we shall introduce some notation. For a multi-
index µ = (µ1, . . . , µn), 0 ≤ µ ≤ 1 we define

dxµ :=
∏

µj=1
j=1,2,...,n

dxj , (x, h)µ := (z1, . . . , zn),

zj =

{
xj , if µj = 1,

hj , if µj = 0,
x, h ∈ Rn.

Let
a(α)(x, ξ) := Dα

x a(x, ξ).

By virtue of Theorem 12 the inclusion a ∈ Sl,m
r (Rn × Rn) implies

∫

Rn

∥∥Dα
x a(x, ·)

∣∣M (r)
p (Rn)

∥∥x < ∞, |α| ≤ l+n.

From this finiteness and Fubini’s theorem we get

mesRn ∆µ,γ = 0 for any 0 ≤ µ ≤ 1, |γ| ≤ l,

where

∆µ,γ :=
{

h ∈ Rn :
∫

R|µ|

∥∥a(µ+γ)

(
(y,h)µ, ·)

∣∣M(r)
p (Rn)

∥∥yµ = ∞
}

.

If now
∆ =

⋃

0≤µ≤1
|γ|≤l

∆µ,γ

then, obviously, mesRn ∆ = 0. There exists a vector h0 ∈ Rn\∆. Then we
have ∫

Rn

∥∥a(µ+γ)

(
(y, h0)µ, ·)

∣∣M (r)
p (Rn)

∥∥yµ < ∞.

With these conditions we can use Theorem 5.1 and Remark 5.5 from [20]
where the claimed inclusion a ∈ M

(s,s−r)
p (Rn × Rn) is proved. ¤

Let
A,B : H∼p (Rn) → H∼−rp (Rn)

be the bounded operators; they are called to be locally equivalent at x0 ∈ Rn
(see [3], [13]) if

inf
{‖χ(A−B)‖ : χ ∈ Cx0(Rn)

}
= inf

{‖(A−B)χI‖ : χ ∈ Cx0(Rn)
}

= 0,
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where I is the identity operator and Cx0(Rn) = {χ ∈ C∞0 (Rn) : χ(x) = 1
in some neighbourhood of x0}. In such a case we write A x0∼ B. In a similar
manner we define the equivalence A0

x0∼ B0 for operators

A0,B0 : H̃s
p(Rn+) → H∼−rp (Rn+).

Assume now that S = S ∪ ∂S is a compact n-dimensional C∞-smooth
manifold with a C∞-smooth boundary ∂S and

S =
N∪

j=1
Vj , κj : Xj → Vj , Xj ⊂ Rn+ (4.14)

are coordinate diffeomorphisms. Let {χj}N
1 ⊂ C∞0 (S) be a partition of the

unity subordinated to the covering of S in (4.14); also let

κj∗ϕ(t) = χ0
jϕ

(
χj(t)

)
, κ−1

j∗ ψ(x) = χjψ
(
κ−1

j (x)
)
,

where χ0
j (t) := χj(κj(t)), t ∈ Rn+, x ∈ S. The following mapping properties

κj∗ : Hrp (S) → Hrp (Rn+), suppκ−1ג ∩ ∂S 6= ∅,

κj∗ : H̃r
p(S) → H̃r

p(R
n
+), suppκ−1ג ∩ ∂S 6= ∅, (4.15)

κj∗ : Hrp (S) → Hrp (Rn), suppκ−1ג ∩ ∂S = ∅.

are almost evident.
A bounded operator

A : H̃ν
p(S) → Hν−r

p (S) (4.16)

is called pseudodifferential (of order r) if:
(i) χ1Aχ2I is a compact operator in H̃r

p(S) → Hν−r
p (S) for any χ1, χ2 ∈

C∞0 (S) with disjoint supports supp χ1 ∩ supp χ2 = ∅;
(ii)

κj∗Aκ−1
j∗

x0∼ a(x0,D), x0 ∈ S,

κj∗Aκ−1
j∗

x0∼ r+a(x0,D), x0 ∈ ∂S,
(4.17)

where a(x0, ·) ∈ M
(r)
p (Rn) for any x0 ∈ S.

Example 14 (see [3], Example 3.19]). . Let Ω ⊂ Rn be a compact
domain with a smooth boundary ∂Ω 6= ∅.

The operator rΩa(x,D), where a(x, ξ) ∈ Sr(Ω × Rn) and rΩϕ = ϕ
∣∣
Ω

denotes the restriction, is a pseudodifferential one of order r and

rΩa(x,D) x0∼ a(x0,D), x0 6∈ ∂Ω,

rΩa(x,D) x0∼ r+a(x0,D), x0 ∈ ∂Ω.
(4.18)
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If a(x0, ξ) has the radial limits

a∞(x0, ξ) = lim
λ→∞

λ−ra(x0, λξ) (4.19)

which are non-trivial bounded functions of ξ, then a∞(x0, ξ) is a homoge-
neous function of order r with respect to ξ:

a∞(x0, λξ) = λra∞(x0, ξ), λ > 0.

Let

a0(x0, ξ) = a∞
(
x0, (1 + |ξ′|)|ξ′|−1ξ′, ξn

)
(4.20)

represent the modified symbol (see [6], Section 3). Assume that a0 ∈
M

(r)
p (Rn); then using (4.17) and the relation

lim
R→∞

sup
|ξ|≥R

|ξ|−r
∣∣a(x0, ξ)− a0(x0, ξ)

∣∣ = 0

we obtain

κj∗Aκ
−1
j∗

x0∼ a0(x0,D), x0 6∈ Ω,

κj∗Aκ
−1
j∗

x0∼ r+a0(x0,D), x0 ∈ Ω.
(4.21)

Thus the operators χ[a(x0,D)− a0(x0,D)], [a(x0,D)− a0(x0,D)]χI with
χ ∈ C∞0 (Rn) are compact in Hν

p (Rn) → Hν−r
p (Rn) (see [3]). As for the

compact operator T : Hν
p (Rn) → Hν−r

p (Rn), the equivalence T x0∼ 0 holds
automatically.

The functions a∞(x0, ξ) (see (4.19)) and a0(x0, ξ) (see (4.20)) are respec-
tively called the homogeneous principal symbol and the modified principal
symbol of the operator A.

Theorem 15 (see [3])). Let (4.16) be a pseudodifferential operator
(r, ν ∈ R,1 < p < ∞). A is a Fredholm operator if and only if the fol-
lowing conditions are fulfilled:

(i) inf{| det a∞(x0, ξ)| : x0 ∈ S, ξ ∈ Rn} > 0;
(ii) r+aν,r(x0,D) is a Fredholm operator in the space Lp(Rn+) for any

x0 ∈ ∂S, where

aν,r(x0, ξ) =
(
ξn − i|ξ′| − i

)ν−r
a0(x0, ξ)

(
ξn + i|ξ′|+ i

)−ν
,

ξ = (ξ′, ξn), ξ′ ∈ Rn−1.

Theorem 16 (see [3]). Let a(x,D) be a pseudodifferential operator of
the order r ∈ R with the N × N matrix symbol a(x, ·) ∈ Sr(Rn) for any
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x ∈ S. If a(x, ξ) is positive definite, i.e.
(
a(x, ξ)η, η

) ≥ δ0|ξ|r|η|2 for some δ0 > 0

and any ξ ∈ Rn, x ∈ S, η ∈ CN. (4.22)

Then

a(x,D) : H̃
r
2+ν
2 (S) → H−

r
2+ν

2 (S) (4.23)

is a Fredholm operator for any |ν| < 1
2 and

Inda(x,D) = 0. (4.24)

4.3. Further Auxiliary Results. Let H∇(Rn) denote the class of functi-
ons with the properties

(i) a(λξ) = λra(ξ), λ > 0, ξ ∈ Rn;
(ii) a(ω) ∈ C∞(Sn−1), Sn−1 = {ω ∈ Rn : |ω| = 1};
(iii) if a(ξ) = a0(ω′, t, ξn), where ω′ = |ξ′|−1ξ′, t = |ξ′|, ξ = (ξ′, ξn) ∈ Rn,

then

lim
t→0

Dk
t a0(ω′, t,−1) = (−1)k lim

t→0
Dk

t a0(ω′, t, 1),

ω′ ∈ Sn−2, k = 0, 1, 2, . . . .
(4.25)

For r = 0 condition (4.25) coincides with the well-known transmission
property (see [6,14]).

Lemma 17. Let a ∈ H∇(Rn) be a positive definite N×N matrix-function
(cf. (4.22))

(
a(ξ)η, η

) ≥ δ0|ξ|r|η|2 for some δ0 > 0

and any ξ ∈ Rn, η ∈ CN. (4.26)

Then a(ξ) admits the factorization

a(ξ) = a−(ξ)a+(ξ), a±(ξ) =
(
ξn ± i|ξ′|)−

r
2 b±(ξ), (4.27)

where b±1
+ (ξ′, ξn + iλ), b±−(ξ′, ξn − iλ) have uniformly bounded analytic ex-

tensions for λ > 0, ξ′ ∈ Rn−1, ξn ∈ R and
∑

|α|≤m

sup
{|ξαDαb±1

± (ξ)| : ξ ∈ Rn} ≤Mm < ∞, (4.28)

m = 0, 1, 2, . . . .

Proof. For the proof of this lemma see [2,9,15]. ¤
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Remark 18. A lemma similar to the above one but for a general ellyptic
symbol was proved in [2,9] (see [6] for the scalar case N = 1). In [15, §2] a
similar but more general assertion is proved when a(x, ξ) depends smoothly
on a parameter x ∈ S.

A pair of Banach spaces {X0,X1} embedded in some topological space
E is called an interpolation pair. For such a pair we can introduce the
following two spaces Xmin = X0 ∩ X1 and Xmax = X0 + X1 :=

{
x ∈ E :

x = x0 + x1, xג ∈ Xג, ג = 0,1
}
; Xmin and Xmax become Banach

spaces if they are endowed with the norms

‖x|Xmin‖ = max
{‖x|X0‖, ‖x|X1‖

}
,

‖x|Xmax‖ = inf
{‖x0|X0‖+ ‖x1|X1‖ : x = x0 +x1, xג ∈ Xג, ג = 0,1

}
,

respectively.
Besides, we have the continuous embeddings

Xmin ⊂ X0, X1 ⊂ Xmax. (4.29)

For any interpolation pairs {X0,X1} and {Y0,Y1} the space
L({X0X1}, {Y0Y1}) consists of all linear operators from Xmax into Ymax

whose restrictions to Xג belong to L(Xג,Yג) (j = 0, 1). The notation
L(X,Y) is used for the space of all linear bounded operators A : X→ Y.

Lemma 19. Assume {X0,X1} and {Y0,Y1} to be interpolation pairs
and the embeddings Xmin ⊂ Xmax, Ymin ⊂ Ymax to be dense. Let an operator
A ∈ L(X0,Y0) ∩ L(X1,Y1) have a common regularizer: R ∈ L(Y0,X0) ∩
L(Y1,X1) and RA− I ∈ L(X0X0) ∩ L(X1,X1) be compact. Then

A : Xmin → Ymin, A : Xmax → Ymax

are Fredholm operators and

IndXmin→Ymin A = IndXmax→Ymax A = IndXג→Xג A, j = 0,1.
(4.30)

If y ∈ Yג, then any solution x ∈ Xmax of the equation Ax = y belongs to
Xג. In particular,

kerXmin A = kerXג A = kerXmax A, j = 0,1. (4.31)

Proof. We begin by noting that the definition of a norm in Xmin, . . . ,Ymax

implies
∥∥A|L(Xmin,Ymin)

∥∥ ≤ max
{‖A|L(Xג,Yג)‖ : ג = 0,1

}
,∥∥A|L(Xmax,Ymax)

∥∥ ≤ max
{‖A|L(Xג,Yג)‖ : ג = 0,1

}
.
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Whence we find

L(X0,Y0) ∩ L(X1,Y1) ⊂ L(Xmin,Ymin) ∩ L(Xmax,Ymax).

Next we shall prove that A is a Fredholm operator in the spaces Xmin →
Ymin and Xmax → Ymax. For this it suffices to show that AR−I, RA−I are
compact in the spaces Xmin and Xmax, since by the conditions of the lemma
they are compact in X0 and X1. Let us prove a more general inclusion

Com(X0,Y0) ∩ Com(X1,Y1) ⊂ Com(Xmin,Ymin)Com(Xmax,Ymax),

that implies the claimed assertion.
Assume T : Xג → Yג (j = 0, 1) to be compact and {xk}k∈N to be an

arbitrary bounded sequence in Xmin. Then {xk}k∈N is bounded in both
spaces X0 and X1. It can be assumed without loss of generality that the
sequences {Txk}k∈N are convergent in both Y0 and Y1 (otherwise we can
select subsequences). Then {Txk}k∈N is convergent in Ymin and therefore
T ∈ Com(Xmin,Ymin).

If S0, S1 and Smax denote the unit balls in X0, X1 and Xmax, respectively,
then Smax ⊂ S0 + S1. Due to the compactness of T : Xג → Yג (j = 0, 1),
there exist ε/2-grids {y(j)

k }mj

k=1 ⊂ T(Sj) (j = 0, 1), ε = 0. Then {y(0)
k +

y
(1)
n }k,n ⊂ T(S0) + T(S1) defines an ε-grid in T(Smax)(⊂ T(S0) + T(S1)).

Since ε > 0 is arbitrary, T : Xmax → Ymax is compact.
Now we shall show that the density of the embedding Ymin ⊂ Ymax

implies the density of Ymin ⊂ Yג (j = 0, 1). For the sake of definiteness
assume that j = 0. By the condition of the lemma for any ε > 0 and a ∈ Y0
there exists h ∈ Ymin with the property

‖(a− b)|Ymax‖ < ε;

i.e. there exist a0 ∈ Y0, a1 ∈ Y1 such that a− b = a0 + a1,

‖a0|Y0‖+ ‖a1|Y1‖ < ε.

Since a ∈ Y0 and b ∈ Ymin ⊂ Y0, we obtain a − b ∈ Y0 and a1 =
(a − b) − a0 ∈ Y0. So that a1 ∈ Y0 ∩ Y1 = Ymin and a1 + b ∈ Ymin.
Therefore ∥∥[a− (a1 + b)]|Y0

∥∥ = ‖a0|Y0‖ < ε,

which proves that the embedding Ymin ⊂ Y0 is dense.
The density of the embeddings Ymin ⊂ Yג ⊂ Ymax, j = 0, 1, yields

Y∗max ⊂ Y∗ג ⊂ Y∗min, ג = 0,1.
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Since Xmin ⊂ Xג ⊂ Xmax and A∗ : Y∗ג → X∗ג (j = 0, 1), A∗ : Y∗min → X∗min,
A∗ : Y∗max → X∗max are Fredholm, we have

kerXmin A ⊂ kerXג A ⊂ kerXmax A, (4.32)

kerY∗max
A∗ ⊂ kerY∗ג A∗ ⊂ kerY∗min

A∗. (4.33)

The dimensions of the kernels (dimkerA) in appropriate spaces will be
denoted by αmin, αj , αmax, while the notation βmin, βj , βmax will be used
for the dimensions of cokernels (dimCokerA). Note that for a Fredholm
operator we have

dimCokerA = dimkerA∗.

Embeddings (4.32) and (4.33) imply

αmin ≤ αj ≤ αmax, j = 0, 1, (4.34)

βmax ≤ βj ≤ βmin, j = 0, 1. (4.35)

By the definition of IndA we obtain

IndXmin→Ymin A ≤ IndXג→Yג A ≤ IndXmax→Ymax A. (4.36)

A similar inequality for indices of the regularizer R is proved just in the
same manner. Since IndR = − IndA, the inequalities inverse to (4.36)
are valid and therefore (4.30) holds. Now from (4.34) and (4.35) we obtain
αmin = αj = αmax. The latter equality and (4.32) give (4.31). ¤

Remark 20. Similar statements under different conditions on spaces and
operators are well-known (see, for example, [16], [17], [18]).

§ 5. Proofs of Theorems

5.1. Proof of Theorem 7. In the first place we shall prove that P1
S (see (3.2),

(3.6), (3.7)) is a pseudodifferential operator according to the definition given
in Subsection 4.2.

Let U1, . . . , UN be a covering of S ⊂ R3 (see (4.14) where n = 2),
κ1, . . . ,κN be coordinate diffeomorphisms and

κ̃j : X̃j → Ũj , X̃j , Ũj ⊂ R3, Ũג ∩ S = Vג,

X̃j = (−ε, ε)×Xj , κ̃j |Xj = κj , j = 1, . . . , N,
(5.1)

be extensions of diffeomorphisms (4.14). By dκj(t) = κ′j(t) and dκ̃j(t̃) =
κ̃′j(t̃) (t = (t1, t2) ∈ R2+ := R × R+, ≈̃ = (≈0,≈1,≈2) ∈ R3+ := R2 × R+)
we denote the corresponding Jacobian matrices of orders 3 × 2 and 3 × 3.
κ′j(t) will coincide with κ̃′j(0, t)(t ∈ Xj ⊂ R2+) if the first column in these
matrices is deleted.
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Let further

Γχj
(t) =

(
det ‖(∂kκj , ∂lκj)‖2×2

)1/2
, ∂kκj = (∂kκj1, ∂kκj2, ∂kκj3)

denote the square root of the Gramm determinant of the vector-function
κj = (κj1,κj2,κj3).

If the operator P1
S is lifted locally from the manifold S onto the half-

space R2+ by means of operators (4.15), then we obtain the operator (cf.
(4.17))

P1
s,κj

v(t) = κj∗P1
sκ

−1
j∗ v(t) = χ0

j (t)
∫

R2+

Φ
(
(κj(t)−

−κj(θ), τ
)
χ0

j (θ)Γκj
(θ)v(θ)dθ, t ∈ R2+, χ0ג ∈ C∞0 (R2+).

From the last equality it follows that operator (3.7) is bounded. Besides

Kjv(t) := χ0
j (t)

∫

R2+

[
Φ(κj(t)− κj(θ), τ)Γκj

(θ)−

−Φ(κ′j(t)(t− θ), τ)Γκj (t)
]
χ0

j (θ)v(θ)dθ

has the order −2, i.e. the operator

Kj : H̃ν
p(R2+) → Hν+2

p (R2+) (5.2)

is bounded for any ν ∈ R (see [19, Section 33.2 and Theorem 13]). Due to
(5.2) the operator

Kj : H̃ν
p(R2+) → Hν+1

p (R2+) (5.3)

is compact, since χ0
j ∈ C∞0 (R2

+) (see [4.19]). From (5.3), Example 14 and
(2.1) it follows that the symbol of the pseudodifferential operator P1

S reads
as (x ∈ S, ξ ∈ R2)

P∞S (§, ξ) = Γκ|(t)
∫

R2

e〉ξηΦ
(
κ′|(t)η, τ

)dη =

= Γκj (t)
∫

R2

eiξηΦ
(
κ̃′j(0, t)(0, η), τ

)
dη =

=
Γκj (t)
(2π)3

∫

R2

eiξη

∫

R3

e−i(eκ′j(0,t)(0,η),ey)A−∞(†̃, τ)d†̃dη =
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=
Γκj

(t)
(2π)3 det κ̃′j(0, t)

∫

R2

eiξη

∫

R2

e−iηy

∞∫

−∞
A−∞

([
(κ̃′|(′,t))T

]−∞†̃, τ
)
d†′d†dη =

=
Γκj (t)

2π det κ̃′j(0, t)

∞∫

−∞
A−∞

([
(κ̃′|(′,t))T

]−∞
ζ, τ

)
d†′. (5.4)

for t = κ−1
j (x), x ∈ S, t ∈ R2+, ξ ∈ R2, ỹ = (y0, y) ∈ R3, ζ = (y0, ξ). By

(2.3) the principal homogeneous symbol of P1
S (see (2.18)) is written in the

form

(P∞S )∞(§, ξ) =
Γκ|(t)

∈π det κ̃′|(′,t)

∞∫

−∞
A−∞′

([
(κ̃′|(′,t))T

]−∞
ζ
)
d†′,

(5.5)

x ∈ S, ξ ∈ R2, ≈ = κ−1ג (x) ∈ R2+, ζ = (y0, ξ),

A−∞′ (ξ̃) =

∥∥∥∥∥
C−∞(ξ̃) 0

0 Λ−1(−iξ̃)

∥∥∥∥∥ , ξ̃ ∈ R3, (5.6)

where C(ξ̃) and Λ(ξ̃) are defined by (2.4). Since −C(ξ̃) and −Λ(−iξ̃) are
positive-definite (see (1.12) and (1.14)), the same is true for −A−∞′ (ξ̃):

(−A−∞′ (ξ̃)η, η
) ≥ δ∈|η|∈|ξ̃|−∈, δ∈ > ′, η ∈ C4, ξ̃ ∈ R3.

Applying this fact, we proceed as follows:(
(−P∞S )∞(§, ξ)η, η

)
=

=
Γκj (t)

2π detκ′j(t)

+∞∫

−∞

(
−A−∞′

([
(κ̃′|(′,t))T

]−∞
ζ
)
η, η

)
d†′ ≥

≥ δ2|η|2
+∞∫

−∞

∣∣κ̃′j(0, t)ζ
∣∣−2

dy0 ≥

≥ δ3|η|2
+∞∫

−∞

dy0

y2
0 + |ξ|2 = δ4|η|2|ξ|−1, (5.7)

η ∈ C4, ξ ∈ R2, ζ = (y0, ξ), δk = on∼≈ > 0, k = 2,3,4.

Formulas (1.6), (5.5) and (5.6) also imply

Dα
x Dm

ξ1
(P∞S )∞(§, λξ) = |λ|−∞λ−mDα

§Dmξ∞(P∞S )∞(§, ξ),
|α| < ∞, m = 0, 1, . . . , ξ ∈ R2, λ ∈ R.

(5.8)
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Hence we have the equivalences (see (4.18), (4.21), (5.1), (5.2))

κj∗P1
Sκ

−1
j∗

x0∼ (P1
S)0(x0,D), x0 ∈ Uj ⊂ S, x0 6∈ ∂S,

κj∗P1
Sκ

−1
j∗

x0∼ r+(P1
S)0(x0,D), x0 ∈ Uj ∩ ∂S,

where (see (4.20))

(P∞S )′(§, ξ) := (P∞S )∞
(§, (∞+ |ξ∞|)|ξ∞|−∞ξ∞, ξ∈

)
.

Due to (5.7) the symbol (P∞S )′(§, ξ) is an elliptic one

inf{| det(P∞S )∞(§, ξ)| : § ∈ S, |ξ| = ∞} > ′.
Since condition (5.8) implies the continuity property (4.25) for the symbol

(P∞S )∞(§, ξ), by virtue of Lemma 17 it admits the factorization

(P∞S )′(§, ξ) =
[
(ξ∈ − 〉|ξ∞| − 〉)−∞/∈P−(§, ξ)][(ξ∈ + 〉|ξ′|+ 〉)−∞/∈P+(§, ξ)],
P±∞− (§, ·), P±∞+ (§, ·) ∈M√(R2), x ∈ ∂S,

where P±∞− (§, ξ∞−〉λ), P±∞+ (§, ξ∞+ 〉λ) have bounded analytic extensions
for λ > 0. According to Theorem 15 operator (3.7) is a Fredholm one if
and only if the operators r+(P1

S)ν,−1(x0,D) are Fredholm ones in Lp(R2+)
for all x0 ∈ ∂S, where

(P∞S )ν,−∞(§′, ξ) =
(ξ∈ − 〉|ξ∞| − 〉)ν+∞

(ξ∈ + 〉|ξ∞|+ 〉)ν
(P∞S )′(§′, ξ) =

=
(ξ2 − i|ξ1| − i

ξ2 + i|ξ1|+ i

)ν+1/2

P−(§′, ξ)P+(§′, ξ), §′ ∈ ∂S. (5.9)

Therefore (see (4.10), (5.9))

r+(P1
S)ν,−1(x0,D) = r+P−(x0,D)`0r+Gν(D)P+(x0,D),

(5.10)

with

Gν(ξ) =
(ξ∈ − 〉|ξ∞| − 〉

ξ∈ + 〉|ξ∞|+ 〉
)ν+∞/∈

(5.11)

and since r+P±(x0,D) are invertible (according to (4.10) the inverses read
as r+P−1

± (x,D)). The proof will be completed if we find invertibility con-
ditions for r+Gν(D) in Lp(R2+); the latter is invertible if and only if

1/p− 1 < ν + 1/2 < 1/p (5.12)

and the inverse reads as (r+Gν(D))−1 = Iν+ν∈
+ (D)`′r+I−ν−∞/∈

∈ (D) (see
[2], §2). Conditions (5.12) coincide with (3.8).
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The local inverses to P1
S : H̃ν

p(S) → Hν+1
p (S) are, therefore, independent

of the parameters p and ν if conditions (3.8) are fulfilled.
In fact, the operator

(r+P1
S)−1

ν,−1(x0,D) := P−1
+ (x0,D)Iν+∞/∈

+ (D)`′r+I−ν−∞/∈
− (D)P−1

+ (x0,D)

is inverse to (r+P1
S)ν,−1(x0,D) in Lp(R2+); if we ”lift” these operators from

the space Lp(R2+) to the Bessel potential spaces by means of the Bessel
potentials Iµ

±(D) defined by (4.8), we shall come to the following conclusion:
if (3.8) holds, the operator

I−ν
+ (D)`′(r+P1

S)−1
ν,−1(x0,D)Iν+∞

− (D) =

= P−1
+ (x0,D)I∞/∈

+ (D)`′r+I∞/∈
− P−1

− (x0,D)

inverts the operator

I−ν
+ (D)`′(r+P1

S)ν,−1(x0,D)Iν+∞
− (D) =

= P1
S(x0,D) : H̃ν

p(R2+) → Hr+1
p (R2+), x0 ∈ ∂S

which is a local representation of P1
S = P1

S(x,D) (x ∈ S, x0 ∈ ∂S).
Thus the regularizer constructed by means of the local inverses (see,

for example [2], [3], [13]) can be chosen independent of p and ν if (3.8)
holds. Now we can take p = 2 and by Theorem 16 and Lemma 19 we get
IndP1

S = 0.
To complete the proof for the space Hν

p (S) it remains to check that
kerP1

S = 0. We need to do this only for ν = −1/2 and p = 2, since kerP1
S

is also independent of the parameters p and ν (see Lemma 19).
The equality kerP1

S = 0, in turn, follows from the triviality of a solution
of the homogeneous Problem D. Actually, formula (1.17) implies that for
any solution U = (u1, . . . , u4) of the homogeneous Problem D we have

∫

R3S

{
cijklDlukDjui + ρτ2ukuk +

1
τT0

λijDju4Diu4 +
c0

T0
u4u4

}
dx = 0;

recalling that τ = σ + iω and separating the real and the imaginary part,
we obtain

∫

R3
S

{
cijklDlukDjui + ρ(σ2 − ω2)ukuk +

+
σ

|τ |2T0
λijDju4Diu4 +

c0

T0
u4u4

}
dx = 0, (5.13)
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ω

T0

∫

R3
S

{
2σT0ukuk + λijDju4Diu4

}
dx = 0.

Whence by (1.12) and (1.14) we find U = 0 for an arbitrary τ with
Re τ > 0. For τ = 0 we obtain

Djuk(x) + Dkuj(x) = 0, u4 = 0, k, j = 1, 3, x ∈ R3S .
(5.14)

The general solution of this system is (see [1])

U = [a× x] + b,

where a and b are the constant three-dimensional vectors with complex
entries and [·×·] denotes the vector product of two vectors. From conditions
(1.10) and (5.14) it follows that U = 0.

Thus the homogeneous Problem D has only a trivial solution and kerP1
S

= {0}.
To prove the theorem for the Besov space Bν

p,p(S) recall the following
interpolation property from (4.5):

If A : H̃ν
p(S) → Hν+r

p (S) is bounded for any ν0 < ν < ν1 snd some
1 < p < ∞, then the operator A : B̃ν

p,q(S) → Bν+r
p,q (S) is also bounded for

any ν < ν < ν1, 1 ≤ q ≤ ∞.
Let conditions (3.8) be fulfilled. Then the operator P1

S : H̃ν
p(S) →

Hν+1
p (S) has the bounded inverse (P1

S)−1 : Hν+1
p (S) → H̃ν

p (S); due to the
above-mentioned interpolation property the operator (P1

S)−1 : Bν+1
p,q (S) →

B̃ν
p,q(S) will also be bounded and therefore the operator P1

S in (3.6) has the
bounded inverse.

5.2. Proof of Theorem 8. After the localization and local transformation of
variables (see (5.1)–(5.9)) we obtain the equivalences

κj∗P4
Sκ

−1
j∗

x0∼ (P4
S)0(x0,D), x0 ∈ Uj ⊂ S, x0 6∈ ∂S,

κj∗P4
Sκ

−1
j∗

x0∼ r+(P4
S)0(x0,D), x0 ∈ Uj ∩ ∂S,

where

(P4S )′(§′, ξ) = B′(§′, ξ)(P∞S )′(§′, ξ)(B′)T (§′, ξ) (5.15)

and B′(§′, ξ) represents the modified principal symbol of the operators B(Dx,n(x))
and Q(Dx,n(x)) (whose principal symbols coincide). The order of B′(§′, ξ)
is 1 and therefore (5.15), (5.7) yield

((P4S )∞(§′, ξ)η, η) ≥ δ5|ξ||η|∈, ξ ∈ R2, η ∈ C4, δ5 > 0.
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The homogeneity property

Dm
ξ1

Dα
x (P4S )∞(§, λξ) = |λ|λ−mDmξ∞Dα

§ (P4S )∞(§, ξ),
|α| < ∞, m = 0, 1, . . . , ξ ∈ R2, λ ∈ R

holds as well (see (5.8)).
Thus the symbol (P4S )∞(§, ξ) is elliptic

inf{| det(P4S )∞(§, ξ)| : § ∈ S, |ξ| = ∞} > ′
and operator (3.10) is a Fredholm one if and only if the operators
r+(P4

S)0ν+1,1(x0,D) are Fredholm in Lp(R2+) for all x0 ∈ ∂S; here

(P4S )′ν+∞,∞(§′, ξ) =
(ξ∈ − 〉|ξ∞| − 〉)ν

(ξ∈ + 〉|ξ∞|+ 〉)ν+∞ (P4S )′(§′, ξ) =

=
(ξ2 − i|ξ1| − i

ξ2 + i|ξ1|+ i

)ν+1/2

P4− (§′, ξ)P4+ (§′, ξ),

(P4+ )±∞(§, ·), (P4− )±∞(§, ·) ∈M√(R2), x0 ∈ ∂S,

and (P4+ )±∞(§′, ξ∞, ξ∈ + 〉λ), (P4− )±∞(§′, ξ∞, ξ∈ − 〉λ) have bounded an-
alytic restrictions for λ > 0. The proof is completed similarly to that of
Theorem 7. ¤
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