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Introduction

Potential operators are known to belong to the structure of parametrices of elliptic
boundary value problems, e.g., potentials with respect to Poisson kernels in problems
with smooth boundary, cf. Agmon, Douglis and Nirenberg [1], Boutet de Monvel [2]. If
the boundary is not smooth and has, for instance, geometric singularities (say, edges, as
is the case in crack configurations in mechanics) asymptotic phenomena play a specific
role, and it is interesting to analyse the interplay between geometric singularities and
(local and global) asymptotic contributions of the involved operators. The present
paper is aimed at representing potential operators on configurations with conical (or
edge) singularities with boundary in terms of operators from the respective cone (or
edge) calculus in the neighbouring space by their actions on corresponding ‘surface
densities’. As a consequence we obtain asymptotics of potentials wchich we express in
the framework of weighted Sobolev spaces. Other aspects of surface potentials with
asymptotics have been studied before by Chkadua and Duduchava in [3].

By asymptotics (in simplest form) we understand a behaviour of (say, C∞) func-
tions u(r) on R+ of the form

u(r) ∼
∞∑

j=0

∞∑

k=0

cjkr−pj logk r (1)

as r → 0, with exponents pj ∈ C, Re pj → ∞ as j → ∞, which means that for every
M > 0 there is an N(M) ∈ N such that u(r) − ∑N

j=0

∑∞
k=0 cjkr−pj logk r is flat of

order M at r = 0 for every N ≥ N(M). As is well known by Kondratyev’s work [8],
solutions to elliptic equations of Fuchs type on a manifold with conical singularities
(locally modelled on a (stretched) cone X∧ := R+×X with base X) have asymptotics
of the form (1) (in this case the coefficients cjk belong to C∞(X)).

The nature of asymptotics of solutions to elliptic equations on a configuration with
edges (locally modelled on a (stretched) wedge X∧ × Ω, Ω ⊆ Rq open) requires more
explanation. Denoting the points of X∧ × Ω by (r, x, y), the asymptotic expansion
of solutions u(r, x, y) contains y-depending coefficients cjk(x, y) where the Sobolev
smoothness in y depends on Re pj . For instance, in the case of a ‘trivial’ wedge
Rn+1

x̃ × Rq with edge Rq, elliptic regularity may refer to standard Sobolev spaces
Hs(Rn+1

x̃ ×Rq). Writing elements of that space in polar coordinates (r, x) ∈ R+ × Sn

with respect to the variables x̃ ∈ Rn+1\{0}, for s > n+1
2 , the Taylor coefficients at rj

belong to C∞(Sn,Hs−j−n+1
2 (Rq)) for 0 ≤ j < s− n+1

2 (in this case we have pj = −j
and mj = 0 for all j).

For non-trivial wedges, say, X∧ × Rq with an arbitrary base X, the operators in
question are assumed to be edge-degenerate, cf. the notation below. Among these op-
erators are Laplace-Beltrami operators to wedge metrics of the form dr2 +r2gX(r, y)+
dy2, when gX is a family of Riemannian metrics, smoothly depending on (r, y) (up
to r = 0). Solvability of elliptic equations can be described in weighted edge Sobolev
spaces Ws,γ(X∧×Rq) and subspaces with asymptotics, cf. [12] or [13]. A similar cal-
culus is known for boundary value problems on manifolds with edges and boundary,
cf. [9] and [6]. In particular, this theory yields parametrices of elliptic crack problems.
In this connection it is natural to ask the asymptotics of potentials of ‘densities’, sup-
ported by a hypersurface with boundary and with ‘edge-asymptotics’ at the boundary.
The potential refers to a parametrix of a given elliptic operator, and the task is to
characterise the asymptotics of the potential in the neighbouring space close to the
boundary.
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In this paper we give the answer in terms of operators in the edge algebra from
[13] under the assumption on y- independence of the asymptotic data. A similar
structure in simpler form (for smooth boundary and Taylor asymptotics) is known
from boundary value problems with the transmission property at the boundary, cf.
[2], and in fact, we also employ some information from that case on the smooth part of
our surface. The case of non-constant exponents of the asymptotics could be embedded
into the framework of continuous asymptotics, cf. [13], but this is voluminous and will
not be treated in the present paper explicitly.

1 Asymptotics in weighted edge Sobolev spaces

1.1 Cone and edge Sobolev spaces

We first establish basic facts on differential operators in so called cone and edge Sobolev
spaces. Given a differential operator

A =
∑

|α|≤µ

aα(x̃)Dα
x̃

in Rm 3 x̃ with coefficients aα ∈ C∞(Rm) we can interpret a hypersurface Rq in Rm

as a fictitious edge and reformulate A as an edge-degenerate operator. That means,
writing Rm = Rn+1 × Rq for m = n + 1 + q, and inserting polar coordinates (r, ϕ) in
Rn+1\{0}, the operator takes the form

A = r−µ
∑

j+|β|≤µ

ajβ(r, y)
(
−r

∂

∂r

)j

(rDy)β (2)

with coefficients ajβ(r, y) ∈ C∞(R×Rq,Diffµ−(j+|α|)(Sn)); here Sn is the unit sphere in
Rn+1, and Diffν(M) for a C∞ manifold M denotes the space of all differential operators
of order ν on M with smooth coefficients (the space Diffν(M) is Fréchet in a natural
way). A differential operator of the form (2) will be called edge-degenerate (clearly
such operators are much more general than the ones induced by smooth operators via
polar coordinates). Note that when the operator A is elliptic in Rm in the sense that
the homogeneous principal symbol in (x̃, ξ̃) does not vanish for ξ̃ 6= 0 and all x̃, the
homogeneous principal symbol σψ(A)(r, x, y, %, ξ, η) of (2) in the variables (r, x, y) and
covariables (%, ξ, η) (in local coordinates x on Sn) is elliptic in the ‘edge-degenerate’
sense, i.e.,

rµσψ(A)(r, x, y, r−1%, ξ, r−1η) 6= 0

for all (%, ξ, η) 6= 0 and (r, x, y), up to r = 0.
Instead of Sn it also makes sense to insert any other compact C∞ manifold X, and

y may vary in any open set Ω ⊆ Rq; then edge degeneracy refers to the splitting of
variables (r, x, y) in the (open stretched) wedge R+×X×Ω with edge Ω and (stretched)
model cone X∧ := R+ × X. The operator A can be written as a pseudo-differential
operator

A = Opy(a)

with an operator-valued amplitude function

a(y, η) = r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r

∂

∂r

)j

(rη)α, (3)
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Opy(a)u(y) =
∫∫

ei(y−y′)ηa(y, η)u(y′)dy′d̄η, d̄η = (2π)−qdη. To study the nature of
the operator function (3) we need some notation on the Mellin transform and weighted
Sobolev spaces.

The Mellin transform will be used in its classical form, namely,

Mu(z) =
∫ ∞

0

rz−1u(r)dr,

first on functions u ∈ C∞0 (R+), z ∈ C and then extended to various larger function
and distribution spaces, also vector-valued ones. Then z usually varies on a ‘weight
line’

Γβ = {z ∈ C : Re z = β}
for some appropriate β ∈ R. Function spaces on Γβ , e.g., the Schwartz or Sobolev
spaces in the real variable Im z ∈ Γβ , will be denoted by S(Γβ), Hs(Γβ), etc. Recall
that the map Mγ : u → Mu|Γ 1

2−γ
, C∞0 (R+) → S(Γ 1

2−γ) extends to an isomorphism

Mγ : rγL2(R+) → L2(Γ 1
2−γ)

with inverse M−1
γ g(r) = 1

2πi

∫
Γ 1

2−γ

r−zg(z)dz. Let us set

opγ
M (f)u(r) =

∫∫ ( r

r′

)−( 1
2−γ+i%)

f(r, r′, z)u(r′)
dr′

r′
d̄%, (4)

z = 1
2 − γ + i% ∈ Γ 1

2−γ , interpreted as a pseudo-differential operator with respect
to the weighted Mellin transform Mγ . Here, in the scalar case, the amplitude func-
tion belongs to C∞(R+ ×R+, Sµ(Γ 1

2−γ)) with Sµ(Γ 1
2−γ) being Hörmander’s space of

symbols (with constant coefficients) of order µ in the covariable % = Imz, z ∈ Γ 1
2−γ .

We will mainly need (4) for operator-valued amplitude functions, namely, parameter-
dependent pseudo-differential operators on a C∞ manifold X with the parameter as
covariable.

In general, by Lµ
(cl)(X;Rl) we denote the space of families A(λ) of pseudo-differential

operators of order µ on X, dependent on a parameter λ ∈ Rl (subscript ‘(cl)’ means
that corresponding considerations are valid both for the classical or non-classical el-
ements, and we write ‘cl’, if we talk about the classical case). By definition, we
have L−∞(X;Rl) = S(Rl, L−∞(X)) which is the Schwartz space of functions in Rl

with values in L−∞(X), the space of smoothing operators on X. The elements
A(λ) ∈ Lµ

(cl)(X;Rl) are defined by local (classical or non-classical) amplitude func-
tions in covariables (ξ, λ) ∈ Rn+l, n = dimX, modulo L−∞(X;Rl).

Let us now assume that X is a closed compact C∞ manifold, and let Hs(X) denote
the standard Sobolev space of smoothness s on X.

It is well known that for every µ ∈ R there exists an element Rµ(λ) ∈ Lµ
cl(X;Rl)

that induces isomorphisms Rµ(λ) : Hs(X) → Hs−µ(X) for all λ ∈ Rl, s ∈ R.
Let us fix such an Rµ(z) ∈ Lµ

cl(X; Γn+1
2 −γ) for µ = s; then Hs,γ(X∧) denotes the

completion of the space C∞0 (X∧) with respect to the norm

{ 1
2πi

∫

Γ n+1
2 −γ

||Rs(z)Mu(z)||2L2(X)dz} 1
2 .

The space L2(X) refers to a measure associated with a fixed Riemannian metric
on X. Clearly the specific choice of Rs(z) only affects the norm of Hs,γ(X∧) up to
equivalence.
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Let us also consider the space Hs
cone(X

∧) which is for the case X = Sn the subspace
of all u ∈ Hs

loc(R × Sn)|R+×Sn such that χu ∈ Hs(Rn+1) for any excision function χ
in Rn+1 (i.e., C∞, vanishing for |x̃| < R0, and equal to 1 for |x̃| > R1 for some
0 < R0 < R1). In the latter relations R+ × Sn is identified with Rn+1\{0} via polar
coordinates.

For X in general we can define Hs
cone(X∧) by a simple localisation procedure on

subsets R+ × U for coordinate neighbourhoods U on X such that R+ × U is diffeo-
morphic to a conical subset of Rn+1\{0}; more details may be found in [12].

In this paper, a cut-off function on the half-axis is any real-valued ω(r) ∈ C∞0 (R+)
that is equal to 1 in a neighbourhood of zero.

We now define the space

Ks,γ(X∧) := {ωu + (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)}, (5)

where ω is any cut-off function. Clearly this space is independent of the specific
choice of ω. The space (5) is endowed with the structure of a non-direct sum of the
completions of ωHs,γ(X∧) and (1− ω)Hs

cone(X
∧) in the respective spaces (cf. [13] for

the general definition of non-direct sums).
The spaces (5) play a crucial role in future. Concerning more details cf. [12] or

[13]. Let us only mention here the relations

K0,0(X∧) = H0,0(X∧) = r−
n
2 L2(R+ ×X),

with L2 referring to drdx. Moreover, we have

ωrδKs,γ(X∧) = ωKs,γ+δ(X∧)

for arbitrary s, γ, δ ∈ R and any cut-off function ω.

Remark 1.1 The spaces Ks,γ(X∧) are Hilbert spaces with suitable scalar products.
Setting

(κλu)(r, x) := λ
n+1

2 u(λr, x), λ ∈ R+,

n = dimX, on the space Ks,γ(X∧) we obtain a strongly continuous group {κλ}λ∈R+ of
isomorphisms. If necessary we also write κ

(n)
λ instead of κλ.

Remark 1.2 Assume that the coefficients ajβ in (2) are independent of r for r > R
for some R > 0. Set

a(y, η) = r−µ
∑

j+|α|≤µ

ajβ(r, y)
(
−r

∂

∂r

)j

(rη)β .

Then
a(y, η) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧) (6)

is a family of continuous operators for every s ∈ R, smoothly dependent on (y, η) in
the operator norm.

It will be essential in the following to interpret (6) as an operator-valued symbol
in (y, η), according to the following definition.
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Definition 1.3 (i) Given a Hilbert space E with a group κλ : E → E, λ ∈ R+,
of isomorphisms, κλκλ′ = κλλ′ for all λ, λ′ ∈ R+, and strongly continuous in λ,
i.e., κλe ∈ C(R+, E) for every e ∈ E, we say that E is endowed with a group
action.

(ii) If E and Ẽ are Hilbert spaces with group actions {κλ}λ∈R+ , respectively, the
space Sµ(U × Rq; E, Ẽ) of operator-valued symbols for open U ⊆ Rq, µ ∈ R, is
defined as the set of all a(y, η) ∈ C∞(U × Rq,L(E, Ẽ)) such that

sup(y,η)∈K×Rq 〈η〉−µ+|β|||κ̃−1
〈η〉{Dα

y Dβ
η a(y, η)}κ〈η〉||L(E,Ẽ)

is finite for every K b U , and multi-indices α ∈ Np, β ∈ Nq.

(iii) The space Sµ
cl(U × Rq;E, Ẽ) of classical operator-valued symbols is defined as

the subspace of all a(y, η) ∈ Sµ(U × Rq; E, Ẽ) such that there are a(µ−j)(y, η) ∈
C∞(U × (Rq\{0}),L(E, Ẽ)), j ∈ N, which are homogeneous of order µ − j in
η 6= 0 in the sense

a(µ−j)(y, λη) = λµ−j κ̃λa(µ−j)(y, η)κ−1
λ

for all (y, η) ∈ U × (Rq\{0}), λ ∈ R+, such that

a(y, η)− χ(η)
N∑

j=0

a(µ−j)(y, η) ∈ Sµ−(N+1)(U × Rq;E, Ẽ)

for all N ∈ N and any excision function χ.

Example 1.4 The operator function (6) represents an element a(y, η) ∈ Sµ(Rq
y ×

Rq
η;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) for every s, γ ∈ R. The symbol a(y, η) is classical, if

the coefficients ajβ are independent of r.

Definition 1.5 Let E be a Hilbert space with group action {κλ}λ∈R+ . Then the
space Ws(Rq, E), s ∈ R, is defined to be the completion of S(Rq, E) with respect to the
norm {∫

〈η〉2s||κ−1
〈η〉û(η)||2Edη

} 1
2

(with û(η) = Fu(η) being the Fourier transform of u). We callWs(Rq, E) an (‘abstract ’)
edge Sobolev space of smoothness s, where Rq is the edge.

Remark 1.6 The definitions, both of edge Sobolev spaces and symbol spaces have
an immediate generalisation to the case of Fréchet spaces E or Ẽ with group actions, cf.
[13], [6]. By a Fréchet space with group action we mean that E is written as a projective
limit of Hilbert spaces lim←−

k∈N
Ek with continuous embeddings Ek+1 ↪→ Ek ↪→ . . . ↪→ E0

for all k, such that there is a group action on E0 which restricts to group actions on
Ek for all k.

Example 1.7 (i) For E = Hs(R1+n) with (κλu)(x̃) = λ
n+1

2 u(λx̃), λ ∈ R, we
have

Ws(Rq,Hs(R1+n)) = Hs(R1+n+q)

for every s ∈ R.
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(ii) The case {κλ} = idE for all λ ∈ R+ is an admitted (trivial) choice of a group
action in E; in this case we write Hs(Rq, E) instead ofWs(Rq, E). Also note that
the spaceW∞(Rq, E) is independent of the choice of {κλ}λ∈R+ andW∞(Rq, E) =
H∞(Rq, E).

(iii) For E = Ks,γ(X∧) endowed with the group action from Remark 1.1 we set
Ws,γ(X∧×Rq) := Ws(Rq,Ks,γ(X∧)), called a weighted edge space of smoothness
s ∈ R and weight γ ∈ R, with respect to the edge Rq and with (stretched) model
cone X∧.

Similarly as the ‘comp’ and ‘loc’ version of standard Sobolev spaces we have spaces
of the kind Ws

comp(Ω, E) and Ws
loc(Ω, E) for any open set Ω ⊆ Rq. The following

continuity is similar to a corresponding result in the scalar case (cf. [12] or [13]):

Proposition 1.8 Let Ω ⊆ Rq be an open set, and let a(y, y, η) ∈ Sµ
cl(Ω × Ω ×

Rq;E, Ẽ). Then Opy(a) induces continuous operators

Opy(a) : Ws
comp(Ω, E) →Ws−µ

loc (Ω, Ẽ)

for every s ∈ R. If a is independent of y, y′ then we obtain continuous operators

Opy(a) : Ws(R, E) →Ws−µ(R, Ẽ)

for all s ∈ R.

1.2 Edge asymptotics

In this section we single out subspaces Ws,γ
P (X∧ × Rq) of Ws,γ(X∧ × Rq) 3 u(r, x, y)

with so called discrete asymptotics for r → 0 of type P . This will be formulated in
terms of corresponding subspaces Ks,γ

P (X∧) of Ks,γ(X∧) with asymptotics. By an
asymptotic type P we understand a sequence

P = {(pj ,mj , Lj)}j=0,...,N (7)

for an N = N(P ) ∈ N ∪ {∞}, such that following properties hold: pj ∈ C, mj ∈ N,
and Lj is a subspace of C∞(X) of finite dimension. Moreover, πCP := {pj}j=0,...,N is
required to be contained in {z : Re z < n+1

2 − γ} for some weight γ, and πCP ∩ {z ∈
C : c ≤ Re z < n+1

2 − γ} is a finite set for every c < n+1
2 − γ. If πCP is finite and

contained in a strip {z ∈ C : n+1
2 − γ− θ < Re z < n+1

2 − γ} for some −∞ ≤ θ < 0 we
say that P is associated with the weight data g = (γ, Θ) for the weight strip Θ = (θ, 0].
Let As(X, g) denote the set of all P associated with g. For the case dimX = 0 we
simply write As(g).

Let us set
Ks,γ

Θ (X∧) := lim←−
ε>0

Ks,γ−θ−ε(X∧)

considered in the Fréchet topology of projective limit. Moreover, for P ∈ As(X, g)
and finite Θ, let EP (X∧) denote the linear span of all functions c(x)r−p logk rω(r) for
arbitrary

(p,m, L(p)) ∈ P, k ≤ m, c ∈ L(p)

and some fixed choice of a cut-off function ω. The space EP (X∧) is then of finite
dimension and has the properties

EP (X∧) ⊂ K∞,γ+δ(X∧)
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for some 0 < δ < dist(πCP, Γn+1
2 −γ), furthermore EP (X∧)∩Ks,γ(X∧) = {0}. We now

define
Ks,γ

P (X∧) := Ks,γ
Θ (X∧) + EP (X∧) (8)

with the Fréchet topology of the direct sum. For the case Θ = (−∞, 0] we choose
any sequence of numbers θk < 0, θk → −∞ as k → ∞ and form the set Pk :=
{(p,m, L) ∈ P : n+1

2 −γ+θk < Re p < n+1
2 −γ}. We then have continuous embeddings

Ks,γ
Pk+1

(X∧) ↪→ Ks,γ
Pk

(X∧) for all k ∈ N. Then

Ks,γ
P (X∧) := lim←−

k∈N
Ks,γ

Pk
(X∧)

is a Fréchet space in the topology of the projective limit.
For the purposes below we set

Sγ
P (X∧) := lim←−

k∈N
〈r〉−kKk,γ

P (X∧) (9)

in the corresponding Fréchet topology.

Remark 1.9 The space Ks,γ
P (X∧), P ∈ As(X, g), can be written as a projective

limit of Hilbert spaces Ek ⊂ Ks,γ(X∧), k ∈ N with group action, induced by that of
Remark 1.1, and continuous embeddings Ek+1 ↪→ Ek ↪→ · · · ↪→ E0 = Ks,γ(X∧) for all
k. A similar remark is true of the spaces (9).

We now introduce subspaces of Ws,γ(X∧ × Rq) 3 u(r, x, y) with asymptotics for
r → 0, which are discrete and constant with respect to the edge variable y.

Using Remark 1.9 we can write Ks,γ
P (X∧) as a projective limit of {κλ}λ∈R+-

invariant Hilbert spaces Ek, k ∈ N, which gives us the edge spaces Ws(Rq, Ek) with
continuous embeddings Ws(Rq, Ek+1) ↪→Ws(Rq, Ek) for all k, and then we define

Ws,γ
P (X∧ × Rq) := Ws(Rq,Ks,γ

P (X∧)) (10)

as the projective limit lim←−k∈NWs(Rq, Ek) with the corresponding Fréchet structure.
It can easily be proved that (10) is independent of the specific choice of the sequence
{Ek}k∈N with the properties of Remark 1.9. Similarly as the ‘comp’ and ‘loc’ version
of abstract edge Sobolev spaces on an open set Ω ⊆ Rq we have the spaces

Ws,γ
comp(y)(X

∧ × Ω) := Ws
comp(Ω,Ks,γ(X∧))

as well as those with loc(y) and subspaces with asymptotics Ws,γ
comp(y),P (X∧×Ω), etc..

To characterise the singular functions of the edge asymptotics we first observe
that when E is a Hilbert (or Fréchet space) with group action, we have canonical
isomorphisms

T (η) := F−1κ−1
〈η〉F : Ws(Rq, E) → Hs(Rq, E)

for all s ∈ R, cf. Example 1.7 (ii) and [12]. Let E = E0⊕E1 be a direct decomposition
of E into closed subspaces, not necessarily invariant under the group action {κλ}λ∈R+

on E. We then obtain Hs(Rq, E) = Hs(Rq, E0)⊕Hs(Rq, E1) which generates a direct
decomposition

Ws(Rq, E) = T−1Hs(Rq, E0)⊕ T−1Hs(Rq, E1) (11)

into closed subspaces.
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Let us apply this construction to the space (8) for an element P ∈ As(X, g),
g = (γ, Θ), where the weight interval Θ is finite. The space Ks,γ

Θ (X∧) is closed with
respect to {κλ}λ∈R+ ; this gives us

T−1Hs(Rq,Ks,γ
Θ (X∧)) = Ws(Rq,Ks,γ

Θ (X∧)),

also denoted by Ws,γ
Θ (X∧ × Rq). However, EP (X∧) is not preserved under the group

action, but we can form

Vs
P (X∧ × Rq) := T−1EP (X∧)

which is as a closed subspace of Ws,γ
P (X∧ × Rq). In other words, we have a direct

decomposition

Ws,γ
P (X∧ × Rq) = Ws,γ

Θ (X∧ × Rq) + Vs
P (X∧ × Rq)

into a component of distributions of edge-flatness Θ and a space of singular functions
with discrete (and constant in y) edge asymptotics of type P .

Remark 1.10 Every f(r, x, y) ∈ Ws,γ
P (X∧ × Rq) for a (discrete) asymptotic type

P = {(pj ,mj , Lj)}j=0,...,N(P ) ∈ As(X, g), g = (γ, Θ), Θ = (θ, 0] finite (i.e., N(P ) <
∞) can be written in the form

f(r, x, y) = fsing(r, x, y) + fΘ(r, x, y)

for singular functions

fsing(r, x, y) =
N(P )∑

j=0

mj∑

k=0

F−1
η→y[η]

n+1
2 ω(r[η])cjk(x)(r[η])−pj logk(r[η])v̂jk(η)

with suitable vjk ∈ Hs(Rq), coefficients cjk ∈ Lj, 0 ≤ k ≤ mj, for all j, and a flat
remainder fΘ(r, x, y) ∈ Ws,γ

Θ (X∧ × Rq). Note that in the case s = ∞ we may write

fsing(r, x, y) =
N(P )∑

j=0

mj∑

k=0

ω(r)cjk(x)wjk(y)r−pj logk r

mod W∞,γ
Θ (X∧ × Rq) = H∞(Rq,K∞,γ

Θ (X∧)) with elements wjk ∈ H∞(Rq), cf. also
Example 1.7 (ii).

One may ask to what extent our notation of singular functions of the edge asymp-
totics depends on the choice of the function η → [η]. One can prove, cf. [6], that when
p(η) is any other element of C∞(Rq) such that c1[η] ≤ p(η) ≤ c2[η] for all η ∈ Rq, with
constants c1 < c2, then fsing(r, x, y) can be reformulated into an equivalent expression
with p(η) in place of [η] and other coefficients cjk, vjk, mod Ws,γ

Θ (X∧ ×Rq). Also the
choice of ω is unessential modulo such flat remainders.

2 Mellin representation of parametrices

2.1 Mellin operators in spaces with asymptotics

First, let X be a closed compact C∞ manifold, and introduce operator-valued Mellin
symbols with asymptotics. Let us start from the case of discrete asymptotics. A
sequence

R = {(pj , mj , Lj)}j∈Z (12)
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with πCR = {pj}j∈Z ⊂ C, mj ∈ N, is called a discrete asymptotic type of Mellin
symbols if

πCR ∩ {z : c ≤ Re z ≤ c′}
is finite for every c ≤ c′, and Lj is a finite-dimensional subspace of operators in
L−∞(X) of finite rank. Let As(X) denote the set of all such sequences R.

If U ⊆ C is an open set and E a Fréchet space by A(U,E) we denote the space of
all holomorphic functions in U with values in E.

Definition 2.1 (i) The space Mµ
O(X) for µ ∈ R is defined as the set of all

h(z) ∈ A(C, Lµ
cl(X)) such that

h(β + i%) ∈ Lµ
cl(X;R%)

holds for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′.

(ii) M−∞
R (X) is the space of all f(z) ∈ A(C\πCR, L−∞(X)) that are meromorphic

with poles at pj of multiplicities mj +1 and Laurent coefficients at (z−pj)−(k+1)

in Lj, 0 ≤ k ≤ mj, for all j ∈ Z, and satisfy

χR(β + i%)f(β + i%) ∈ L−∞(X;R%)

for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′; here χR(z) is any
πCR-excision function.

The spaces in Definition 2.1 (i), (ii) are Fréchet in a natural way.
Let us set

Mµ
R(X) := Mµ

O(X) + M−∞
R (X) (13)

in the Fréchet topology of the non-direct sum. The elements of Mµ
R(X) are interpreted

as Mellin symbols, i.e., amplitude functions in corresponding Mellin pseudo-differential
operators.

Theorem 2.2 [12] Let f ∈ Mµ
R(X), and let ω(r), ω̃(r) be cut-off functions. Then

ωopγ−n
2

M (f)ω̃ induces continuous operators

ωopγ−n
2

M (f)ω̃ : Ks,γ(X∧) → Ks−µ,γ(X∧)

and
ωopγ−n

2
M (f)ω̃ : Ks,γ

P (X∧) → Ks−µ,γ
Q (X∧)

for all s ∈ R, and every discrete asymptotic type P ∈ As(X, (γ, Θ)) with some resulting
Q ∈ As(X, (γ, Θ)) (not depending on s).

In order to discuss potential operators we now assume that X is a compact C∞

manifold with boundary ∂X. Moreover, let X be embedded into its double 2X (i.e.,
two copies X± of X, glued together along their common boundary ∂X, with X being
identified with the positive side X+), where ∂X is an interface in 2X of codimension
1.

We want to apply Mellin pseudo-differential operators on (2X)∧ in the sense of
Theorem 2.2 to surface densities u on (∂X)∧ and then restrict the result to (intX)∧.
The problem to be discussed here is to what extent asymptotics of u near r = 0 is
inherited by such potentials.

11



The problem will be treated for the Mellin symbols with the transmission property
at ∂X. Let us denote this class by

Mµ
R(2X)tr,

µ ∈ Z. The calculus of boundary value problems in a cone X∧ with boundary (∂X)∧

contains potential operators that are also connected with Mellin symbols with asymp-
totic types.

Let Bν(X, ∂X) denote the space of all potential operators

K : Hs(∂X) → Hs−ν(X)

of order ν ∈ R in Boutet de Monvel’s calculus in X. There is then a natural parameter-
dependent version, namely, Bν(X, ∂X;Rl) of families K(λ) of potential operators with
parameter λ ∈ Rl cf. [2], see also [13, Chapter 4]. For the definition of potential Mellin
symbols we need corresponding asymptotic types. A sequence (12) is called a discrete
asymptotic type of Mellin potential symbols if (pj ,mj) are as before, while Lj is a
finite-dimensional subspace of operators of finite rank, with kernels in C∞(X × ∂X).
Similarly as before, As(X, ∂X) will denote the set of all such asymptotic types of
Mellin potential symbols.

Definition 2.3 (i) Mν
O(X, ∂X) for ν ∈ R is defined as the set of all h(z) ∈

A(C, Bν(X, ∂X)) such that

h(β + i%) ∈ Bν(X, ∂X;R%)

holds for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′.

(ii) M−∞
R (X, ∂X) is the space of all f(z) ∈ A(C\πCR,B−∞(X, ∂X)) that are mero-

morphic with poles at pj of multiplicities mj + 1 and Laurent coefficients at
(z − pj)−(k+1) in Lj, 0 ≤ k ≤ mj, for all j ∈ Z, and satisfy

χR(β + i%)f(β + i%) ∈ S(R%, C
∞(X × ∂X))

for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′ and for any
πCR-excision function χR.

Similarly as before, the spaces Mν
O(X, ∂X) and M−∞

R (X, ∂X) are Fréchet in a
natural way, and we set

Mν
R(X, ∂X) := Mν

O(X, ∂X) + M−∞
R (X, ∂X) (14)

in the Fréchet topology of the non-direct sum.

Theorem 2.4 Let f ∈ Mν
R(X, ∂X), let ω(r), ω̃(r) be cut-off functions, and assume

πCR ∩ Γn
2−γ = ∅. Then ωopγ−n

2
M (f)ω̃ induces continuous operators

ωopγ−n
2

M (f)ω̃ : Ks,γ− 1
2 ((∂X)∧) → Ks−ν,γ(X∧)

and
ωopγ−n

2
M (f)ω̃ : Ks,γ− 1

2
P ((∂X)∧) → Ks−ν,γ

Q (X∧)

for all s ∈ R, and every discrete asymptotic type P ∈ As(∂X, (γ − 1
2 , Θ)) with some

resulting Q ∈ As(X, (γ, Θ)) (not depending on s).

12



A proof of Theorem 2.4 may be found in [11], see also [6].
Let us now consider an element

f(z) ∈ Mµ
R(2X)tr, µ ∈ Z

for a Mellin asymptotic type R ∈ As(2X). By definition, we have

f(z) ∈ A(C\πCR, Lµ
cl(2X)tr)

where subscript ‘tr’ indicates the subspace of all elements of Lµ
cl(2X) with the trans-

mission property at ∂X as well as the other properties from Definition 2.1.
According to (13) we write

f(z) = h(z) + l(z) (15)

for h ∈ Mµ
O(2X)tr, l ∈ M−∞

R (2X).
A basic result from boundary value problems is the following observation.
Let A ∈ Lµ

cl(2X)tr, µ ∈ Z, and apply the operator to an element u ∈ E ′(2X) defined
by a surface density v ⊗ δ∂X for some v ∈ C∞(∂X), i.e.,

u : ϕ → 〈u, ϕ〉 =
∫

∂X

v(x′)(ϕ|∂X)(x′)dx′

ϕ ∈ C∞(2X). Then
K : v → A(v ⊗ δ∂X)|intX

defines a continuous operator

K : C∞(∂X) → C∞(X)

which belongs to Bµ+ 1
2 (X, ∂X).

In other words, A → K gives us a map

Lµ
cl(2X)tr → Bµ+ 1

2 (X, ∂X). (16)

We want to apply (16) to f ∈ Mµ
O(2X)tr which is a holomorphic z-dependent family

of elements in Lµ
cl(2X)tr.

Theorem 2.5 The correspondence (16), z-wise applied to f ∈ Mµ
R(2X)tr for an

R ∈ As(2X), defines a continuous operator

Mµ
R(2X)tr → M

µ+ 1
2

R′ (X, ∂X) (17)

for a resulting asymptotic type R′ ∈ As(X, ∂X). In particular, the map (17) induces
a continuous operator

Mµ
O(2X)tr → M

µ+ 1
2

O (X, ∂X).

Proof . Let us write f in the form (15). Let {U1, . . . , UN} be a cover of 2X by coordi-
nate neighbourhoods, {ϕ1, . . . , ϕN} a subordinate partition of unity, and ψ1, . . . , ψN a
system of functions ψj ∈ C∞0 (Uj) such that ψ ≡ 1 on supp ϕj for all j. We then have

f(z) =
N∑

j=1

ϕjf(z)ψj + m(z) (18)

13



for a certain element m ∈ M−∞
O (2X). The discussion of m(z) will be postponed to

the consideration in connection with l(z) in the relation (15). So we concentrate on
the terms ϕjf(z)ψj which can be expressed in local coordinates in the form

∫
ei(x−x̃)ξa(x, x̃, z, ξ)u(x̃)dx̃d̄ξ (19)

for a symbol a(x, x̃, z, ξ) ∈ Sµ
cl(R2n

x,x̃ × C × Rn
ξ ). The meaning of the latter notation

is as follows. By Sµ
cl(U × C × Rn

ξ ) for any open set U ⊆ Rq we denote the set of all
a(x, z, ξ) ∈ A(C, C∞(U × Rn

ξ )) such that a(x, β + i%, ξ) ∈ Sµ
cl(U × R1+n

%,ξ ) for every
β ∈ R, uniformly in c ≤ β ≤ c′ for arbitrary c ≤ c′. Since we want to restrict
the operator to surface densities on ∂X it suffices to consider such charts χ : U →
Rn 3 x = (x1, . . . , xn) on X for which U ∩ ∂X 6= ∅. Without loss of generality
we then assume that X induces by restriction to U ′ = U ∩ ∂X a diffeomorphism
χ′ : U ′ → Rn−1 for x′ = (x1, . . . , xn−1) ∈ Rn−1, where xn corresponds to the normal
direction to ∂X. Let ξ = (ξ′, ξn) be the associated covariables. Because of the special
form of the summands on the right hand side of (18) we may draw the factors ψj in
local coordinates to the argument function u. Then it suffices to consider the case of
symbols a(x, z, ξ) ∈ Sµ

cl(Rn
x × C× Rn

ξ )tr. We now obtain for (19)
∫∫

ei(x′−x̃′)ξ′ei(xn−x̃n)ξna(x′, xn, z, ξ′, ξn)u(x̃′, x̃n)dx̃′dx̃nd̄ξ′d̄ξn

which we apply to distributions u(x̃′, x̃n) = v(x̃′) ⊗ δRn−1 . To express the potential
operator we have to consider

Opx′(k)(z)v

for the operator-valued symbol

k(x′, z, ξ′)c :=
∫

eixnξna(x′, xn, z, ξ′, ξn)d̄ξn|xn>0 · c, (20)

acting on scalars c ∈ C. By construction, a(x′, xn, z, ξ′, ξn) has compact support in
x = (x′, xn). Let us first ignore the dependence on xn, i.e., look at a(x′, z, ξ′, ξn).
The general case with non-trivial dependence on xn will be discussed afterwards. To
analyse the structure of (20) it is helpful to compose the expression from the left with
κ−1
〈%,ξ′〉 for % = Im z with respect to the variable xn in the exponent, i.e., to pass to

κ−1
〈%,ξ′〉k(x′, z, ξ′) = 〈%, ξ′〉− 1

2

∫
ei〈%,ξ′〉−1xnξna(x′, z, ξ′, ξn)d̄ξn|xn>0 =

〈%, ξ′〉 1
2

∫
eixnξna(x′, z, ξ′, 〈%, ξ′〉ξn)d̄ξn|xn>0. (21)

Let us fix for a moment β = Re z. Then using a standard property of symbols
with the transmission property, cf., for instance, [6], we obtain that 〈%, ξ′〉 1

2 a(x′, β +
i%, ξ′, 〈%, ξ′〉ξn) belongs to the space

S
µ+ 1

2
cl (Rn−1

x′ × Rn
%,ξ′)⊗̂πSµ

cl(Rξn)tr

with Sµ
cl(Rξn)tr being the corresponding space of classical symbols with the transmis-

sion property in ξn (at xn = 0) with constant coefficients. This gives us for (21) an
element g(x′, %, ξ′; xn) of the space

S
µ+ 1

2
cl (Rn−1

x′ × Rn
%,ξ′)⊗̂πS(R+,ξn).
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In other words, it follows that

k(x′, β + i%, ξ′)c = 〈%, ξ′〉 1
2 g(x′, %, ξ′; 〈%, ξ′〉xn)c.

This proves that k(x′, β + i%, ξ′) is a potential symbol in the calculus with the trans-
mission property, and we obtain continuity in the sense

Opx′(k)(z) : Hs
comp(Rn−1) → H

s−(µ+ 1
2 )

loc(x′) (Rn
+)

for all s ∈ R.
The operator-valued symbols k(x′, β + i%; ξ′) run over a bounded set in the space

Sµ+ 1
2 (Rn−1

x′ × Rn
%,ξ′ ;C,S(R+))

when β varies in a compact interval. Together with the relation (20) which shows the
holomorphic dependence on z it follows that

k(x′, z, ξ′) ∈ Sµ+ 1
2 (Rn−1

x′ × C× Rn
ξ′ ;C,S(R+)),

cf. Definition 1.3 and Remark 1.6, where E = C is endowed with the trivial group
action and S(R+) = lim←−k∈N〈x〉−kHk(R+), with κλ acting as u(xn) → λ

1
2 u(λxn), λ > 0.

In other words, we proved our assertion when the original symbol a is independent on
xn. For the general case we obtain a function in

C∞0 (R+,xn , Sµ+ 1
2 (Rn−1

x′ × Rn
%,ξ′ ;C,S(R+)))

and it can easily be verified, cf. [6, Section 1.2.4], that this can be replaced by a
function without xn-dependence, modulo a smoothing potential operator of infinite
flatness at xn = 0.

To complete the proof, it remains to consider an arbitrary l ∈ M−∞
R (2X), R ∈

As(2X), and to interpret the application of the z-depending smoothing operator family
on 2X to a function on ∂X, combined with the restriction to X, as a map

M−∞
R (2X) → M−∞

R′ (X, ∂X) (22)

for a resulting asymptotic type R′ ∈ As(X, ∂X). 2

Remark 2.6 Composing Mellin potential symbols of the class Mν
R′(X, ∂X) from

the left by the operator of restriction to the boundary we obtain elements of M
ν+ 1

2
R′′ (∂X),

Mellin symbols with asymptotics R′′ (in the sense of the cone algebra with base manifold
∂X, cf. [12]).

Corollary 2.7 Let f ∈ Mµ
R(2X)tr be a Mellin symbol with asymptotics of type R,

and let πCR∩Γn+1
2 −γ = ∅. Then ωopγ−n

2
M (f)ω̃, first interpreted as a map E ′((2X)∧) →

D′((2X)∧) restricts to a continuous operators

ωopγ−n
2

M (f)ω̃ : Ks+ 1
2 ,γ+ 1

2 ((∂X)∧) → Ks−µ,γ(X∧)

and
ωopγ−n

2
M (f)ω̃ : Ks+ 1

2 ,γ+ 1
2

P ((∂X)∧) → Ks−µ,γ
Q (X∧)

for all s ∈ R and every P ∈ As(∂X, (γ + 1
2 ,Θ)) with some resulting Q ∈ As(X, (γ, Θ)).
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The relation (16) can be generalised to pseudo-differential operators on a manifold
M with conical exit to infinity. Let Lµ;δ

(cl)(M) denote the set of (classical) pseudo-
differential operators of order µ ∈ R on M , with exit condition and weight δ at
infinity. If M is written as a double 2X for a C∞ manifold X with boundary and
conical exit to infinity we have also Boutet de Monvel’s calculus Bµ,d;δ(X) on X (of
classical operators of order µ ∈ Z, type d ∈ N and weight δ ∈ R at infinity).

Let Bµ,d;δ(X) denote the space of upper left corners A of the 2 × 2 block ma-
trix space Bµ,d;δ(X) also containing trace and potential entries. The operators A ∈
Bµ,d;δ(X) are continuous

A : Hs;β(X) → Hs−µ;β−δ(X) (23)

for every s, β ∈ R, s > d − 1
2 . (The Sobolev spaces in (23) are defined as Hs;β(X) =

Hs;β(M)|intX , with the usual Sobolev smoothness s ∈ R and a power weight β ∈ R
at infinity, cf. [6].) The space of potential operators K of order µ + 1

2 in this calculus
will be denoted by Bµ+ 1

2 ;δ(X, ∂X); those operators are continuous in the sense

Hs+ 1
2 ;β(∂X) → Hs−µ;β−δ(X) (24)

for all s ∈ R.

Theorem 2.8 Let A ∈ Lµ;δ
cl (2X)tr be an operator of order µ ∈ Z and weight

δ ∈ R at infinity (subscript ‘tr’ means operators with the transmission property at
∂X, and ‘cl’ indicates classical operators both in variables and covariables). Then
K : v → A(v ⊗ δ∂X)|intX defines a map

Lµ;δ
cl (2X)tr → Bµ+ 1

2 ;δ(X, ∂X).

Proof . It is obviously sufficient to assume δ = 0. The space L−∞;0(2X)tr coincides
with the space of all operators with C∞-kernels which are Schwartz functions in direc-
tion to the conical exit of 2X to infinity. It is then clear that our potential operator
in this case belongs to B−∞;0(X, ∂X). For the non-smoothing part we may consider
the local situation where 2X is replaced by Rn (for n = dimX) and X by Rn

+; then
∂X = Rn−1

x′ . If a(x′, xn, ξ′, ξn) is a classical symbol of order µ in Rn with exit order 0
(and also classical of order 0 in (x′, xn)-variables) we first have

Au(x′, xn) =
∫∫

ei(x′−x̃′)ξ′ei(xn−x̃n)ξna(x′, xn, ξ′, ξn)u(x̃′, x̃n)dx̃′dx̃nd̄ξ′d̄ξn.

Then, similarly as in the proof of Theorem 2.5 we obtain

κ−1
〈ξ′〉k(x′, ξ′) = 〈ξ′〉− 1

2

∫
ei〈ξ′〉−1xnξna(x′, ξ′, ξn)d̄ξn|xn>0 =

〈ξ′〉 1
2

∫
eixnξna(x′, ξ′, 〈ξ′〉ξn)d̄ξn|xn>0

Let us first assume that a is independent of xn. In the present case we have

〈ξ′〉 1
2 a(x′, ξ′, 〈ξ′〉ξn) ∈ S

µ+ 1
2

cl (Rn−1
x′ × Rn

ξ′)⊗̂πSµ
cl(Rξn)tr,

where the subscript ‘cl’ means classical in ξ′ as well as in x′ (of order 0). Now the
remaining part of the proof is similar as before in the proof of Theorem 2.5. It remains
to note that the consideration of the xn-dependent case does not affect the character
of the final potential operator in the sense of its exit symbolic structure. 2
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Remark 2.9 Observe that when we compose a potential operator in Bµ+ 1
2 ;δ(X, ∂X)

from the left with the restriction operator to ∂X we obtain an element in Lµ+1;δ
cl (∂X)

(which is also classical in variables and covariables).

2.2 Example

Remark 2.10 Theorem 2.5 can easily be generalised to the case of transmission
configurations, i.e., when we interpret the boundary ∂X as an interface in 2X = X−∪
X+ where we distinguish between the minus- and the plus- side of the boundary. In that
sense 2X\∂X can be completed to a manifold 2X with interior boundary ∂X− ∪ ∂X+.
The analogue of the map (16)

Lµ
cl(2X)tr → Bµ+ 1

2 (2X, ∂X)

means that the pseudo-differential operators on 2X with the transmission property at
∂X, restricted to densities on ∂X, generate an element in Bµ+ 1

2 (2X, ∂X). Instead of
(17) we then have a corresponding map

Mµ
R(2X)tr → M

µ+ 1
2

R′ (2X, ∂X). (25)

If we replace 2X by a circle S1 and ∂X by any p ∈ S1 we obtain a similar situation.
In this case we first consider S1\{p} and then add two different end points such that
the new configuration can be identified with an interval S1 = {φ : 0 ≤ φ ≤ 2π} where
the point p is replaced by 0 and 2π. Analogously to (25) we then have a corresponding
map

Mµ
R(S1)tr → M

µ+ 1
2

R′ (S1, {p}). (26)

S1 may be regarded as the base of a cone K obtained from the slit plane R2\R+ =
{(x1, x2) ∈ R2 : x1 ≥ 0} by distinguishing two copies of R+, which correspond to
limits for x2 → 0 from x2 > 0 or x2 < 0. Polar coordinates (r, φ) ∈ R+ × [0, 2π] then
give us an identification

K ∼= (R+ × S1)/({0} × S1). (27)

The corresponding set of discrete asymptotic types associated with weight data
g = (γ, Θ) is then denoted by As(S1, g).

Note that K can be regarded as a branch of a Riemannian surface, obtained by
gluing together two copies of (27), with an identification of the ±-half-axis of the first
copy with the ∓-half-axis of the second copy.

Let us consider a fundamental solution of the Laplace operator

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

(28)

represented in polar coordinates. First, (28) has the form

∆ = r−2{(−r∂r)2 + ∂2
φ} = r−2opγ− 1

2
M (h)

for h(z) := z2 + ∂2
φ which is a holomorphic family of Fredholm operators

h(z) : Hs(S1) → Hs−2(S1). (29)

(29) is bijective for all z ∈ C\D for D = {0,± 1
2 ,±1,± 3

2 , . . . }.
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The Laplace operator induces a continuous map

Hγ := r−2opγ− 1
2

M (h) : Ks,γ(R+ × S1) → Ks−2,γ−2(R+ × S1)

for all s, γ ∈ R. The operator H−1
γ := opγ− 1

2
M (h−1)r2 for 0 < γ < 1

4 is a parametrix of
∆ in R2 in the standard sense, i.e., we have for every ϕ ∈ (π−1)∗C∞0 (R2)

HγH−1
γ ϕ = ϕ and H−1

γ Hγϕ = ϕ.

Here π : R2\{0} → R+×S1 is the map connected with the polar coordinates (x1, x2) →
(r, φ).

Let us now choose cut-off functions ω(r), ω̃(r), ˜̃ω(r) such that ω̃ ≡ 1 on supp ω
and ω ≡ 1 on supp ˜̃ω. Then

B := ω(r)opγ− 1
2

M (h−1)r2ω̃(r) + (1− ω(r))opx1,x2
(χ(ξ1, ξ2)|ξ1, ξ2|−2)(1− ˜̃ω(r)) (30)

is a parametrix of ∆ in R2\{0} for every γ ∈ R\D. The operator B belongs to the
cone algebra on R+ × S1 (in the terminology of [13]). Thus it defines a continuous
operator

B : Ks−2,γ−2(R+ × S1) → Ks,γ(R+ × S1)

for all s ∈ R, and B restricts to continuous operators between subspaces with asymp-
totics

B : Ks−2,γ−2
P0

(R+ × S1) → Ks,γ
Q0

(R+ × S1)

for every P0 ∈ As(S1, (γ − 2, Θ)) with some resulting Q0 ∈ As(S1, (γ, Θ)) for every
Θ = (θ, 0], −∞ ≤ θ < 0. Note that the second summand in (30) maps to flat functions.
For the first summand we apply a version of Theorem 2.4 in connection with (26). This
gives us a continuous map

B : Ks−2,γ−2
P (R+) → Ks+ 1

2 ,γ+ 1
2

Q (R+ × S1)

for every P ∈ As(γ − 2, Θ) with some resulting Q ∈ As(S1, (γ + 1
2 , Θ)).

2.3 Potentials of operators in the cone algebra

We now study potentials of surface distributions with respect to operators in the cone
algebra on the (infinite stretched) cone (2X)∧.

Let us fix weight data g = (γ, γ − µ, Θ) for Θ = (−(k + 1), 0], k ∈ N. Recall that
the operators in the cone algebra on (2X)∧ with discrete asymptotics, associated with
g, are defined as the set of all operators

A = r−µω(r)opγ−n
2

M (h)ω̃(r) + (1− ω(r))A∞(1− ˜̃ω)+

r−µω(r)
k∑

j=0

rjopγj−n
2

M (fj)ω̃(r) + G. (31)

Here we assume h ∈ Mµ
O(2X), fj ∈ M−∞

Rj
(2X), γj ∈ R are weights such that γj ≤

γ ≤ j + γj for all j, moreover, G is a Green operator with discrete asymptotics, and
A∞ is an element in Lµ;0

cl ((2X)∧); the latter notation means the space of all operators
A|(2X)∧ for arbitrary A ∈ Lµ;0

cl ((R+ × (2X))³) where (R × (2X))³ 3 (r, x) is the
manifold with conical exits for r → ±∞ modelled on the infinite cylinder R× (2X).
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Finally, a Green operator, associated with weight data g is an operator such that
both

G : Ks,γ((2X)∧) → Sγ−µ
P ((2X)∧)

and
G∗ : Ks,−γ+µ((2X)∧) → S−γ

Q ((2X)∧)

are continuous for all s ∈ R, with (G-dependent) asymptotic types P and Q, cf. the
formula (9). The formal adjoint G∗ refers to the K0,0-scalar product. Details about
the cone algebra with closed base of the cone may be found in [12] and [13]. The cone
algebra of boundary value problems with the transmission property is developed in
[10], [11], see also [6] in a new variant with classical symbols.

Theorem 2.11 Let A be an operator in the cone algebra on (2X)∧ of order µ ∈ Z
associated with the weight data g = (γ, γ−µ, Θ), and assume that A has the transmis-
sion property at (∂X)∧. Then A, first interpreted as a map E ′((2X)∧) → D′((2X)∧),
restricts to continuous operators

A′ : Ks+ 1
2 ,γ+ 1

2 ((∂X)∧) → Ks−µ,γ−µ(X∧)

and
A′ : Ks+ 1

2 ,γ+ 1
2

P ((∂X)∧) → Ks−µ,γ−µ
Q (X∧)

for all s ∈ R and every P ∈ As(∂X, (γ + 1
2 ,Θ)) with some resulting Q ∈ As(X, (γ, Θ))

for all s ∈ R.

Proof . If A consists of a Green operator G the assertion is obvious. Concerning
the second summand on the right of (31) we can apply Theorem 2.8 to A∞. More-
over, for the Mellin operators contained in (31) we can apply Theorem 2.5. Thus the
operator A|E′((2X)∧) extends to a potential operator in the cone algebra with discrete
asymptotics on the infinite cone X∧ with boundary (∂X)∧, cf. [11]. This gives us the
asserted continuity. 2

Remark 2.12 If A satisfies the assumptions of Theorem 2.11, the map

K : v → A(v ⊗ δ(∂X)∧)|intX∧

defines a operator
Lµ;δ

cl ((2X)∧)tr → Bµ+ 1
2 ;δ(X∧, (∂X)∧).

Remark 2.13 It can be proved that each potential operator of the cone algebra
of boundary value problems (say, in the classical variant [6]) can be obtained as in
Theorem 2.11 for a suitable cone operator A.

Remark 2.14 Theorem 2.11 can be generalised to families of operators A(y) in the
cone algebra smoothly depending on a parameter y ∈ U for some open U ⊂ Rp. The
smoothness can be defined by assuming C∞ dependence on y of the involved symbols
and C∞ dependence of the Green operators (every Green operator with fixed asymptotic
types belongs to a corresponding Fréchet space). It follows then that also A′(y) is
smooth in y, where the smoothness of A′ in a parameter can be defined in a similar
manner as before since A′ is an element (a potential operator) of the cone algebra of
boundary value problems.
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2.4 Elements of the edge calculus

In the application below we need a parameter-dependent analogue of Definition 2.1.

Definition 2.15 (i) Let X be a closed compact C∞ manifold. Then Mµ
O(X;Rq)

for µ ∈ R is defined as the set of all h(z, η) ∈ A(C, Lµ
cl(X;Rq)) such that

h(β + i%, η) ∈ Lµ
cl(X;R% × Rq

η)

holds for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′.

(ii) If X is a compact C∞ manifold with boundary ∂X the space Mν
O(X, ∂X;Rq) for

ν ∈ R is defined as the set of all h(z) ∈ A(C, Bν(X, ∂X;Rq)) such that

h(β + i%, η) ∈ Bν(X, ∂X;R% × Rq)

holds for every β ∈ R, uniformly in c ≤ β ≤ c′, for arbitrary c ≤ c′.

In addition applying Definition 2.15 (i) to 2X we have the subspace

Mµ
O(2X;Rq)tr

of Mµ
O(2X;Rq) of operator families with the transmission property at ∂X. As a

corollary of the arguments in the proof of Theorem 2.5 we obtain the following result:

Theorem 2.16 Let X be a compact C∞ manifold with boundary ∂X. Then the
correspondence (16), pointwise applied for every (z, η) ∈ C×Rq, induces a continuous
operator

Mµ
O(2X;Rq)tr → M

µ+ 1
2

O (X, ∂X;Rq)

for every µ ∈ Z.

Proof . It suffices to modify the constructions in the proof by formally replacing ξ′ by
(ξ′, η). 2

Let ω(r), ω̃(r) be two cut-off functions, and let η → [η] be any strictly positive
function in C∞(Rq) that is equal to η for |η| ≥ c for some c > 0. Let

h̃(r, y, z, η̃) ∈ C∞(R+ × Ω,Mµ
O(2X;Rq

η̃)tr) (32)

for any open set Ω ⊆ Rq, h(r, y, z, η) := h̃(r, y, z, rη) and form the operator families

aO(y, η) = r−µω(r[η])opγ−n
2

M (h)(y, η)ω̃(r[η]).

Moreover, consider an element

p̃∞(r, y, %̃, η̃) ∈ C∞(R+ × Ω, Lµ
cl(2X;R1+q

%̃,η̃ )tr)

for any open Ω ⊆ Rq, and set p∞(r, y, %, η) = p̃∞(r, y, r%, rη). We use the fact that
there exists an operator family of the form (32) such that

opγ−n
2

M (h)(y, η) = opr(p∞)(y, η) mod C∞(Ω, L−∞((2X)∧;Rq
η))

for every γ ∈ R, cf. [13], see also [4]. Let us assume that ω̃ is equal to 1 on supp ω and
choose another cut-off function ˜̃ω such that ω is equal to 1 on supp ˜̃ω. Setting

a1(y, η) = r−µ(1− ω(r[η]))opr(p∞)(y, η)(1− ˜̃ω(r[η]))

20



we now form
a(y, η) = σ(r){aO(y, η) + a1(y, η)}σ̃(r) (33)

with arbitrary fixed cut-off functions σ and σ̃. Applying the mapping (16) to

h(r, y, z, η) and p∞(r, y, %, η)

for fixed (r, y, z, η) and (r, y, %, η), respectively, we obtain corresponding families

h′(r, y, z, η) and p′∞(r, y, %, η)

belonging to Bµ+ 1
2 (X, ∂X). Note that there is an

h̃′(r, y, z, η̃) ∈ C∞(R+ × Ω,M
µ+ 1

2
O (X, ∂X;Rq

η̃))

such that
h′(r, y, z, η) = h̃′(r, y, z, rη).

Applying opγ−n
2

M to h′ and opr to p′∞, from a(y, η) we obtain a family

a′(y, η) = σ(r){a′O(y, η) + a′1(y, η)}σ̃(r) (34)

for
a′O(y, η) = r−µω(r[η])opγ−n

2
M (h′)(y, η)ω̃(r[η]),

and
a′1(y, η) = r−µ(1− ω(r[η]))opr(p

′
∞)(y, η)(1− ˜̃ω(r[η])).

Summing up, the mapping (16) generates a correspondence

a(y, η) → a′(y, η) (35)

for every operator function of the form (33) with a resulting expression (34).

Theorem 2.17 (i) The operator family a(y, η) represents symbols

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ((2X)∧),Ks−µ,γ−µ((2X)∧))

as well as

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ

P̃
((2X)∧),Ks−µ,γ−µ

Q̃
((2X)∧))

for all s ∈ R, and for every P̃ ∈ As(2X, (γ, Θ)) with some resulting Q̃ ∈
As(2X, (γ − µ, Θ)).

(ii) The operator family a′(y, η) represents symbols

a′(y, η) ∈ Sµ+ 1
2 (Ω× Rq;Ks+ 1

2 ,γ+ 1
2 ((∂X)∧),Ks−µ,γ−µ(X∧))

as well as

a′(y, η) ∈ Sµ+ 1
2 (Ω× Rq;Ks+ 1

2 ,γ+ 1
2

P ((∂X)∧),Ks−µ,γ−µ
Q (X∧))

for all s ∈ R, and for every P ∈ As(∂X, (γ + 1
2 ,Θ)) with some resulting Q ∈

As(X, (γ − µ, Θ)).
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Proof . Part (i) of Theorem 2.17 is proved in [6, Theorem 4.4.20]. For Part (ii) we have
to consider the ingredients of a(y, η) separately. Let us first assume that the function
h̃ which is involved in aO(y, η) is independent of r. Then it is suffices to observe the
homogeneity

σa′O(y, λη)σ̃ = λµ+ 1
2 κ

(n)
λ σa′O(y, η)σ̃(κ(n−1)

λ )−1 (36)

for all λ ≥ 1, |η| ≥ c for some c > 0 which entails

σa′O(y, η)σ̃ ∈ C∞(Ω× Rq,L(Ks+ 1
2 ,γ+ 1

2
(P ) ((∂X)∧),Ks−µ,γ−µ

(Q) (X∧))); (37)

here subscripts ‘(P)’ and ‘(Q)’ at the spaces mean that the considerations are valid
both for spaces without asymptotics as well as with asymptotics of the corresponding
types. The homogeneity of (36) is a consequence of a corresponding relation for σaOσ̃

itself, with {κ(n)
λ }λ∈R+ on both sides. The smoothness (37) follows from Remark 2.14.

If h̃ depends on the variable r we can apply a simple tensor product argument to
obtain the assertion in general.

For the operator function σa1(y, η)σ̃ we have to recall some arguments which yield
the properties of Theorem 2.17 (i). For simplicity, assume that the symbol p̃∞ con-
tained in a1 is independent of r; the general case then follows again by a tensor product
argument.

The operators

σa1(y, η)σ̃ : Ks,γ((2X)∧) → Ks−µ,γ−µ
Θ ((2X)∧)

smoothly depend on (y, η) ∈ Ω× Rq; then also

σa′1(y, η)σ̃ : Ks+ 1
2 ,γ+ 1

2 ((∂X)∧) → Ks−µ,γ−µ
Θ (X∧)

are smooth in (y, η) ∈ Ω × Rq, cf. Remark 2.14. Another step of the proof for the
symbol property on (2X)∧ is that for any excision function χ(η) the operator family

b(y, η) := χ(η)r−µ(1− ω(r[η]))opr(p∞)(y, η)(1− ˜̃ω(r[η]))

is a classical symbol of order µ because we have again κ
(n)
λ - homogeneity in η for large

|η|. The operator function b(y, η) is non-trivial only for η 6= 0; therefore r−µopr(p∞)(y, η)
for every fixed y and η 6= 0 (combined with the excision (1−ω(r[η])) and (1− ˜̃ω(r[η])))
is an operator on X∧ in the class Lµ;0

cl (X∧), cf. [6, Section 3.1.2]. Thus, we can apply
Theorem 2.8 and obtain that

b′(y, η) := χ(η)r−µ(1− ω(r[η]))opr(p
′
∞)(y, η)(1− ˜̃ω(r[η]))

is a C∞ family of continuous operators

Ks+ 1
2 ,γ+ 1

2 ((∂X)∧) → Ks−µ,γ−µ
Θ (X∧).

Similarly as (36) we have homogeneity of b′(y, η) of order µ + 1
2 for large |η|, and

hence b′(y, η) is an operator-valued symbol between the spaces in question. Since
the operators of multiplication by σ and σ̃ behave as (non-classical) operator-valued
symbols of order zero we obtain the symbol property also for σb′(y, η)σ̃. Because of

σa′1(y, η)σ̃ = σb′(y, η)σ̃ + σb′′(y, η)σ̃ (38)

for b′′(y, η) = (1−χ(η))r−µ(1−ω(r[η]))opr(p′∞)(y, η)(1− ˜̃ω(r[η])) where also σb′′(y, η)˜̃σ
is a C∞ function of continuous operators between our spaces and with compact support
in η, for (38) we obtain that σa′1(y, η)σ̃ has the desired properties. 2
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Remark 2.18 The operator-valued symbols in Theorem 2.17 are classical, if the
function (32) is independent of r.

Let us fix a weight interval Θ = (−(k + 1), 0], k ∈ N, and consider functions

ljα(y, z) ∈ C∞(Ω,M−∞
Rjα

(2X)), l′jα(y, z) ∈ C∞(Ω, M−∞
R′jα

(X, ∂X))

for 0 ≤ j ≤ k, with (for simplicity) y-independent discrete asymptotic types Rjα ∈
As(2X) and R′jα ∈ As(X, ∂X), respectively. Moreover, assume that

πCRjα ∩ Γn+1
2 −γj

= πCR
′
jα ∩ Γn+1

2 −γ′j
= ∅

with certain weights γj , γ
′
j ∈ R, satisfying

γj ≤ γ ≤ j + γj , γ′j ≤ γ ≤ j + γ′j

for some fixed weight γ ∈ R, 0 ≤ j ≤ k.
Let us form

m(y, η) = r−µω(r[η])
k∑

j=0

∑

|α|≤j

rjopγj−n
2

M (ljα)(y)ηαω̃(r[η]) (39)

and

m′(y, η) = r−µω(r[η])
k∑

j=0

∑

|α|≤j

rjop
γ′j−n

2
M (l′jα)(y)ηαω̃(r[η]). (40)

Applying the map (22) to the Mellin symbols ljα in (39) we obtain corresponding
Mellin symbols l′jα. This gives us a map

m(y, η) → m′(y, η) (41)

from operator families (39) to associated operator families (40).

Proposition 2.19 Let (E, Ẽ) denote one of the following pairs of spaces

(Ks,γ((2X)∧),K∞,γ−µ((2X)∧)), or (Ks,γ

P̃
((2X)∧),Sγ−µ

Q̃
((2X)∧)), (42)

or

(Ks+ 1
2 ,γ+ 1

2 ((∂X)∧),K∞,γ−µ(X∧)), or (Ks+ 1
2 ,γ+ 1

2
P ((∂X)∧),Sγ−µ

Q (X∧)). (43)

Then m(y, η) belongs to Sµ
cl(Ω×Rq; E, Ẽ) for the pairs (E, Ẽ) from (42), s ∈ R (in the

second case for every P̃ with some resulting Q̃, depending on m), and m′(y, η) belongs

to S
µ+ 1

2
cl (Ω × Rq; E, Ẽ) for the pairs (E, Ẽ) from (43), s ∈ R (in the second case for

every P with some resulting Q, depending on m′).

Proof . The assertion concerning (42) is known, see, for instance, [6]. Let us write the
operator function (39) in the form

∑k
j=0 mj(y, η) where mj(y, η) is the jth summand

in (39). Then we have

mj(y, λη) = λµ−jκ
(n)
λ mj(y, η)(κ(n)

λ )−1
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for all λ ≥ 1, |η| ≥ c for some c > 0. This gives us for the jth summand m′
j(y, η) on

the right of (40) the homogeneity

m′
j(y, λη) = λµ+ 1

2 κ
(n)
λ m′

j(y, η)(κ(n−1)
λ )−1

for all l ≥ 1, |η| ≥ c. On the other hand, similarly as for Mellin symbols of the
kind mj(y, η) the operator families m′

j(y, η) between the spaces in (43) are C∞ in
(y, η) ∈ Ω × Rq. Homogeneity together with the latter property yields the assertion
on m′

j(y, η) and then also for m′(y, η). 2

2.5 Edge symbols of Green type

As in the beginning of Section 1.2 for convenience we assume that X is a closed compact
C∞ manifold. We now define a specific class of operator-valued symbols of the edge
calculus, called Green symbols, here with discrete asymptotic types P ∈ As(X, (δ,Θ))
and Q ∈ As(X, (−γ, Θ)) for some choice of weights γ, δ ∈ R and an arbitrary weight
interval Θ = (θ, 0]. At the same time we define what is called trace and potential
symbols with respect to the edge. These objects are entries of a 2 × 2 block matrix
operator function

g(y, η) ∈ C∞(Ω× Rq,L(Ks,γ(X∧)⊕ Cj− ,K∞,δ(X∧)⊕ Cj+))

for some dimensions j± ∈ N. These are classical symbols in the sense that g0(y, η) =
diag(1, 〈η〉n+1

2 )g(y, η)diag(1, 〈η〉−n+1
2 ) are symbols

g0(y, η) ∈ Sµ
cl(Ω× Rq;Ks,γ(X∧)⊕ Cj− ,Sδ

P (X∧)⊕ Cj+) (44)

such that

g∗0(y, η) ∈ Sµ
cl(Ω× Rq;Ks,−δ(X∧)⊕ Cj+ ,S−γ

Q (X∧)⊕ Cj−). (45)

Here s ∈ R is arbitrary and fixed, and the formal adjoint g∗ is taken (y, η)-wise with
respect to the scalar products of K0,0(X∧)⊕ Cj± .

Recall that Definition 1.3 has a version for Fréchet spaces, here with Sδ
P (X∧) and

S−γ
Q (X∧), respectively, and that these spaces can be represented as projective limits

of Hilbert spaces with group action, cf. Remark 1.9.
In our application the weight interval will be Θ = (−∞, 0]. In this case there is a

useful explicit representation of Green symbols.
If F is a Fréchet space with its countable system of semi-norms (πj)j∈N, by Sµ(Ω×

Rq, F ) we denote the space of all f(y, η) ∈ C∞(Ω× Rq, F ) such that

πj(Dα
y Dβ

η f(y, η)) ≤ c〈η〉µ−|β|

for all multi-indices α, β ∈ Nq, all (y, η) ∈ K × Rq, K b Ω, and all j ∈ N, with
constants c(α, β,K; j) > 0. We also have the subspace Sµ

cl(Ω × Rq, F ) of classical
symbols with values in F , defined by means of sequences of homogeneous components
f(µ−k)(y, η), k ∈ N, analogously to the standard context.

We will apply this to the projective tensor product

F = (Sδ
P (X∧)⊕ Cj+)⊗̂π(S−γ

Q
(X∧)⊕ Cj−) (46)

for discrete asymptotic types P, Q (with Q being the complex conjugate of Q).
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Elements of Sµ
cl(Ω×Rq, F ) for the space (46) are 2×2 block matrices (fij(y, η))i,j=1,2,

with a corresponding dependence on (r, x), (r′, x′) ∈ X∧ in the entries. For f(y, η) we
also write

f(y, η; r, x, r′, x′) =
(

f11(y, η; r, x, r′, x′) f12(y, η; r, x)
f21(y, η; r′, x′) f22(y, η)

)
.

Theorem 2.20 For every Green symbol g(y, η) with asymptotic types P,Q there
is an element

f(y, η) = (fij(y, η))i,j=1,2 with fij(y, η) ∈ S
µij

cl (Ω× Rq, Fij)

for µ11 = µ+1, µ12 = µ+n+1
2 , µ21 = µ−n−1

2 , µ22 = µ and F11 = Sδ
P (X∧)⊗̂πS−γ

Q
(X∧),

F12 = Sδ
P (X∧)⊗ Cj− , F21 = Cj+ ⊗ S−γ

Q
, F22 = Cj+ ⊗ Cj− , such that

g(y, η)
(

u(r, x)
c

)
=

∫∫ ∞

0

f(y, η; [η]r, x, [η]r′, x′)
(

u(r′, x′)
c

)
dr′dx′ (47)

for every u⊕ c ∈ Ks,γ(X∧)⊕ Cj− .

The notation in (47) means that f is interpreted as a 2 × 2 block matrix, applied to
the vector u(r′, x′)⊕ c, where

f(y, η; [η]r, x, [η]r′, x′) =
(

f11(y, η; [η]r, x, [η]r′, x′) f12(y, η; [η]r, x)
f21(y, η; [η]r′, x′) f22(y, η),

)

and the integration with respect to (r′, x′) only concerns the first column while the
second column is a simple algebraic composition.

A proof of Theorem 2.20 may be found in [14], based on tensor product represen-
tations of Green operators of the cone algebra from [16], see also [15].

Let us now return to the original context and apply the notation and construc-
tions of this section to 2X for a compact C∞ manifold X with boundary. Then the
representation of Green symbols g(y, η) in terms of kernels (46) allows us to restrict

g(y, η) ∈ Sµ
cl(Ω× Rq;Ks,γ((2X)∧)⊕ Cj− ,Sδ

P ((2X)∧)⊕ Cj+)

(y, η)-wise to argument of Ks+ 1
2 ,γ+ 1

2 ((∂X)∧) ⊕ Cj− combined with the restriction in
the first component of the image to X. Let g′(y, η) denote the resulting family of
operators

g′(y, η) : Ks+ 1
2 ,γ+ 1

2 ((∂X)∧)⊕ Cj− → Sδ
P ′(X

∧)⊕ Cj+

(here P ′ is an asymptotic type referring to X, uniquely determined by P in an obvious
way). Then for the correspondence between upper left corners of g(y, η)

g11(y, η) → g′11(y, η) (48)

we obtain
g′11(y, η) ∈ S

µ+ 1
2

cl (Ω× Rq;Ks+ 1
2 ,γ+ 1

2 ((∂X)∧),Sδ
P ′(X

∧)) (49)

for all s ∈ R. For the other entries we have a similar correspondence, namely
gij(y, η) → g′ij(y, η) where

g′12(y, η) ∈ S
µ−n+1

2
cl (Ω× Rq;Cj− ,Sδ

P ′(X
∧)),

g′21(y, η) ∈ S
µ+ n

2
cl (Ω× Rq;Ks,γ((∂X)∧),Cj+)

while g22 remains untouched, i.e., is equal to g′22.
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3 Potentials with asymptotics

3.1 Edge potential operators

In this section we consider edge pseudo-differential operators, based on (operator-
valued) edge amplitude functions. We first recall a few elements of the general ‘edge
algebra’; the requirements and constructions for the definition can be interpreted as
results about the ‘Mellin-edge’ behaviour of parametrices of elliptic operators.

Let Rµ(Ω×Rq, g; (j−, j+)) for Ω ⊆ Rq open, and weight data g = (γ, γ−µ, Θ), be
the space of all edge amplitude functions a(y, η).

Here γ ∈ R has the meaning of a weight, µ ∈ R of an order, and Θ = (−(k + 1), 0]
is a weight interval of length k + 1 ∈ N ∪ {+∞}.

Let us first consider the case j− = j+ = 0. Then, by definition, we have

a(y, η) = σ(r){ω(r)r−µopγ−n
2

M (h)(y, η)ω̃(r)

+ (1− ω(r))r−µopr(p)(y, η)(1− ˜̃ω(r))}σ̃(r) + m(y, η) + g(y, η) (50)

where p is a finite linear combination of expressions of the form

(χ−1)∗opx(a)(r, y, %, η)

for a chart χ : U → Σ on M , Σ ⊆ Rn open, and a classical symbol a(r, x, y, %, ξ, η) on
R+ × Σ× Ω of the form

a(r, x, y, %, ξ, η) = ã(r, x, y, r%, ξ, rη),

for some ã(r, x, y, %̃, ξ, η̃) ∈ Sµ
cl(R+ × Σ× Ω× R1+n+q). Moreover, h has the form

h(r, y, z, η) = h̃(r, y, z, rη)

for an element h̃(r, y, z, η̃) ∈ C∞0 (R+ ×Ω,Mµ
O(M ;Rq

η̃)), cf. Section 2.4, which has the
property

opγ−n
2

M (h0)(y, η) = opr(p0)(y, η)

mod C∞(Ω, L−∞(M∧;Rq)), when we set

h0(r, y, z, η) := h̃(0, y, z, rη),

and define p0(r, y, %, η) similarly as p(r, y, %, η) but in terms of the symbols

a0(r, x, y, %, ξ, η) := ã(0, x, y, r%, ξ, rη).

The cut-off functions σ(r), σ̃(r), ω(r), ω̃(r), ˜̃ω(r) in (50) are arbitrary, except for the
condition that ω̃ ≡ 1 on supp ω and ω ≡ 1 on supp ˜̃ω. The smoothing Mellin symbols
m(y, η) and the Green symbols g(y, η) in the expression (50) (for arbitrary j−, j+) are
described in Sections 2.4 and 2.5.

Now the most specific contribution of our program to analyse potentials consists of
pseudo-differential operators Op(a) with amplitude functions of the kind (50), where
Op = Opy denotes the standard pseudo-differential operator convention, based on the
Fourier transform in Rq 3 y, i.e., Opy(a)u(y) =

∫∫
ei(y−y′)ηa(y, η)u(y′)dy′d̄η.

In this case the dimensions j± are zero; we then denote by Rµ(Ω×Rq, g) the space
of all operator functions of the kind (50).
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Every a(y, η) ∈ Rµ(Ω× Rq, g) represents a family of operators

a(y, η) ∈ C∞(Ω, Lµ
cl(M

∧;Rq)).

From now on we assume M = 2X and denote by Rµ(Ω× Rq, g)tr the subspace of all
elements of Rµ(Ω× Rq, g) which have the transmission property at the interface ∂X.

Then the mappings (35), (41) and (48) induce a correspondence a(y, η) → a′(y, η),

Rµ(Ω× Rq, g)tr → C∞(Ω, Bµ+ 1
2 (X∧, (∂X)∧;Rq)) (51)

where Bµ+ 1
2 (D, ∂D;Rq) for a C∞ manifold D (not necessarily compact) with boundary

denotes the space of potential operators in Boutet de Monvel’s calculus of order µ + 1
2

with parameters η ∈ Rq. Recall that the parameter-dependence is defined by local
potential amplitude functions which contain η as an additional covariable, and the
smoothing operators are given by

B−∞(D, ∂D;Rq) = S(Rq, B−∞(D, ∂D)).

For every a(y, η) ∈ Rµ(Ω× Rq, g), we have A := Opy(a) ∈ Lµ
cl((2X)∧ × Ω), and

Opy(a′) ∈ Bµ+ 1
2 (X∧, ∂X × Ω). (52)

As a pseudo-differential operator A induces a map

E ′((2X)∧ × Ω) → D′((2X)∧ × Ω). (53)

Setting A′ = Opy(a′) with a′ being related to a we obtain a correspondence A → A′.
From (52) we have the continuity property

A′ : H
s+ 1

2
comp((∂X)∧ × Ω) → Hs−µ

loc (X∧ × Ω). (54)

What we obtain in the present situation are continuity results between spaces with
edge asymptotics on the wedges (∂X)∧ × Ω and X∧ × Ω, respectively.

Theorem 3.1 Let a = a(η) ∈ Rµ(Rq ×Rq, g) be independent of y ∈ Rq. Then the
associated potential operator A′ = Opy(a′) extends to continuous operators

A′ : Ws+ 1
2 ,γ+ 1

2
(P ) ((∂X)∧ × Rq) →Ws−µ,γ−µ

(Q) (X∧ × Rq)

for all s ∈ R, for every discrete asymptotic type P ∈ As(∂X, (γ + 1
2 , Θ)) with some

resulting Q ∈ As(X, (γ − µ, Θ)) (depending on P and a not on s).

Proof . We apply Proposition 1.8 for the case Ω = Rq and the pairs of spaces

(E, Ẽ) = (Ks+ 1
2 ,γ+ 1

2
(P ) ((∂X)∧),Ks−µ,γ−µ

(Q) (X∧))

for any fixed s, using Theorem 2.17 (ii), Proposition 1.8 and the relation (49). 2

Remark 3.2 Using the framework of the edge algebra of boundary value problems
on a (say, compact and stretched) manifoldW with boundary and edge Y in the sense of
[6] it can be proved that every element A in the edge algebra on the double 2W (which is
a closed (stretched) manifold with edge Y ) induces by restriction to ‘surface densities’
on the boundary of W a potential operator in the edge algebra. Conversely, every
such operator can be obtained in this way. In this generality we need the concept of
continuous asymptotics, but under suitable assumptions on the behaviour of coefficients
of the involved amplitude functions along Y we have such a result in the framework of
discrete asymptotics (or asymptotics in the sense of the following Section 3.2).
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3.2 A generalisation of edge asymptotics

Theorem 3.1 refers to symbols with constant coefficients in y ∈ Ω. For potentials of
surface densities in general this is, of course, too special, because the geometry may con-
tribute non-constant coefficients. Therefore we now extend the concept of asymptotic
types by admitting more general Laurent coefficients of corresponding meromorphic
functions.

Let as(n, g) for g = (γ, Θ), n = dimX, denote the set of all sequences

{(pj ,mj)}j=0,...,N

with (pj ,mj) as in (7) (in other words, as(n, g) is obtained from As(X, g) by omitting
the spaces Lj). Let first Θ be finite, and let EP (X∧) be the linear span of all functions
c(x)r−p logk rω(r) for some fixed cut-off function ω(r), for arbitrary (p, k) ∈ P and
c ∈ C∞(X). Then EP (X∧) is isomorphic to a finite direct sum of copies of C∞(X),
and EP (X∧) is a closed subspace of K∞,γ(X∧) which is direct to the space Ks,γ

Θ (X∧)
of the flat functions. We can again form the space (8) in the Fréchet topology of the
direct sum. This kind of asymptotics can be subsumed under the concept of continuous
asymptotics, cf. [12] or [13], although we do not use this explicitly here. The present
generalisation is much simpler and more specific; it admits, for instance, smoothly
varying coefficient spaces Lj with respect to edge variable y.

Also the notation on edge Sobolev spaces with asymptotics P ∈ as(n, g) makes
sense, i.e., we have the spaces Ws,γ

P (X∧ × Rq) by a similar construction as (11), in-
cluding the analogue of the information on the nature of singular functions of edge
asymptotics, cf. Remark 1.10. In the present case the singular functions have the form

fsing(r, x, y) =
N(P )∑

j=0

mj∑

k=0

F−1
η→y[η]

n+1
2 ω(r[η])vjk(x, η̂)(r[η])−pj logk(r[η])

for arbitrary vjk ∈ C∞(X,Hs(Rq)), vjk(x, η̂) = Fy→ηvjk(x, y).
Moreover, we have a generalisation of meromorphic operator-valued Mellin symbols

described by asymptotic types

R = {(pj , mj)}j∈Z

where pj , mj are as in (12), but we do not require any specific control of spaces Lj of
Laurent coefficients. Let as denote this kind of Mellin asymptotic types.

Let M−∞
R (2X) denote the space of all elements of A(C\πCR,L−∞(2X)) that

are meromorphic with poles at pj of multiplicities mj + 1. In a similar manner
we define M−∞

R (X) where L−∞(2X) is to be replaced by the space of operators
with kernels in C∞(X × X) (recall that we fix Riemannian metrics on the man-
ifolds under consideration). Analogously, we have M−∞

R (X, ∂X), the space of all
f(z) ∈ A(C\πCR, C∞(X×∂X)), meromorphic with poles at pj of multiplicities mj +1,
where C∞(X × ∂X) is identified with the corresponding space of operators with ker-
nels in C∞(X × ∂X). All these spaces are Fréchet in a natural way, and we can form
spaces of the kind (14) for arbitrary R ∈ as.

Finally, the definition of Green symbols g(y, η) has a straightforward generalisa-
tion to arbitrary asymptotic types P ∈ as(n, (δ,Θ)) and Q ∈ as(n, (−γ, Θ)), cf. the
relations (44), (45). Thus we have all ingredients to form edge amplitude functions
a(y, η) of the form (50) with m(y, η) defined in terms of smoothing Mellin symbols
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ljα(y, z) ∈ C∞(Ω,M−∞
Rjα

(2X)), Rjα ∈ as and Green symbols g(y, η) as mentioned
before.

We now have again a correspondence a(y, η) → a′(y, η), cf. the relation (51),
such that the associated operators A′ := Op(a′) have the meaning of the restriction
of A = Op(a) to surface densities on (∂X)∧ × Rq, combined with the restriction to
(int X)∧ × Rq.

Theorem 3.3 Let A = Op(a) be an edge pseudo-differential operator on (2X)∧ ×
Rq with amplitude function a(y, η) (now with asymptotic data of general types). Then
the potential operator (54) given by A′ = Opy(a′) extends to continuous operators

A′ : Ws+ 1
2 ,γ+ 1

2
comp(y) ((∂X)∧ × Ω) →Ws−µ,γ−µ

loc(y) (X∧ × Ω)

and
A′ : Ws+ 1

2 ,γ+ 1
2

comp(y),P ((∂X)∧ × Ω) →Ws−µ,γ−µ
loc(y),Q (X∧ × Ω)

for all s ∈ R, for arbitrary P ∈ as(n−1, (γ + 1
2 , Θ)) with some resulting Q ∈ as(n, (γ−

µ, Θ)) (depending on P and a not on s).

Proof . The arguments are analogous to those for Theorem 3.1. In order to apply
Proposition 1.8 we need to verify that our amplitude functions a′(y, η) are symbols
in a similar sense as before with the only exception that for the consideration with
asymptotic types we refer to the set-up of the present section. An inspection of the
definitions and results shows that the necessary elements have immediate generalisa-
tions, in particular, we have analogues of Theorem 2.17, Proposition 1.8 and of the
construction of Section 2.5. This gives us the desired continuity results. 2

3.3 Examples

In this section we consider some examples which show a technique to calculate asymp-
totics of potentials with respect to a parametrix of an elliptic differential operator.

Let us first recall a general result on a relation between standard Sobolev spaces
in Rn+1 and weighted Sobolev spaces:

Proposition 3.4 Let t > n+1
2 be a real number, and set

Ht
0(Rn+1) := {u ∈ Ht(Rn+1) : Dα

x̃ u(0) = 0 for all α ∈ Nn+1, |α| < t− n + 1
2

}.

Then for t− n+1
2 /∈ N we have a canonical isomorphism

Ht
0(Rn+1) ∼= Kt,t(Rn+1\{0}),

cf. Dauge [5], Kondratyev [8, §4], or the author’s joint monograph [6, Section 2.1.2].
Moreover, for −n+1

2 < t < n+1
2 we have

Ht(Rn+1) = Kt,t(Rn+1\{0}).

Let us now consider the Laplace operator ∆ in R3, given as a map

∆ : Hs(R3) → Hs−2(R3),
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s ∈ R. Let Φ ∈ L−2(R3) be a (properly) supported parametrix of ∆ (any other
(pseudo-differential) parametrix of ∆ is equal to Φ modulo an operator with smooth
kernel). Therefore, for the evaluation of asymptotics of potentials, the specific choice
of Φ is unessential.

For technical reasons we also consider the operator

∆− 1 : Hs(R3) → Hs−2(R3)

which induces isomorphisms for all s ∈ R. We then have (∆− 1)−1 =: P ∈ L−2
cl (R3).

Moreover, the relation ∆P = 1 + P allows us to reconstruct Φ as an asymptotic sum

Φ ∼
∞∑

j=0

(−1)jP j+1

(with ∼ denoting equivalence modulo smoothing operators). We want to show the
behaviour of potentials with respect to P . The same method applies for P j+1 for
arbitrary j ∈ N; then, since ordP j+1 → −∞ for every finite part of asymptotic
expansions it suffices to look at a finite number of j. In other words, it is enough to
discuss ∆− 1 with its inverse P .

Let us write points in R3 as (x, y) for x = (x1, x2) ∈ R2, y ∈ R. Set

a(η) := ∆2 − |η|2 − 1

for ∆2 := ∂2

∂x2
1

+ ∂2

∂x2
2
. Then a(η) is an operator-valued symbol

a(η) : Hs(R2) → Hs−2(R2)

which is invertible for every η ∈ R, and we have

∆− 1 = Opy(a) and P = Opy(p)

for p(η) = (∆2 − |η| − 1)−1. Let us now fix an 0 < ε < 1
2 and set s = 2− ε. The space

H2−ε(R2) can be written as a direct sum

H2−ε(R2) = H2−ε
0 (R2) + V (η) (55)

for every η ∈ R, where H2−ε
0 (R2) = {u ∈ H2−ε(R2) : u(0) = 0} and V (η) =

{c[η]ω([η]x) : c ∈ C} where ω is any fixed element of C∞0 (R2) with ω(0) 6= 0. The map

k(η) : c → c[η]ω([η]x)

represents a potential symbol of the class S0
cl(R;C,S(R2)), cf. Definition 1.3 (iii), and

we have H2−ε(R3) = W2−ε(R,H2−ε
0 (R2)) + imK, where K is the potential operator

K = Opy(k) : H2−ε(R) →W2−ε(R,H2−ε(R2)).

Let us form the families of isomorphisms

(a(η) a(η)k(η)) :
H2−ε

0 (R2)
⊕
C

→ H−ε(R2),
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(1 k(η)) :
H2−ε

0 (R2)
⊕
C

→ H2−ε(R2).

Then we have a(η) == (a(η) a(η)k(η)) (1 k(η))−1. Let us set K := (1 K), i.e.,
K = Opy(1 k(η)). Then we obtain isomorphisms

K−1 = Opy

(
(1 k(η))−1

)
: W2−ε(R,H2−ε(R2))

∼=−→
W2−ε(R,H2−ε

0 (R2))
⊕

H2−ε(R)
,

(∆− 1)K = Opy(a(η) a(η)k(η)) :
W2−ε(R,H2−ε

0 (R2))
⊕

H2−ε(R)

∼=−→ H−ε(R3). (56)

Writing ∆− 1 = (∆− 1)KK−1 it follows that P = K(K−1P ).
We now concentrate on the operator (56) and express its inverse K−1P . First note

that it is an elliptic element in the edge calculus with edge R and model cone R2\{0}.
Let us rewrite (56) in terms of edge Sobolev spaces, using the identifications

H2−ε
0 (R2) = K2−ε,2−ε(R2\{0}), H−ε(R2) = K−ε,−ε(R2\{0}),

cf. Proposition 3.4. Then (56) takes the form

A :
W2−ε,2−ε((R2\{0})× R)

⊕
H2−ε(R)

→W−ε,−ε((R2\{0})× R).

The amplitude function of A is a row matrix as in (56) with

a(η) = r−2

((
r

∂

∂r

)2

+
∂

∂φ2
− r2|η|2 − r2

)

as the first component.
It belongs to the edge algebra and has constant coefficients with respect to the

edge variables y. It is invertible as an operator function

(a(η) a(η)k(η)) :
K2−ε,2−ε(R2\{0})

⊕
C

→ K−ε,−ε(R2\{0}),

for all η ∈ R, and its homogeneous principal part (which is the principal edge symbol
σ∧(A)(η)) is invertible between those spaces for all η 6= 0. Under these circumstances,
as is known from abstract pseudo-differential operators with operator-valued symbols,
the inverse has the form

A−1 = Op
(
(a(η) a(η)k(η))−1

)

which is equal to K−1P and has the form of a column matrix A =
(

B
T

)
. The

operator A−1 belongs to the edge algebra (with constant discrete asymptotics) because
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the inverse of an elliptic and invertible edge symbol is again an edge symbol (of opposite
order). The behaviour of asymptotics under the map

A−1 : W−ε,−ε
P0

((R2\{0})× R) →
W2−ε,2−ε

Q0
((R2\{0})× R)
⊕

H2−ε(R)

for every constant discrete asymptotic type P0 ∈ As(S1, (−ε, Θ)) with a corresponding
resulting Q0 ∈ As(S1, (2 − ε, Θ)) (for any Θ = (−(k + 1), 0]) follows completely from
the non-bijectivity points of the principal conormal symbol

σMσ∧(A)(z) = z2 + ∂2
φ : Hs(S1) → Hs−2(S1)

with respect to z ∈ C. This was calculated in Section 2.2. Now we apply Theorem 3.1
to the situation as in Section 2.2, i.e., X = S1, (∂X)∧ = R+, and q = 1, s = γ = −ε.
Then, if we denote by B′ the operator which is induced by the first component B of
A−1 on the space

W−ε+ 1
2 ,−ε+ 1

2 (R+ × R) (57)

we obtain by restriction to the corresponding subspace with edge asymptotics a con-
tinuous operator

B′ : W−ε+ 1
2 ,−ε+ 1

2
R (R+ × R) →W2−ε,2−ε

Q ((R2\{0})× R)

for every R ∈ As(−ε + 1
2 ,Θ) with a corresponding Q ∈ As(S1, (2− ε, Θ)).

Let us now return to P = KA−1 = B + KT for K = (1 K) which defines a
continuous operator

P : W−ε,−ε((R2\{0})× R) →W2−ε,2−ε((R2\{0})× R) + K(H2−ε(R)).

Similarly as before we form P ′, the operator on the space (57) induced by P . Then,
summing up, we obtain the following result:

Theorem 3.5 The potential with respect to P of edge distributions on the half-
plane R+ × R 3 (r, y) in R3 with asymptotics of type R ∈ As(−ε + 1

2 ,Θ) for r → 0
defines a continuous operator

P ′ : W−ε+ 1
2 ,−ε+ 1

2
R (R+ × R) →W2−ε,2−ε

Q ((R2\{0})× R) + K(H2−ε(R))

for a resulting asymptotic type Q ∈ As(S1, (2 − ε, Θ)). Here K(H2−ε(R)) consists of
all u ∈ H2−ε(R3) of the form

{F−1
η→y v̂(η)[η]ω([η]x) : v(y) ∈ H2−ε(R)}

(cf. the general shape of edge asymptotics of Remark 1.10)

The method of this section to calculate asymptotics of potentials can be generalised
to arbitrary elliptic equations (and systems) in Rm, using a result of [7] on the edge
algebra structure of elliptic operators with respect to a (smooth) hypersurface of any
codimension in Rm. In the case of non-constant coefficients we can either apply the
concept of continuous asymptotics, or if the non-bijectivity points of conormal symbols
remain fixed along the edge, the notion of asymptotics as discussed in Section 3.2.
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