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BASIC BOUNDARY VALUE PROBLEMS OF
THERMOELASTICITY FOR ANISOTROPIC BODIES
WITH CUTS I

R. DUDUCHAVA, D. NATROSHVILI AND E. SHARGORODSKY

AND

ABSTRACT. The three-dimensional problems of the mathematical the-
ory of thermoelasticity are considered for homogeneous anisotropic
bodies with cuts. It is assumed that the two-dimensional surface of
cut is a smooth manifold of an arbitrary configuration with a smooth
boundary. The existence and uniqueness theorems for boundary value
problems of statics and pseudo-oscillations are proved in the Besov
(B; 4) and Bessel-potential (Hﬁ‘) spaces by means of the clasical po-
tential methods and the theory of pseudodifferential equations on
manifolds with boundary. Using the embedding theorems, it is proved
that the solutions of the considered problems are Holder continuous.
It is shown that the displacement vector and the temperature distri-
bution function are C*-regular with any exponent o < 1/2.

The paper consists of two parts. In this part all the principal
results are formulated. The forthcoming second part will deal with
the auxiliary results and proofs.

INTRODUCTION

Three-dimensional crack problems evoke much interest in engineering
applications. In this paper we investigate the three-dimensional boundary
value problems (BVPs) of thermoelasticity in certain function spaces when
the anisotropic elastic body under consideration contains any number of
nonintersecting cuts in the form of two-dimensional smooth surfaces with
smooth boundaries.

For domains bounded by smooth closed manifolds of the class C?*” the
basic BVPs were completely investigated using the potential method by
V. D. Kupradze and his collaborators [1] in the isotropic case and by D. Nat-
roshvili [2] in the anisotropic case.
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Analogous three-dimensional crack problems of classical elasticity for
isotropic bodies were treated in the Bessel-potential spaces HZ by M. Costa-
bel and E. Stephan in [3]. The BVPs for homogeneous anisotropic bodi-
es were studied in the Besov (B[;) and Bessel-potential (H ) spaces by
R. Duduchava and collaborators in [4] who established more precise re-
sults on the regularity of solutions (C%*-regularity with o < 1/2). Each of
the quoted papers contains an ample bibliography to the above-mentioned
problems.

To illustrate our approach we consider two basic BVPs for an infinite do-
main. All the results obtained here remain valid (with minor modifications)
for a bounded domain with interior cuts, i.e. when the cut surface does not
touch the domain boundary.

The paper consists of two parts. This is the first part containing three
sections.

In the first section we formulate the problems and introduce the spaces
of functions and distributions needed for proving the unique solvability of
the problems and, further on, the regularity properties of solutions.

In the second section we show the mapping properties of single- and
double-layer potentials of thermoelasticity (both on the surface and from
the surface to the space; see Theorems 2 and 4) and derive the integral
representations of regular solutions.

The third section contains the formulations of the main theorems of the
paper, concerning the existence and uniqueness of solutions of the problems
discussed in the first section, the regularity of such solutions and the explicit
solvability properties of the corresponding boundary integral equations (see
Theorem 5-9).

The proofs of Theorems 7 and 8 will be given in the forthcoming second
part of the paper after recalling some auxiliary results.

§ 1. FORMULATION OF THE PROBLEMS

Let QO be a bounded domain in R¥ with the smooth boundary Q% = £
and S be the connected part of ¥ with the smooth boundary curve 05 =
¢ # @. Then S is a two-dimensional surface of an arbitrary configuration
with the boundary £. It is assumed that Q= := R¥\Q¥, where Ot = QtUY,
RE =R\S and S =S U/

Let Rg be filled with some homogeneous anisotropic elastic material ha-
ving the density p, elastic coefficients

Ckjpq = Cpgkj = Cjkpg> (1.1)
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heat conductivity coefficients
Xij = A (1.2)

and thermal capacity cy.

In what follows R is treated as an infinite elastic body with a cut along
the surface S. For simplicity ¥, S and ¢ will further be assumed to be
C*>-regular.

By u = (u1,us, us) and ug we denote the displacement vector field and the
temperature field, respectively. The components of the thermal stress vector
calculated on a surface elements with the unit normal vector n = (n1,ng,ns3)
have the form

[P(D.xan)U]k = [T(Dx7n)u]k_ﬂkjnju4a k= 1a2737

where U = (u1,u2, us, us), [T(Dx,n)ulx := ckjpgqnjDqup are the compo-
nents of the classical stress vector, D, := (D1, Do, D3), D, = 8/0xz,, the
constants 3;; = (;; are expressed in terms of the thermal and the elastic
constants (cf. [5]). Here and in what follows the summation from 1 to 3
over repeated indices are meant.

The strain tensor components ey; are defined by the formulas

1
exj = §(Djuk +DkUj)7 k,j=1,2,3,

while the stress tensor components are related to ey; as follows (Hooke’s
law):
Tkj = Ckjpa€pa = CkjpaDplq-
Potential energy in classical elasticity reads as

2W = eijkj = ckquekjepq.

From the physical standpoint, potential energy is assumed to be a positive
definite quadratic form with respect to the variables ey; = e;x:

2W > degjer;, 6 = const > 0. (1.3)

Combining the static and the pseudo-oscillation cases, we consider the
following system of equations of thermoelasticity

A(Dy,7)U(x) =F(x,7), xE€Rg, (1.4)
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where F' = (Fy,...,Fy) is a given vector with a compact support, I, =
|0kj|lmxm is the unit matrix,

—B1;D
2 _ 8.
A(D,7)= CD) = pr°ls _gQ?g? ;
375 (1.5)
a1;Dj, 2Dy, a3iDj, A(D) = coT||,, 4
C(D) := [[Cxp(D)laxs, Cup(D) := cxjpqDjDq,
A(D) = )\ququ, Apj = —TToﬂkj, (16)

To = const > 0 is a temperature of the medium in the natural state (cf.
[5]), 7 = 0 +iw; T = 0 corresponds to the static case, while 7 = o + iw,
o > 0p > 0 corresponds to the pseudo-oscillation case (eq. (?7) is obtained
from the dynamic equations of thermoelasticity upon applying the Laplace
transform).

Treating S as a double-sided surface, we consider two basic BVPs for
equation (??) with a Dirichlet type boundary condition

[U(@)]* = ¢*(z,7), z€5, (1.7)
and with a Neumann type boundary condition
[B(Dx,n(x))U(x)]* =¢*(x,7), x€S, (1.8)

where the symbol []* denotes the limiting value on S of a function (vector)
from QF, n(x) 1s the outward with respect to Q% unit normal at x € S,

ot = (pF,...,0F) and ¥F = (T, ..., ¢T) are the known vector-functions,
—Pjmn;(z)
T(Dx,n(x)) —fB2;n;(z)
B(Dy,n(x)) = I , 1.9
(D) ) (19)
0, 0, 0, Apgnp(w)Dy Ax4

T(Dx7 n(x)) = ||Tkp(Dx7 n(X))||3><37 Tkp(Dm n(x)) = ijpqnj(x)DQ‘

In problems (??) and (?7?) it is required that

o(1) for 7 =0,
= k=1,23,4, 1.10
k(@) {O(|x|N) for Re7 > 0, (1.10)

for a sufficiently large |z| and some positive number N.
These conditions imply (see [6], [7])

Doy () = O(|z|=t=lely  for 7 =0, (1.11)
M O(lz|™") for ReT > 0, ’



127

as |z| — oo, where « is an arbitrary multi-index, |a| = a1 + a3 + a3 and v
is an arbitrary positive number.

The symmetry properties of coefficients (??) and the positive definiteness
of the energy quadratic form (??) imply that the operator C(D) defined by
(?7) is a formally self-adjoint strongly elliptic matrix differential operator
(see [8])

Re (C(&)n,n) = (C(E)n,n) = cxjpalilanpThc = dol&?n[?,
S =const >0, &eR¥, neC¥, (1.12)

where C¥ is the three-dimensional complex Euclidean space, the bar desig-
nates complex conjugation and (a,b) = ab = axby for a,b € C¥.

In contrast to C(D) the operator A(D, 1) is elliptic but not self-adjoint.
Denote by A*(D, 7) the operator formally adjoint to A(D, 7). It is obvious
that

A*(D,7) = AT(-D,7), (1.13)

where the superscript T' denotes the transposition operator.
Note that the quadratic form A () defined by (??) is also positive definite
(see [9]),

AE) = Mpgbply > 011€]2,  EERF, G = xx~m > K
(1.14)

A function f : QF — R¥ is said to be regular in QF if f € C2(QF) N
CHOF). A vector v = (v1,...,0,,) (matrix A = [[@g;lmxm) is said to be
regular in Q7 if all its components (entries) are regular functions in Q*. In
general, v € P (A € P) means that all components of v (all entries of A)
belong to the space P.

Let CF+7(Q*F) where k& > 0 is an integer and 0 < 7 < 1 denote the
space of functions u defined on QF whose derivatives D®u of order |a| = k
are Holder continuous with the exponent v. The space Ck*7(X) is defined
similarly (cf., for example, [1]).

Assume that U = (uy,...,us) and V = (v1,...,v4) are the regular vec-
tors in QF satisfying the conditions AU, A*V € Ly (Q%) and (??). Then
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we have (see [2])

/(AU,V) dx = j:/ (BUJ*, [V]*)dS —/E(U,V) dx,

[9FS oN=E O+ (115)
/{(AU,V) —(U,A*V)}dx = + / {(BUJ*,[V]*)dS -
O+ 90+

— (U, [QV]F) }dS, (1.16)
/ {(AU)kﬁk + %(ﬁ);lU;;}dX = — / {cijleluijﬁi +
O+ QO+

1
+ pTzukﬂk + = NijDjusDiuy + i} U4ﬂ4}dw +
To To

AR [%mr}ds, (1.17)

1

+ / {[BU]]f[Uk]i+ =

o0+

where

E(U, V) = ckquunijﬁk + pTzukUk — ﬂkp’LL4Dp@k +

+ )\quqU4Dp54 + CcoTU4V4 + TToﬁqupupE;, (118)
0
o) M= ApgTp () Dgua(z),
TotPrjn;(x)
T(Dx,n(x)) Torf2in;(zx)
va = 7
Q( n(x)) Tor Bs;m; (2)

0, 0, 0, Apgp(x) Dy axa

In what follows the BVPs (??) and (?7?) will be investigated in different
functional spaces.

To formulate these problems in exact terms we need the Sobolev WT‘ (R¥),
W1(Q), W(X), Sobolev-Slobodecky W (R¥), W (), W~ (%), the Bessel-
potential H™(R*¥), Hr*(Q), H(X) and the Besov B[, (R¥), B, (), B ()
spaces (k =0,1,2,...,, —00 < s < 00, 1l <p < o00,1<qg<o0). For the
definitions of these spaces see [9].

Let X(R¥) be one of the above-mentioned function spaces. For an ar-
bitrary unbounded domain Q- C R¥ (with a smooth boundary 992~) we
denote by X, (27) the subset of distributions ¢ € D’(Q2™) with

ol,- €X(Q), Q@ ={neQ: |A|[<R}, VR>F,

and by Xy»,(Q27) the set of functions ¢ € X(27) with compact supports.
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X< (RE) denotes the subset of distributions ¢ € D'(RY) satisfying the
conditions

elor €XOQT), ¢lg, €X(R), Q& ={neRNQT, [~ <R},

for an arbitrary R > 0 and any bounded domain Q% with S C 9Q7; here
©lq is the restriction to .

In particular, W¥_  (R&) denotes the Sobolev space of functions ¢ on R
which are p-integrable on Q\S for each compact domain Q C R¥ together
with their generalized derivatives of order 1

|

s @) = { [ (el + wetaina}” <o

\S
Vo = (D1, D2y, D).
For the open surface S C ¥ the spaces H¥(S), ﬁ;(S) are defined as
H(S) = {rsf : £ € H())},
H'(S) = {f € H¥(Z) : suppU C S} C H¥(D),

where rgf = f|g is the restriction.
The spaces B (S) and B!,  (S) are defined similarly. Note that Hy =

Wg =Bz, W¥ =B and H,' = W hold for any —oo < s < oo, for any
positive and non-integer ¢ and for any non-negative integer k = 0,1,2,...,
respectively.

In contrast to closed surfaces, even for infinitely smooth S, ¢, ¢* and
¥* the solutions of problems {(??), F =0, (??)} and {(??), F =0, (?7)}
have in general no C*-smoothness with « > 1/2 in the vicinity of £ = 95
but are infinitely differentiable elsewhere.

Hence we seek for solutions of the BVPs (??) and (??) from the Sobolev

space W (RE) provided that

et eBTHS), =t - eBETH(S) (1.19)

N 11

for the Dirichlet type problem (?7) and
vt eB(S), o =yt -y eB(S) (1.20)

N 11

for the Neumann type problem (?7).

Further the problems {(??), F = 0, (??), (??), (?7)} and {(?7),
F =0, (??), (??), (??)} will be referred to as Problem D and Problem
N, respectively. Note that property (??) holds for solutions of Problems D
and N as well.
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For s > 1/p by the trace theorem (see [9], Theorem 3.3.3) we have
g* €BIT(S) if 0 € L (RE) UW L (RE),
gt €BTH(S) if 0By o (RE).

1,1

(1.21)

Therefore (??) and (??) are compatible and correctly defined if U €
W, (RE).

As to (77), (?77), we should give some additional explanation, since
D;Uy € ]L,7<>4(RJ§) = Wff@q(R}Sg) and they have no traces on S in gen-
eral.

We can make condition (??) meaningful for U € W/ (Rf) with AU €

L, < (RE) using equality (??). Indeed, it can be rewritten as
: S
<[B(Dx, Il(X))U]+, \ +>E -

/ (A(D)U, V)dx + / E(U,V)dx, (1.22)
Qt Qt
for U € WF(QT), AU € L, (1), YV € WX (QF);

([B(Dx,n(x))U]f,Vﬂgz—/(A(D)U,V)dx—/E(U,V)dx,
g g (1.23)
for Ue Wr_ (7)), AUEL,(Q), VW eW} _ (Q7). Here p' =p/(p—1)

and (-, -)x defines the duality between ]B%;%/ '(2) and Bff’/‘,‘(E) given by
() = [ raas
b

for the smooth functions f and g.

Relations (??) and (??) define [B(D,n(z))U]* € IB%;%/‘(S) correctly,
since by virtue of (??) their right-hand side expressions exist for any V €
WA (QF) and V € W/ (27), respectively, and VE € BY//(%).

1,X>
§ 2. PROPERTIES OF FUNDAMENTAL SOLUTIONS AND POTENTIALS

By A(&, ) denote the symbol matrix of the operator A(Dy,7) (see (?7)).
Obviously,

A(&, 7_) = A(figv T)
and the matrix distribution
Ba,) = (20) 2 [ A=) € (2.1)

R¥



represents the fundamental matrix of the operator A(Dy,7), i.e.
A(Dy, 7)P(x,7) = §(x)14
where 0(+) is the Dirac distribution. The fundamental matrix of the formally
adjoint operator reads as
O*(x,7) = T (2, 7). (2.2)

The entries of these matrices are of the class C*°(R¥\{¥}) and for
Re7 > 0 they, together with all their derivatives, decay faster than any
negative power of |z| at infinity. For 7 = 0 we have

D*®yj(x,0) = O(lz]*71*1) as |z — o0

(see [2]).
Near the origin the main singular parts of the matrices ®(z,7) and
®*(z,7) coincide and have the form (see [2], [10])

0
o@=| W0 (23

0 0 0 ~(x)

4x4

where I'(+) is the fundamental matrix of the classical operator C(D) while
v(+) is the fundamental function of the operator A(D)

I(z) = (2m)8 / 70 (€) [€ = (V<5 / c=>=(47) [¢,
R¥ ’

C(€) = llenspa (—i€;)(=iq) s,
Y(z) = (2m) 3 / €A (i) de = —{4r L]V A(L e, )2}, ()

R¥
A(&) = Apababp
(see [11]) with 77 = (cosp,sing,0), L = |[Apqllsxs, |L| = det L; here a =
lla k|33 is an orthogonal matrix with the property a”a = (0,0, |z|).
It is evident that the equalities
O(tr) =t 0(x), @(x) = 0" (z) = ®(—2) (2.5)
hold for any positive ¢t > 0. Near the origin ®y;(x,7) has the asymptotics

(Infz)), ifa=0,

(el itlal 0. &

D? (b (. 7) — 1 (0)] = {g



The properties of generalized potentials corresponding to these matrices
in the case of closed surfaces were studied in [2], [10]. Due to these results
from now on we shall assume without loss of generality that F© = 0 in
(?7), as the particular solution of (??) can be written explicitly using the
generalized Newtonian potentials (see, for example, [12]).

On account of (??) we obtain the following integral representation of a
regular vector:

/ B(x — y, 1) A(Dy, 7)U(y) dy + / {[QDy, n(y)dT(x — y, )]
Qw oNE

x[U(y)]* - ®(x - y,7) [B(Dy,n(y))U(y)] “}dyS =

+
_ U(z), ze€Q*, @7)
0, x e QF.
We introduce the generalized single- and double-layer potentials
Pig(x) := /<I>(x —y,7)9(y) dyS, (2.8)
b
T
PEex) = [ [QDy.n)e x-y.7)] sy d,S. (29
b

reRE =RA\%,

which are the solutions of the homogeneous equation (??), i.e. for F' = 0.
The same notation will be used for the direct values of szg(x), ANSEDY
(j = 1,2). Note in this connection that for z € ¥ integral (??) exists
only in the sense of the Cauchy principal value, while (??) exists as a usual
improper integral (see [2]). In a similar manner we define

(P3g)(x) := / B(Dy,n(x)®(x — y.7)g(y)dyS  (2.10)
>

for z € R and z € ¥; here n(z) is the C°-extension of the exterior unit
normal vector from ¥ onto R¥.
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Lemma 1. The equalities

[Pig]*(x) = +38(x) + Pig(x), k>0, (2.11)
[B(Dy, n(x))Pygl*(x) = F32 + Pig(x), k>0, (2.12)
[Pie]* ( ) = [Pyg]” (x) = P3g(x), k>0, (2.13)
[B(Dx, n(x))Pg]* (x) = [B(Dx, n(x))P3g] ™ (x) :=

=Pig(x), k>1, (2.14)

are fulfilled for any g € C**(X), 0 <y <1 and z € X.
The operators
+

Pl . CKP(R) - CKP2T @Y, j=1,2, (2.15)
Pl . CK(R) - CKP2HIT(E), j=1,2, (2.16)
P . CKM (%) - CKM (D), (2.17)
Pi . CKFIP () - CkHY (D) (2.18)

are bounded for 0 < v <1 and any integer k > 0.

We retain notation of type (??)—(??) and (??) for the potentials and the
corresponding operators when the closed surface X is replaced by the open
surface S. The potentials PJ possess essentially different properties and
require a special careful approach.

Theorem 2. Let s€ R, 1 <p< oo, 1<q<oo. PL, PZ P2 and PE
are the pseudodifferential operators of orders —1, 0, 0 and 1, respectively.
The following operators are bounded (cf. (?7)—~(?7)):

PL : HY(Z) — HH (D),

PZ |\|( ) - B:ﬁ%<2)’ (219)
P H (%) — H7 (%), (2.20)
P%ﬁ P3 \H(E) - \,H(Z)7 ‘

Py H () — HY (D),

P BIHH() - B (D). 221

Proof. The first claim of the theorem is proved in [13], while the other
follows from the well-known properties of the boundedness of pseudodiffe-
rential operators (see, for example, [14]). O

Let ¥y be an m-dimensional C'°°-smooth compact manifold without bo-
undary and embedded in R (n > m). Consider the distribution v X dx, €
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S'(R*) defined by the formula
(v X 05y, 0) = (v, 0|5, ), @ € S(RX), (2.22)
for any v € H™(3x) (v € B (Ex), 1 <p < o0, 1< g < 00).

The above definition is correct, since the restriction ¢|s, € C*(X)).

Lemma 3. Letv € B (2x), (v e B (8x)), 1 <p<oo,1<g<o00,5<

X —=> X —=>

0. Then v X 0y, € H‘N_ "(R¥) (v x b, EB:, TR, ' =p/(p—1).

Proof. Applying the trace theorem (see [9], Theorem 3.3.3), we conclude

X —> X —>
that any function ¢ from H;N—i_‘i/(R“) (from B, o T (R*)) has the
trace ¥|s, € B, (¥[s, € B, (3x)). Hence, by virtue of deﬁnition (?7),
X —=>

vXdy, represents a bounded functional on H; T (R*) (on IBBI, H, T(RY),
1 < ¢ < o0) and by the duality property (see [9], Theorem 2.11.1) we get
the proof for 1 < g < oc.

For ¢ = 1,00 the proof is accomplished by interpolation (see [9], Theo-

rem 3.3.6). O

Theorem 4. Let s e R, 1 < p<oo,1 < qg< o0, j=1,2. Then the
operators

Py BY(D) — HY o) ne o), 0.23)
Pl B () — .““..*”‘ Q) nee @), ’
PLBY(®) - LM ) nex @), 0
PL:BY(2) - B Q) nex @) ’

are bounded and for these extended operators formulas (?7)—(??) remain
valid in the corresponding spaces.

Representation (??) holds for U € Wi (Q%) if, in addition, A(Dy,7)U
=0 in QF.

Proof. Let us first consider PL and s < 0. Assume that ¢ € C§°(R¥),
p(§) =1for [§| < 1. If g € B (X) (g9 € B;,(¥)), we have
Pig=®x (g xdg) = —F CAF(} x 0) =
= —F FATF()[o0 — (O] F(} x 0x) —

— FTRAT®(p(6)F(} x 0) = Py 18 + P3 58,
(2.25)

where F (F~°°) is the direct (inverse) Fourier transform.
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From Lemma 3 it follows that gxdy. € H‘N_%/‘/(R“é) (gxds € IB%N_“Z/',(R%)).

Applying the theorem on the boundedness of pseudodifferential70perators
(see [14]), we obtain
P]i)’lg c H‘N‘FW‘F“‘/I(RJ#) (P%:71g c B~+H‘+}F/I(RJ#))

11

(2.26)
For the second summand in (??) we have
Plag = —F CATR(OF[F 2 (p(§)F(} x 0x))] =
= -—F CACF{=0x{ with {=F FpF(} x dx).
(2.27)

Since the pseudodifferential operator F~>°pF is of order —oco, we have
f € C(R¥) and therefore (see (77))

A(Dy)P5 58 = A(Dy) (@ +f) = (A(Dy)®) + f =5+ f =1
(2.28)

Thus P%,z g is the solution of an elliptic system with an infinitely smooth
right-hand side. Therefore P§; ,g € C*°(R¥) (see, for example, [15], Chap-
ter I, Corollary 4.1 or [16], Chapter III, Theorem 1.4).

For any g € B(2) (g9 € B,(X) and any compact domain © C R¥ we

111

obtain Pg € H™ /() (PLg e B/ (q)).
B, (5)

It should be noted that the convergence g, ——— g as n — oo implies
the convergence Pig, RalSON Plg (see [17, §7]. Therefore the graph of

the operator P, : BI(X) — H P Q) (PL B(XZ) — ]B%:"W'%/‘(Q))
is closed. It remains for us to apply the closed graph theorem (see, for
example, [18, Theorem 2.15]).

Let us proceed to the case s > 0. Assume that s = m + 1/p’, m =
0,1,.... Fora function g € B(X) we choose a sequence {gn }nen C B (X)N
CF*e(%), & > 0, such that lim, . [|(gn — 9)[B(Z)] = ¥

By Lemma 1 we have Pig, € C2¢(Q)) C W¥(Q) representing the solu-
tion of the boundary value problem

AD)UX) =0, xeQ, (2.29)
Ul = Pieal,. (2.30)

where
Pignl, € C*H(D).
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By Theorem 2 (see (77))
IPLenlBY (D)) < Cl10x B (D)1, (2.31)

where C' = const is independent of g,. Using the apriori estimates (see [19],
[20] or [21], Chapter V), we obtain PLg, € W>™(Q) = H™ ™™/ (Q) and

~+WE4W /) ~
IPLgn H (@) < Cr (I[PEgnl B (D) + [PLgalL()]])-
The results proved above for s < 0 and the embedding theorem yield
IPLgalLi ()] < Ceel|O B, (2)]],

11

since g, € B_*() implies PLg, € B =™ ™/(Q) c L,(Q).

Nl 11

Taking into account (??), we arrive at
~+E4H /) ~
[PgalH Q) < Cul|0 BT ()] (2.32)
A similar inequality holds for g,, — g,,. Therefore {P%gn fnen represents
a fundamental sequence in H‘NHKHH '(Q). From the proven part of the
theorem and the above embedding theorem we obtain

Jim_[|(PLg — Plgn)L(Q)]| = .
Therefore PLg € H™ ™™/ (Q) and
IPLglE™ ™ ()| < CellB|BY (D). (2.33)

For PL the proof is completed using interpolation (see [9]. For the ope-

rator P2 the proof is similar, the only difference being that for s > 0 we

should begin with s = -; + 1 instead of s = -; and apply (?7). O

§ 3. MAIN THEOREMS

The next five theorems can be regarded as the main results of both pers
of this work. Two of them (Theorems 7 and 8) will be proved in §5.

Theorem 5. Let ot and ¢~ be given vector-functions satisfying (77).
Then U € ij@q (R¥) is a solution of Problem D if and only if

Uz) = (PEe°%)(x) - (Pgp)(x), x€RE, (3.1)
where ¥ = pt — ¢~ € @11,,/5/(5), while ¢ € ]E;Zl,/p(S) solves the system of
pseudodifferential equation

Pipo=f on S, (3.2)
with

1 _
F=P° - S (" +¢7)
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Proof. By Theorem 4 and formula (??) we obtain the following representa-
tion of an arbitraty solution U of the homogeneous equation (??), F =0,

U(z), =€t

+{(PRU%)(0) — (PLBU)*)(x)} = {o, PN (33)

which, upon taking the differences, yields (??) with ¢° = Ut — U~ and
¢ = (BU)* — (BU)™, if we take into account that

(Ot —(U)" =0, (BU)*—-(BU)" =0 on X\S.
Applying Theorem 4, from (??) it follows that

1
U* = 25¢" + P§e° — Pgo = p*
and, upon taking the sum UT + U™, we obtain equation (?7?). a

Theorem 6. Let 1 < p < oo and Y+ € B;“‘/'(S), R <
@;;/p(S) be given functions. Then U € WY _ (RE) is a solution of Problem
N if and only if

Ux) = (P§y)(x) — (P5y°)(x), x€RE, (3.4)
where ¢ € @;{5(5) solves the pseudodifferential equation
Py =g, (3.5)
where

9= 5" +y7) + PR,

Proof. The theorem is proved similarly to Theorem 5. We would like only
to note that if equation (?7?) has a solution, then ¢ and the boundary values
U# are related by the equality

v=UT-U"eBY/r(S). O
Theorem 7. (i) The operators
PL: B (S) — B (S), (3.6)

Pl HY(S) — H'PF(S) (3.7)
are bounded for any 1 <p < oo, 1 <qg< o0, v eR;
(ii) (??) is a Fredholm operator if the condition
1/p—=3/2<v<l/p—1/2 (3.8)
is fulfilled;
(iil) (??) is a Fredholm operator if and only if condition (??) is fulfilled;
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(iv) operators (??) and (??) are invertible for all v satisfying (?7).
Theorem 8. (i) The operators
PE : BLLY(S) — B, (S), (3.9)

P : HLY(S) — HY(S) (3.10)
are bounded for any 1 <p < oo, 1 <qg< o0, v eR;
(i) (??) is a Fredholm operator if (?7) is fulfiled;
(iil) (??) is a Fredholm operator if and only if (77?) is fulfilled;
(iv) operators (??) and (??) are invertible for all v satisfying (?7).

Let us assume that M is a smooth manifold with the boundary OM # @

and introduce the notation H/ (M) := n H~M) = n B> (M),
e<\/<oo Eli<oo

Hi(M)=_n Hy(M)=_n B (M). Obviously, HL (M) = Hl (M)

2<p<oo P 2<p<oo
if —1/2<s<0.

Theorem 9. Let p* € HX/€(S), o™ —p~ e HYL(S) and vt e H/€(S).
Then the solutions of Problems D and N are real analytic vectors in RY,
vanishing at infinity. For their restrictions to QF we have the inclusions

Therefore
Ue (] C*RE),
a<l/2
where

C(RE) = {p : p€C*OF), ot (n) =9 (n) if ~eD\S}.
Proof. Assume that Theorems 7 and 8 are proved (see §5). Due to repre-
sentation (??) and (??) U(x) is a real analytic vector satisfying condition
(??) at infinity. For its traces we have U+ e Hﬁﬁ(S). If we now

N
1<p<oo !
take a sufficiently large p, the proof will follow from Theorems 2 and 4 and

the well-known embedding
HY(RE) € C*"M(RE), > K/ (3.11)
(see [9]). O
Theorem 9 implies that the traces U* on both faces of the crack surface S

belong to the Holder space ﬂlﬂCa (S)Yand U*(z) = U~ (x) forx € £ = IS.
a<

Remark 10. Operators (?7?) and (??) are invertible for any k = 0,1, ...
and 0 <y <1if ReT > 0 (see [2]).
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Remark 11. Theorem 9 reveals the advantage of considering equations
(??) and (??) in the spaces BY (S) (or HY(S)) with p # 2, since if we stick
to the case p = 2, we shall not be able to obtain the above results on
smoothness for Ulg+ and U*.
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