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Abstract:
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Introduction

We consider the equation

Au(x) : = c0(x)u(x)

+
c1(x)

πi

1∫

0

u(y)dy

y − x
+

1∫

0

r

(
x

y

)
u(y)

dy

y
+

1∫

0

k(x, y)u(y)dy = f(x) , (0.1)

x ∈ = , k(x, y) =
k0(x, y)

|x− y|µ with k0 ∈ C(=× =), 0 < µ < 1 .(0.2)

Here c0, c1 are continuous functions on the unit interval = = [0, 1]; the kernel r and its
derivative have the following estimates: there exist γ0, γ1 ∈ IR := (−∞,∞) such that

|r(x)| ≤ M1x
γ0(1 + x)γ1 ,

∣∣∣∣∣
d

dx
r(x)

∣∣∣∣∣ ≤ M2x
γ0−1(1 + x)γ1 , 0 < x < ∞ ,

γ0 + γ1 < −ν0 < γ0 , for some 0 < ν0 < 1
(0.3)

and some constants M1,M2 > 0. Conditions(0.2) and (0.3) ensure the boundedness of
the operator A in the weighted Lebesgue space Lp,α,β(=) = Lp(=, %) with the weight

%(x) := xα(1− x)β ,

where
1

p
+ α = ν0 , 0 < ν1 :=

1

p
+ β < 1 , 1 < p < ∞ ;

(0.4)

the space is equipped with the norm

‖ϕ‖p,α,β =




1∫

0

|xα(1− x)βϕ(x)|pdx




1
p

, ‖ϕ‖p := ‖ϕ‖p,0,0

(see Lemma 1.5).
To justify restrictions on the kernel (0.3) let us mention that almost all kernels of

equations like (0.1) arising in applications, satisfy conditions (0.3). Let us recall one
particular but important subclass of equations (0.1)–singular integral equations with
fixed singularities:

Au(x) := c0(x)u(x)

+
c1(x)

πi

1∫

0

u(y)dy

y − x
+

N∑

k=0

ck+2x
nk

πi

1∫

0

yk−nku(y)dy

(y + x)k+1
+

1∫

0

k(x, y)u(y)dy

= f(x) for x ∈ = with 0 ≤ nk ≤ k. (0.5)

Such equations occur frequently in applications (see e.g. [9, 10, 12, 13, 32, 34, 40,
63]). These applications stimulated investigations of equation (0.1) in two directions:
solvability (Fredholm theory) and approximation methods. The solvability theory in
weighted Lebesgue and Lebesgue–Sobolev spaces, including index formulae as well as
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explicit solutions to characteristic equations, is rather complete (see [12, 13, 20, 37]).
A profound investigation of the asymptotics of solutions of these equations and of
pseudo–differential equations of Mellin type, was presented in [20]. Many of the above
mentioned particular results have already been applied to elasticity problems and other
problems of mathematical physics (see [9, 11, 12, 13, 20, 32, 34, 38, 63]).

Equations (0.1), (0.5) belong to the class of convolution equations (or Mellin con-
volution equations [5, 12, 27, 48], or Mellin pseudodifferential equations) of order 0
(see [20, 37]). In their recent book [27], R.Hagen, S.Roch and B.Silbermann presented
a systematic study of the spectral theory of approximation methods for convolution
equations with the help of Banach algebra techniques, covering almost all known re-
sults in the subject, essentially generalizing and extending them. We refer the reader
to this book and to [49] for an exhaustive account of the history of the subject and its
present state of art.

In [30, 31], a collocation quadrature method was developed for equation (0.5) in
the special case c0(x) ≡ 0, c1(x) ≡ 1 with arbitrary c2 and ck = 0 for k ≥ 3.

Approximation schemes for the formulation of computational methods have been
developed intensively and mostly either for singular integral and integro–differential
equations of Cauchy type or for a pure Mellin convolution equation with continuous
symbol (i.e. without the Cauchy kernel, c1(x) ≡ 0 in (0.1)) except in [27] and several
papers which will be mentioned below. For corresponding collocation methods we refer
the reader to [1, 2, 6, 7, 8, 9, 10, 11, 19, 21, 22, 42, 43, 47, 48, 49, 52, 53] which is only
a part of the vast amount of work devoted to that topic.

In our investigations we shall take advantage of the following particular smooth
(sigmoidal) transformation

σθ(x) :=
xθ

xθ + (1− x)θ
, 0 ≤ x ≤ 1, 0 < θ < ∞ , (0.6)

which is a C∞−diffeomorphism of the unit interval σθ : = → = (for other sigmoidal
transformations see [17]) and which has the following almost obvious properties:

σθ(σ 1
θ
(x)) ≡ x , Dkσθ(x) = Ø

(
xθ−k

)
for x → 0, 0 ≤ k ≤ θ

σθ(x) = 1 + Ø
(
(1− x)θ

)

Dmσθ(x) = Ø
(
(1− x)θ−m

)


 for x → 1, 1 ≤ m ≤ θ

σθ(x) + σθ(1− x) ≡ 1 for 0 ≤ x ≤ 1 ,

(0.7)

where

Dmϕ(x) :=
dm

dxm
ϕ(x). (0.8)

The advantages of the transformation σθ(x) and of similar ones were exploited in
[17, 18, 36] to solve a pure Mellin convolution equation (i.e. equation (0.1) with c1(x) ≡
0) approximately; the same method was applied in [42, 50] to the solution of equations
(0.1) in L2(=) spaces by quadrature methods.
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To illustrate the advantage of such a transformation, let us consider the following
approximation of an integral by the Euler–Maclaurin formula (see [18, 36]):

I(ϕ) :=

1∫

0

ϕ(y)dy , ϕ(x) = x−δ0(1− x)−δ1ϕ0(x) ,

with 0 ≤ δ0, δ1 < 1 , xk(1− x)kDkϕ0 ∈ C(=) . k = 1, 2, ..., 2m− 1

(0.9)

for some m ∈ IN. If we fix

θ >
2m

min{1− δ0, 1− δ1} , (0.10)

and write in the integral y = σθ(x), we find

I(ϕ) =

1∫

0

ϕθ(y)dy , ϕθ(x) := σ′θ(x)ϕ (σθ(x)) ,

where

Dkϕθ(0) = Dkϕθ(1) = 0 for k = 1, 2, ..., 2m−1 and

1∫

0

∣∣∣D2m+1ϕθ(y)
∣∣∣ dy < ∞ .

Now we have a higher precision trapezoidal (Euler–Maclaurin) formula

I(ϕ) =
1

n

n−1∑

j=1

ϕθ

(
j

n

)
+ Rn(ϕ) =

n−1∑

j=1

σθ,n,jϕ (xθ,n,j) + Rn(ϕ) (0.11)

where σθ,n,j :=
1

n
σ′θ

(
j

n

)
, xθ,n,j := σθ

(
j

n

)
,

with the error estimate

|Rn(ϕ)| ≤ M

n2m+1

1∫

0

∣∣∣D2m+1ϕθ(y)
∣∣∣ dy .

It is clear that (0.11) exploits nothing but a mesh refinement near the singular
points of the integrand: the sigmoidal transformation squeezes the underlying interval
towards the endpoints and suppresses the singularities of the integrand. The quadra-
ture approximation in [18, 19, 36, 42, 50] is based on formula (0.11).

We shall exploit the singularity suppression property of the sigmoidal transforma-
tion (0.6): we change the variables x = σθ(t), y = σθ(τ) in equation (0.1), replace the
unknown function

u (σθ(τ)) by τ−(θ−1)α(1− τ)−(θ−1)β [σ′θ(τ)]
− 1

p ϕ(τ) ,

introducing a new unknown ϕ, and multiply both sides of the equation by t(θ−1)α(1−
t)(θ−1)β [σ′θ(t)]

1
p (see (1.13)). The transformed equation will be equivalent to the original
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one in the space Lp,α,β(=), but will have smoother solutions in the weighted Lebesgue–
Sobolev spaces, provided that the right–hand side of the equation has appropriate
smoothness (see Theorem ??). This ensures a–priori smoothness of a solution and
consequently better convergence for the spline collocation and quadrature methods.

In Theorem ?? we formulate a criterion for the convergence of the spline collocation
method for the transformed equation in a weighted Lebesgue space. The criterion
contains certain indefiniteness due to the presence of a compact operator which cannot
be identified exactly. In the case when the Cauchy kernel is absent, the convergence
holds in a weighted Lebesgue–Sobolev space. In Theorem ?? we formulate necessary
conditions for such convergence, which is a direct consequence of Theorem ?? and of
Theorem ??.

Theorem ?? deals with the criterion for the stability of the spline collocation method
in weighted Hilbert and Hilbert–Sobolev spaces. There we prove that for a Mellin con-
volution equation with a locally strongly elliptic symbol the spline collocation method
is stable. The proof applies the techniques developed in [2, 10, 27, 48, 56].

Our assertions on spline collocation are formulated regardless of the spline orders
(see Theorems ??, ?? and ??), whilst we know well that the stability conditions differ
for the odd and even order splines (see [1, 53]). This independence is due to the choice
of the collocation points: for the odd order splines we choose mid–point collocation,
while for the even order splines–the break–point collocation, as proposed in [27] (see
Section 2).

In what follows we outline the results. An extended version of the paper, with
complete proofs, will appear elsewhere.

Acknowledgements: The authors express their gratitude to Prof. M.Costabel,
who participated in preparing the first version of the present paper which was already
available in the Spring of 1986 and Prof. Prößdorf, Drs. J.Elschner, A.Rathsfeld,
S.Roch and G.Schmidt for their critical and helpful remarks which helped to improve
earlier versions.

1 Formulation of the main results

1.1 Solvability of Mellin convolution equations

Let us start by defining the symbol of equation (0.1) (and of (0.5)) which governs
Fredholm properties and the index of the equation.

With the operator A in (0.1) and a pair (ν0, ν1) satisfying (0.3)–(0.4) we associate
the symbol Aν0,ν1(ω) for ω ∈ R := =× IR, defined as follows:

Aν0,ν1(ω) :=





c0(0) + c1(0) coth π(iν0 − λ) + Mr(ν0 − iλ),
ω = (0, λ) ∈ {0} × IR,

c0(x) + c1(x) sgn x , ω = (x, λ) ∈ (0, 1)× IR,
c0(1)− c1(1) coth π(iν1 + λ) , ω = (1, λ) ∈ {1} × IR,

(1.1)
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where Mr(z) denotes the Mellin transform of the kernel r,

Mr(z) :=

∞∫

0

tzr(t)
dt

t
, and z = ν0 − iλ , λ ∈ IR . (1.2)

Due to conditions (0.3) the symbol Mr(ν0− iλ) has the bounded total variation on IR
(see Lemma 2.3 and Theorem 2.4 below) and is analytic in some strip ν−0 < ν0 < ν+

0 ;
moreover, the operator A is of the class OPΣ0

ν−0 ,ν+
0
(=) introduced in [20, Sect.4]; for

such operators one finds there an explicit asymptotic behaviour of a solution in the
vicinity of x = 0, x = 1 (see Theorem 1.3 below).

If the symbol Aν0,ν1(ω) is elliptic, i.e. if

inf {|Aν0,ν1(ω)| : ω ∈ R} > 0 (1.3)

we can define the index of the symbol

ind Aν0,ν1 :=
1

2π

[
arg

Aν0,ν1(x, +1)

Aν0,ν1(x,−1)

]

x∈=
+

1

2π

[
arg

Aν0,ν1(0, λ)

Aν0,ν1(1, λ)

]

λ∈IR

. (1.4)

Since the limits

lim
λ→±∞

coth π(iν0 + λ) = ±1, k = 0, 1, lim
λ→±∞

Mr(ν0 − iλ) = 0

exist it is easy to ascertain that ind Aν0,ν1 gives the winding number of the continuous
curve {Aν0,ν1(ω) : ω ∈ R} on the complex plane C around the origin 0 ∈ C and is
integer–valued.

For equation (0.5) the Mellin transform of the kernel Mr(z) in can be written
explicitly:

Mr(z) =
m∑

k=0

(−1)kck+2

(
z + nk − 1

k

)
1

sinh π(z + nk)
(1.5)

(see [12, Section 8]).
The next theorem was proved in [12] (see also [5, 27]).

Theorem 1.1 Equation (0.1) is Fredholm in the space Lp,α,β(=) if and only if the
symbol A 1

p
+α, 1

p
+β(ω) is elliptic (see (1.3)) and, if this is the case,

Ind A = − ind A 1
p
+α, 1

p
+β. (1.6)

Remark 1.2 If k(x, y) ≡ 0 and c0(x) ≡ c0, c1(x) ≡ c1 are constant, then either the
homogeneous equation

Au = 0

or the conjugate homogeneous one,

A∗ψ = 0, ψ ∈ L∗p,α,β(=) = Lp′,−α,−β(=)

have only the trivial solution: either u = 0 or ψ = 0.
Both solutions are trivial u = ψ = 0 iff ind A 1

p
+α, 1

p
+β = 0.
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Consider the operator

Vθ,ν0,ν1ϕ(x) := x(θ−1)ν0(1− x)(θ−1)ν1 [σ′θ(x)]
1
p ϕ (σθ(x)) , x ∈ = , 0 < θ < ∞ , (1.7)

where µ0, µ1 ∈ IR and σθ(x) is the sigmoidal transformation from (0.6); then

Vθ,µ0,µ1V 1
θ
,µ0,µ1

ϕ = vθ,µ0+µ1ϕ ,

vθ,µ(x) : =
[
xθ + (1− x)θ

](1− 1
θ )µ 6= 0, vθ,µ(0) = vθ,µ(1) = 1 .

Therefore

V −1
θ,µ0,µ1

ϕ(x) =
1

vθ,µ0+µ1

(
σ 1

θ
(x)

)V 1
θ
,µ0,µ1

ϕ(x) = v 1
θ
,−µ0−µ1

(x)V 1
θ
,µ0,µ1

ϕ(x) (1.8)

and the mappings
Vθ,α,β, V −1

θ,α,β : Lp,α,β(=) → Lp,α,β(=) (1.9)

are automorphisms of the Banach space Lp,α,β(=).
Let m ∈ IN0 := {0, 1, ...} and J ⊂ IR be an interval (J = =, J = IR or

J = IR+ := [0,∞)); let %(x) be a locally integrable non–negative weight function on J
(i.e. %(x) ≥ 0 is integrable on each compact subset of J ). Then, similarly to Lp(=, %)
defined in the Introduction, we define the following Lebesgue space with the weight

Lp(J , %) :=





ϕ(x) : ‖ϕ |Lp(J , %)‖ =




∫

J
|%(x)ϕ(x)|pdx




1
p

< ∞





.

Let further

Cm(J ) :=
{
ϕ ∈ C(J ) : Dkϕ ∈ C(J ), k = 1, ...m

}
,

Wm
p (J , %) :=

{
ϕ ∈ Lp(J , %) : Dkϕ ∈ Lp(J , %), k = 1, ...m

}
,

(1.10)

where the derivatives Dkϕ ∈ Lp(J , %) are understood in the sense of distributions and
Wm

p (J , %) is called the Lebesgue–Sobolev space with a weight.
If J = = and %(x) is defined as in (0.4), we shall use the notation Wm

p,α,β(=) and
if J = IR+ , %(x) = xα, we shall write Wm

p,α(IR+). If %(x) ≡ 1 we shall write Wm
p (J )

rather than Wm
p (J , 1).

We need the following spaces:

W̃m
p (=, %) = W̃m

p,α,β(=)

: =
{
u ∈ Wm

p,α,β(=) : Dku(0) = Dku(1) = 0 , k = 0, 1, . . . , m− 1
}

,

W̃m
p (IR+, xα) = W̃m

p,α(IR+) (1.11)

: =
{
u ∈ Wm

p,α(=) : Dku(0) = 0 , k = 0, 1, . . . , m− 1
}

.
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Due to the embeddings

W̃m
p,α,β(=) ⊂ Cm−1(=) , W̃m

p,α(IR+) ⊂ Cm−1(IR+) , W̃m
p (IR) ⊂ Cm−1(IR) , (1.12)

which are almost trivial cases of Sobolev’s lemma (see [61, Section 28.1, Remark 2]),
the values Dku(j), k = 1, . . . ,m− 1 , j = 0, 1 in (1.11) are well–defined.

The norms in these spaces are defined as follows:

‖ϕ‖(m)
p,α,β = ‖ϕ | W̃m

p,α,β(=)‖ :=
m∑

k=0

‖Dkϕ |Lp,α,β(=)‖ ,

‖ϕ‖(m)
p,α,β = ‖ϕ |Wm

p,α,β(=)‖ := inf

{
m∑

k=0

‖Dkϕ̃ |Lp,α,β(IR)‖ : ϕ̃ ∈ Wm
p,α,β(IR)

}
,

where the infimum is taken over all possible extensions ϕ̃ ∈ Wm
p,α,β(IR) (see e.g. [61]).

The norms in Wm
p,α(IR+) and in W̃m

p,α(IR+) are defined similarly.
Due to (1.9) the next equation is equivalent to (0.1) in the space Lp,α,β(=):

A0ϕ(x) = Vθ,α,βAV −1
θ,α,βϕ(x) = c0,θ(x)ϕ(x)

+
c1,θ(x)

πi

1∫

0

(
x

y

)(θ−1)α (
1− x

1− y

)(θ−1)β [
σ′θ(x)

σ′θ(y)

] 1
p σ′θ(y)

σθ(y)− σθ(x)
ϕ(y)dy

+

1∫

0

(
x

y

)(θ−1)α (
1− x

1− y

)(θ−1)β [
σ′θ(x)

σ′θ(y)

] 1
p

r

(
σθ(x)

σθ(y)

)
σ′θ(y)

σθ(y)
ϕ(y)dy (1.13)

+

1∫

0

(
x

y

)(θ−1)α (
1− x

1− y

)(θ−1)β [
σ′θ(x)

σ′θ(y)

] 1
p σ′θ(y)k0,θ(x, y)

|σθ(y)− σθ(x)|µ ϕ(y)dy

= f0(x), x ∈ = ,

cj,θ(x) : = cj(σθ(x)), k0,θ(x, y) := k0(σθ(x), σθ(y)) ,

u = V −1
θ,α,βϕ, , ϕ = Vθ,α,βu , f0 = V −1

θ,α,βf (1.14)

(see (1.7), (1.8)).

Theorem 1.3 Let (0.3) hold for all ν0 ∈ [ν−0 , ν+
0 ], where 0 < ν−0 < ν+

0 < 1 and:

(i) there exist 0 < ν−1 < ν+
1 < 1 such that the symbol Aν0,ν1(ω) of equation (0.1) is

elliptic for all ν−0 < 1/p + α = ν0 < ν+
0 and ν−1 < 1/p + β = ν1 < ν+

1 ;

(ii) xα′+k(1 − x)β′+kDk
xf ∈ Lp(=) for some α′ < α, β′ < β and all k = 0, 1, ..., m,

m ∈ IN;

(iii) c0, c1 ∈ Cm(=) and xk(1− x)kDk
xk0(x, y) ∈ C(=× =) for all k = 0, 1, ..., m;

(iv) θ(νj − ν−j ) > m for j = 0, 1.

Then all solutions ϕ ∈ Lp,α,β(=) of equation (1.13) belong to the space W̃m
p,α,β(=).
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Proof: As already mentioned due to (1.9), equations (0.1) and (1.13) are equivalent.
Therefore, due to the condition (iv), the inclusion ϕ ∈ W̃m

p,α,β(=) will follow if

xα′′+k(1− x)β′′+kDk
xu ∈ Lp(=) for some α′′ < α, β′′ < β

and all k = 0, 1, ...,m.
(1.15)

The symbols Aν0,ν1(0, λ) and Aν0,ν1(1, λ) are analytic and elliptic (non–vanishing)
in strips {ν0 − iλ : ν−0 < ν0 < ν+

0 , λ ∈ IR} ⊂ C and in {ν1 − iλ : ν−1 < ν1 < ν+
1 , λ ∈

IR} ⊂ C respectively.
The claimed inclusion (1.15) follows from [20, Theorem 4.10] and conditions (ii),

(iii) of the theorem. 2

Remark 1.4 The foregoing theorem exploits very rough asymptotic property of solu-
tions to equation (0.1) which, neverthless, suit our purposes: now we are able to apply
the spline collocation method to the equation provided the right–hand side function f(x)
is chosen properly and the solution is continuous.

For more refined asymptotic analyses we refer the reader to [20].

1.2 Spline collocation

Next we shall recall some well–known definitions and properties of smoothest polyno-
mial splines from [3, 4, 27, 55]. More about splines will be exposed in Section 3.

Let

Φ0(x) = χ[− 1
2
, 1
2 ]

(x) :=





1 if |x| ≤ 1

2
,

0 elsewhere ,
(1.16)

where χ[c,d](x) denotes the characteristic function of the interval [c, d] ⊂ IR and

Φm(x) := Φ0 ∗ Φm−1(x) = Φm−1 ∗ Φ0(x) =
∞∫
−∞

Φm−1(x− y)Φ0(y)dy

=

1
2∫

− 1
2

Φm−1(x− y)dy, m = 1, 2, ..., x ∈ IR .
(1.17)

From (1.17) it follows that Φm ∈ Cm−1
0 (IR), has piecewise–constant m−th derivative

Dm
x Φm(x) and

supp Φm =
[
−m + 1

2
,
m + 1

2

]
. (1.18)

For a fixed integer n ∈ IN we define

S(n)
m (=) := span

{
Φm,[m

2 ]+1, . . . , Φm,n−[m
2 ]−1

}
,

where Φ
(n)
mj(x) := Φm(nx− j), j ∈ ZZ := {0,±1, . . .} ,

(1.19)

and [ν] ∈ ZZ denotes the largest integer less or equal to ν ∈ IR.
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The space S(n)
m (=) is

(
n− 2

[
m
2

]
− 1

)
−dimensional and spanned by those splines

which are supported inside the interval = (see (1.18)).
The approximating power of smoothest polynomial splines is well–known:

dist W r
2 (=)(ϕ, S(n)

m (=)) : = inf
{
‖(ϕ− ψ)|W r

2 (=)‖ : ψ ∈ S(n)
m (=)

}

≤ Cnr−s‖ϕ|W s
2 (=)‖ provided 0 ≤ r < m +

1

2
, r ≤ s

where the constant C is independ of ϕ ∈ W s
2 (=) and n (see [49, Chapter 2, Theorem

2.26]). The approximation becomes better (i.e. converges faster) if special graded
meshes are chosen (see e.g. xθ,j,n in (0.11) and cf. [4, 21, 55], [49, Chapter 5, Lemma
5.23]).

Lemma 1.5 If

gm(η) :=
∞∑

j=−∞
Φm(j) exp(iηj) = Φm(0) +

[m+1
2 ]∑

j=1

Φm(j) cos(ηj) , (1.20)

then
gm(η) 6= 0 for all 0 ≤ η ≤ 2π and all m ∈ IN0 . (1.21)

Proof. See [58, Theorem 2.2] and [39].
Thus, we can define the Fourier coefficients

(
g−1

m

)
k

: =
1

2π

2π∫

0

exp(iηk)dη

gm(η)
, k ∈ ZZ := {0,±1, . . .} ,

1

gm(η)
=

∞∑
j=−∞

(g−1
m )k exp(iηk) , 0 ≤ η ≤ 2π.

(1.22)

Consider the operators

P̂
(n)
=,mϕ(x) : =

n−m0∑
j,k=m0

(g−1
m )j−k ϕ

(
k

n

)
Φ

(n)
mj(x) ,

P̂
(n)
=,m : W k

p,α(=) → S(n)
m (=) ,

(1.23)

where k = 1, . . . , m , n = 1, 2, . . . , m0 :=
[
m

2

]
+ 1.

P̂
(n)
=,m are quasi–projections

(
P̂

(n)
=,m

)2
ϕ(x) = P̂

(n)
=,mϕ(x) provided

m0

n
< x < 1− m0

n
, (1.24)

but fail to be projections since (1.24) holds not for all x ∈ (0, 1), unless m = 0, 1 (see
Section 3 for details).

Let us look for an approximate solution of equation (1.13) in the form

A(n)
0,mϕ(n)

m = f
(n)
0,m , ϕ(n)

m ∈ S(n)
m (=) , (1.25)
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where (cf. (1.23))

f
(n)
0,m := P̂

(n)
=,mf0, A(n)

0,m := P̂
(n)
=,mA0

∣∣∣
S

(n)
m (=)

.

Equation (1.25) can be rewritten as an equivalent (n−2m0 +1)× (n−2m0 +1) system
of linear algebraic equations

c0,θ

(
j

n

)
ϕ

(
j

n

)
+

n−m0∑

k=m0

b
(n)
m,j,kϕ

(
k

n

)
= f0

(
j

n

)
, j = m0, . . . , n−m0 , (1.26)

where

b
(n)
m,j,k : =

n−m0∑

l=m0

(
g−1

m

)
l
d

(n)
m,j,l ,

n−m0∑

j,k=m0

(
g−1

m

)
j−k

ϕ

(
k

n

)
Φ

(n)
mj(x) =: ϕ(n)

m (x)

d
(n)
m,j,l : =

1∫

0

( j
n

y

)(θ−1)α (
1− j

n

1− y

)(θ−1)β [
σ′θ(

j
n
)

σ′θ(y)

] 1
p

[
c1,θ(

j
n
)

πi

σ′θ(y)

σθ(y)− σθ(
j
n
)

+ r

(
σθ(

j
n
)

σθ(y)

)
σ′θ(y)

σθ(y)
+

σ′θ(y)k0,θ(
j
n
, y)∣∣∣σθ(y)− σθ(
j
n
)
∣∣∣
µ


 Φ

(n)
mj(y)dy .

Here we should mention again that we follow [27], choosing the mid–point collo-
cation for odd order splines, while for even order splines we choose the break–point
collocation. This leads to unified formulations of Theorems ??, ?? and ?? in both
cases.

Theorem 1.6 Let m ∈ IN and solutions ϕ ∈ Lp,α,β(=) of equation (1.13) belong to the

space W̃m
p,α,β(=) (see Theorem ??).

For the stability of the approximation (1.25) (i.e. of the approximation (1.26)) of
Equation (1.13) in the space Lp,α,β(=) it is necessary that the following conditions hold:

(i) equation (1.13) has a unique solution in Lm
p,α,β(=) (equivalently: (0.1) has a unique

solution in Lm
p,α,β(=));

(ii) A0(0, 0, λ) := c0(0) + c1(0) cot π( i
p
+ iα + λ) +Mr(1

p
+ α− iλ) 6= 0 for all λ ∈ IR

(see (1.2) for Mr(ω));

(iii) A0(x, µ) := c0(x) + µc1(x) 6= 0 for all 0 ≤ x ≤ 1 and all −1 ≤ µ ≤ 1;

(iv) A0(1, 0, λ) := c0(1)− c1(1) cot π( i
p

+ iβ + λ) 6= 0 for all λ ∈ IR;

(v) [ arg A0(j, µ)]µ∈[−1,1] + (−1)j [ arg A0(j, 0, λ)]λ∈IR = 0 for j = 0, 1.

If, in addition,

c1(x) ≡ 0 and θ

(
γ0 +

1

p
+ α

)
−m ≥ 0 , (1.27)

(i.e. equation (0.1) is pure Mellin convolutional without the Cauchy kernel) then the
conditions (i)–(v) are necessary for the stability of the spline collocation (1.25) in the
Lebesque–Sobolev space W̃m

p,α,β(=).

12



Proof follows directly from Theorems 1.9 and 1.10. 2

In the general case p 6= 2 we have not a transparent criterium for stability of
approximation (1.25) (see Theorem 1.9 below); but the next theorem gives sufficient
conditions for the stability, which are applicable to a wide class of equations arising in
applications.

The symbol Aν0,ν1(ω) (ω ∈ R) of equation (0.1) will be reffered to as locally
strongly elliptic if there exists a continuous function µ(x) (x ∈ =) such that

inf { Re [µ(x)Aν0,ν1(x, λ)] : x ∈ =, λ ∈ IR} > 0 .

An equivalent reformulation of the ”local strong ellipticity” property is the following
local sectorial property: for every x ∈ = there exists a constant γx(Aν0,ν1) ∈ C and
a neighbourhood Ux ⊂ = such that

sup {| arg Aν0,ν1(y, λ)− γx(Aν0,ν1)| : y ∈ Ux , λ ∈ IR} <
π

2
. (1.28)

Theorem 1.7 Let (0.3) hold for all ν0 ∈ [ν−0 , ν+
0 ], where 0 < ν−0 < ν+

0 < 1 and:

(i) there exist 0 < ν−1 < ν+
1 < 1 such that the symbol Aν0,ν1(ω) of equation (0.1) is

locally strongly elliptic for all ν−0 < 1/p + α = ν0 < ν+
0 and ν−1 < 1/p + β = ν1 <

ν+
1 ;

(ii) xν−0 − 1
2
+k(1− x)ν−1 − 1

2
+kDkf ∈ L2(=) for all k = 0, 1, . . . ,m and j = 0, 1;

(iii) c0, c1 ∈ Cm(=) and xk(1− x)kDk
xk0(x, y) ∈ C(=× =) for all k = 0, 1, ..., m;

(iv) θ(νj − ν−j ) > m for j = 0, 1.

(v) equation (0.1) with f=0 (the homogeneous equation) has only the trivial solution
u = 0 in the space L2,α,β(=), where

α = ν0 − 1

2
, β = ν1 − 1

2
. (1.29)

Then the approximation (1.24) of Equation (1.13) is stable in the weighted Hilbert
space L2,α,β(=).

If (1.27) holds the approximation is stable in the Hilbert–Sobolev space W̃m
2,α,β(=) and

the convergence of the approximate solutions ϕ(n)
m to the solution ϕ is quasi–optimal.

That is,

‖(ϕ− ϕ(n)
m )|W̃m

2,α,β(=)‖ ≤ Cinf
{
‖(ϕ− v)|W̃m

2,α,β(=)‖ : v ∈ S(n)
m (=)

}
(1.30)

with some constant C > 0.

Proof will be exposed in Section 4.
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Remark 1.8 Note that conditions (ii)–(v) in Theorem ?? coincide with local strong
ellipticity of the symbol Aν0,ν1(ω) on the set (0, 1]× IR= R\{{0}× IR} even for p 6= 2,
while on the remainder {0} × IR they differ slightly; namely the strong ellipticity at
x = 0 means that the convex hull of the continuous curve

N := {z ∈ Aν0,ν1(0, 0, λ) : λ ∈ IR} ∪ {c0(0) + c1(0)µ : −1 < µ < 1}
in the complex plane C does not contain the origin 0, while the conditions of Theorem
?? state that the curve N does not cross the origin and must have winding number 0.

If, for example, r ≡ 0 (i.e. we have a pure singular integral equation with Cauchy
kernel) then the necessary conditions of Theorem ?? and the sufficient conditions of
Theorem ?? coincide. This case was first treated in [48].

1.3 A criterium for stability

To formulate the conditions for stability of the approximation (1.24) we need some
further definitions.

For a bounded function a ∈ L∞([0, 2π]), the Töplitz operator Ta is composed of the
Fourier coefficients of a(η):

Ta := ‖aj−k‖j,k∈IN , al :=
1

2π

2π∫

0

exp(iηl)a(η)dη , l ∈ ZZ . (1.31)

If lp,α(IN) denotes the Banach space of sequences with the weighted norm

lp,α(IN) :=





ξ = {ξj}∞j=1 : ‖ξ |lp,α(IN)‖ :=



∞∑

j=1

jαp |ξj|p



1
p





, (1.32)

then, according to Stechkin’s theorem(see [5, 12]), the operator

Ta : lp,α(IN) → lp,α(IN)

is bounded provided

a ∈ V1([0, 2π]) , 1 < p < ∞ , 0 <
1

p
+ α < 1 . (1.33)

Here V1(J ) denotes the space of functions with bounded total variation on J ⊂ IR.
For a kernel function r(x) (see (0.1), (0.3), (1.13)) let Gr denotes the discretized

Mellin convolution operator

Gr :=
∥∥∥∥r

(
j

k

)
1

k

∥∥∥∥
j,k∈IN

(1.34)

(see [46, 47, 51] and [27, Section 2.4]). If conditions (0.3) and (0.4) hold, the operator

Gr : lp,α(IN) → lp,α(IN)
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is bounded (see Lemma 2.8 below).
Condition (1.20) ensures that the truncated Töplitz matrices

T
(m0)

g−1
m

: =
∥∥∥∥
(
g−1

m

)
j−k

∥∥∥∥
n−m0

j,k=m0

= Qm0Tg−1
m

Qm0 ,

where Qm0ξ := {0, . . . , ξm0 , . . . , ξn−m0 , 0, . . .} , ξ = {ξj}∞j=1

are all invertible. In fact,

‖Ta |l2(IN)‖ = sup {|a(η)| : 0 ≤ η ≤ 2π} , ‖Qm0 |l2(IN)‖ = 1

(see [5, 25]). Since gm(η) > 0, there exist ε > 0 and µ0 > 0 such that

µ0g
−1
m = 1−

(
1− µ0g

−1
m

)
, sup

{∣∣∣1− µ0g
−1
m (η)

∣∣∣ : 0 ≤ η ≤ 2π
}
≤ 1− ε

Then
∥∥∥
(
I − µ0T

(m0)

g−1
m

)
|Qm0l2(IN)

∥∥∥ =
∥∥∥Qm0

(
I − µ0T

(m0)

g−1
m

)
Qm0 |l2(IN)

∥∥∥

=
∥∥∥ Qm0T

(m0)

1−µ0g−1
m

Qm0 |l2(IN)
∥∥∥ ≤

∥∥∥T (m0)

1−µ0g−1
m
|l2(IN)

∥∥∥ ≤ 1− ε < 1

and µ0T
(m0)

g−1
m

is invertible due to Banach’s theorem.

This invertibility
det T

(m0)

g−1
m

6= 0 (1.35)

is important since ∥∥∥b(n)
mjk

∥∥∥
n−m0

j,k=m0

= T
(m0)

g−1
m

∥∥∥d(n)
mjk

∥∥∥
n−m0

j,k=m0

(1.36)

(see (1.26)).
Obviously, gm ∈ C∞([0, 2π]) and gm(0) = gm(2π) (i.e. gm is periodic). In contrast

to this the functions

am(η) :=
∞∑

k=−∞

exp(iηk)

2πi

m+1
2∫

−m+1
2

Φm(y)dy

y − k
, am ∈ C∞([0, 2π]) (1.37)

are smooth am ∈ C∞([0, 2π]) and non–periodic: am(0) = −1, am(2π) = 1 (see [27,
Section 2.11]).

Theorem 1.9 Let m ∈ IN and solutions ϕ ∈ Lp,α,β(=) of equation (1.13) belong to the

space W̃m
p,α,β(=) (see Theorem ??).

For the stability of the spline collocation method (1.25) (i.e. of (1.26)) in the space
Lp,α,β(=) it is necessary and sufficient that the following conditions hold:

(i) equation (1.13) has a unique solution in Lp,α,β(=) (equivalently: (0.1) has a unique
solution in Lp,α,β(=));
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(ii) A0(0, 0, λ) := c0(0) + c1(0) cot π( i
p
+ iα + λ) +Mr(1

p
+ α− iλ) 6= 0 for all λ ∈ IR

(see (1.2) for Mr(ω));

(iii) the operator
A0(0) := c0(0) + c1(0)Tam + Gr + K (1.38)

is invertible in the space lp,α(IN) with some (unidentified) compact operator K
(see Remark 1.11 below);

(iv) the operator

A0(1) := c0(1)Tgm − c1(0)Tam + Gr + T−1
gm

R0
mTgm (1.39)

with the finite–dimentional projection R0
mξ :=

{
ξ1, . . . , ξm

2
, 0, . . .

}
, ξ = {ξj}∞j=1 is

invertible in lp,α(IN).

If (1.27) holds, the conditions of the Theorem are necessary and sufficient for the
stability of the spline collocation method (1.25) in the Sobolev space W̃m

p,α,β(=) and the
convergence of the approximate solutions is quasi–optimal. That is,

‖(ϕ− ϕ(n)
m )|W̃m

p,α,β(=)‖ ≤ Cinf
{
‖(ϕ− v)|W̃m

p,α,β(=)‖ : v ∈ S(n)
m (=)

}

with some constant C > 0.

Proof see in Section 4.

Theorem 1.10 The operator (1.38) is Fredholm in the space lp,α(IN) if and only if the
following properties hold:

A0(0, µ) 6= 0 , A0(0, 0, λ) 6= 0 , for − 1 ≤ µ ≤ 1 , λ ∈ IR (1.40)

(see Theorem 1.6). If (1.40) is the case, then

Ind A0(0) = − 1

2π
[ arg A0(0, µ)]µ∈[−1,1] −

1

2π
[ arg A0(0, 0, λ)]λ∈IR . (1.41)

The operator (1.39) is Fredholm in the space lp,α(IN) if and only if the following
properties hold:

A0(1, µ) 6= 0 , A0(1, 0, λ) 6= 0 , for − 1 ≤ µ ≤ 1 , λ ∈ IR (1.42)

(see Theorem 1.6). If (1.42) is the case, then

Ind A0(1) = − 1

2π
[ arg A0(1, µ)]µ∈[−1,1] −

1

2π
[ arg A0(1, 0, λ)]λ∈IR . (1.43)

Proof see in Section 4.

Remark 1.11 Theorems 1.9 and 1.10 provide the stability conditions for the spline
collocation method (1.25) generically, since a Fredholm operator with vanishing index
being not invertible is exceptional; but this case still needs a careful treatment. Similar
situations are considered in [27, Chapter 4] and in [45, 46, 50].

In the case when (1.27) holds, i.e. when (0.1) is a pure Mellin convolution equa-
tion without the Cauchy kernel, more precise results can be obtained by invoking the
“singularity cut–off” technique, suggested in [7, 8, 21].
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2 Mellin convolution operators in Sobolev spaces

2.1 Sobolev spaces

The linear space C∞
0 (IR) of infinitely differentiable functions with compact supports

and the linear spaces

C∞
0 (IR+) := {ϕ ∈ C∞

0 (IR) : supp ϕ ∈ (0,∞)} ,

C∞
0 (=) := {ϕ ∈ C∞

0 (IR) : supp ϕ ∈ (0, 1)} ,

are dense in the spaces Wm
p,α(IR), W̃m

p,α(IR+) and in W̃m
p,α,β(=) respectively, provided

(0.4) holds. The conditions in (0.4) ensure the inclusion C∞
0 (IR) ⊂ Wm

p,α(IR) etc. (see
[61]).

The space W̃m
p,α,β(=) can also be defined in a different way by using the equivalent

norm

‖u‖[m]
p,α,β := ‖xα(1− x)βu‖(m)

p =
m∑

k=0

‖Dkxα(1− x)βu‖p , (2.1)

since the following Lemma holds.

Lemma 2.1 The norms (1.12) and (2.1) are equivalent in the space W̃m
p,α,β(=): there

exists a positive constant M such that

M−1‖u‖[m]
p,α,β ≤ ‖u‖(m)

p,α,β ≤ M‖u‖[m]
p,α,β (2.2)

for all u ∈ W̃m
p,α,β(=).

Proof. Let us begin with an estimate between different weighted norms: let 0 <
1/p + ν < 1, ϕ ∈ C∞

0 (=) and n ∈ IN. Then

‖xν−nϕ‖p ≤ Γ(ν + 1− n)

Γ(ν + 1)
‖xνDnϕ‖p . (2.3)

Inequality (2.3) follows from Hardy’s inequality

∞∫

0

|tσ−1f(t)|pdt ≤ σ−p

∞∫

0

|tσf ′(t)|pdt , where 1 < p < ∞, 0 < σ < ∞

(see [28, Theorem 330],[61, Section 3.2.6, Remark 1]). by n successive applications.
The proof of Lemma 2.1 is based on induction. For m = 0, inequality (2.2) becomes

the equality ‖u‖(0)
p,α,β = ‖u‖[0]

p,α,β = ‖u‖p,α,β.
Suppose (2.2) to be valid for m− 1. Then, due to (2.1), we have

‖u‖[m]
p,α,β = ‖u‖[m−1]

p,α,β + ‖Dm%u‖p

≤ M1‖u‖(m)
p,α,β + M2

m∑

k=0




∥∥∥∥∥
%Dku

xm−k

∥∥∥∥∥
p

+

∥∥∥∥∥
%Dku

(1− x)m−k

∥∥∥∥∥
p


 (2.4)
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(see (0.1) for %(x)). To the second terms we apply (2.3):

∥∥∥∥∥%
Dku

xm−k

∥∥∥∥∥
p

≤



1/2∫

0

|xα−m+k(1− x)βDku(x)|pdx




1
p

+




1∫

1/2

|xα−m+k(1− x)βDku(x)|pdx




1
p

≤ M3




1/2∫

0

|xα(1− x)βDmu(x)|pdx




1
p

+ 2m−k‖%Dk‖p,α,β ≤ M4‖u‖(m)
p,α,β .

A similar estimate is valid at the other endpoint x = 1 Hence, the left inequality in (2.1)
is valid. To prove the right inequality, we apply (2.3) successively k times separately
at x = 0 and at x = 1 under assumption that (2.2) is valid for m − 1. After some
calculations we get

‖u‖(m)
p,α,β = ‖u‖(m−1)

p,α,β + ‖%Dmu‖
≤ M‖u‖[m−1]

p,α,β + ‖Dm(%u)−
m∑

k=1

Dk%Dm−ku‖p

≤ (M + 1)‖u‖[m]
p,α,β + M5

m∑

k=1

‖Dk(%Dn−ku)‖p .

(2.5)

Repeating successively the estimate in (2.5) m − 1 times to functions %Dm−ku for
k = 1, 2, . . . , m− 1, we derive the right inequality in (2.2). 2

Similarly to (2.2) it can readily be proved that the norm

‖v‖[m]
p,α =

m∑

k=0



∞∫

0

|Dk[xαv(x)]|pdx




1
p

(2.6)

is equivalent to ‖v‖(m)
p,α for any function v ∈ W̃m

p,α(IR+).

2.2 Properties of the Mellin transform

A further equivalent norm can be introduced for the Hilbert space case, i.e in W̃m
2,α,β(=)

with the help of the Mellin transform (see (1.3) for M):

‖u‖{m}2,α,β : =





∫

IRα−m

(1 + |z|2)m|(Mv0u)(z)|2|dz|

+
∫

IRβ−m

(1 + |z|2)m|(M=v1u)(z)|2|dz|
} 1

2 . (2.7)

Here v0, v1 ∈ C∞(=), v1 = 1 − v0 are cut–off functions with v0(x) = 0 (v0(x) = 1) in
some neighbourhood of x = 1 (of x = 0),

Iv(x) = v(1− x) whereas IRγ :=
1

2
+ γ − iIR =

{
1

2
+ γ − iξ : ξ ∈ IR

}
. (2.8)
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The equivalence of the norms in (2.1) (for p = 2) and in (2.7) is proved in [20, Section
3.4] and can also be derived from the forthcoming Lemma 2.2(b).

Most of the properties of the Mellin transform which are listed in the following
lemma are well–known but dispersed in different publications. We collect them here
for convenient use.

Lemma 2.2 Suppose (2.1) and α′ ∈ IR ; k ∈ IN0 := {0, 1, 2, ...}.
(a) (Parseval’s equality) If u, v ∈ L2(IR

+) then

〈u, v〉 :=

∞∫

0

u(x)v(x)dx =
1

2π

∫

IRO

Mu(z)Mv(z)dz

where IR0 = 1/2− iIR (cf. (2.8)) and M is the Mellin transform (see (1.2)).

(b) Let 0 ≤ k ≤ m and k −m ≤ α′ ≤ 0. Then

M[Dkxα′v](z) =
k∏

j=1

(j − z)Mv(z + α′ − k)

and M[Dkxα′v] ∈ L2(IRα−α′+k−m, (1 + |z|)m−k) for any v ∈ W̃m
2 (IR+, xα).

(c) Assume that

‖r‖(ν) :=

∞∫

0

xν |r(x)|dx

x
< ∞ and 0 < ν −m < 1, m ∈ IN0. (2.9)

Then the operator

Rv(x) :=

∞∫

0

r

(
x

y

)
v(y)

dy

y
(2.10)

is bounded in the space : W̃m
p (IR+, xα) provided α = ν − 1/p. Moreover,

M(Rv)(z) = Mr(z)Mv(z) for v ∈ C∞
0 (IR+)

andM(Rv) ∈ L2(IRα−m , (1 + |z|)m) for anyv ∈ W̃m
2 (IR+, xα) .

(d) The singular integral operator

S(m)

IR+ : W̃m
p (IR+, xα) → W̃m

p

(
IR+, xα(1 + x)−m

)
with

S(m)

IR+ v(x) :=
1

πi

∫

IR+

(
x

y

)m
v(y)dy

y − x
, SIR+ := S(0)

IR+ , 0 < α +
1

p
< 1

(2.11)

is bounded,

M(S(m)

IR+ v)(z) = coth(πiz)Mv(z) for v ∈ W̃m
2 (IR+, xα)

and M(S(m)

IR+ v) ∈ L2(IRα−m) for any v ∈ W̃m
2 (IR+, xα).
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Proof:

(a) Let u, v ∈ C∞
0 (IR+) and recall Parseval’s equality for the Fourier transform; then

〈u, v〉 =

∞∫

−∞
e−

t
2 u(e−t)e−

t
2 v(e−t)dt

=
1

2π

∞∫

−∞

∞∫

−∞
eitλ−λ

2 u(e−λ)dλ

∞∫

−∞
eitλ−λ

2 v(e−λ)dλdt

=
1

2π

∞∫

−∞

∞∫

0

x
1

2−it u(x)
dx

x

∞∫

0

x
1
2
−itv(x)

dx

x
dt

=
1

2π

∫

=0

Mu(z)Mv(z)dz .

Extension to any u, v ∈ L2(IR
+) follows by continuity.

(b) Let u(x) := v(x) := xαu0(x) and u0 ∈ L2(IR
+, xα), then (see (a))

‖Mu0|L2(IRα)‖ = ‖Mu|L2(IR0)‖ = ‖u‖2 = ‖u0‖2,α . (2.12)

Due to (2.1) xn−mDmv ∈ L2(IR
+, xα) for n = 0, 1, . . . , m; therefore,

w0(x) = (Dkxα′v)(x) =
k∑

n=0

cnxα′−(k−n)Dnv(x) =
k∑

n=0

cnx
α′−(k−n)Dnv(x)

xm−n

and since α′− (k−n) ≤ α′ ≤ 0, we have w0 ∈ L2(IR
+, xα). Then Mw0 ∈ L2(IRα)

due to (2.12). Integration by parts gives

M(Dkxα′v)(z) =
k∏

j=1

(j − z)M(xα′v)(z − k) =
k∏

j=1

(j − z)Mv(z + α′ − k) .

If k = m,α′ = 0, this identity reads

M(Dmv)(z) =
m∏

j=1

(j − z)Mv(z −m) ,

and, due to (2.12), Mv ∈ L2(IRα−m , (1 + |z|)m), since Dmv ∈ L2(IR
+, xα) by

definition. This results in

(1 + |z − α′ + k|)m−kM(Dkxα′v)(z − α′ + k)

=

∏k
j=1(j − z + α′ − k)

(1 + |z − α′ + k|)k
(1 + |z − α′ + k|)mMv(z) ∈ L2(IRα−m) ,

since the rational multiplier is bounded. Therefore,

(1 + |z|)m−kM(Dkxα′v)(z) ∈ L2(IRα−α′+k−m) .

20



(c) Let v ∈ C∞
0 (IR+). Integration by parts yields for 0 < k ≤ m

DkRv(x) = Dk



∞∫

0

v(y)
d

dy




y∫

0

r
(

x

t

)
dt

t


 dy




= −Dk



∞∫

0

v′(y)dy

∞∫

x/y

r(τ)
dτ

τ


 = Dk−1

∞∫

0

y

x
r

(
x

y

)
Dv(y)

dy

y

= · · · =
∞∫

0

(
y

x

)k

r

(
x

y

)
Dkv(y)

dy

y
:= (RkDkv)(x) . (2.13)

The kernel r(x) can be approximated by smooth functions in the norm ‖ · ‖(α−m)
0 .

Due to (0.2) and (2.9) this implies r(0) = · · · = Dm−1r(0) = 0. Therefore,

DkRv(0) = (Dkr)(0)

∞∫

0

v(y)

yk

dy

y
= 0 for k = 0, . . . , m− 1 .

Since
‖Rv‖p,α ≤ ‖r‖(α)‖v‖p,α ,

(see [12, Section 12]), we get

‖Rv‖(m)
p,α =

m∑

k=0

‖DkRv‖p,α =
m∑

k=0

‖RkDkv‖p,α

≤
m∑

k=0

‖r‖(α−k)‖Dkv‖p,α ≤ ‖r‖(α−m)‖v‖(m)
p,α .

The boundedness of R in (2.10) follows since C∞
0 (IR+) is dense in W̃m

p (IR+, xα).

Therefore, Rv ∈ W̃m
2 (IR+, xα) for v ∈ W̃m

2 (IR+, xα) and (b) for α′ = k = 0 yields
M(Rv) ∈ L2(IRα−m , (1 + |z|)m).

The identity M(Rv) = Mr · Mv follows immediately from the definitions (0.2)
and (2.10).

(d) From (2.3) we get
∣∣∣∣∣∣

∞∫

0

v(y)

yk+1
dy

∣∣∣∣∣∣
≤

1∫

0

|v(y)|dy

yk+1
+

∞∫

1

|v(y)|dy

yk+1

≤



1∫

0

∣∣∣∣∣
v(y)

yk+1

∣∣∣∣∣
p

dy




1
p

+



∞∫

1

|yαv(y)|pdy




1
p



∞∫

1

y−p′(α+k+1)dy




1
p′

≤ C1‖v‖(m)
p,α for k = 0, . . . , m− 1 and p′ = 1− 1/p .

With the identity

S(m)

IR+ u(x) =
1

πi

∞∫

0

u(y)dy

y − x
−

m−1∑

k=0

xk

πi

∞∫

0

u(y)

yk+1
dy , (2.14)
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and together with the well–known boundedness of the Cauchy singular integral
operator SIR+ = S(0)

IR+ in Lp(IR
+, xα) (see [24, Section 12]) this gives

‖(1 + x)−mS(m)

IR+ v‖p,α ≤ ‖SIR+v‖p,α +
m

π
C1‖v‖(m)

p,α ≤ C2‖v‖(m)
p,α (2.15)

Equation (2.14) can be rewritten in the form

S(m)

IR+ v(x) = SIR+v(x)−
m−1∑

k=0

1

k!
xkDk(SIR+v)(0) , (2.16)

and since
DkSIR+v = SIR+Dkv for v ∈ C∞

0 (IR+) , (2.17)

with (2.16) this yields the existence of Dk(S(m)

IR+ u)(x) and the equations

DlS(m)

IR+ u(0) = 0 for k = 0, 1, . . . , m and l = 0, 1, . . . , m− 1 . (2.18)

The boundedness in (2.11) results from (2.15) and (2.19).

If v ∈ W̃m
2 (IR+, xα) then x−mv ∈ L2(IR

+, xα) and SIR+(y−mv) ∈ L2(IR
+, xα).

If we apply (b), with the choice α′ = k = m = 0, we get

M(S(m)

IR+ v)(·) = M(SIR+y−mv)(·+ m) ∈ L2(IRα−m) and

M(S(m)

IR+ v)(z) = coth πi(z + m)M(y−nv)(z + m)

= coth πizMv(z) ∈ L2(IRα−n, (1 + |z|)m) ,

since coth πiz = coth πi(z −m) is bounded for z ∈ IRα−m and
MSIR+v(z) = coth πizMv(z). 2

Lemma 2.3 Let ν0 ∈ IR and

M1(r) :=
∞∫
0

∣∣∣xν0− 1
2 (i + ln x)r(x)

∣∣∣
2
dx < ∞,

M2(r) :=
∞∫
0

∣∣∣xν0+ 1
2 ln xDr(x)

∣∣∣
2
dx < ∞ ;

(2.19)

then Mr(ν − i·) ∈ V1(IR), where V1(IR) stands for the space of functions with finite
total variation on the entire real line IR.

If, in particular, conditions (0.3) on r(x) hold, then (2.19) holds as well and Mr(ν−
i·) ∈ V1(IR).

Proof. Since

Mr(ω) :=

∞∫

0

tωr(t)
dt

t
, ω = ν0 − iλ ,
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(see (1.2)), we have

(
1

2
− iλ

)
Dλ Mr(ν0 − iλ)− i

(
1

2
− iλ

) ∞∫

0

x
1
2
−iλ−1

[
xν0− 1

2 r(x) ln x
]
dx

= −i

∞∫

0

Dx

(
x

1
2
−iλ

) [
xν0− 1

2 r(x) ln x
]
dx = i

∞∫

0

x
1
2
−iλDx

[
xν0− 1

2 r(x) ln x
]
dx

= i

∞∫

0

x
1
2
−iλ

{
xν0− 1

2

[(
ν0 − 1

2

)
ln x + 1

]
r(x) + xν0+ 1

2 ln xDxr(x)
}

dx

x
=: g(λ).

Then g ∈ L2(IR) due to the Parseval’s equality in Lemma 2.2(a) and to condition
(2.19). Therefore

DλMr(ν − i·) =
(

1

2
− i·

)−1

g(λ) , g ∈ L2(IR)

and, by Schwartz’s inequality,

‖DλMr(ν − i · ‖1 ≤ ‖
(

1

2
− i·

)−1

‖2‖g‖2 ≤ ∞.

Since V1(Mr) ≤ ‖DλMr‖1 < ∞ we have proved the claimed inclusion Mr(ν − i·) ∈
V1(IR). 2

2.3 Mellin convolution operators

Let us start with the boundedness of operator A in (0.1).

Theorem 2.4 Let conditions (0.2)–(0.4) hold with

ν0 =
1

p
+ α−m, m ∈ N0 . (2.20)

If c0, c1 ∈ Cm(=), xj(1− x)jDjk0 ∈ Cm(=×=) , k = 0, 1, · · · ,m (see (0.2)), then the
operator

A : W̃m
p,α,β(=) → Wm

p,α,β(=) , (2.21)

defined in (0.1), is bounded.

Proof. Since DkS=u = S=Dku, where

S=u(x) :=
1

πi

1∫

0

u(y)dy

y − x
, x ∈ = (2.22)

for u ∈ W̃m
p,α,β(=) (see (2.17) and (1.11) and since S= is a bounded operator in Lp,α,β(=),

we have
‖S=u‖(m)

p,α,β ≤ ‖S=‖p,α,β‖u‖(m)
p,α,β .
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Thus, we need to consider the operator R= := R=,o only, where

R=,ku(x) :=

1∫

0

(
y

x

)k

r

(
x

y

)
u(y)

dy

y
for k = 0, 1, . . . , m . (2.23)

Since with (2.13)
DkR=u = R=,kDku for u ∈ W̃m

p,α,β(=) (2.24)

it suffices to show that the R=,k are bounded operators in Lp,α,β(=). For this purpose,
the operator

Zαu(ξ) := e−( 1
p
+α)ξu(e−ξ)

can be applied which defines the isomorphism

Zα : Lp,α,β(=) → Lp(IR
+, (1− e−ξ)β) = Lp(IR

+, ξβ(1 + ξ)−β)

(the spaces coincide since the weights on the right–hand side are equivalent); Zα has
the inverse

Z−1
α v(x) = x−( 1

p
+α)v(− ln x) .

The transformed operator

ZαR=,kZ−1
α v(ξ) =

∞∫

0

gk(ξ − η)v(η)dη with gk(ξ) = r(e−ξ)e(k− 1
p
−α)ξ (2.25)

is a Fourier convolution whose boundedness in the space Lp (IR+, ξβ(1 + ξ)−β) follows,
if the Fourier transformed kernel

Fgk(λ) =

∞∫

−∞
eiλξgk(ξ)dξ =

∞∫

−∞
eiλξ+(k− 1

p
−α)ξr(e−ξ)dξ

= −
∞∫

0

x
1
p
+α−k−iλr(x)

dx

x
= −Mr(

1

p
+ α− k − iλ)

(see ((1.2)) for M) has a bounded variation Fgk ∈ V1(IR)(see [14, Theorem 1] and
[54]). This is guaranteed by Theorem 2.4 since conditions (0.3) and (2.20) hold. 2

Remark 2.5 In Theorem 2.4 we have proved more than claimed: if conditions (0.2),
(0.4), (2.20) hold and the Mellin transfom Mr(ν − iλ) has a bounded variation on
IR (i.e Mr(ν − iλ) ∈ V1(IR)), then operator (0.1) is bounded in Lp,α,β(=) provided
c0, c1 ∈ Cm(=), k0 ∈ Cm(=× =).

Lemma 2.6 If (0.4) and (2.19) hold, then

‖Ru‖p,α,β ≤ M [M1(r) + M2(r)] ‖u‖p,α,β (2.26)

(see (2.10) for Ru) with a constant M independent of u ∈ Lp,α,β(=).
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Proof. Let Zα, gk be as in (2.23)– (2.25) and recall, that

‖ZαR=Z−1
α u‖p,α ≤ M (‖Fg0 |L∞(IR)‖+ V1(Fg1))

(see [14, 55]); since

‖Fg0 |L∞(IR)‖ = sup {|Fg0(λ)| : λ ∈ R} = sup

{∣∣∣∣∣Mr(
1

p
+ α− iλ)

∣∣∣∣∣ : λ ∈ IR

}

≤ ‖t−1(i + ln t)−3‖2M1(r) ≤ M0M1(r) .

we obtain (2.26). 2

Lemma 2.7 Let 1 < p < ∞, 0 < α + 1/p < 1 and γ0, γ1 are such that

0 < α + 1/p + γ0, α + 1/p + γ0 + γ1 < 0 . (2.27)

If a function g(x, y) has the estimate

|g(x, y)| ≤ M

(
x

y

)γ0
(

1 +
x

y

)γ1

, x, y ∈ IR , 0 < M < ∞ , (2.28)

then the operator

Gϕ(x) :=

∞∫

0

g(x, y)ϕ(y)
dy

y
, G : Lp,α(IR+) → Lp,α(IR+) (2.29)

is bounded.

Proof. We shall prove that the operator

Gαϕ(x) :=

∞∫

0

(
x

y

)α

g(x, y)ϕ(y)
dy

y

is bounded in Lp(IR
+), which is, obviously, the same. Let us choose µ = 1/pp′, p′ =

p/(p− 1); applying the Hölder inequality we proceed as follows

‖Gαϕ‖p =



∞∫

0

∣∣∣∣∣∣

∞∫

0

(
x

y

)α

g(x, y)ϕ(y)
dy

y

∣∣∣∣∣∣

p

dx




1
p

≤


∞∫

0



∞∫

0

∣∣∣∣∣

(
x

y

)α

g(x, y)
1

y

∣∣∣∣∣

1
p′+

1
p

|ϕ(y)|dy




p

dx




1
p

≤


∞∫

0



∞∫

0

(
x

y

)α+µp′

|g(x, y)|dy

y




p
p′ ∞∫

0

(
x

y

)α−µp

|g(x, y)||ϕ(y)|p dy

y
dx




1
p
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≤ M



∞∫

0



∞∫

0

(
x

y

)α+ 1
p
+γ0

(
1 +

x

y

)γ1 dy

y




p
p′

×

×
∞∫

0

(
x

y

)α− 1
p′+γ0

(
1 +

x

y

)γ1

|ϕ(y)|p dy

y
dx




1
p

≤ M



∞∫

0

|ϕ(y)|pdy



∞∫

0

tα+ 1
p
+γ0−1 (1 + t)γ1 dt




p
p′ ∞∫

0

tα+ 1
p
+γ0−1(1 + t)γ1dt




1
p

≤ M

∞∫

0

|ϕ(y)|pdy

∞∫

0

tα+ 1
p
+γ0−1 (1 + t)γ1 dt ≤ M1‖ϕ‖p

(see condition (2.27)). 2

Lemma 2.8 Let (2.26) hold and

|r(x)| ≤ Mxγ0(1 + x)γ1 (2.30)

(cf. (0.3),(0.4)). Then the discretized Mellin convolution operator

Gr :=
∥∥∥∥r

(
j

k

)
1

k

∥∥∥∥
j,k∈N

: `p,α(N ) → `p,α(N ) (2.31)

is bounded.

Proof. Let ξ = {ξj}∞j=1 ∈ `p,α(N ) and define

[S(ξ)]p :=
∞∑

j=1

∣∣∣∣∣
∞∑

k=1

(
j

k

)α

r
(

j

k

)
kαξk

x

∣∣∣∣∣
p

.

The lemma would be proved if there is a constant M0, independent of ξ, such that

[S(ξ)]p ≤ Mp
0‖ξ‖p

p,α = Mp
0

∞∑

k=1

|kαξk|p.

From (2.27) we see that γ1 < 0. Choose any 0 < ε < min{−γ − 1, α + 1/p + γ0} (see
(2.27)). Now

[S(ξ)]p ≤ Mp
∞∑

j=1

[ ∞∑

k=1

(
j

k

)α+γ0 (
1 +

j

k

)γ1 kα|ξk|
k

]p

= Mp
∞∑

j=1

jp(α+γ0)

( ∞∑

k=1

(j + k)γ1+2ε

kα+γ0+γ1+1+ε
− kα+ε|ξk|

(j + k)2ε

)p

.

By Hölders inequality we have

[S(ξ)]p ≤ Mp
∞∑

j=1

jp(α+γ0)

( ∞∑

k=1

(j + k)(γ1+2ε)p′

k(α+γ0+γ1+1+ε)p′

)p/p′

×
∞∑

k=1

kp(α+ε)|ξk|p
(j + k)2pε

. (2.32)
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Obviously,

S1(j) :=
∞∑

k=1

(j + k)(γ1+2ε)p′

k(α+γ0+γ1+1+ε)p′ ≤
∞∫

−∞

(j + x)(γ1+2ε)p′

x(α+γ0+γ1+1+ε)p′ dx < ∞

provided

−(α + γ0 + γ1 + ε)p′ > −1 and − (α + γ0 + γ1 − ε)p′ < −1. (2.33)

These inequalities can be equivalently written as follows

α + γ0 + γ1 +
1

p
< −ε < 0 and 0 < ε < α + γ0 +

1

p

and (2.33) follow from (2.27) and choice of ε.
By inserting x = jt we find: there exists a constant A1 such that

S1(j) ≤ Ap′
1 j−(α+γ0+1−ε)p′+1. (2.34)

From (2.32) and (2.34),

[S(ξ)]p ≤ (MA1)
p
∞∑

j=1

jpε−1
∞∑

k=1

kp(α+ε)|ξk|p
(j + k)2pε

= (MA1)
p
∞∑

k=1

kp(α+ε)|ξk|p
∞∑

j=1

jpε−1

(j + k)2pε
.

Define

S2(k) :=
∞∑

j=1

jpε−1(j + k)−2pε.

Arguing as for S1(j) we have

S2(k) ≤
∞∫

p

xpε−1(k + x)−2pεdx

and since pε− 1 > −1 and −1− pε < −1 the integral is finite. By inserting x = kτ we
find: there exists a constant A2 such that

S2(k) ≤ Ap
2k
−pε. (2.35)

Inequality (2.35) yields

[S(ξ)]p ≤ (MA1A2)
p
∞∑

k=1

(kα|ξk|)p,

so that (2.31) follows at once with M0 = MA1A2 and the lemma is proved. 2
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Remark 2.9 It is proved in [46, 47, 51] and in [27, Section 2.47] that the discretized
Mellin convolution operator (1.30) belongs to the Banach algebra generated by Töplitz
operators (1.31) in the space `p,α(N ). We have given the proof of boundedness in
Lemma 2.8 because we have not found a relevant reference for this assertion.

Let us consider the following operators

S̃=,θ,α,βϕ(x) :=
1

πi

1∫

0

(
x

y

)(θ−1)α (
1− x

1− y

)(θ−1)β [
σ′θ(x)

σ′θ(y)

] 1
p σ

′
θ(y)ϕ(y)dy

σθ(y)− σθ(x)
,

S0
IR+,θ,γϕ(x) :=

1

πi

∞∫

0

(
x

y

)(θ−1)( 1
p
+γ)

θyθ−1ϕ(y)dy

yθ − xθ
, (2.36)

R̃=,θ,α,βϕ(x) :=
1

πi

1∫

0

(
x

y

)(θ−1)α (
1− x

1− y

)(θ−1)β [
σ
′
θ(x)

σ
′
θ(y)

] 1
r

r

(
σθ(x)

σθ(y)

)
× σ

′
θ(y)

σθ(y)
ϕ(y)dy,

R0
IR+,θ,γϕ(x) :=

∞∫

0

(
x

y

)(θ−1)( 1
p
+γ)

r




(
x

y

)θ

 ϕ(y)

dy

y
;

we shall use v0 ∈ C∞(=) to denote the cut-off function defined in (2.7) and vt ∈ C∞(=),
0 < t < 1, a similar cut-off function which is equal 1 in some neighbourhood of t ∈ (0, 1)
and vanishes in some neighbourhood of the endpoints 0, 1 ∈ =.

Theorem 2.10 Let conditions (0.3),(0.4) hold. Then operators

S̃=,θ,α,β, R̃=,θ,α,β : Lp,α,β(=) −→ Lp,α,β(=), (2.37)

S0
IR+,θ,γ, R0

IR+,θ,γ : Lp,α(IR+) −→ Lp,α(IR+), (2.38)

are bounded and operators

T0 := v0(S̃=,θ,α,β − S0
=,θ,α)|Lp,α,β(=),

T1 := v0I(S̃=,θ,α,β − S0
=,θ,β)I|Lp,α,β(=),

T2 := vt(S̃=,θ,α,β − SIR)|Lp,α,β(=), (2.39)

T3 := aRIR+,θ,α|Lp,α,β(=),

T4 := (R̃=,θ,α,β − θRIR+,θ,α|Lp,α,β(=)

are all compact in Lp,α,β(=) provided at a ∈ C(=) and a(0) = 0 (see (2.8) for I).

Proof. Clearly

S̃=,θ,α,β = Vθ,α,βS=V −1
θ,α,β, R=,θ,α,β = Vθ,α,βR=V −1

θ,α,β (2.40)

(see (1.7), (1.8)). Since operators S=,R=, V ±
θ,α,β are bounded in Lp,α,β (see (1.9) and

Theorem 2.4), boundedness of operators (2.37) is evident.
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Similarly,
S0

IR+,θ,γ
= Vθ,γSIR+V −1

θ,γ , γ = α, β

R0
IR+,θ,γ

= Vθ,γRIR+V −1
θ,γ ,

(2.41)

where
Vθ,γϕ(x) := x(θ−1)( 1

p
+γ)ϕ(xθ), V −1

θ,γ = V 1
θ
,γ (2.42)

and
Vθ,γ, V

−1
θ,γ : Lp,γ(IR

+) −→ Lp,γ(IR
+) (2.43)

are automorphisms. Operators SIR+ and RIR+ are bounded in Lp,γ(IR
+) (γ = α, β; see

[5, 12, 24] and Theorem 2.4) and boundedness of operators (2.38) is also evident.
Since

σ
′
θ(x) =

θxθ−1(1− x)θ−1

[xθ + (1− x)θ]2
= xθ−1(1− x)θ−1gθ(x), gθ ∈ C∞(=),(2.44)

|σθ(x)− σθ(y)| = |σ′θ(µ0x + (1− µ0)y)||x− y| ≥ C1|x + y|θ−1|x− y|, 0 < c1 < ∞,

the operator

T5ϕ(x) := v0(x)[S=,θ,α,β − S̃0
IR+,θ,α]|Lp,α,β(=)ϕ(x) =

1∫

0

g̃(x, y)ϕ(y)dy,

S̃0
=,θ,αϕ(x) :=

1

πi

1∫

0

(
x

y

)(θ−1)( 1
p
+α)

σ
′
θ(y)ϕ(y)dy

σθ(y)− σθ(x)

has a bounded kernel:

|g̃(x, y)| :=

∣∣∣∣∣∣
v0(x)

πi

(
x

y

)(θ−1)( 1
p
+α)

σ
′
θ(y)

σθ(y)− σθ(x)




(
1− x

1− y

)(θ−1)( 1
p
+α)

gθ(x)

gθ(y)
− 1




∣∣∣∣∣∣

≤ C2
x(θ−1)( 1

p
+α)y(θ−1)( 1

p
+α)(1− y)(θ−1)(1− 1

p
−α)

|x + y|θ−1
≤ C3 < ∞

(recall that 0 < 1
p

+ α < 1). Therefore if we can prove that the operator

T6ϕ = v0(S
0
=,θ,α − S̃0

=,θ,α)ϕ

has a bounded kernel

g6(x, y) =

(
x

y

)(θ−1)( 1
p
+α)

v0(x)

πi

[
σ
′
θ(y)

σθ(y)− σθ(x)
− θyθ−1

yθ − xθ

]
=

=
v0(x)

πi

(
x

y

)(θ−1)( 1
p
+α)

σ
′
θ(y)

σθ(y)− σθ(x)
g1
6(x, y),

g1
6(x, y) := 1−

[
θyθ−1

σθ(y)

σθ(x)− σθ(y)

yθ − xθ
,

]
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compactness of the operator T0 in (2.39) will become evident.
We have lim

y→x
g1
6(x, y) = 0 and

Dxg
1
6(x, y) =

[
θ(θ − 1)yθ−2

σ′θ(y)
− θσ”

θ(y)yθ−1

[σ
′
θ(y)]2

]
σθ(y)− σθ(x)

yθ − xθ

+
θyθ−1

σ′θ(y)

[
σ′θ(y)

yθ − xθ
− [σθ(y)− σθ(x)]θyθ−1

(yθ − xθ)2

]

=

[
θ − 1

y
+ 0(1)− θ − 1

y
+ 0(1)

]
0(1) + 0(1)

[
1

y
+ 0(1)− 1

y
− 0(1)

]
= 0(1);

therefore; g1
6(x, y) ≤ C4|x− y| and we obtain

|g1
6(x, y)| ≤ C4

C1

x(θ−1)( 1
p
+α)y(θ−1)(1− 1

p
−α)(1− y)θ−1

|(x + y)θ−1| ≤ C4

C1

< ∞.

A similar estimates can be applied to the kernel of operator T1 in (2.39).
Now let us consider the operator T2. If

b2(x) := x(θ−1)α(1− x)β[σ
′
θ(x)]

1
p ,

then vtb2 ∈ C∞(=) and

|vt(x)b2(x)− vt(y)b2(y)| ≤ C5|x− y|ṽt

(
x + y

2

)
, (2.45)

where ṽt(x) also vanishes in some neighbourhoods of 0, 1 ∈ =. Since

T2ϕ(x) =

1∫

0

[g1
2(x, y) + g2

2(x, y)]ϕ(y)dy,

g1
2(x, y) =

1

πi

vt(x)b2(x)− vt(y)b2(y)

b2(y)

σ
′
θ(y)

σθ(y)− σθ(x)
,

g2
2(x, y) =

vt(y)

πi

[
σ
′
θ(y)

σθ(y)− σθ(x)
− 1

y − x
+

1

y − x
− θyθ−1

yθ − xθ

]
,

we get, due to (2.44), (2.45),

|g1
2(x, y)| ≤ C5

C1

y(θ−1)(1− y)θ−1ṽt

(
x+y

2

)

π(x + y)θ−1y(θ−1)( 1
p
+α)(1− y)(θ−1)( 1

p
+β
≤ C6, |g2

2(x, y)| ≤ C7,

because,

|vt(y)|
π

∣∣∣∣∣
σ
′
θ(y)

σθ(y)− σθ(x)
− 1

y − x

∣∣∣∣∣ =
|vt(y)

y∫
x
[σ
′
θ(y)− σ

′
θ(t)]dt|

|σθ(y)− σθ(x)||y − x| ≤ C8

y∫
x
(y − t)dt

(y − x)2
≤ 1

2
C8
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and, similarly
|vt(y)|

π

∣∣∣∣∣
1

y − x
− θyθ−1

yθ − xθ

]
≤ C9.

Thus, T2 in (2.39) has a bounded kernel.
If a(x) = 0 in some neighbourhood of 0 ∈ = and r(x) = 0 for sufficiently large

x > N , then compactness of T3 in (2.39) becomes evident, since the operator has a
bounded kernel. If a(x) = 0 only for x = 0 and r(x) 6= 0 for a large x > N , we
can find approximations ‖a − aε|C(=)‖ → 0, M1(r − rε) → 0, M2(rε) ≤ M2(r) (see
(2.19)) where aε(x) and rε(y) vanish for |x| < ε, |x − 1| < ε, |y| > 1

ε
. Due to Lemma

2.6 operators T
(ε)
3 = aεR(ε)

=,θ,α (with the kernel rε) approximate T3 in norm and are
compact; therefore T3 is compact.

Due to a similar property for operator R̃=,θ,α,β we can easily get that operator

R̃=,θ,α,β → R̃=,θ,α, where

R̃=,θ,αϕ(x) =

1∫

0

(
x

y

)(θ−1)( 1
p
+α)

r

(
σθ(x)

σθ(y)

)
ϕ(y)

dy

y
, (2.46)

is compact. Thus, it remains to show that the operator

T ′
4 := (R̃=,θα − R̃IR+,θα)|Lp,α,β(=)

(2.47)

is compact in Lp,α,β(=).
If we recall (0.6) we find

σθ(x)

σθ(y)
=

(
x

y

)θ
hθ(y)

hθ(x)
=

(
x

y

)θ [
1 + (y − x)

h′θ(µ0x + (1− µ0)y)

hθ(x)

]
,

hθ(x) := xθ + (1− x)θ 6= 0, hθ(x) ∈ C∞(=), x, y ∈ =

for some 0 < µ0 < 1. By the same formula for a remainder we get

r

(
σθ(x)

σθ(y)

)
− r




(
x

y

)θ

 = (y − x)g0(x, y),

g0(x, y) =

(
x

y

)θ
h′θ(µ0x + (1− µ0)y)

hθ(x)
×

×r′



(
x

y

)θ [
µ1 + (1− µ1)(y − x)

h′θ(µ0x + (1− µ0)y)

hθ(x)

]
 ;

due to (0.3) g0(x, y) has the following estimates

|g0(x, y)| ≤ M2

(
x

y

)θ (
x

y

)(γ0−1)

1 +

(
x

y

)θ



γ1

= M2

(
x

y

)γ0

1 +

(
x

y

)θ



γ1

. (2.48)
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The operator

V1/θ,αT ′
4Vθ,αϕ(x) =

1∫
0
(y

1
θ − x

1
θ g0(x

1
θ , y

1
θ )ϕ(y)dy

y
=

(Gy
1
θ ϕ)(x)− (x

1
θ ϕ)(x),

where G, Vθ,α are default in (2.29) and (2.42) and g(x, y) = g0(x
1
θ , y

1
θ ), is equivalent to

T ′
4 in Lp,α,β(=) space (see (2.43)) and the kernel function g(x, y) has estimates (2.28)

(cf. (2.48)). Therefore G is bounded in Lp,α,β(=) (see Lemma 2.7). Since x
1
θ vanishes

at 0, the operators Gy
1
θ I and x

1
θ G are compact in Lp,α,β(=) (see a similar proof for T3

above). Thus, T4 is compact in Lp,α,β(=).

Theorem 2.11 Let conditions (0.3), (0.4) hold and

θ(γ0 +
1

p
+ α)−m > 0 for some integer m ∈ N . (2.49)

Then operators R̃=,θ,αβ andR0
IR+,θ,α

in (2.36) are bounded in W̃m
p,α,β(=) and in W̃m

p,α(IR+),

respectively and operators T3 and T4 in (2.39) are compact in W̃m
p,α,β(=) provided a ∈

Cm(=), a(0) = 0.

Proof Boundedness follows from Lemma 2.7 and equality (2.37) since

DkR0
IR+,θ,γϕ(x) =

∞∫

0

(
x

y

)(θ−1)( 1
p
+γ)−k

r




(
x

y

)θ

 ϕ(y)

dy

y
, (2.50)

0 ≤ k ≤ m, ϕ ∈ W̃m
p,α(IR+)

(see (2.13)) and the kernel of the operator DkR0
IR+,θ,γ

satisfies conditions of Lemma 2.7

(see (2.49)). Similarly with the operator R̃=,θ,α,β.
Compactness of T3 and T4 can be proved directly as in the foregoing Theorem

2.11. The assertion can also be derived by an indirect method: it can be proved that
operators R̃=,θ,αβ, R0

IR+,θ,α
are bounded in the Bessel potential spaces H̃m+ε

p,α,β(=) and in

H̃m+ε
p,α (IR+) respectively for some ε > 0 (see [16, 61]); then, by interpolation theorem

for compact operators (see [61]) we get T3, T4 are compact in H̃m
p,α,β(=) = W̃m

p,α,β(=).

Remark 2.12 The operators S̃=,θ,α,β and S0
IR+,θ,γ

are unbounded, in general, in Sobolev

spaces W̃m
p,α,β(=) and in Wm

p (IR+, xγ(1 + x)ν) for any ν ∈ IR, respectively, if m ≥ 1
and θ is large.

We should explain this on the example of the operator S0
IR+,α

: this operator is

bounded in Lp,α(IR+) if and only if

Sθ
IR+ϕ(x) :=

1

πi

∞∫

0

θyθ−1

yθ − xθ
ϕ(y)dy (2.51)
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is bounded in Lp,µ(IR+) = Lp(IR
+, xµ(1 + x)ν) with µ = α + (θ − 1)(1

p
+ α), i.e. iff

−1

p
< µ < θ − 1

p
, −1

p
< µ + ν < θ − 1

p
, (2.52)

since 0 < 1
p

+ α < 1 (see [24, 33] for θ = 1; the case θ 6= 1 is reduced to θ = 1 as in

(2.41), (2.43)).
Integrating by parts we find that

DxS
θ
IR+ϕ(x) = 1

πi
Dx

∞∫
0
Dy ln(yθ − xθ)ϕ(y)dy =

= 1
πi

∞∫
0

(
x
y

)θ−1 θyθ−1

yθ−xθDyϕ(y)dy, ϕ ∈ W̃m
p (IR+, xµ(1 + x)ν).

Thus, Sθ
IR+ is bounde in W̃m

p (IR+, xµ(1+x)ν) iff Sθ
IR+ is bounded in Lp(IR

+, xµ+m(θ−1)(1+
x)ν) (cf. (2.52)).

3 Preliminaries

3.1 Splines

Let us recall here more information about splines, defined in subsection 1.2.
If we denote

xm
+ :=

{
xm, x ≥ 0,
0, x < 0,

(3.1)

we can prove that Φm(x), defined in (1.16), can be written as

Φm(x) =
1

m!

m+1∑

k=0

(−1k)

(
m + 1

k

) (
x +

m + 1

2
− k

)m

+
(3.2)

for all m ∈ N , moreover, for m ≥ 2 there holds the following recurrence formula

Φm(x) =
1

m

(
x +

m + 1

2

)
Φm−1

(
x +

1

2

)
− 1

m

(
x− m + 1

2

)
Φm−1

(
x− 1

2

)
. (3.3)

For the cases m = 1, 2 we have

Φ1(x) = (1 + x)χ[−1,0)(x) + (1− x)χ[0,1](x),

Φ2(x) =
(

1

2
x2 +

3

2
x +

9

8

)
χ[−3/2,−1/2](x) +

(
3

4
− x2

)
χ[−1/2,1/2](x)+

+
(

1

2
x2 − 3

2
x +

9

8

)
χ[1/2,3/2](x)

(3.4)
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Since

DΦ
(n)
m,j(x) = D

∞∫

−∞
χ[−1/2,1/2](me− j − y)Φm−1(y)dy =

= Dn

nx−j+ 1
2∫

nx−j− 1
2

Φm−1(y)dy = n
[
Φ

(n)
m−1,j

(
x +

1

2n

)
−

−Φ
(n)
m−1,j+1

(
x +

1

2n

)]
= −n∆jΦm−1,j

(
x +

1

2n

)
,

∆jξjk := ξj+1,k − ξjk,

we easily find

D`Φ
(n)
mj(x) = (−n)`∆`

jΦ
(n)
m−`,j

(
x +

`

2n

)
, ` ≤ m, (3.5)

where

∆jξjk :=
∑̀

i=0

(−1)`−1

(
`
i

)
ξj+1,k. (3.6)

Therefore,

DmΦ
(n)
mj(x) = (−n)m

m∑

i=0

(−1)m−i

(
m
i

)
Φ

(n)
0,j+1

(
x +

m

2n

)
=

= nm
m∑

i=0

(−1)i

(
m
i

)
χ[ 2j+2i−m−1

2n
, 2j+2i−m+1

2n ](x).
(3.7)

Due to the definition of Φm(x) (see (1.16))

∞∫

−∞
Φm(x)dx =




∞∫

−∞
Φ0(x)dx




m+1

= 1; (3.8)

as a consequence we derive

∞∑

j=−∞
Φm(j + x) ≡ 1, x ∈ IR. (3.9)

In fact,

∞∑

j=−∞
Φm(j + x) =

∞∑

j=−∞

∞∫

−∞
Φm−1(j + x− y)Φ0(y)dy =

=
∞∑

j=−∞

1
2∫

− 1
2

Φm−1(j + x− y)dy =

∞∫

−∞
Φm−1(x− y)dy =

=

∞∫

−∞
Φm−1(y)dy = 1.
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Now if 〈·, ·〉 denotes the scalar product

〈ϕ, ψ〉 :=

∞∫

−∞
ϕ(y)ψ(y)dy, (3.10)

then

〈Φk, Φm〉 =

∞∫

−∞
Φk(y)Φm(y)dy =

∞∫

−∞
Φk(−y)Φm(y)dy = Φk+m+1(0), (3.11)

since (see (1.16))
Φm(x) ≡ Φm(−x). (3.12)

Similarly
〈Φk(· ± j), Φm〉 = Φk+m+1(±j) = Φk+m+1(j). (3.13)

It is convenient to define the Fourier transform F (and its inverse F−1) as follows

F±1ϕ(n) :=

∞∫

−∞
`−2πnyiϕ(y)dy, F−1ψ(y) :=

∞∫

−∞
`2πnyiψ(n)dn, n ∈ IR. (3.14)

Due to (1.16) we have

F±1Φm(n) =

∞∫

−∞
`+2πnyiΦm(y)dy =




∞∫

−∞
`+2πnyiΦ0(y)dy




m+1

=

=




1
2∫

− 1
2

`+2πnyidy




m+1

=
[
sin πn

πn

]m+1

,

(3.15)

Φm(x) = F−1FΦm(x) =

∞∫

−∞
`+2πnyi

[
sin πn

πn

]m+1

dn =

=
1

π

∞∫

−∞
`+2πnyi

[
sin πn

πn

]m+1

dn.

(3.16)

3.2 Projections on spline spaces.

Together with S
(n)
k (=) (see (1.18)) we should consider the splane spaces S

(n)
k (IR), gen-

erated by all functions Φ
(n)
k,j (x), j = 0,±1, . . ., defined in (1.18)

S
(n)
k (IR) := { Span {Φ(n)

k,j : j = 0,±1, . . .}. (3.17)

For a Banach space X(IR), which contains S
(n)
k (IR) (i.e. S

(n)
k (IR) ⊂ X(IR)) by S

(n)
k (X(IR))

is denoted the closure of S
(n)
k (IR) in X(IR). If, for example,

Wm
p,α(IR) := Wm

p (IR, |x|α) := {ϕ ∈ Lp(IR, xα) : Dkϕ ∈ Lp(=, xα)}, m = 0, 1, . . .
(3.18)
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then S
(n)
k (IR) ⊂ Wm

p,α(IR) provided k ≥ m and (0.4) holds for α ∈ IR; S(n)
m (IR)(Wm

p,α(IR))
denotes the closure of the spline space (3.17) with respect to the norm in Wm

p,α(IR):

‖ϕ|Wm
p,α(IR)‖ =

m∑

k=0




∞∫

−∞
|xαDkϕ(x)|pdx




1/p

(cf. (1.11)).
Let us consider the operators

p̃
(n)
k ϕ(x) := E

(n)
k D(n)ϕ(x) =

∞∑

j=−∞
ϕ

(
j

n

)
Φ

(n)
kj (x),

D(n)ϕ :=
{
ϕ

(
j

n

)}∞

j=−∞
, ϕ ∈ Wm

p,α(=), m ≥ 1, (3.19)

E
(n)
k ξ(x) :=

∞∑

j=−∞
ξjΦ

(n)
mj(x), ξ = {ξj}∞j=−∞.

Operators p̃
(n)
k are correctly defined, as will be proved in the next theorem. Let us

notice here that since Φ
(n)
1j

(
j
n

)
= Φ1(0) = 1, Φ

(n)
1j

(
`
n

)
= 0 if ` 6= j, we get (see Remark

3.8 below)

(
p̃

(n)
1

)2
ϕ = ϕ while

(
p̃

(n)
1

)2
ϕ 6= ϕ if k > 1 for all ϕ ∈ Wm

p,α(=). (3.20)

Thus operator p̃
(n)
k , projecting the space Wm

p,α(IR) onto S(n)
m (Wm

p,α(IR))k, are not projec-

tors unless k = 1. Projectors p
(n)
k will be constructed in subsection 3.4, following [27,

Sect.2.7]

Theorem 3.1 The operators

p̃
(n)
k : Wm

p,α(IR) −→ S
(n)
k (Wm

p,α(IR)), k ≥ m ≥ 1 (3.21)

are correctly defined, bounded and converge strongly to the identity:

lim
n→∞ p̃

(n)
k ϕ = ϕ for all ϕ ∈ Wm

p,α(IR). (3.22)

Proof. From the definitions of Φ
(n)
kj and p̃

(n)
k in (1.16) and (3.19) we easily find that

p̃
(n)
k ϕ(x) = nΦ

(n)
k−m−1,0 ∗ p̃(n)

m ϕ(x) =

∞∫

−∞
Φk−m−1(n(x− y))p̃

(n)
k ϕ(y)dy. (3.23)

Let us check first that the convolution operators

K(n)
` ϕ(x) := nΦ

(n)
`,0 ∗ ϕ(x) = n

∞∫

−∞
Φ

(n)
`,0 (x− y)ϕ(y)dy, ` ≥ 0, (3.24)
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are bounded in Wp,α(IR). For ` ≥ 1 this follows from the Stechkin’s theorem (see
[5, 12]) since the symbol of the convolution operator

k`(θ)nFΦ
(n)
`,0 (θ) = FΦ`

(
θ

n

)
=

[
n sin π θ

n

πθ

]`+1

(see (3.15)) is of bounded variation k` ∈ V1(IR). For ` = 0 this argument fails and we
give the direct proof in the general case ` ≥ 0.

We have

‖DsK`ϕ|Lp,α(IR)‖ =




∞∫

−∞
tαn

t+ `+1
n∫

t− `+1
n

Φ`(t− τ)|Dsϕ(τ)dτ |pdt




1/p

≤

≤




∞∫

−∞
|t|αpnp

t+ `+1
n∫

t− `+1
n

|τ |αp|Dsϕ(τ)dτ |pdτ




t+ `+1
n∫

t− `+1
n

|τ |−αp′dτ




p/p′

dt




1/p

,

s = 0, 1, . . . , n, p′ :=
p

p− 1
,

since |Φ(n)
`,0 (t)| ≤ 1 and we applied the Hölder’s inequality. Applying the mean value

theorem we easily prove that

tαp




t+ `+1
n∫

t− `+1
n

|τ |−αp′dτ




p/p′

≤ c0n
−p/p′ ,

where C0 is independent of t (but depends on p and `). Therefore

‖DsK`ϕ|Lp,α(IR)‖c0n
1− 1

p




∞∫

−∞

t+ `+1
n∫

t− `+1
n

|τ |−αp′|ϕ(τ)|pdτdt




1/p

=

= c0n
1− 1

p′




∞∫

−∞
|τ |α|Dsϕ(τ)|pdτ

t+ `+1
n∫

t− `+1
n




1/p

= c1‖Dsϕ|Lp,α(IR)‖,

where c1 = (` + 1)1/pc0 and the boundedness K` : Wm
p,α(IR) → Wm

p,α(IR) follows.
Since

|Φ(n)
`,0 | ≤ 1, suppΦ

(n)
`,0

[
−` + 1

2n
,
` + 1

2n

]
n

∞∫

−∞
Φ

(n)
`,0 (t)dt = 0,

(see (3.17),(3.18) and (3.8)) we can apply the well-known convergence result (see [][29])

lim
n→∞K

(n)
` ϕ = lim

n→∞nΦ
(n)
`,0 ϕ ∗ ϕ = ϕ, ϕ ∈ Wm

p,α(IR). (3.25)
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From the representation (3.22), from the boundedness of K(n)
` and from (3.25) it

follows that we can suppose k = m.
Applying (3.5) we get

D`p̃(n)
m ϕ(x) = (−n)`

∞∑

j=−∞
ϕ

(
j

n

)
∆`

jΦ
(n)
m−`,j

(
x +

`

2n

)
=

= n`
∞∑

j=−∞
∆`

jϕ
(

j

n

)
Φ

(n)
m−`,j(x), ` = 1, . . . , m,

(3.26)

where (see (3.6)) ϕ ∈ C∞
0 (IR) and

∆`
jϕ

(
j

n

)
:=

∑̀

i=0

(−1)`

(
`
i

)
ϕ

(
j + 1

n

)
=

∫

=(n)
`,j

∂`ϕ(t1 + · · ·+ t`)dt,

dt := dt1, . . . , dt`, =(n)
`,j :=

[
j

n
,
j + 1

n

]
×

[
0,

1

n

]
× · · · ×

[
0,

1

n

]
× (`− 1).

(3.27)

We proceed as follows

‖D`p̃(n)
m ϕ|Lp,α(IR)‖ =




∞∫

−∞

∣∣∣∣∣∣
xαn`

∞∑

j=−∞
∆`

jϕ
(

j + 1

n

)
Φ

(n)
m−`,j(x)

∣∣∣∣∣∣

p

dx




1/p

≤

≤ c0(
∞∑

j=−∞
n1−1/p′−α

j+1
n∫

j
n

|xαD`ϕ(t)|pdt

j+m−`
2n∫

j−m−`
2n

|x|αpdx)1/p.

(3.28)

Since, due to (3.27),

∣∣∣∣∆`
jϕ

(
j + 1

n

)∣∣∣∣ ≤ n1−`

j+1
n∫

j
n

|∂ϕ(t)|dt ≤ n1−`




j+1
n∫

j
n

|tα∂αϕ(t)|pdt




1/p

×

×




j+1
n∫

j
n

|t|−αp′dt




1/p′

≤ c0n
1−1/p′−α




j+1
n∫

j
n

|tα∂αϕ(t)|pdt




1/p

and we apply the first of the following two inequalities




j+1
n∫

j
n

|t|−αp′dt




1/p′

≤ c0n
−1/p′−α,




j+1
n∫

j
n

|t|αpdt




1/p

≤ C
′
0n
−1/p′+α (3.29)

which can be easily obtained with the help of the mean value theorem (constants c0,
c
′
0 depend on p and `, but not on n).
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Applying the second inequality in (3.29), we get from (3.28) the following

‖D`p̃(n)
m ϕ|Lp,α(IR)‖ ≤ c0

∞∑

j=−∞




j+1
n∫

j
n

|kαD`ϕ(t)|pdt




1/p

=

= c0`




∞∫

−∞
|xαD`ϕ(t)|pdt




1/p

=

= c0`‖D`ϕ|Lp,α(IR)‖.

(3.30)

For the case ` = 0 we apply the following obvious equality

ϕ
(

j

n

)
= n

j+1
n∫

j
n

[
ϕ′(t)

(
t− j + 1

n

)
+ ϕ(t)

]
dt,

and the second inequality in (3.29); we get

∣∣∣∣ϕ
(

j

n

)∣∣∣∣
p

≤ np




j+1
n∫

j
n

(|ϕ′(t)|+ |ϕ(t)|)dt




p

≤ np




j+1
n∫

j
n

|t|αp(|ϕ′(t)|p + |ϕ(t)|p

 dt×

×




j+1
n∫

j
n

|t|−αp′dt




p/p′

≤ c1nj−αp′

j+1
n∫

j
n

|t|αp(|ϕ′(t)|p + |ϕ(t)|p)dt.

z
Further we proceed as follows (applying the second inequality in (3.29):

‖p̃(n)
m ϕ|Lp,α(IR)‖ =




∞∫

−∞
|xαϕ

(
j

n

) ∞∑

−∞
ϕ

(
j

n

)
Φ

(n)
m,j(x)|pdx




1/p

≤

≤ c1n
1/p

∞∑

j=−∞
(j−αp′

j+1
n∫

j
n

|t|αp(|ϕ′(t)|p + |ϕ(t)|p)
j+ 1

2n∫

j− 1
2n

|x|αpdx)1/p ≤

≤ c2

∞∑

j=−∞

j+1
n∫

j
n

|t|αp(|ϕ′(t)|p + |ϕ(t)|p)dt)1/p ≤

≤ c2(‖Dϕ‖p,α + ‖ϕ‖p,α).

The obtained inequality together with (3.30) yield the boundedness (3.21) for k =
m, since the lineal c∞0 (IR) is dense in Wm

p,α(IR).
To prove (3.22) (for k = m) again it is sufficient to take ϕ ∈ c∞0 (IR). Due to (3.9)

we find ∞∑

j=−∞
Φ

(n)
`,j (x) =

∞∑

j=−∞
Φ`(nx− j) =

∞∑

j=−∞
Φ`(nx + j) ≡ 1
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and, applying (3.26),(3.27),(3.29) we proceed as follows

‖D`[ϕ− p̃(n)
m ϕ]|Lp,α(IR)‖ = ‖

∞∑

j=−∞
[D`ϕ− n`∆`

jϕ
(

j

n

)
]Φ

(n)
m−`,j||Lp,α(IR)‖ =

=




∞∫

−∞

∣∣∣∣∣∣∣∣∣

∞∑

j=−∞
n`x`

∫

=(n)
`,j

[D`ϕ(x)−D`ϕ(t)]dtΦ
(n)
m−`,j(x)

∣∣∣∣∣∣∣∣∣

p

dx




1/p

≤

≤
∞∑

j=−∞
n`




∫

=(n)
`,j

|t1|αp|D`ϕ(x)−D`ϕ(t)|pdt




1/p 


∫

=(n)
`,j

|t|−αp′dt




1/p′

×

×
j+m−`

2n∫

j−m−`
2n

|x|αpdx)1/p ≤ c3ε`,n,

where
ε`,n := sup

j
[n`

∫

=(n)
`,j
|t|αp

|D`ϕ(x)−D`ϕ(t)|pdt]1/p → 0 as n →∞

due to the continuity ofD`ϕ(x) (we remind that ϕ ∈ c∞0 (IR)); for a general ϕ ∈ Wm
p,α(IR)

the convergence (3.22) follows since c∞0 (IR) is a dense subset of Wm
p,α(IR).

3.3 De Boor’s estimates.

By analogy with (1.21)

`p,α(Z) := {ξ = {ξj}∞j=−∞ : ‖ξ|`p,α(Z)‖ =




∞∑

j=−∞
(1 + |j|)αp|ξj|p




1/p

< ∞}. (3.31)

For the norm we should use also the notation ‖ξ‖p,α = ‖ξ|`p,α(Z)‖.
Theorem 3.2 Let k ≥ m and (0.4) hold for α and p. The operator

E(n)
m : `p,α(Z) → S(n)

m (W k
p,α(IR)) (3.32)

(see (3.19)) is an isomorphism of Banach spaces and the following estimates hold

c−1
0 n−

1
p
−α‖ξ‖(n)

p,α ≤ ‖E(n)
m ξ|W k

p,α(IR)‖ ≤
≤ c0n

− 1
p
−α‖ξ‖(n)

p,α ≤ c0n
− 1

p
−α (2n)m+1 − 1

2n− 1
‖ξ‖p,α,

(3.33)

where

‖ξ‖(n)
p,α :=

n∑

k=0

n`‖∆`ξ‖p,α, ∆`ξ :=

{∑̀

i=0

(−1)`−i

(
`
i

)
ξj+1

}∞

j=−∞
. (3.34)
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Proof. Similarly to (3.23) and (3.26) we obtain

E(n)
m ξ(x) = n(Φ

(n)
`−1,0 ∗ E

(n)
m−`ξ)(x),

D`E(n)
m ξ(x) = n(D`Φ

(n)
`−1,0 ∗ E

(n)
m−`ξ)(x) =

n`
∞∑

j=−∞
(∆`ξ)jΦ

(n)
m−`,j(x) = n`E

(n)
m−`∆

`ξ(x), ` = 1, . . . , m.

(3.35)

By means of the mean value theorem we can derive the following analogue of for-
mulae (3.29): 



j+m−`
n∫

j−m−`
n

|x|αpdx




1/p

≤ c0(1 + |j|)αpn−
1
p
−αp, (3.36)

where c0 = const is independent of n = 1, 2, . . . .
Applying (3.35) and (3.36) we proceed similarly to (3.28), (3.30):

‖E(n)
m ξ|W k

p,α(IR)‖ =
k∑

`=0

‖D`E(n)
m ξ|W k

p,α(IR) |Lp,α(IR)‖ =

=
k∑

`=0

n`




∞∫

j=−∞
|

∞∑

j=−∞
Φ

(n)
m−`,j(x)(∆`ξ|p|x|αpdx




1/p

≤

≤
k∑

`=0

n`(
∞∑

j=−∞
|∆`ξ)j|p

j+m−`
2n∫

j−m−`
2n

|x|αpdx)1/p ≤

≤ c0

k∑

`=0

n`




∞∫

j=−∞
(1 + |j|)αpn−αp−1|∆`ξ)j|p




1/p

=

= c0

k∑

`=0

n` − 1

p
− α‖∆`ξ‖p,α = c0n

− 1
p
−α‖ξ‖(n)

p,α ≤

≤ c0n
− 1

p
−α (2n)m+1 − 1

2n− 1
‖ξ‖p,α,

since |Φ(n)
m−`,j ≤ 1 and this function is supported on the interval

[
j − m−`

2n
, j + m−`

2n

]
(see

(1.17) and (3.18)).
The right inequalities in (3.33) are proved.
To prove the left inequalities (i.e. the inverse estimates) we recall the one proved

in [27, Theorem 2.6]: the inequality

‖E(n)
m n|Lp,α(IR)‖ ≤ c1n

− 1
p
−α‖n ∈ `p,α(Z)‖, c2 = const, n ∈ `p,α(Z) (3.37)

holds provided the condition

λΦm,Φm(n) :=
∞∑

j=−∞




∫

IR

Φm(t + j) ¯Φm(t)


 `ink 6= 0 (3.38)
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is fulfilled for all 0 ≤ n ≤ 2π. Due to the formula 2.7.6(4) in [27].

λΦm,Φm(n) =
∞∑

j=−∞

∣∣∣∣FΦm

(
n

2π
+ j

)∣∣∣∣
2

6= 0 (0 ≤ n ≤ 2π)

(cf. (3.14),(3.15)) and (3.38) holds.
We proceed with the help of (3.35) and (3.37):

‖E(n)
m ξ|W k

p,α(IR)‖ =
k∑

`=0

‖D`E(n)
m ξ|Lp,α(IR)‖ =

k∑

`=0

‖E(n)
m−`∆

`ξ‖p,α ≥

≥ c1

k∑

`=0

n`− 1
p
−α‖∆`|`p,α(Z)‖ = c2n

1
p
−α‖ξ‖p,α ≥≥ c2n

− 1
p
−α‖ξ‖p,α.

Corollary 3.3 The spline spaces S(n)
m (W k

p,α(IR)) are independent of k = 1, 2, . . . , m
and can be described as follows:

S(n)
m (W k

p,α(IR)) = {ϕ ∈ W k
p,α(IR) : ϕ =

∞∑

j=−∞
ξjΦ

(n)
m,j, ξ = {ξj}∞−∞ ∈ `p,α(Z)}.

Remark 3.4 C.de Bohr was first who proved estimates like (3.33) (cf. [4]). In [27,
Sect. 2.12.2.] the estimates (3.33) are proved for k = 0 and in our proof we applied
this result.

3.4 Spline projections and quasiprojections.

Based on the operators l̃(n)
m (see (3.19)) and following [27, Sect. 2.7] we should describe

spline projections (see Theorem (3.7))

p(n)
m = W k

p,α(IR) → S(n)
m (W k

p,α(IR)), 1 ≤ k ≤ m,

(p(n)
m )2 = p(n)

m , p(n)
m ϕ

(
j

n

)
= ϕ

(
j

n

)
, j = 0,±1, . . . .

(3.39)

For this we shall prove the following.

Lemma 3.5 The operator

D(n) : WK
p,α(IR) → `p,α(Z), 1 ≤ 1, 1 < p < ∞, 0 <

1

p
+ α < 1 (3.40)

(see (3.19) for D(n)) is bounded and

‖D(n)ϕ|`p,α(Z)‖ ≤ c′n
1
p
+α‖ϕ|W k

p,α(IR)‖. (3.41)
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Proof Since p̃(n)
m = E(n)

m D(n) is bounded un W k
p,α(IR) (see Theorem 3.1) and E(n)

m is
invertible with the norm estimate

‖(E(n)
m )−1‖ ≤ con

1
p
+α

(see (3.32) and (3.33)), we get the boundedness (3.40) and estimates (3.41) since D(n) =
(E(n)

m )−1P (n)
m . .

It is an easy exercise to find out that the operator

D(n)E(n)
m = ‖Φm(j − `)‖j,`∈Z =: Tg0

m (3.42)

is a Töplitz operator (see [27, Propos. 2.14 and 2.18]) with the symbol, defined in
(1.24) Due to the property (3.9)

gm(0) = gm(2π) = 1, gm ∈ C∞([0, 2π]). (3.43)

From (3.4) we easily find

g0(n) ≡ g1(n) ≡ 1, g2(n) =
3 + cos n

4
. (3.44)

Lemma 3.6 The condition (1.20) is implied hold, by the condition (1.21).

Proof. From the formula [27, 2.7.6(4)] we get

gm(n) = λΦm,δ
(1)
0

(
n

2π

)
=

∞∑

j=−∞
FΦm

(
n

2π
+ j

)
Fδ

(1)
j (n) =

=
∞∑

j=−∞
F−1Φm

(
n

2π
+ j

)
=

∞∑

j=−∞


sin π

(
n
2π

+ j
)

n
2

+ πj




m+1

=

=





(
sin n

2

π

) ∞∑
j=−∞

(−1)j(m+1)

( n
2π

+j)
m+1 , 0 ≤ n < π,


sin

(
π − n

2

)

π




∞∑

j=−∞

(−1)j(m+1)

(
n
2

+ j
)m+1 , π < n ≤ 2π,

(3.45)

where F is the Fourier transform (see (3.14), (3.15)). Obviuosly. (1.20) holds provided
m = 2`− 1 is add.

It is known, that

Φm(0) >
1

2
if m = 0, 1, . . . , 7, (3.46)

while Φ8(0) < 1
2

(see [26]); therefore

|gm(n)| =
∣∣∣∣∣∣

∞∑

j=−∞
Φm(j)`inj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Φm(n) + 2

∞∑

j=1

Φm(j) cos nj

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣

∞∑

j=−∞
Φm(j)− 2

∞∑

j=1

Φm(j)(1− cos nj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1− 2

∞∑

j=1

φm(j)(1− cos nj)

∣∣∣∣∣∣
≥

≥ |1− 2Φm(0)| > 0, 0 ≤ n ≤ 2π, m = 1, 2, . . . , 7,
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since
∞∑

j=−∞
Φm(j) = 1 (see (3.9)).

Further we shall suppose condition (1.20) fulfilled. Then the operator T 0
g−1

m
is

bounded in `p,α(Z) (see [5, 12]) since g−1
m ∈ V1(IR)–has a bounded total variation

on IR.

Theorem 3.7 The operator

p(n)
m := E(n)

m T 0
g−1

m
D(n) (3.47)

has all properties listed in (3.39) and converges strongly to the identity operator as
n →∞

lim
n→∞ p(n)

m ϕ = ϕ for all ϕ ∈ W k
p,α(=), 1 ≤ k ≤ m. (3.48)

Proof. (see [27, Sect. 2.6.3, 2.7.4]. Boundedness of p(n)
m follows from Theorem 3.2 and

Lemma 3.5.
p(n)

m is a projection since

(p(n)
m )2 = E(n)

m T 0
g−1

m
D(n)E(n)

m T 0
g−1

m
D(n) = E(n)

m T 0
g−1

m
D(n)T 0

gm
T 0

g−1
m
D(n) = p(n)

m

(see (3.42)) and

D(n)p(n)
m ϕ = D(n)E(n)

m T 0
g−1

m
D(n)ϕ = T 0

gm
T 0

g−1
m
D(n)ϕ = D(n)ϕ,

which proves the last equality in (3.39).
From (3.47) and (3.48) we find that

p(n)
m = E(n)

m T 0
g−1

m
(E(n)

m )−1p̃(n)
m ;

since p̃(n)
m are uniformly bounded, due to (3.22) and the Banach–Steinhaus theorem,

invoking (3.33) we conclude the same for p(n)
m :

‖p(n)
m ϕ|W k

p,α(IR)‖ ≤ M‖ϕ|W k
p,α(IR)‖ (3.49)

with a constant M independent of n and ϕ ∈ W k
p,α(IR).

To prove (3.48) we proceed as follows

lim
n→∞ ‖p

(n)
m ϕ− ϕ|W k

p,α(IR)‖ ≤ lim
n→∞(‖p(n)

m (ϕ− p̃(n)
m ϕ)|W k

p,α(IR)‖+

‖p̃(n)
m ϕ− ϕ|W k

p,α(IR)‖) ≤ lim
n→∞(‖p(n)

m ‖(k)
p,α + 1)‖p̃(n)

m ϕ− ϕ|W k
p,α(IR)‖ = 0

(cf. (3.49)) since p̃(n)
m ϕ ∈ S(n)

m (IR) and, therefore, p(n)
m p̃(n)

m ϕ = p̃(n)
m ϕ. .

Remark 3.8 Since g1(θ) ≡ 1 (see (3.44)) we find that p
(n)
1 = p̃

(n)
1 .
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Let IR+ = [0,∞} and

W̃ k
p,α(IR+) = {ϕ ∈ W k

p,α(IR) : suppϕ ⊂ IR+},
S(n)

m (IR+) = Span{Φ(n)
mj}∞j=[m

2 ]+1
;

(3.50)

if, as usual, S(n)
m (W̃ k

p,α(IR+)) denotes the subspase of W k
p,α(IR+) generated by splines

S(n)
m (IR+) (see subsection 3.4), we can define the spline projector

P k
IR+,m : W̃ k

p,α(IR+) → S(n)
m (W̃ k

p,α(IR+)) (3.51)

as follows: let

Ẽ(n)
m ξ(x) :=

∞∑

j=1

ξjΦ
(n)
mj

(
x− 1

n

[
m

2

])
,

∧
D

(n)

ϕ :=
{
ϕ

(
1

n

)}∞

j=1
;

(3.52)

then

∧
D

(n)

Ẽ(n)
m =

∥∥∥∥Φm

(
j − `− 1

n

[
m

2

])∥∥∥∥
∞

j,`=1
= Tg̃m

,

g̃m(θ) = `−[m
2 ]θigm(θ);

the Töplit operator is right invertible unless m = 1 (then it is invertible), since ind g̃m =

−
[

m
2

]
(see [5, 12, 25]). The operator P

(n)

IR+,m
= Ẽ(n)

m (Tg̃m
)−1

∧
D

(n)

is a projector (3.51),

but it does not suit our purposes P
(n)

IR+,m
ϕ

(
j
n

)
6= ϕ

(
j
n

)
. We would prefer other operator

– quasiprojector, which is defined as follows

∧
P

(n)

IR+,mϕ =
∧
E

(n)

m T−1
gm

∧
D(n): W k

p,α(IR+) → S(n)
m (W k

p,α(IR+)), 1 ≤ k ≤ m < ∞, (3.53)

where
∧
D

(n)

is defined in (3.52) and

∧
E

(n)

m ξ(x) :=
∞∑

j=[m
2 ]+1

ξjΦ
(n)
mj(x).

The inverse (Tgm)−1 to the Töplitz operator Tgm = ‖Φm(j−`)‖∞j,`=1 exists (see [5, 12, 25])
since we suppose (1.28) fulfilled, which implies (1.27) (see (3.6)) and, additionally,
ind gm = 0 since gm(θ) is real valued.

∧
P

(n)

IR+,m has the following properties

(
∧
P

(n)

IR+,m)2 =
∧
E

(n)

m (Tgm)−1
∧
D

(n) ∧
E

(n)

m T−1
gm

∧
D

(n)

=
∧
E

(n)

m T−1
gm

RmT−1
gm

∧
D

(n)

=
∧
P

(n)

IR+,m + K(n)
m ,

∧
P

(n)

IR+,mϕ
(

j

n

)
= ϕ

(
j

n

)
, j =

[
m

2

]
+ 1, . . . ,

(3.54)
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where K(n)
m =

∧
E

(n)

m (I −Rm)
∧D

(n)

is a finite (
[

m
2

]
–dimensional) operator since

Rmξ := {0, . . . , 0, ξ[m
2 ]+1, . . .}

and I − Rm is
[

m
2

]
-dimensional projector. Another example of the quasiprojector is

the operator
∧
P

(n)

=,m, defined in (1.19).

Operators
∧
P

(n)

IR+,m and
∧
P

(n)

=,m are both restrictions of the projector P (n)
m (see (3.47))

to the half–axes IR+ and to the interval = = [0, 1], respectively.
Hs

p(IR) and Z t(IR) (1 < p < ∞, s ∈ IR, 0 < t < ∞) denote the Bessel and
Zygmound spaces (see definitions in [29, 60, 61]); Hm

p (IR) = Wm
p (IR) for integer m =

1, 2, . . . and Z t(IR) = C+(IR) (the Hölder spaces) for non–integer t ∈ IR+\{0, 1, . . .}.
Remark 3.9 In [21, 23] it is proved that:

(i) if −∞ < s ≤ ν ≤ m + 1 and s < m + 1/2, then there exists a constant C,
independent of n = 1, 2, . . . , such that

inf{‖(u− v)|Hs
p(IR)‖ : ν ∈ S(n)

m (IR)} ≤ Cns−ν‖u|Hν
p (IR)‖

for any u ∈ Hν
p (IR);

(ii) if 0 < s < ν ≤ m, there exists a constant C, independent of n = 1, 2, . . ., such
that

inf{‖(u− v)|Zs(IR)‖ : ν ∈ S(n)
m (IR)} ≤ Cns−ν‖u|Zν(IR)‖

for any u ∈ Zν(IR).

Better approximation can be gained with non–uniform meshes. If ∆n = {x1, . . . , xn} ⊂
= = [0, 1] are such that |xj − xj−1| ∼ 1

n

(
j
n

)q
(q ≥ 1), then we write ∆n ∈ Mq (see

[21]). Let

Lp,m
µ (=) := {ϕ ∈ Lp(=) : xk−µDkϕ ∈ Lp(=), k = 1, . . . , m}.

Lemma 3.10 If u ∈ Lp,m
µ (=), µ < ν, ∆n ∈Mq, q ≥ m(ρ− µ), then

‖(I −Q(n)
m )u|Lp

µ(=)‖ ≤ Cn−m‖u|Lp,m
ρ (=)‖,

‖(I −Q(n)
m )u|Lp(=)‖ ≤ Cn−`‖u|Wm

p (=)‖,

where Q(n)
m are the orthgonal projectots Q(n)

m : L2(=) → S(n)
m (L2(=)) (see below).

We conclude this subsection by several remarks on orthogonal projectors.
The projector P (n)

m in (3.47) is not orthogonal, i.e. a self adjoint one (in L2(IR)-
space). To construct the orthogonal projector we should consider the operators

D(n)
m ϕ :=



n

∞∫

−∞
Φ

(n)
mj(y)ϕ(y)dy





∞

j=−∞
,
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which are bounded
D(n)

m : W k
p,α(IR) → `p,α(Z)

(as D(n)
m in (3.40)). Then

D(n)
m E(n)

m ξ =





∞∑

`=−∞
ξ`

∞∫

−∞
Φm(y − (j − `))Φm(y)dy





∞

j=−∞
=

=





∞∑

J=−∞
ξ`Φ2m+1(j − `)





∞

j=−∞
= T 0

g2m+1
ξ

(see (3.13)). Due to Lemma (3.6) T 0
g2m+1

is invertible for all m = 1, 2, . . .. Therefore
the operator

Q(n)
m = E(n)

m T 0
g−1
2m+1

D(n)
m

is a projector

Q(n)
m : W k

p,α(IR) → S(n)
m (W k

p,α(IR)), 1 ≤ k ≤ m

(Q(n)
m )2 = Q(n)

m

and is self-adjoint (Q(n)
m )∗ = Q(n)

m , since

(D(n)
m )∗ = E(n)

m , (E(n)
m )∗ = D(n)

m ,

(T 0
g2m+1

)∗ = T 0
ḡ2m+1

= T 0
g2m+1

.

For the space W̃ k
p,α(IR+) we can define a quasiprojector

∧
Q

(n)

m =
∧
E

(n)

m (Tg2m+1)
−1

∧
D

(n)

m : W̃m
p,α(IR+) → S(n)

m (W̃m
p,α(IR+))

where
∧
D

(n)

m is the restriction of D(n)
m to IR+ :

∧D
(n)

m ψ :=





0, . . . 0︸ ︷︷ ︸
[m

2 ]−times

, n

∞∫

0

Φ
(n)

m,[m
2 ]+1

(y)ψ(y)dy, . . .





, ψ ∈ W̃m
p,α(IR+);

Tg2m+1 = ‖Φ2m+1(j−`)‖∞j,`=1 is a Töplitz matrix and is invertible in `p,α(N ) (see (3.53).
Since

∧
D

(n)

m

∧
E

(n)

m = Tg2m+1Rm

(see (3.54) for Rm), we easily find that

(
∧
Q

(n)

m )2 = Q(n)
m + K̃(n)

m ,

K̃(n)
m :=

∧
E

(n)

m T−1
g2m+1

(I −Rm)Tg2m+1RmT−1
g2m+1

∧
D

(n)

m +

+
∧
E

(n)

m (I −Rm)T−1
g2m+1

∧
D

(n)

m ,
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where K̃(n)
m is a finite dimensional operator.

If we define

D̃(n)
m ϕ :=



n

∞∫

0

Φ
(n)
mj

(
y − 1

n

[
m

2

])
ϕ(y)dy





∞

j=1

we can prove that D̃(n)
m Ẽ(n)

m = Tg̃2m+1
(see (3.52)) where Tg̃2m+1

is a right invertible

Töplitz matrix (operator); the operator Q̃(n)
m = Ẽ(n)

m T−1
g̃2m+1

D̃(n)
m would be a projector,

but non self–adjoint, because g̃2m+1 6= g̃2m+1.

Again, for m = 1 the operatorrs Q̃
(n)
1 = Q

(n)
1 coinside and represent orthogonal

projectors.

3.5 Banach algebra technique in approximation methods.

In the present subsection we recall some results from [41] which would be applied to
prove stability results claimed in Theorems 1.5 and 1.8.

The algebraic approach to the proof of stability was first suggested by A. Kozak in
[35] and developed further in [56]. We stick here to the sheme suggested in [41].

Let X be a Banach space and Xn ⊂ X–subspaces with projections Pn : X → Xn

converging to the identity strongly: Pnϕ → ϕ as n →∞ for all ϕ ∈ X.
Ωb(X) will denote the Banach algebra of sequences A := {An}n∈N of uniformly

bounded linear operators An : Xn → Xn, with the pointwise composition as multipli-
cation

{An}{Bn}n = {AnBn}n

and endowed with the uniform norm

‖{An}n‖ := sup
n
‖An‖.

Let Ω0(X) denote the ideal of sequences {Tn}n converging to 0 in norm

Ω0(L) = {{Tn} ∈ Ωb(X) : lim
n
‖Tn‖ = 0}. (3.55)

We consider two further ideals

Ωc(X) := {{Bn + PnT |Xn}n : {Bn}n ∈ Ω0(X), T is compact in X},
Ωs(X) := {{Dn}n ∈ Ωb(X) : lim

n
Dnϕ = 0 for all ϕ ∈ X}. (3.56)

A sequence {An} ∈ Ωb(X) is called stable if

(a) it converges strongly to some bounded operator in ??: limn Anϕ = Aϕ for all
ϕ ∈ X;

(b) An are invertible for all sufficiently large n ≥ N0 and the inverses are uniformly
bounded sup

n
‖A−1

n ‖ ≤ M < ∞.
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It is easy to ascertain thet stability is equivalent the invertibility of the quotient class
{An}0

n corresponding to the sequence {An}n in the quotient algebra Ωb(X)/Ω0(X).
The next theorem was proved in [56]. The short and clegant proof exposed here is

suggested in [41].

Theorem 3.11 A sequence {An}n ∈ Ωb(X) is stable if and only if:

(i) the limit operator Anϕ = lim
n

Anϕ is invertible;

(ii) the quotient class {An}n is invertible in the quotient algebra Ωb(X)/Ω0(X).

Proof. It is easy to check that

Ωc(X) ∩ Ωs(X) = Ω0(X). (3.57)

The quotient class {An}0
n ∈ Ωb(X)/Ω0(X) is invertible if and only if the quotient

classes {An}c
n ∈ Ωb(X)/Ωc(X) and {An}s

n ∈ Ωb(X)/Ωs(X) are both invertible. In fact,
if {An}c

n and {An}s
n are invertible, there exist {Cn}n, {Sn}n ∈ Ωb(X) such that

{Cn}n{An}n = {I + Tn}n, {Tn}n ∈ Ωc(X),
{Sn}n{An}n = {I + Kn}n, {Kn}n ∈ Ωs(X),

where I is the identity operator. If Bn = Cn + Sn − CnASn, then

{Bn}n{An}n = {I − TnKn}n

where, due to (3.57), {TnKn}n ∈ Ω0(X); similarly is proved that {An}n{Bn}n =
{I −KnTn}n and, therefore, {Bn}0

n is the inverse to {Bn}0
n in Ωs(X)/Ω0(X).

The inverse assertion is trivial, since Ω0(L) is contained in both ideals Ωc(X) and
Ωs(X).

To conclude the proof it remains to note that invertibility in the quotient algebra
Ωb/Ωs(X) is equivalent to the invertibility of the limit operator A in X.

After ”algebraizing” an approximation scheme in Theorem (3.11) we should apply
a localization principle from [24] (see Section 4). The concluding propositions in this
section will be applied to implement the local principle.

Let
C(IR) := {b ∈ C(IR) : b(−∞) = b(∞)},
Ck(IR) := {b ∈ C(

·
IR) : D`b ∈ C(

·
IR), ` = 1, . . . , k}, (3.58)

and the norm of an operator A in W k
p,α(IR) is denoted by ‖A‖(k)

p,α.
For a polinomial

λk
0(n) := (1 + 2πη)k −

k∑

`=0

(
k
`

)
(2πiη)`

the operator

Λkϕ := F−1λk
0Fϕ =

k∑

`=0

(
k
`

)
D`ϕ, ϕ ∈ C∞

0 (IR)

Λk : W k
p,α(IR) → Lp,α(IR)

(3.59)
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is, obviously, bounded (see (3.14) for the Fourier transforms F±1). It is less obvious
but also well–known that the inverse operator to Λk exists and

Λ−kϕ = F−1λ−k
0 Fϕ, Λ−kΛkϕ = ΛkΛ−kϕ = ϕ, ϕ ∈ C∞

0 (IR) (3.60)

(see [12, 16, 29, 61] for the Bessel potential operators).

Lemma 3.12 Let a ∈ V1(IR) ∩ C(
·

IR), b ∈ Ck(
·

IR) and 1 < p < ∞, 0 < 1
p

+ α > 1,
k, m ∈ N , 1 ≤ k ≤ m. Then

B(n)
m (a)bI − bB(n)

m (a) =
k∑

`=0

∧
B

(n)

j (a)Tj + Rn, (3.61)

where

B
(n)
j (a) := E

(n)
j T 0

aD(n),
∧
B

(n)

j (a) := Λ−kB
(n)
j (a)Λk, lim

n→∞ ‖Rn‖(k)
p,α = 0, (3.62)

and 2 T0, . . . , Tk are some compact operators in W k
p,α(IR).

Proof. For k = 0 the claim was proved in [27, Sect. 2.7.5] in the following stronger
form:

if R1
n,` := B

(n)
` (a)bI − bB

(n)
` (a), then lim

n→∞ ‖R
1
n,`‖p,α = 0. (3.63)

Since the operator (3.59) and the inverse

Λ−k : Lp,α(IR) → W (k)
p,α(IR) (3.64)

are isomorphisms, we have to prove that

A(n)
m := Λk[B(n)

m (a)bI − bB(n)
m (a)]Λ−k =

k∑

j=0

B
(n)
j T

′
j + R2

n, lim
n→∞ ‖R

2
n‖p,α = 0, (3.65)

where T
′
0, . . . , T

′
k are compact in Lp,α(IR).

In (3.35) we already proved that

D`E(n)
m ξ = n`E

(n)
m−`∆

`ξ, l ≤ m;

it can be easily verified that

∆`T 0
a ξ = T 0

a ∆`ξ, n`∆`D(n)ϕ = D(n)∆`
1
n
ϕ,

2Note that if
∧
B

(n)

j i.e. B
(n)
j converge to some bounded operators

∧
Bj strongly as n → ∞, then

k∑
`=0

∧
B

(n)

j (a)Tj = T + R̃n, ‖IRn‖(k)
p,α → 0 (see Lemma (3.13) below)
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where ∆ 1
n
ϕ(x) := n

[
ϕ

(
x + 1

n

)
− ϕ(x)

]
= Dϕ(x) + R3

nϕ(x), ‖R3
nϕ‖p,α ≤ (2n)−1‖ϕ‖(2)

p,α,

for all ϕ ∈ W 2p, α(IR). These formulas result into the following:

D`B(n)
m (a)Λ−k = B

(n)
m−`(a)∆`

1
n
Λ−k = B

(n)
m−`(a)D`Λ−k + R4

m,`,

‖R4
n,`ψ‖p,α ≤ M1n

−1‖ψ‖(k)
p,α for all l ≤ k − 1, and all ψ ∈ W k

p,α(IR).
(3.66)

Since D`Λk = W 0
g`,k

:= F−1g`,kF is a convolution operator (see [12, 14]) with the
symbol

g`,k(θ) =
(2πθi)`

(1 + 2πθi)k
,

operators

Ti,` : DibD`Λ−k are compact in Lp,α(IR) provided l ≤ k − 1, 0 ≤ i ≤ k. (3.67)

(3.67) follows from [14, Theorem ] since ∂ib(±∞) = g`,k(±∞) = 0.
From (3.59), (3.65) and (3.66) we find that

A(n)
m =

k∑

`=0

D`[B(n)
m bI − bB(n)

m (a)]Λ−k =

=
k∑

`=0

∑̀

i=0

i6=k

(
k
`

) (
`
i

)
[B

(n)
m−`(a)(D`−ib)−

−(D`−ib)B
(n)
m−`(a)]DiΛ−kϕ + R5

nϕ + R6
nϕ,

R6
nϕ := [B

(n)
m−k(a)bI − bB

(n)
m−k(a)]∆k

1
n
Λ−kϕ (3.68)

with lim
n→∞ ‖R

5
n‖p,α = 0. Since

lim
n→∞∆k

1
n
Λ−kϕ = 0 for all ϕ ∈ Lp,α(IR),

due to (3.63) the last summand in (3.68) converges to 0 uniformly

lim
n→∞ ‖R

6
n‖p,α = 0. (3.69)

Due to (3.63), (3.68), (3.69) can proceed in (3.68) as follows

A(n)
m

k∑

`=0

∑̀

i=0

i 6=k

(
k
`

) (
`
i

)
[B

(n)
m−`(a)−B

(n)
m−i(a)](D`−ib)DiΛ−k + R2

n =
k∑

j=0

B
(n)
j (a)T

′
j + R2

n,

where lim
n→∞ ‖R

2
n‖p,α = 0 and T

′
j are linear combinations of operators (D`−ib)DiΛ−k for

0 ≤ i ≤ ` ≤ k, i < k and thus are compact due to (3.67).
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Lemma 3.13 Let b ∈ Ck(
·

IR) and 1 < p < ∞, 0 < 1
p

+ α > 1, k, m ∈ N , 1 ≤ k ≤ m.
Then the commutator

[P (n)
m , bI] = T + Rn, [A,B] := AB −BA (3.70)

where P (n)
m are projections (see (3.47)),

lim
n→∞ ‖Rn‖k

p,α = 0,

and T is a compact operator in W k
p,α(IR).

Proof. From (3.47) and (3.68) we find that P
(n)
j = B

(n)
j (g−1

j ) and from (3.66) we
get

B
(n)
j (g−1

m )∆m−j
1
n

ψ = E
(n)
j T 0

g−1
m
D(n)∆m−j

1
n

ψ = Dm−jP (n)
m ψ, ψ ∈ W−m−j

p,α (IR).

Therefore from (3.48) we derive

lim
n→∞

∧
B

(n)

j (g−1
m )ϕ = lim

n→∞Λ−kB
(n)
j (g−1

m )Λ−kϕ = Λ−kΛkϕ for all ϕ ∈ W k
p,α(IR)

(see (3.62)) and

lim
n→∞ ‖

∧
B

(n)

j T ′ − T ′‖(k)
p,α = 0 (3.71)

for any compact operator T ′ in W k
p,α(IR). In (3.71) we applied a well–known assertion:

if operators B converge strongly in a Banach space X and K is compact, then BnK
converges in norm (see e.g. [36, Theorem 10.6]). (3.70) follows from (3.61) and (3.71).
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[5] A.Böttcher, B.Silbermann, Invertibility and Asymptotics of Töplitz Matrices,
Akademie Verlag, Berlin 1983.

[6] G.A. Chandler, Superconvergent approximation to the solution of a boundary
integral equation on a polygonal domain, SIAM J. Numer. Anal. 23, 1214–1229,
1986.

[7] G.A. Chandler and I. Graham, Product integration–collocation methods for non–
compact integral operator equations, Math. Comp. 50, 125–138, 1988.

[8] G.A. Chandler and I. Graham, Uniform convergence of Galerkin solutions to non–
compact integral operator equations, IMA J. Numer. Anal. 7, 197–241, 1983.

[9] M. Costabel and E. Stephan, Boundary integral equations for mixed boundary
value problems in polygonal domains and Galerkin approximation, Banach Center
Publ. 15, PWN, Warsaw, 175–251, 1985.

[10] M. Costabel and E. Stephan, On the convergence of collocation methods for
boundary integral equations on polygons, Math. Comp. 49, 461–478, 1987.

[11] M. Costabel, E. Stephan and W.L. Wendland, On boundary integral equations
of the first kind for the bi–Laplacian in a polygonal plane domain, Ann. Scuola
Norm. Sup., Pisa 10, 197–241, 1883.

[12] R. Duduchava, Integral equations with fixed singularities, Teubner, Leipzig, 1979.

[13] R. Duduchava, On general singular operators of the plane theory of elasticity,
Rend. Sem. Mat.Univers. Politechn. Torino, 42,2, 15–41, 1984.

[14] R. Duduchava, On algebras generated by convolutions and discontinuous func-
tions, Integral Equations and operator Theory, 10, 505–530, 1987.
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[44] S. Prößdorf and A. Rathsfeld, On an integral equation of the first kind arising from
a crusiform crack problem. In: V.Petkov, R.Lazarov (eds.), Integral Equations and
Inverse Problems, 210–219, Longman, Coventry, 1991.

55
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