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Abstract:
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Lebesgue and Lebesgue-Sobolev spaces. They contain, as an important subclass, singu-
lar integral equations with fixed singularities. Based on the Fredholm theory for these
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towards the endpoints) and on spectral methods in stability investigations by Banach
algebra techniques, we obtain criteria for the stability of spline-collocation methods
of the transformed equation in weighted Lebesgue—Sobolev spaces. We show that in
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Introduction

We consider the equation

Au(z): = ¢ (([; u(z)
- O/TL(y—x +/ ( ) +O/k'(£v,y)U(y)dy= f(z), (0.1)
r €5, k(r,y) = (Zjo(f’jz with ko € C(SxQ), 0<p<1.(0.2)

Here ¢y, ¢; are continuous functions on the unit interval & = [0, 1]; the kernel r and its
derivative have the following estimates: there exist vy, 71 € R := (—o0, 00) such that

d
d—r(a:) < Moz '142)", 0<z<o0,

X
Yo+71 < —vg <7, forsome 0<pyy<l1

Ir(z)| < Myz™ (14 z)™

(0.3)

and some constants My, My > 0. Conditions(0.2) and (0.3) ensure the boundedness of
the operator A in the weighted Lebesgue space Ly, () = L,(S, o) with the weight
o(w) = a*(1 = 2)”,

1 1
where —+a=v, 0<yy=-+0<1, 1<p<o;
p p

(0.4)

the space is equipped with the norm

1
ellp.as = (/W(l —@%(x)lpdw) : lellp == [l2llp,0.0
0

(see Lemma 1.5).

To justify restrictions on the kernel (0.3) let us mention that almost all kernels of
equations like (0.1) arising in applications, satisfy conditions (0.3). Let us recall one
particular but important subclass of equations (0.1)-singular integral equations with
fixed singularities:

Au(z) = co(x)u(x)
b ) puMy | g eat™ YRR )y

T
= f(zr) for €8 with 0<n, <k (0.5)

Such equations occur frequently in applications (see e.g. [9, 10, 12, 13, 32, 34, 40,
63]). These applications stimulated investigations of equation (0.1) in two directions:
solvability (Fredholm theory) and approximation methods. The solvability theory in
weighted Lebesgue and Lebesgue—Sobolev spaces, including index formulae as well as
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explicit solutions to characteristic equations, is rather complete (see [12, 13, 20, 37]).
A profound investigation of the asymptotics of solutions of these equations and of
pseudo—differential equations of Mellin type, was presented in [20]. Many of the above
mentioned particular results have already been applied to elasticity problems and other
problems of mathematical physics (see [9, 11, 12, 13, 20, 32, 34, 38, 63]).

Equations (0.1), (0.5) belong to the class of convolution equations (or Mellin con-
volution equations [5, 12, 27, 48], or Mellin pseudodifferential equations) of order 0
(see [20, 37]). In their recent book [27], R.Hagen, S.Roch and B.Silbermann presented
a systematic study of the spectral theory of approximation methods for convolution
equations with the help of Banach algebra techniques, covering almost all known re-
sults in the subject, essentially generalizing and extending them. We refer the reader
to this book and to [49] for an exhaustive account of the history of the subject and its
present state of art.

In [30, 31], a collocation quadrature method was developed for equation (0.5) in
the special case co(x) =0, ci(x) =1 with arbitrary ¢y and ¢, = 0 for k& > 3.

Approximation schemes for the formulation of computational methods have been
developed intensively and mostly either for singular integral and integro—differential
equations of Cauchy type or for a pure Mellin convolution equation with continuous
symbol (i.e. without the Cauchy kernel, ¢;(z) = 0 in (0.1)) except in [27] and several
papers which will be mentioned below. For corresponding collocation methods we refer
the reader to [1, 2, 6, 7, 8, 9, 10, 11, 19, 21, 22, 42, 43, 47, 48, 49, 52, 53] which is only
a part of the vast amount of work devoted to that topic.

In our investigations we shall take advantage of the following particular smooth
(sigmoidal) transformation

I@

which is a C*°—diffeomorphism of the unit interval oy : & — < (for other sigmoidal
transformations see [17]) and which has the following almost obvious properties:

op(oi(z)) =z, Droy(z) = @(:L‘e_k> for —0, 0<EkE<6

R

og(x) +op(l—2)=1 for 0<z<1,

where gm
D™ = . 0.8
pla) = 7 pl2) 03
The advantages of the transformation oy(x) and of similar ones were exploited in
[17, 18, 36] to solve a pure Mellin convolution equation (i.e. equation (0.1) with ¢;(z) =
0) approximately; the same method was applied in [42, 50] to the solution of equations

(0.1) in Lo(S¥) spaces by quadrature methods.
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To illustrate the advantage of such a transformation, let us consider the following
approximation of an integral by the Euler-Maclaurin formula (see [18, 36]):

1
I9):= [ ey, o) =200 wl@). o
0
with  0< 4,01 <1, aF(1—2)DFpyeC(S). k=1,2,...2m —1

for some m € IN. If we fix

2m
o> min{l — dp, 1 — 81}’ (0.10)

and write in the integral y = oy(z), we find

1

1¢) = [@ow)y, wolw) i= ah(@)e (u(x)
where

1
DFpy(0) = DFpe(1) =0  for k=1,2,...2m—1 and /’D2m+1g09(y)‘ dy < 00.
0

Now we have a higher precision trapezoidal (Euler—-Maclaurin) formula

1 n—1 j n—1
19) =~ X ¢0 (2) + Ral) = X 00 (@005) + Rali) (0.11)
j=1 j=1
where ogp, = laé (j> Toni = Op <]>
™Iy n)’ o n/)’

with the error estimate

1
M m
[Ba(@)| < oy /\Dz Fop(y)| dy .
0

It is clear that (0.11) exploits nothing but a mesh refinement near the singular
points of the integrand: the sigmoidal transformation squeezes the underlying interval
towards the endpoints and suppresses the singularities of the integrand. The quadra-
ture approximation in [18, 19, 36, 42, 50] is based on formula (0.11).

We shall exploit the singularity suppression property of the sigmoidal transforma-
tion (0.6): we change the variables x = 0y(t), y = 0y(7) in equation (0.1), replace the
unknown function

w(oo(r)) by T OV 1) 0D [l (r)] 75 (7,

introducing a new unknown ¢, and multiply both sides of the equation by #(#~De(1 —
1
t)0=D8 (g4 (#)]7 (see (1.13)). The transformed equation will be equivalent to the original
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one in the space L, , (), but will have smoother solutions in the weighted Lebesgue-
Sobolev spaces, provided that the right-hand side of the equation has appropriate
smoothness (see Theorem ?7?). This ensures a—priori smoothness of a solution and
consequently better convergence for the spline collocation and quadrature methods.

In Theorem 7?7 we formulate a criterion for the convergence of the spline collocation
method for the transformed equation in a weighted Lebesgue space. The criterion
contains certain indefiniteness due to the presence of a compact operator which cannot
be identified exactly. In the case when the Cauchy kernel is absent, the convergence
holds in a weighted Lebesgue—-Sobolev space. In Theorem ??7 we formulate necessary
conditions for such convergence, which is a direct consequence of Theorem 7?7 and of
Theorem ?77.

Theorem 77 deals with the criterion for the stability of the spline collocation method
in weighted Hilbert and Hilbert—Sobolev spaces. There we prove that for a Mellin con-
volution equation with a locally strongly elliptic symbol the spline collocation method
is stable. The proof applies the techniques developed in [2, 10, 27, 48, 56].

Our assertions on spline collocation are formulated regardless of the spline orders
(see Theorems 77, 7?7 and ?7), whilst we know well that the stability conditions differ
for the odd and even order splines (see [1, 53]). This independence is due to the choice
of the collocation points: for the odd order splines we choose mid—point collocation,
while for the even order splines—the break—point collocation, as proposed in [27] (see
Section 2).

In what follows we outline the results. An extended version of the paper, with
complete proofs, will appear elsewhere.

Acknowledgements: The authors express their gratitude to Prof. M.Costabel,
who participated in preparing the first version of the present paper which was already
available in the Spring of 1986 and Prof. Profidorf, Drs. J.Elschner, A.Rathsfeld,
S.Roch and G.Schmidt for their critical and helpful remarks which helped to improve
earlier versions.

1 Formulation of the main results

1.1 Solvability of Mellin convolution equations

Let us start by defining the symbol of equation (0.1) (and of (0.5)) which governs
Fredholm properties and the index of the equation.

With the operator A4 in (0.1) and a pair (v, ;) satisfying (0.3)—(0.4) we associate
the symbol A, ,, (w) for w € R := ¥ x IR, defined as follows:

c0(0) + ¢1(0) coth mw(ivg — A) + Mr(vy — iN),
- w=(0,)) € {0} x R,
Avn (@) = co(x) + c1(x) sgnx, w=(z,\) €(0,1) x IR, (1.1)
co(1) =1 (1) cothm(ivy +A), w=(1,A) € {1} xR,



where Mr(z) denotes the Mellin transform of the kernel r,
Tt ,
= /tzr(t)7, and z=1yy—1iA, AEIR. (1.2)

Due to conditions (0.3) the symbol Mr(vy — i) has the bounded total variation on IR
(see Lemma 2.3 and Theorem 2.4 below) and is analytic in some strip v, < vy < g ;
moreover, the operator A is of the class OPEO_ +(C‘) introduced in [20, Sect.4]; for
such operators one finds there an explicit asymptotlc behaviour of a solution in the

vicinity of = 0,2 = 1 (see Theorem 1.3 below).
If the symbol A,, ., (w) is elliptic, i.e. if

inf{|A,,,,(w)|:weR} >0 (1.3)
we can define the index of the symbol
. 1 Ao (2, 41) 1 Ay (0, )
d A, , =— |arg o) = |arg Zrom 1.4
Rt o o v ] v e R

Since the limits

lim cothn(ivg +A) =+£1, k=01, /\lirf Mr(vy —iX) =0

A—too

exist it is easy to ascertain that ind A,,,, gives the winding number of the continuous
curve {A,,,,(w) : w € R} on the complex plane C around the origin 0 € C and is
integer—valued.

For equation (0.5) the Mellin transform of the kernel Mr(z) in can be written
explicitly:

Mr(z) = 3 (< 1)repss ( S 1) S (15)

= k sinh 7 (z + ng)

(see [12, Section 8]).
The next theorem was proved in [12] (see also [5, 27]).

Theorem 1.1 FEquation (0.1) is Fredholm in the space L, () if and only if the
symbol A1, 1, 5(w) is elliptic (see (1.3)) and, if this is the case,
IndA=— ind As, 1 4 (1.6)

Remark 1.2 If k(z,y) = 0 and co(x) = ¢o, c1(x) = ¢1 are constant, then either the
homogeneous equation

Au=0
or the conjugate homogeneous one,
A*@D = 07 w € Lpozﬁ( ) Lp’,—a,—ﬂ(%)

have only the trivial solution: either u =0 or ¥ = 0.
Both solutions are trivial u =1 =0 iff ind A1,,1,5=0.
P ’p



Consider the operator

|=

Vowoun (@) = 20707 (1= 2) U [og ()] ¢ (0p(2), €3, 0<f<oo, (L7)

where pg, 1 € IR and oy(z) is the sigmoidal transformation from (0.6); then

‘/9#07/11 Vl som P = Vot P
1-1 “w
vpu(a) s = |27+ (1 x)9}< s, v,.(0) = v, (1) = 1.
Therefore
_ 1
‘/971110,“190(@ =

£ = UL Vi 1.8
V0, 1o+ (0%($)> - ,HSO( “) #o— “1( z) 10, lll(’o( x) (1.8)

and the mappings
Voss Vo Lnas(S) = Lpas(S) (1.9)

are automorphisms of the Banach space L, » 5(3).

Let m € Ny := {0,1,...} and J C IR be an interval (J =S, J = R or
J =TR" :=[0,00)); let o(x) be a locally integrable non-negative weight function on J
(i.e. o(x) > 0 is integrable on each compact subset of [J). Then, similarly to L,(S, o)
defined in the Introduction, we define the following Lebesgue space with the weight

1
p

L,(T,0) = p(@): ||| Ly(T, 0l (/Q pdx) < 00

Let further

(1.10)

Y

C™(J)={peC(T):DpeC(T), k=1,.m},
Wi(T,0) = {p € L(T,0) : Do € Ly(T,0), k=1,..m

where the derivatives D¥p € L,(J, 0) are understood in the sense of distributions and
WI(J, 0) is called the Lebesgue-Sobolev space with a weight.

If 7 = 3 and o(x) is defined as in (0.4), we shall use the notation W 5(3) and
if 7 =R", o(x) = 2% we shall write W, (R"). If o(x) = 1 we shall write W)
rather than W)*(7,1).

We need the following spaces:

Wr(S,0) = Wik s(S)
= {uewp 4(9) + Du(0) =D u(1) =0, k=0,1,....m—1},
W (RT,z%) = W (IRT) (1.11)

= {uew () : Du(0)=0, k=01,....m—1}.



Due to the embeddings

W L) cCcmS), W @RY) ccmHRY), WR)CCmHR),  (1.12)

p,,B p

which are almost trivial cases of Sobolev’s lemma (see [61, Section 28.1, Remark 2]),
the values D*u(j), k=1,...,m—1, j=0,11in (1.11) are well-defined.
The norms in these spaces are defined as follows:

el s = e Wm 4 =3 1D 0| Lyas()],
k=0
el = | Wi 4(S)]] ::inf{z||Dk¢\Lp,m<m>|| e pagam},
k=0

where the infimum is taken over all possible extensions ¢ € W], 5(IR) (see e.g. [61]).

The norms in W" (IR*) and in WIZ’L(]RJF) are defined similarly.
Due to (1.9) the next equation is equivalent to (0.1) in the space L, o 5(3):

Aop(z) = ‘/9,&,5“4‘/9,_041,ﬁ90<x>:CO,G(:B)QO('I)

. Clyg(l’)/l x (6-1a 1— 2
e Y 11—y

0

cio(z): = ¢(o0(x)), koo(z,y) = koloo(z),00(y)),
uo= Volse,, o =Voasu,  fo=Viasf (1.14)

(see (1.7), (1.8)).

Theorem 1.3 Let (0.3) hold for all vy € vy, vy |, where 0 < vy < i <1 and:

(i) there emist 0 < v; < vi" < 1 such that the symbol A, ., (w) of equation (0.1) is
elliptic for all vy < 1/p+a=vy<vi andvy <1/p+ =1 <vi;

(ii) k(1 — 2)P*HDEf € L,(S) for some o/ < a, B < B and all k =0,1,...,m,
m € IN;

(iii) co,c1 € C™(S) and (1 — 2)*Drky(z,y) € C(S x F) for all k =0,1,...,m;
(iv) O(v; —v;) >m for j=0,1.

Then all solutions ¢ € Ly 5(3) of equation (1.13) belong to the space Nﬁaﬂ(%).
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Proof: As already mentioned due to (1.9), equations (0.1) and (1.13) are equivalent.

Therefore, due to the condition (iv), the inclusion ¢ € W], 5(S) will follow if

2"k (1 — 2)8"TDEy € L(S) for some o' <a, B’ <p

and all £=0,1,...,m. (1.15)

The symbols A,, ., (0,\) and A,, ., (1,\) are analytic and elliptic (non-vanishing)
in strips {vp — N1y <<y, NeR}CCandin {v; —iX\:v; <vy <1, A€
IR} C C respectively.

The claimed inclusion (1.15) follows from [20, Theorem 4.10] and conditions (ii),
(iii) of the theorem. O

Remark 1.4 The foregoing theorem exploits very rough asymptotic property of solu-
tions to equation (0.1) which, neverthless, suit our purposes: now we are able to apply
the spline collocation method to the equation provided the right-hand side function f(z)
15 chosen properly and the solution is continuous.

For more refined asymptotic analyses we refer the reader to [20].

1.2 Spline collocation

Next we shall recall some well-known definitions and properties of smoothest polyno-
mial splines from [3, 4, 27, 55]. More about splines will be exposed in Section 3.
Let

| 1
(@) = { ) (1.16)

0 elsewhere ,

where x(.q () denotes the characteristic function of the interval [c,d] C IR and

D, () i =DPgxDp_1(x) = Ppg x Do) = _Ofo D, 1(z —y)Po(y)dy
~ (1.17)

ol

G, q(z—y)dy, m=12.., z€R.

N

From (1.17) it follows that ®,, € C§"'(IR), has piecewise—constant m—th derivative
Dr®,,(x) and

m+1 m—i—l}
2 7 2

supp ®,, = [ (1.18)

For a fixed integer n € IN we define

57(7:‘)(2}) ;= span {(I)m,[g”]ﬂ’ ce (I)m,n—[’;]—l} , (1.19)
where @fﬁ;(x) = ®,,(nx —j), jeZ:={0,%£1,...},

and [v] € Z denotes the largest integer less or equal to v € IR.
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The space S{(S) is (n -2 [%} — 1) —dimensional and spanned by those splines
which are supported inside the interval & (see (1.18)).
The approximating power of smoothest polynomial splines is well-known:

dist wy () (2, S5 (9)) : = inf {[|(p —)W5(S)] : ¢ € ST}

1
< Cn" 7 F|lp|W5(S)]|  provided 0<r<m-+ 5 7 <s

where the constant C' is independ of ¢ € W3 () and n (see [49, Chapter 2, Theorem
2.26]). The approximation becomes better (i.e. converges faster) if special graded
meshes are chosen (see e.g. xp;, in (0.11) and cf. [4, 21, 55], [49, Chapter 5, Lemma
5.23]).

Lemma 1.5 If

3

[
Z ©n () exp(ing) = @, (0) + ®,,(j) cos(nj) , (1.20)

j=—o00

1]

~ ‘

<.
Il
—

then
gm(n) #0  forall 0<np<2r andall meNg. (1.21)

Proof. See [58, Theorem 2.2] and [39].
Thus, we can define the Fourier coefficients

(g;l) : 1/exp(znk‘)d’ ke :={0,+1,...},
kT 2m gm(n) (1.22)
1 oo
= > (g1, exp(ink), 0<n<2m.
gm(n) j:foo< )k ( )

Consider the operators

A(n n 1o _ k n
Pete): = "5 @), (£) o),

J.k=mao (1.23)
Ut Wha(®) =SS,
where k=1,....m, n=12 ..., mmz[?}#—l.
c(vn)l are quasi—projections
A 2 A
( gﬁ;) o(z) = P\ o(x)  provided ™ pc1 -0 (1.24)
’ ’ n n

but fail to be projections since (1.24) holds not for all x € (0, 1), unless m = 0,1 (see
Section 3 for details).
Let us look for an approximate solution of equation (1.13) in the form
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where (cf. (1.23))
foim = PSmfor - Al = PSAo

SO()

Equation (1.25) can be rewritten as an equivalent (n —2mg+1) X (n—2mgy+ 1) system
of linear algebraic equations

co7g<7‘i) ( )—}—nzmobm]k ( ) fo( >, j=mg,...,n—mg, (1.26)

where

b = nino (9"), die nino (gal)jkso@

l=myg J,k=mo

USTER /1@)(6 ) G—é)w ) [Zéi?g))r [Clﬂ(i )Ue(y;é—(yie(j)
y)

i(“e(i)> op(y) | ob(y)koe(Z,

o0(y) ) 00(y)  |op(y) — oo(L)["

+ ] (Dm] (y)dy .

Here we should mention again that we follow [27], choosing the mid—point collo-
cation for odd order splines, while for even order splines we choose the break—point
collocation. This leads to unified formulations of Theorems 7?7, 7?7 and 7?7 in both
cases.

Theorem 1.6 Let m € IN and solutions ¢ € Ly, , 3(3) of equation (1.13) belong to the
space Ng‘aﬁ(%) (see Theorem 7).

For the stability of the approxzimation (1.25) (i.e. of the approzimation (1.26)) of
Equation (1.13) in the space Ly, o 5(S) it is necessary that the following conditions hold:

(i) equation (1.13) has a unique solution in L}, 5(3) (equivalently: (0.1) has a unique
solution in L', 5(3));

(i) Ao(0,0,) := co(0) +e1(0) cot m( 5 + i+ A) + Mr(; +a—iX) #0 for all N € R
(see (1.2) for Mr(w));

(iii) Ao(x, p) := co(z) + per(z) £ 0 for all0 <z <1 and all =1 < p < 1;
(iv) Ao(1,0,A) := co(1) — er(1) cot m(5 +if + A) # 0 for all A € R;
(v) [ arg Ao(d, )] uep 10 + (=1)7 [ arg Ao(4,0,\)]yeg = 0 for j =0, 1.
If, in addition,
ci(x)=0  and 9(70+;+a>—m20, (1.27)

(i.e. equation (0.1) is pure Mellin convolutional without the Cauchy kernel) then the
conditions (i)-(v) are necessary for the stability of the spline collocation (1.25) in the
Lebesque-Sobolev space paﬂ(%)

12



Proof follows directly from Theorems 1.9 and 1.10. a

In the general case p # 2 we have not a transparent criterium for stability of
approximation (1.25) (see Theorem 1.9 below); but the next theorem gives sufficient
conditions for the stability, which are applicable to a wide class of equations arising in
applications.

The symbol A,, ., (w) (w € R) of equation (0.1) will be reffered to as locally
strongly elliptic if there exists a continuous function pu(z) (x € ¥) such that

inf{ Re [u(x)Ay,., (x,N)]:2€3, AeR}>0.

An equivalent reformulation of the ”local strong ellipticity” property is the following
local sectorial property for every x € < there exists a constant v,(A,,,,) € C and
a neighbourhood U, C & such that

T
sup{| arg Ay, (¥, A) = (Av)| :y €Uy, A€R} < bR (1.28)

Theorem 1.7 Let (0.3) hold for all vy € vy, vy |, where 0 < vy < v < 1 and:

(i) there emist 0 < v; < v < 1 such that the symbol A, ., (w) of equation (0.1) is
locally strongly elliptic for allvy < 1/p+a=vy <y andvy <1/p+B=1v; <

vy
(i) z*o _’“"’( )Vf_%+kaf € Ly(S) for allk=0,1,...,m and j =0,1;
(iii) co,c1 € C™(S) and 2*(1 — 2)kDrko(x,y) € C(S x Q) for all k =0,1,...,m;
(iv) 0(v; —v;) >m for j=0,1.
(v) equation (0.1) with f=0 (the homogeneous equation) has only the trivial solution

u =0 in the space Ly, 5(), where

1
ﬁ:%—

a=rvy— 3" (1.29)

1
2 )

Then the approzimation (1.24) of Equation (1.13) is stable in the weighted Hilbert
space Lo o 5().

If (1.27) holds the approzimation is stable in the Hilbert-Sobolev space Wyaﬂ(%) and

the convergence of the approzimate solutions ™ to the solution ¢ is quasi-optimal.
That 1is,

(e = SV, ()] < Cinf {[|(0 = v) W32 5(S)] s v € SIS} (1.30)
with some constant C' > 0.

Proof will be exposed in Section 4.
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Remark 1.8 Note that conditions (ii)—(v) in Theorem ?7 coincide with local strong
ellipticity of the symbol A, ., (w) on the set (0,1] x R=R\ {{0} x R} even for p # 2,
while on the remainder {0} x R they differ slightly; namely the strong ellipticity at
x = 0 means that the convex hull of the continuous curve

Ni={z€A4,,,,(0,0,\): \€ R}U{co(0) + c1(0)p: =1 < p < 1}

in the complex plane C does not contain the origin 0, while the conditions of Theorem
?? state that the curve N does not cross the origin and must have winding number 0.

If, for example, r = 0 (i.e. we have a pure singular integral equation with Cauchy
kernel) then the necessary conditions of Theorem 7?7 and the sufficient conditions of
Theorem ?? coincide. This case was first treated in [48].

1.3 A criterium for stability

To formulate the conditions for stability of the approximation (1.24) we need some
further definitions.

For a bounded function a € L ([0, 27]), the T6plitz operator T, is composed of the
Fourier coefficients of a(n):

2

1 )
To = llajilljren, a:= %/exp(znl)a(n)dn, leZ. (1.31)
0

If 1, o(IN) denotes the Banach space of sequences with the weighted norm

1

bp.a(IN) = € ={& 12, 1€ a(N)] = (i]’“” |£j\p> p : (1.32)

then, according to Stechkin’s theorem(see [5, 12]), the operator
Tyt o) = by (IN)
is bounded provided
aeVi([0,27]), 1<p<oo, O<11?+oz<1. (1.33)
Here V1 (J) denotes the space of functions with bounded total variation on J C IR.

For a kernel function r(z) (see (0.1), (0.3), (1.13)) let G, denotes the discretized
Mellin convolution operator
(i)
r(2) 2
k) k

(see [46, 47, 51] and [27, Section 2.4]). If conditions (0.3) and (0.4) hold, the operator

G, = (1.34)

J,k€IN

Gy : 1o (IN) = Lo (IN)
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is bounded (see Lemma 2.8 below).
Condition (1.20) ensures that the truncated T6plitz matrices

n—myo

(mo) . _ -1
Tg;Ll . - H(gm )j*k j,k; mo Qmo 1Qm0 9
where Qo€ =10, ., &mos -+ &nmg, 0.}, €= {gj}j‘;l

are all invertible. In fact,

[T [l(N)[| = sup{la(n)| : 0 <n <27}, |[[Qm|l(N)[| =1

(see [5, 25]). Since g,,(n) > 0, there exist ¢ > 0 and py > 0 such that

pogy! =1 = (1= puogy' ), sup{[1 = pog,' ()] : O<m<2rf<1-e

Then
H(I Ho T mo ) |Qmo H = HQmo (I - MOT(TU)) Qmo |l2(]N) H
] Qe G ()] < [0 1 <1 < 1
and ;LOT ™) is invertible due to Banach’s theorem.
This 1nvert1b111ty
det T;g?) £ 0 (1.35)
is important since
H kaH]k :7,0 gm' ;i gk::m (1.36)

(see (1.26)).
Obviously, g, € C*([0,27]) and ¢,,(0) = g (27) (i.e. gy, is periodic). In contrast
to this the functions

o

exp(ink
am(71) = Z IZETZ] ! y—k

k=—0o0 m+1

. am € C(]0,27)) (1.37)

are smooth a,, € C*([0,27]) and non-periodic:  a,,(0) = —1, a,,(27) =1 (see [27,
Section 2.11]).

Theorem 1.9 Let m € IN and solutions ¢ € Ly, 3(S) of equation (1.13) belong to the

space paﬂ( ) (see Theorem ?7).
For the stability of the spline collocation method (1.25) (i.e. of (1.26)) in the space
L, () it is necessary and sufficient that the following conditions hold:

(i) equation (1.13) has a unique solution in Ly, , 3(3) (equivalently: (0.1) has a unique
solution in Ly, o 3(3));

15



(i1) Ap(0,0,A) := ¢o(0) + ¢1(0) cot 71'(% +ia+A) + /\/lr(% +a—iX) #0 forall A € R
(see (1.2) for Mr(w));
(iii) the operator
As(0) = co(0) + ex(0)T,, + Gy + K (1.33)
is invertible in the space 1, o(IN) with some (unidentified) compact operator K

(see Remark 1.11 below);

(iv) the operator
Ao(1) == co(D)Ty,, — a1 (0)T,, + G+ T, 'R) T, (1.39)
with the finite-dimentional projection RO ¢ = {51, oy &m0, .}, &= {fj}jil is
invertible in I, ,(IN).

If (1.27) holds, the conditions of the Theorem are necessary and sufficient for the
stability of the spline collocation method (1.25) in the Sobolev space W), 5(S) and the
convergence of the approximate solutions is quasi—optimal. That is,

[0 = eS)Wy s < Cinf {[[(p — )Wy 5(D)] 2 v € S(S) ]
with some constant C' > 0.
Proof see in Section 4.
Theorem 1.10 The operator (1.38) is Fredholm in the space l, o(IN) if and only if the
following properties hold:
Ao(0, 1) #0,  Ag(0,0,\) #0, for —1<pu<1l, AeR (1.40)

(see Theorem 1.6). If (1.40) is the case, then
1 1
Ind Ay(0) = ~5r [ arg Ao(0, )] eo1) — gy [ arg Ao(0,0,N)] e - (1.41)

The operator (1.39) is Fredholm in the space l,,(IN) if and only if the following
properties hold:

Ao(1, 1) #0,  Ap(1,0,A) #0, for —1<pu<1l, XelR (1.42)
(see Theorem 1.6). If (1.42) is the case, then
1 1
Ind Ay(1) = ~5- [ arg Ao(L, )] epo1) — Py [ arg Ao(1,0,N)]\ e - (1.43)

Proof see in Section 4.

Remark 1.11 Theorems 1.9 and 1.10 provide the stability conditions for the spline
collocation method (1.25) generically, since a Fredholm operator with vanishing index
being not invertible is exceptional; but this case still needs a careful treatment. Similar
situations are considered in [27, Chapter 4] and in [45, 46, 50].

In the case when (1.27) holds, i.e. when (0.1) is a pure Mellin convolution equa-
tion without the Cauchy kernel, more precise results can be obtained by invoking the
“singularity cut—off” technique, suggested in [7, 8, 21].
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2 Mellin convolution operators in Sobolev spaces

2.1 Sobolev spaces

The linear space C§°(IR) of infinitely differentiable functions with compact supports
and the linear spaces

Co'(R™) := {p € Cg°(R) : supp ¢ € (0,00)},
Co'(¥):={p e Gg"(R) = supp ¢ € (0, 1)},
are dense in the spaces W) (IR), Wﬁa(IRjL) and in Nﬁaﬁ(%) respectively, provided
(0.4) holds. The conditions in (0.4) ensure the inclusion Cg°(IR) C W) (IR) ete. (see
[61]).
The space
norm

m
P, B

|7 5= (|21 — 2)Pul|(" ZIID’” — )%, (2.1)

(J) can also be defined in a different way by using the equivalent

since the following Lemma holds.

Lemma 2.1 The norms (1.12) and (2.1) are equivalent in the space N}Taﬂ(%): there
exists a positive constant M such that

< M| ™ (2.2)

M) < o

P, — pozﬁ

for allu € paﬁ(%)
Proof. Let us begin with an estimate between different weighted norms: let 0 <
I/p+v <1, peCi(Q)andn e N. Then

MNv+1-—n)

el <

Inequality (2.3) follows from Hardy’s inequality
/]t"’lf(t)|pdt < a*p/ e f(1)Pdt,  where 1<p<oo, 0<a< oo
0 0

(see [28, Theorem 330],[61, Section 3.2.6, Remark 1]). by n successive applications.

The proof of Lemma 2.1 is based on induction. For m = 0, inequality (2.2) becomes
. 0 0
the equality [[ully,5 = [ullyn,s = [ullps

Suppose (2.2) to be valid for m — 1. Then, due to (2.1), we have

||UI|pag = ||UI|pag +||DmQU||p
m Dk DFka, 2.4
< Ml 30 (|22 4] 2 24
that) pr m (1_$)m
= P V4
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(see (0.1) for p(x)). To the second terms we apply (2.3):

1/2

Dk
’mei < /|xo‘_m+k(1—x)ﬂpl€ (x) |pdx /|a:0‘ mR(1 — 2)PDru(x)[Pde
p
1/2 »
< / [2%(1 = @)D" u(@)Pdr |+ 270D 0 < Mallullyia)s -

A similar estimate is valid at the other endpoint z = 1 Hence, the left inequality in (2.1)
is valid. To prove the right inequality, we apply (2.3) successively k times separately
at x = 0 and at = 1 under assumption that (2.2) is valid for m — 1. After some
calculations we get

(m—1)

”quaﬁ = ||U’||p,a,ﬂ +||9Dmu||
< M|Jul|l" 5+ D™ (ou) S DR gD,

(2.5)

k=1

< (M + D)l 5 + M; S IDH (D" )
k=1

Repeating successively the estimate in (2.5) m — 1 times to functions D™ *u for
k=1,2,...,m— 1, we derive the right inequality in (2.2). O
Similarly to (2.2) it can readily be proved that the norm

1
P

ol = ( [ 1D )]|pda:) (2.6)

k=

is equivalent to |[v[|{™) for any function v € Wg’”a(]Rﬂ.

2.2 Properties of the Mellin transform

A further equivalent norm can be introduced for the Hilbert space case, i.e in Wg”aﬁ(%)
with the help of the Mellin transform (see (1.3) for M):

ll§s s = & [ (2R (Mogu) (=) Pz
Ra—m
b P MS ) () Pz} (2.7)
Rg_m

Here vy, v1 € C*(3), v1 = 1 — vy are cut—off functions with vo(z) = 0 (vo(x) = 1) in
some neighbourhood of z =1 (of z = 0),

1 1
Zv(x) =v(l —x)  whereas IRW::2+7—Z'IR:{2—|—7—Z£:§EIR}. (2.8)

18
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The equivalence of the norms in (2.1) (for p = 2) and in (2.7) is proved in [20, Section
3.4] and can also be derived from the forthcoming Lemma 2.2(b).

Most of the properties of the Mellin transform which are listed in the following
lemma are well-known but dispersed in different publications. We collect them here
for convenient use.

Lemma 2.2 Suppose (2.1) and o € R;k € Ny :={0,1,2,...}.
(a) (Parseval’s equality) If u,v € Lo(IRY) then

o

(u,v) = /u@)@c& = 217r / Mu(z)Mov(2)dz

0 Ro

where Rg = 1/2 — iR (cf. (2.8)) and M is the Mellin transform (see (1.2)).

(b) Let 0 <k <mand k—m <o’ <0. Then
k
MIDa0)(2) = T[G = )Moz +a' — F)
j=1

and M[D*z%v] € Ly(Ro—ar1hm, (1 + [2])™ %) for any v € W3*(R*, 2%).

(c) Assume that

T d
|r]|®) = /x”\r(x)\?x <oo and 0<v—m<1, me N, (2.9)
0

Then the operator
T (x dy
va:z/r()vy 2.10
(z) y ( )y (2.10)

0
is bounded in the space : W]Z”(IRJF, x®) provided o« = v — 1/p. Moreover,

M(Rv)(z) = Mr(z)Mu(z) forg € C°(RY)
andM(Rv) € Ly(Ra—m , (1 + |2])™) for anyp € W3 (IRT, 2%) .

(d) The singular integral operator

Sut WM IR, 2%) — W (R, 2(1+2)™™) with

R+ D
1 2\ v(y)d 2.11
(m) _ y)dy ) (2.11)
SB+U(x) = E / (y) y—1 s S]RJr = SIR+7 0 < o+ 5 < 1
IR+
18 bounded,

M(S](l;i)v)(z) = coth(miz)Mu(z) for v e WI'(IR*, 2%)
and M(S&@v) € Ly(Ra_p) for any v € Wi (IRT, z).
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Proof:

(a)

Let u,v € C°(IR™Y) and recall Parseval’s equality for the Fourier transform; then

(u,v) = 76‘§u(e_t)e_22)(e—t)dt

- [ [ e Rue)an / =2y (e ) dAdt
27T_Oo )
1 7 ,

= — / /x2—1wu(m)m/x2_”v(a€)mdt
27r_OO x T

= o [ Mu() M)

= % u\z viz)az

Extension to any u,v € Lo(IRT) follows by continuity.

Let u(z) := v(z) := 2%ug(x) and uy € Ly(IRT, 2%), then (see (a))
[Moug|La(Ra)| = [[Mu|La(Ro) || = [Jull2 = [luol|2.a - (2.12)

Due to (2.1) 2" ™D™v € Ly(IR™, 2%) for n = 0,1, ..., m; therefore,

k
o D
(@) = (D*a0)(a zcn () = 37 -t D V)
n=0 x

and since o/ — (k—n) < o/ <0, we have wy € Ly(IR*, 2%). Then Mwy € Lo(IR,,)
due to (2.12). Integration by parts gives

k k
M(DFz¥v)(z H j—2)M(@¥v)(z = k) = [[( — 2)Muo(z + o' — k).
If K =m,a’ =0, this identity reads

M(D™)(z) = [[ (G — 2)Mu(z —m),

::13

1

j
and, due to (2.12), Mv € Ly(Ra_m, (1 + |2])™), since D™ € Lo(IR*,z%) by
definition. This results in
(14 |2 —a + k)™ *M(D 2% v)(2 — o + k)
_ H§:1(J' —z+a —k)
(o R

(1+ |z — o + k)" Muv(z) € La(Rp—rm) ,

since the rational multiplier is bounded. Therefore,

(1+ |2 *M(D*2*0)(2) € Lo(Raarsim)
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(c) Let v € C°(IRT). Integration by parts yields for 0 < k <m

DFRu(z) = DF [72}@)6;; (/yr (f) Cit) dy]

= ot | [ty [ )| =2 [ () Do)
T z \y Yy
0 xz/y 0
AWE: k dy k
— = / <) r (2) Do) Y = (RuD o) () . (2.13)
J\z) " \y y
The kernel 7(z) can be approximated by smooth functions in the norm |- || =™
Due to (0.2) and (2.9) this implies 7(0) = --- = D™ 'r(0) = 0. Therefore,
To(y)d
D"Ru(0) = (D’%)(O)/”(‘z)y —0 fork=0,...,m—1.
Syt oy
Since

IRvlIpa < 71 0llpa
(see [12, Section 12]), we get

IRvllge = > ID*"Rollpa = > IReD llpa
k=0 k=0

< DIl PD vl < el lullge
k=0
The boundedness of R in (2.10) follows since C§°(IR™) is dense in W;”(IRJ“, x%).
Therefore, Rv € WJ(IR*, %) for v € Wi (IR, 2) and (b) for o/ = k = 0 yields
M(Rv) € La(Rp—m, (1 + |2])™).
The identity M(Rv) = Mr - Muv follows immediately from the definitions (0.2)
and (2.10).

(d) From (2.3) we get

o0 1 0o
/v(y) dy /’U(y)kly +/ lv(y)|dy
0 Y 0 Y 1 )
1 1
1 P P 0o 5 00 3
/U /
= / 533 dy | + / ly“v(y)[Pdy / y Ptk gy
< Cyffv)|i™ for k=0,...,m—1 and p'=1-1/p.

With the identity




and together with the well-known boundedness of the Cauchy singular integral
operator Sp+ = S} in L,(R*, 2) (see [24, Section 12]) this gives

IRJF
—m g(m) m (m) (m)
[(1+2) "SR vlpa < |Sr+V][pa + ;Cﬂlvllp,a < Collv[ (2.15)

Equation (2.14) can be rewritten in the form

m—1
m 1
S]gw)v(x) = Sp+v(z) — > ykak(S]Pﬁv)(O), (2.16)
k=0 "
and since
DFSgiv = Sp+D"v  for v € CP(RT), (2.17)
with (2.16) this yields the existence of Dk(ngu)(x) and the equations
DISYu(0) =0 for k=0,1,...,m and {=0,1,...,m—1. (2.18)

The boundedness in (2.11) results from (2.15) and (2.19).
If v € W (IRY, %) then ™0 € Ly(IR™, 2%) and Sg+ (y ™) € Ly(IRY, 2%).
If we apply (b), with the choice @/ =k =m =0, we get

M(SE)() = M(Sg+y™™0)(- +m) € Ly(Ra—yn) and

M(S](lgl)v)(z) = cothmi(z + m)M(y"v)(z +m)
= cothmizMuv(z) € La(IRa—n, (1 + |2))™),

since coth iz = coth wi(z — m) is bounded for z € R,_,, and

MSp+v(z) = cothmizMu(2). 0
Lemma 2.3 Let vy € IR and

2073 (i + In x)r(a:)‘z dx < o0,

My(r) == ;ﬁ
Ms(r) = Ofo

0

(2.19)
2% In IDT(CL’)‘Q dr < oo}

then Mr(v —i-) € Vi(IR), where Vi(IR) stands for the space of functions with finite
total variation on the entire real line IR.

If, in particular, conditions (0.3) on r(x) hold, then (2.19) holds as well and Mr(v—
i-) € Vi(RR).

Proof. Since
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(see (1.2)), we have

(; - i)\) Dy Mr(vy —iX) —i ( - M) /a:%_”\ Llgro~ 2r(:c) lnx} dx
0

(e 9] o0

= —Z/'Dx ”M x0T %r(x) lnx} dx = i/x%’“‘Dx {a:”ofér(:v) lnx} dx
0 0
PR (L 1 ot d dz
= z/aﬂ {x 2 [(uo—z) ln:L'—l—l} r(z) 4+ x"° 2ln:cDxr(x)}:: g(A).
T

0

Then g € Ly(IR) due to the Parseval’s equality in Lemma 2.2(a) and to condition
(2.19). Therefore

DMr(v —i-) = (; - 2) - g(N\), g€ Ly(R)

and, by Schwartz’s inequality,
1 -1
[DaMr(y =i <11 (5 =) lalglla < oo

Since V3(Mr) < ||DyMr||; < oo we have proved the claimed inclusion Mr(v — i) €
Vi(IR). O

2.3 Mellin convolution operators
Let us start with the boundedness of operator A in (0.1).

Theorem 2.4 Let conditions (0.2)—(0.4) hold with

1
vp=—+a—m, meEN. (2.20)
p
If cog,c1 € C™(S), 2?(1—2)Diky € C™(IxS), k=0,1,---,m (see (0.2)), then the
operator o
AW 5(3) — W 5(S), (2.21)

a3

defined in (0.1), is bounded.
Proof. Since D*Squ = SgD*u, where

1/1
(X
0

foru € z;noz 5(3) (see (2.17) and (1.11) and since Sg is a bounded operator in Ly o 5(S),
we have

reS (2.22)

ISsullyars < 1Ssllpasllullyes
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Thus, we need to consider the operator Rg := Rg, only, where

:/1<i>kr<§> u(y)d;/ for k=0,1,....m. (2.23)

D*Rou = Ry xDFu for u e W, 4(S) (2.24)

Since with (2.13)

it suffices to show that the Rg x are bounded operators in L, , 3(3). For this purpose,
the operator

Zu(€) = 6_(%+O‘)§u(6_£)

can be applied which defines the isomorphism
Zo Lpap(S) = L(RT, (1 — 7)) = L(R", €7 (1 +€)7)

(the spaces coincide since the weights on the right-hand side are equivalent); Z, has
the inverse

Z (z) = x_(%Jra)v(— Inx).

The transformed operator
ZuRoxZ (€)= [ (e —mulndn  with  gu(6) = (e )t (225)
0

is a Fourier convolution whose boundedness in the space L, (IRT,£%(1+ £)7) follows,
if the Fourier transformed kernel

[e.o] [e.o]

ng()\) = / ei)\f (f)df — / ei)\§+(k—%—a)§r(e,5)d€
* p

0

(see ((1.2)) for M) has a bounded variation Fg;, € Vi(IR)(see [14, Theorem 1] and
[54]). This is guaranteed by Theorem 2.4 since conditions (0.3) and (2.20) hold. O

Remark 2.5 In Theorem 2.4 we have proved more than claimed: if conditions (0.2),
(0.4), (2.20) hold and the Mellin transfom Mr(v —iX) has a bounded variation on
R (i.e Mr(v—iX) € Vi(R)), then operator (0.1) is bounded in Ly, 3(3) provided
Co,C1 € Cm((\)) ko € Cm(% X %)

Lemma 2.6 If (0.4) and (2.19) hold, then
IRullpa,s < M [Mi(r) + Ma(r)] [[ulpas (2.26)

(see (2.10) for Ru) with a constant M independent of u € Ly, ().
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Proof. Let Z,, g; be as in (2.23)- (2.25) and recall, that
1Z2aRaZ: M ullpa < M (1Fgo | Lo (R)]| + Vi(Fa1))
(see [14, 55]); since

1
|IFgo| Loo(R)|| = sup {|Fgo(N)| : A€ R} = sup{ MT(E +a— z)\)| tAE IR}
S Htil(i—i-hlt)igHQMl(T) S M()Ml('f’).

we obtain (2.26). O

Lemma 2.7 Let 1 <p<oo, 0<a+1/p <1 andyy,7 are such that
O<a+1/p+v, a+1/p+v+m <0. (2.27)

If a function g(x,y) has the estimate
T 70 T 71
|g(x,y)|§M<> (1+) , z,yeR, 0<M < oo, (2.28)
Y Y
then the operator

Gow)i= [oe)el)™ . G LR = LR (229

18 bounded.

Proof. We shall prove that the operator

[e.o]

Gap(z) = / <x>ag(x,y)¢(y)

o \Y

dy
y

is bounded in L,(IR™), which is, obviously, the same. Let us choose p = 1/pp/, p' =
p/(p — 1); applying the Holder inequality we proceed as follows

Gy = //(;)ag(x,y)sa(y)zy

VAN
\8
0\8
/N
< |8
~__—
Q
=
8
s
| —
L=
+
|-
i<y
s
=
<
N~ —
=3
QL
53
| I |
b

1

INA
S —3
S—_y
A/
< |8




IA

0o [/ o0 a+%+’yo 7 5
M /(/(“’) <1+I> dy) x
S\ \y y)
1
00 a——+7 m v
z d
ST (1) e
J \y v v

M { / lo(y)[Pdy ( / et t0l (1 4y, dt) / g a0l 4 t)'“dt}
0 0 0

IN

e}

<M [lp)Pdy [5007 (140" de < Mgl
0 0
(see condition (2.27)). O
Lemma 2.8 Let (2.26) hold and
Ir(z)] < Mz™(1+ x)" (2.30)

(cf. (0.3),(0.4)). Then the discretized Mellin convolution operator
()5
r(2) 2
k) k
Proof. Let { = {£;}32, € £, (N) and define

> () ()=

k=1

G, = Lyo(N) = Ly o(N) (2.31)

Chp
7,kEN

1s bounded.

p

[SE©F =>_
j=1
The lemma would be proved if there is a constant M, independent of &, such that
(S < MElIENp o = MG > k&l
k=1

From (2.27) we see that 3 < 0. Choose any 0 < ¢ < min{—y — L,a+ 1/p + 70} (see
(2.27)). Now

SEF < My [ﬁ‘j () (14 2)" kafur

j=1 Lk=1
_ Mpio: p(at0) [ 1 (j + k)mte B ketelge| \”
o J o katyot+yi+lte (] + k)2e ’

j=1 1

By Holders inequality we have

(2.32)

00 0o (. (m+2e)p’ \ PP 0 Lplate)| ¢, |p
P P ip(at0) ) A
[SEF <M (Z k(atyotyi+1+e)p! % = (k)

j=1 k=1
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Obviously,

i ] + k) (11+2¢)p o0 (] + x)(’71+25)
</

~dr < 00
k(et+yo+y1+1+e)p’ xlatyvo+vi+1+e)p’ <

k:l

—00

provided
—(a+v+mn+e)p >—-1 and —(a+y+m —e)p < -1

These inequalities can be equivalently written as follows
1 1
a+N+n+-<—-—-<0 and O<e<a+y+-
p p

and (2.33) follow from (2.27) and choice of .
By inserting = = jt we find: there exists a constant A; such that

Sl (]) < Azll/j—(a—l-“/o—l-l—e)p/—ﬁ-l.
From (2.32) and (2.34),

= ket g,

[SEF < (MA) Z Y

Jl o U+ k)%
jpsl

= (MA)PS kePgPS
1 kz:l |§ | Z( +k>2pg

Define .
So(k) =37+ k).
j=1

Arguing as for Si(j) we have

/acps 1 (k + x) —2re
P

(2.33)

(2.34)

and since pe —1 > —1 and —1 — pe < —1 the integral is finite. By inserting x = k7 we

find: there exists a constant A, such that
So(k) < ALkTPe.

Inequality (2.35) yields

S(E)P < (MAA) i ke

so that (2.31) follows at once with My = M A; Ay and the lemma is proved.
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Remark 2.9 It is proved in [46, 47, 51] and in [27, Section 2.47] that the discretized
Mellin convolution operator (1.30) belongs to the Banach algebra generated by Téplitz
operators (1.31) in the space £,o(N). We have given the proof of boundedness in
Lemma 2.8 because we have not found a relevant reference for this assertion.

Let us consider the following operators

5 1 (e\" C08 Tan ()] op(y)p(y)dy
So0.p(®) = wo/ ( ) (1—y> [a@(y)l oo(y) — op(x)’

S =

(6-1)(3+7)
1 x 0y’ Lo (y)dy
SIOR+,9,7<P($) = m/() —(909)7 (2.36)
o \Y y?
1 (6-1) (6-1)8 1 ,
3 _ L[z 1 op(x)|" (o0(x)\  op(y)
R%,@,aﬁ@('x) T i 0/ <y> (1 _y> [Ué(y)] r <0_9(y X O_g(y)(p(y)d:%
o0 (0=1)(5+7) 0
x P x dy
Rewpeo) = [(2) (() )wy),
0 Yy Y

we shall use vy € C*(S) to denote the cut-off function defined in (2.7) and v, € C*(S),
0 <t < 1, asimilar cut-off function which is equal 1 in some neighbourhood of ¢ € (0, 1)
and vanishes in some neighbourhood of the endpoints 0,1 € &

Theorem 2.10 Let conditions (0.3),(0.4) hold. Then operators

Ss 008 Repes: Lpos(S) — Lpas(S), (2.37)
Stt 0.0 Rt ot Lpa(RY) — Ly o(RT), (2.38)
are bounded and operators
To = vo(Ss6.0s— 58 6.0 Lya(3)s
Ty = vI(Ssp08— Sg,e,ﬁ)I’LP,a,ﬁ(%%
Tg = Ut(Sgg a,f — S]R)|Lp a,8(3) (2.39)
T3 = CLRR+9a|Lpa,8 ()
Ty = (Rspas — Rr+gallpase)

are all compact in L, g() provided at a € C(SI) and a(0) =0 (see (2.8) for I).

Proof. Clearly
Ss0.08 = %,a,ﬁS%Vb,_alﬁ, Rs 0,08 = ‘/H,a,ﬁR%‘/@Talﬂ (2.40)

(see (1.7), (1.8)). Since operators Sg,Rg,Vfaﬂ are bounded in L,, s (see (1.9) and
Theorem 2.4), boundedness of operators (2.37) is evident.
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Similarly,
S]%"',H,’y = ‘/vev"/SRJer,_yl? V=, /8

R?Rﬂe,y = Vpo R+ ‘/0T717 (2.41)
where
Voo(z) i= x(e—l)(iﬂ)w(xe)’ vl = Vi (2.42)
and
Voy, Ve,_wl D Lpy(RT) — Ly (RT) (2.43)

are automorphisms. Operators S+ and R+ are bounded in L, ,(IR") (v = «, 3; see
[5, 12, 24] and Theorem 2.4) and boundedness of operators (2.38) is also evident.
Since
, 0297 1(1 — z)0-1
09(1‘) = 9 012
[0 + (1 — )]
[7() = 0o ()] = log(pox + (1 = po)y)lz —y| = Culz +y" M —yl, 0<er < oo,

= 2" (1 —2)"ge(x), go € C(3]2.44)

the operator

1
Tsp(w) = 10(@)S5.008 ~ S palliy s @) = [ 3z 90wy,
0

1 9—1) (L1 /
1 <$>( G o (y)e(y)dy
y

§2 xr) = —
J,@,agp( ) i ) O'G(y) - O'g(f[‘)

has a bounded kernel:

vo () <SE>(G_1)(’1’+Q) a(y) [(1 - 93>(9_1)(’1’+a) go(x) 1]

T \Y og(y) —oe(w) |\1—y
(0-1)(E+a) 60—} a)

9(z, y)| =

T (0—1)(%—}-(1)(1 i

Y Y

< (O < (5 <00

[z + [
(recall that 0 < % + a < 1). Therefore if we can prove that the operator
Top = UO(Sg,G,a - gg,e,a)SO

has a bounded kernel

(6-1)(5+a) Vol 0/0 9,01
gs(x,y) = ( ) 751) lag(y) —(yze(x) N yey_ xel -

9—1) (14 ’
() <>< G Gy)

<R

y )96(x7y)7

oo(y) — op(x
0y’ o9(x) — o4(y) 1
oo(y) y® —a?

o) =1~ |
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compactness of the operator Ty in (2.39) will become evident.
We have %erglc ge(z,y) = 0 and

0(0 — 1)y?2 90 =17 & )—o
ng(li(x’y):[( / )y Gy)y ‘| 9 9

op(y) ay(y))?
0y’ [ op(y)  louly )—Ue(x) 0y’
*%@)bﬂ—ﬂ (- %) 1
0—1 0—1 1 1
= ly +0(1) — Y + 0(1)1 0(1) 4+ 0(1) [y +0(1) — i 0(1)| = 0(1);

therefore; g¢(z,y) < Cy4|z — y| and we obtain

PO DG+ -D0-F-a) () _ yo-1

4T
x < <o
|.96( y)| — Cl ’(aj_‘_y)g,ll Cl

A similar estimates can be applied to the kernel of operator T} in (2.39).
Now let us consider the operator T5. If

ba(z) = 2OV (1 — 2)P oy ()7,

then vby € C*(SJ) and

(T +
o@)ha(@) = w@)ba()] < Cola =yl (“1). (2.45)
where ¥y(x) also vanishes in some neighbourhoods of 0,1 € <. Since
1
Top(r) = [lgh(w ) + g, w)lely)dy,
0
ory) = ivt(l")bg(iv) — v (y)ba(y) 09_(y) 7
e ba(y) o9(y) — oo()
2 vi(y) a(y) 1 L 0y’
9(x.y) i [Ug(y)—Ug(x) y—x+y—$ y? —af |’
we get, due to (2.44), (2.45),
Cs y O D1 — y)? 1, (252
<
\gz(a: vl = Clﬂ(x—iry)@ 1y(0 1)(5 +a)<1 _y)(e (5 +/J' - \g2(x yll = G,
because,
flo; o(1)]dt Fy — tydt
v (y)] oy) 1| [ve(y) Jloo(y) — oy(t)]dt] ) ng(y —t) Sl
T opy) —oo(z)  y—x|  oo(y) —oo(@)lly —=[ T T (y—2)* T2
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and, similarly
o—1

< (.

lwe(y)| | 1 Oy
T |ly—z y?—2af

Thus, 75 in (2.39) has a bounded kernel.

If a(x) = 0 in some neighbourhood of 0 € & and r(z) = 0 for sufficiently large
x > N, then compactness of T3 in (2.39) becomes evident, since the operator has a
bounded kernel. If a(xz) = 0 only for z = 0 and r(z) # 0 for a large z > N, we
can find approximations |la — a.|C(S)|| — 0, My(r —r.) — 0, Ma(r.) < May(r) (see
(2.19)) where ac(z) and 7.(y) vanish for |z| < e, |[x — 1] <e¢, |y| > 1. Due to Lemma

2.6 operators Ty = agRg\xf’)&a (with the kernel r.) approximate 75 in norm and are
compact; therefore T3 is compact. -
Due to a similar property for operator Rg g5 We can easily get that operator

Rgﬁ’a’g — Rg@a, Where

Rapap(t) = 0/1 <;>w_1)(;+a)7‘ (gg(m)> w(y)@, (2.46)

o0 (y) Y

is compact. Thus, it remains to show that the operator

T; = (Rs0a — R+ o)L (2.47)

p,0,8(3)

is compact in Ly 4 5().

If we recall (0.6) we find

i~ () 3 - () oot ),

ho(z) =2 + (1 —2)? £0, he(x) € C¥(S), z,y€T

for some 0 < pp < 1. By the same formula for a remainder we get

' (28) - (@9) = (¥ = 2)g(,y),
go(z,y) = <x>0 (1o ;; El)_ Fo)y)
Yy o(x

<! ((5)0 [’v‘l (0 )y — )"0 298:; MO)y)D |

due to (0.3) go(x,y) has the following estimates

|90(%,y)| < Mo (‘;)9 <§>(%_1> (1 + <z>9) : = M, (;)WO (1 + (;)6) : . (2.48)
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The operator

where G, Vp,, are default in (2.29) and (2.42) and g(z,y) = 90(33%, yé), is equivalent to
Ty in Ly o 5(3) space (see (2.43)) and the kernel function g(x,y) has estimates (2.28)
(cf. (2.48)). Therefore G is bounded in L, 4 5(S) (see Lemma 2.7). Since 2 vanishes

at 0, the operators Gyél and 27 G are compact in L, 03(3) (see a similar proof for T
above). Thus, T} is compact in Ly, 3(). 0

Theorem 2.11 Let conditions (0.3), (0.4) hold and

1
O(v+ — 4+ a) —m >0 for some integer m € N. (2.49)
b

Then operators R g.qp and Rﬁ)ﬁ,e,a in (2.36) are bounded in Ngaﬂ(%) and in nga(ﬂ%ﬂ,

respectively and operators Ty and Ty in (2.39) are compact in le:"”aﬂ(%) provided a €
C™(S), a(0) = 0.

Proof Boundedness follows from Lemma 2.7 and equality (2.37) since

00 (O-1)(2+7v)—k 6
x P x dy
DRYgele) = [ (%) . ((y) ) ™, )

0
0<k<m, ¢cWL(RY)
(see (2.13)) and the kernel of the operator D*RY, | , satisfies conditions of Lemma 2.7
(see (2.49)). Similarly with the operator Rg g.q.3-
Compactness of T3 and T; can be proved directly as in the foregoing Theorem
2.11. The assertion can also be derived by an indirect method: it can be proved that

operators ﬁgﬂﬂg, R?R+79,a are bounded in the Bessel potential spaces ﬁ;”j 5(3) and in

I:I;"j °(IR") respectively for some € > 0 (see [16, 61]); then, by interpolation theorem

() = Wi, 4(9).

for compact operators (see [61]) we get T3, Ty are compact in H" o8

P,
O

Remark 2.12 The operators Sg g5 and Syt N

spaces Ng‘aﬁ(%) and in W;”(]R’L,x”(l + x)¥) for any v € R, respectively, if m > 1
and 0 s large.

are unbounded, in general, in Sobolev

We should explain this on the example of the operator SI%+ .. this operator is
bounded in L, ,(IR") if and only if

0 17 6y!
Sp+p(x) = i W@(Q)dy (2.51)
0
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is bounded in L, ,(R") = L,(R", 2*(1 + x)¥) with u = a + (§ — 1)(% + a), ie. iff
1 1 1 1
——<pu<l—-—=, —<p+trv<l-—- (2.52)
p p p p

since 0 < 1% + a < 1 (see [24, 33] for 0 = 1; the case 6 # 1 is reduced to § = 1 as in
(2.41), (2.43)).
Integrating by parts we find that

DuSpel@) = 55Dx [ Dyln(y” —a)e(y)dy =
oo 6-1 45 0— _
= LT (2) D)y, o € W (R k(14 2))

Thus, S¥ . is bounde in WI;”(IR+, 2 (1+x)") iff S9 . is bounded in L,(IRT, z# =D (14
x)") (cf. (2.52)).

3 Preliminaries

3.1 Splines

Let us recall here more information about splines, defined in subsection 1.2.

If we denote
m._)x" x>0,
= { 0. <0 (3.1)

we can prove that ®,,(z), defined in (1.16), can be written as
1 m+l m+1 "
Bnle) = 7 3 (19 ( ! (x P k>+ (3.2)

for all m € N, moreover, for m > 2 there holds the following recurrence formula

e = 3 (e 7 oo (043) - =)o o). 09

m

For the cases m = 1,2 we have

Di(z) = (1 + 2)x-10)() + (1 = 2)x[0,1(7),
9 3

1, 3
Dy(z) = <2x2 + 50 +18) X[_g/g,_lgz](m) + (4 - $2> X[-1/2.1/2 (%) + (3.4)
+ (2:1:2 — §$ + 8> X[1/2,3/2] (35)
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Since 0o
D<I>(")<(:1: =D / X[-1/2,1/21(me — j — y)@p_1(y)dy =

nr— ]+—

1
=D, / D, 1 (y y—n{fbfn)l]<x+ )
2n

n— ]7*

1 1
_¢&Zm+1<f*‘2n>}::—nAﬂEw4g(x%—2n),
A&k = &k — i

we easily find

Jj T m—Lj

Dol () = (—n)’ AL ( +€>, ¢ <m,

where

Therefore,

™) () = mm m\ () my\

z:O

= nm i(—l)Z ( m ) X[2j+2i—m—1 2,7'+2i—m+1]($).

2n ’ 2n

Due to the definition of ®,,(x) (see (1.16))

7 b, (x)dr = 7 (Do(x)dx] . =1

as a consequence we derive

Y d,(j+z)=1, z€R.

j=—oc

In fact,

icp G+ ) = Z /@ml +a— y)B(y)dy =

j=—00 j=—00_"
1 0

= > / Q1 (j+ 2 —y)dy = / D1 (v —y)dy =
J=—00 % —00

= [ @)y =1
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Now if (-,-) denotes the scalar product

(p,1) = /w(y U(y)dy, (3.10)
then
(@, @ /®k Wy = [ Oy Pu(y)dy = Prpmia(0), (311
since (see (1.16))
D, (z) = O (—2). (3.12)
Similarly
(Pi(- £ 7), Prn) = Phrmr1(£)) = Phrmsr (4)- (3.13)
It is convenient to define the Fourier transform F (and its inverse F!) as follows
FHo(n) = / (2o (y)dy,  Fl(y) = / 2™ap(n)dn, n € R. (3.14)

Due to (1.16) we have

00 o0 m+1
FO(n) = [ (770, () dy = [/ Wm%o(y)dy] )

—00 — 00

% m+1 o (315)
_ ey g _ {sm ﬂn]
/ Y ™ ’
oo ] : m+1
%mzrv¢@=/wmw%ﬂ dn —
™ (3.16)
/ €+27rnyz |:SlIl ™ mrl dn.

3.2 Projections on spline spaces.

Together with S ]gn) (J) (see (1.18)) we should consider the splane spaces S,gn)(ﬂ{), gen-
erated by all functions @,E:n]) (x), 7 =0,%1,..., defined in (1.18)

S (R) := { Span {®{") :j =0,%1,...}. (3.17)

For a Banach space X (IR), which contains S\ (IR) (i.e. SU”(IR) € X(IR)) by S{™ (X (IR))
is denoted the closure of S,(f’) (R) in X(IR). If, for example,

W (R) == W(IR, |2]*) == {p € L,(R, 2*) : Dip e L,(3,2%)}, m=0,1,...
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then 5" (IR) C W (IR) provided k > m and (0.4) holds for a € R; S{(IR)(W" (IR))
denotes the closure of the spline space (3.17) with respect to the norm in W), (IR):

oW (R)|| = i (/ |ankcp(x)|pdx>
k=0 \_,

1/p

(cf. (1.11)).
Let us consider the operators
W) = ESDDp@) = Y o ( ) (),
j=—00
DMy = {(p <‘7>} , p e WIL(S), m=>1, (3.19)
n j=—o00 ’

D= 3 al(), £={&)2 .

j==o0

Operators ]52") are correctly defined, as will be proved in the next theorem. Let us

notice here that since @Y;) (%) =d,(0) =1, CIDg?) (%) = 0if £ # j, we get (see Remark
3.8 below)

(]5@)2 © = ¢ while (pl )2 o # ¢ ifk>1 forall p € W (I). (3.20)

Thus operator p( ") , projecting the space W}, (IR) onto S%L)(nga(]R))k, are not projec-

(n)

tors unless k = 1. Projectors p,’ will be constructed in subsection 3.4, following [27,

Sect.2.7]

Theorem 3.1 The operators
B Wi (R) — SP(WL(R)), k>m > 1 (3.21)

p,x

are correctly defined, bounded and converge strongly to the identity:

lim "o =¢ forall e Wi (IR). (3.22)

n—o0

Proof. From the definitions of <I>,(g;) and 5\ in (1.16) and (3.19) we easily find that
() = nd,, o+ Bie(x) = / Pp—m1(n(z — y))By" 0 (y)dy. (3.23)
Let us check first that the convolution operators

K@) = neff x o) =n [ O —ylel)dy, (=0, (324)
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are bounded in W,,(IR). For ¢ > 1 this follows from the Stechkin’s theorem (see
[5, 12]) since the symbol of the convolution operator

. g 10+1
ln sin W”}

70

. 0
ke(O)nF o) (8) = F, <n> -

(see (3.15)) is of bounded variation k, € Vi(IR). For ¢ = 0 this argument fails and we
give the direct proof in the general case ¢ > 0.

We have
1/p
IDKep| Ly (R /ta / (t — 7)|Dp(r)drlPdt | <
t— 441

25| 1 p/v \ VP

0 t4 £ £
< / [t[oPp? / 7% D (r)dr Pdr / i ar | dt|

—00 L L
s=0,1,...,n, p = L,
p—1

since |<I>%) (t)] < 1 and we applied the Holder’s inequality. Applying the mean value
theorem we easily prove that

/
e p/P

tr / = dr | < an P,

=S|

where Cj is independent of ¢ (but depends on p and ¢). Therefore

1/p
ID* Kool Lo (R)[con / / 7" o (r)Pdrdt | =
7oot E+1
o S\
1-4 a|Tys s
=o' 7 | [0l [ = alDelLa®)].
—00 L

where ¢; = (¢ 4 1)/P¢y and the boundedness Ky : W (IR) — W™ (IR) follows.
Since

n (+1 (+1
|<I>€ |<1 suppq)éo)[ o ] /@g

(see (3.17),(3.18) and (3.8)) we can apply the well-known convergence result (see [][29])

lim K = lim n@é Yoxp=0p, ¢c€ WL (IR). (3.25)

n—oo
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From the representation (3.22), from the boundedness of ng”) and from (3.25) it
follows that we can suppose k = m
Applying (3.5) we get

14
D () Z ® < ) AK(ID 0 (x + 2) =
n
j=—oo (3.26)
—nég:AZ ( )@f:;“() (=1,...,m,
j=—o00
where (see (3.6)) ¢ € C3°(IR) and
. ¢ .
1 +1
Afgp (i) = (=1) ( ; ) © (‘7 . > = / Oty + -+ + to)dt,
i=0 n
. %@7;1 ! (3.27)
dt == dty,... dt;, SV = {j,]J“ x 10, =] x - x |0,=| x (£=1)
’ n’ n n n
We proceed as follows
1 P 1/p
J
DA LB = | [ oo 3 Al (TE) 0l 0 dx) <
j=—o00
i jomet (3.28)
o( 3l / 2 Dlo(t)|Pdt / 2| da) VP,
Jj=—00 j_%
Since, due to (3.27),
i+l it 1/p
. 1 n
‘A?gp (] + >‘ < nt [ op()ldt < nl” / e p()Pdt | x
n .
FEsY 1/p’ 41 1/p
X / |t~ dt < contTl/P e / t20%p(t)|Pdt
i A
and we apply the first of the following two inequalities
i+l 1/ J+L 1/p
/ |t|=oP dt < ¢con Mo / tjerdt | < Cyn~V/P'He (3.29)

which can be easily obtained with the help of the mean value theorem (constants ¢y,
cz) depend on p and ¢, but not on n).
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Applying the second inequality in (3.29), we get from (3.28) the following

j+1 1/p
IDH el ®) <0 3 | [ Do)t | =

Jj=—00 J

" (3.30)

(e%e] l/p
— ¢of ( / yxapfgo(t)ypdt) _
= col||D | Ly o(R)]].

For the case ¢ = 0 we apply the following obvious equality

o(2)=n ] [0 (c=50) o]

and the second inequality in (3.29); we get

()

Jj+1 p j+1
p n

<o | [P+ @bt | <nr | [ 10er(e@F + e | de x

J
n

n

J+1 p/v J+1

n n

| [ | <emg [ 0P + et

A A
n n

Further we proceed as follows (applying the second inequality in (3.29):

o0 . 00 . 1/p
~(n a (7 J n
701y ()| = (/ e (2) 20 (2) @%L-(xﬂ%) <
I+l

00 ” j+i
<em” 3 (G [ QL OF +1e@l) [ lalrda) <
Jj=—00 % J_%
j+1
[e’e) n
<o Y [ HTSOP + @) <
Jj=—00 j

Sl

< C2<||D90||p,a + “90”10,0)'

The obtained inequality together with (3.30) yield the boundedness (3.21) for k =
m, since the lineal c5°(IR) is dense in W}, (IR).
To prove (3.22) (for k = m) again it is sufficient to take ¢ € ¢§°(IR). Due to (3.9)

we find - .

i @2?(:17) = Z Oy(nx — j) = Z Oy(nz+j)=1

j=—00 Jj=—00 j=—00
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and, applying (3.26),(3.27),(3.29) we proceed as follows

= J
1D = LRI = | 3 (D' = i (£)108, 1Ly ()| =
j=—00
p 1/p
=| [ | X 0t [ Petw) - Diplaal, @) de| <
—00 -7_ g(")
£,j
1/p 1/p'
< > nt| [ ImlTDte) - Diplat || [T |
J=moo g N0
£,5 £,3
j+"§;£

where
Eom 1= su.p[nZ / |Dlo(x) — Dlp(t)[Pdt]Y? — 0 as n — oo

S |t]er

due to the continuity of Dy (x) (we remind that ¢ € ¢§°(IR)); for a general p € W, (R)
the convergence (3.22) follows since cj°(IR) is a dense subset of W}, (IR). 0

3.3 De Boor’s estimates.

By analogy with (1.21)

. 1/p
la(Z2) = = {12 [I€la(2)] = (.Z (1+|j|)a”|§j|p) <oo}. (3.31)
j=—00
For the norm we should use also the notation [|£||,.« = [|£[¢p.a(Z)]|-

Theorem 3.2 Let k > m and (0.4) hold for o and p. The operator
By lya(2) = S (Wya(IR)) (3.32)
(see (3.19)) is an isomorphism of Banach spaces and the following estimates hold

-1, —t-a n n
cy'nrCgllye < IEREW, o (R)] <

L @uym (3.33)

_1_
< con r C“HEHI(W <cyn r %—"5"100”

where

n y4 o0
R S o O L MR
j=—o0

k=0 =0
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Proof. Similarly to (3.23) and (3.26) we obtain
Em@ = (@0 * By ) (1)

BE() = n<D%;w « B 6)(x) = (3.35)
n' Z (A0, (x) =n'EW) A(x), (=1,...,m.

By means of the mean value theorem we can derive the following analogue of for-

mulae (3.29):
1/p

2|oPde | < co(1 + [f])7Pnr 0, (3.36)

j+m—13

n

- m—4

where ¢y = const is independent of n =1,2,....
Applying (3.35) and (3.36) we proceed similarly to (3.28), (3.30):

k
IESEWE (R = YD ESEW) L (R) [Lya(R)|| =
=0
. 1/p
= Y / |Z 30, (2)(A€Plaldr | <
=0 i~ 0o Jj=—
- G+
< (Y 1A [ el <
=0 j=—00 . m—t
T
. . 1/p
< wXat| [ alhraialr] =
(=0 7

k
1 _1_,
= 0o § n' — ]; - 05||A£§||p,a = Cn » ||§||;()7,1o)¢ <
/=0

m+1
< en-ie (2n)
2n —

el
since |<I>m ¢; < 1 and this function is supported on the interval [ ' J+ m—q (see
(1.17) and (3.18)).

The right inequalities in (3.33) are proved.

To prove the left inequalities (i.e. the inverse estimates) we recall the one proved
in [27, Theorem 2.6]: the inequality

2n’

HEfg)n]Lp,a(IR)H < clnﬁ*o‘Hn €la(Z2)]|, c2=const, nel,,(2) (3.37)

holds provided the condition

AP ®m (“Z D, (t+7)P )) 0k £ (3.38)
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is fulfilled for all 0 < n < 27. Due to the formula 2.7.6(4) in [27].

00 2
A () = 3 |FB (So4)] £0 (0<n<2m)

j==o0

(cf. (3.14),(3.15)) and (3.38) holds.
We proceed with the help of (3.35) and (3.37):

k k
| EWEWa R = YD EREI Ly a(R)] = Y IESL A% =
=0 =0

b N 1_ _1_
> o )0 T A a (2] = cn T [€llpa 22 o] o

(=0

O

Corollary 3.3 The spline spaces St (WF,(IR)) are independent of k = 1,2,...,m

and can be described as follows:

SSWhL(R) = {p € Wy, (R) : o = 30 &80, 6 = {17 € La(2)):

j=—00

Remark 3.4 C.de Bohr was first who proved estimates like (3.33) (cf. [4]). In [27,
Sect. 2.12.2.] the estimates (3.33) are proved for k = 0 and in our proof we applied

this result.

3.4 Spline projections and quasiprojections.

Based on the operators [(") (see (3.19)) and following [27, Sect. 2.7] we should describe

spline projections (see Theorem (3.7))
P = Wya(R) — S (W5, (R)), 1<k <m,

For this we shall prove the following.

Lemma 3.5 The operator

1
D" WE(R) = 6,0(2), 1<1, 1<p<oo, 0<-+a<l
’ p

(see (3.19) for D™ ) is bounded and

Dl Z)I| < nv oW, (R)]).
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Proof Since " = EMWD™ is bounded un W} (IR) (see Theorem 3.1) and EM) s
invertible with the norm estimate

1B < conat

(see (3.32) and (3.33)), we get the boundedness (3.40) and estimates (3.41) since D™ =

(BS)TIPY. o
It is an easy exercise to find out that the operator
DWER = [®(j — O)lljecz =: Ty, (3.42)

is a Toplitz operator (see [27, Propos. 2.14 and 2.18]) with the symbol, defined in
(1.24) Due to the property (3.9)

gm(0) = gn(2m) =1, g, € C*(]0,27]). (3.43)
From (3.4) we easily find
go(n)=gi(n) =1, ga2(n) = W. (3.44)

Lemma 3.6 The condition (1.20) is implied hold, by the condition (1.21).
Proof. From the formula [27, 2.7.6(4)] we get

gm(n) = A 5" < ) :Z Fo,, ( j>75§1)(n):

5 T T

m+1

(3.45)

oo (35+4)
n
2

where F is the Fourier transform (see (3.14), (3.15)). Obviuosly. (1.20) holds provided
=20 — 1 is add.
It is known, that

1
©u(0) > 5 i m =017, (3.46)
while ®g(0) < 3 (see [26]); therefore
|G (0 Z P, ()| = —|—2Z<I> ) cosnj| =
j_foo
> .0 —22@ (1 —cosnj)| = 1—22¢m (1 —cosnj)| >
j=—00
> |1 - 28,,(0)] > 0, 0§n§27r, m=1,2 .17
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since %O: ®,,(7) =1 (see (3.9)).

Further we shall suppose condition (1.20) fulfilled. Then the operator T g is

bounded in ¢, ,(Z) (see [5, 12]) since g,,} € Vi(IR)-has a bounded total varlatlon
on IR.

Theorem 3.7 The operator
ph) = BT D™ (3.47)

has all properties listed in (3.39) and converges strongly to the identity operator as
n — oo
lim pMy =¢ forall ¢c Wr(S), 1<k<m. (3.48)

n—oo

Proof. (see [27, Sect. 2.6.3, 2.7.4]. Boundedness of p{™ follows from Theorem 3.2 and
Lemma 3.5.
pgj) is a projection since

(p(n))2 = g0 pM M0 pi) — pt)70 pr)o 70 pln) — )
m m " gm m " gm m " gm gm ™= gm m
(see (3.42)) and

D(n)p( ) = D(H)Eg)Tgﬂalp(n)w T0 TO DMy =DMy,

gm

which proves the last equality in (3.39).
From (3.47) and (3.48) we find that

Pl = ST (B4 5l

m

since p(™ are uniformly bounded, due to (3.22) and the Banach-Steinhaus theorem,

invoking (3.33) we conclude the same for p{™):

I e Wi (R)|| < MW,y (R)]| (3.49)

with a constant M independent of n and ¢ € W} (IR).
To prove (3.48) we proceed as follows

Tim {lp e = el WEL(R)[| < Tim (Ip5 (¢ — 53 0) Wi (R)]| +
1550 = oW (R)) < Tim ([[p52 159, + DB — @l W, (IR)H:O

n—oo

(cf. (3.49)) since p™yp € S™(IR) and, therefore, pMpMp = pie. O

Remark 3.8 Since g1(0) =1 (see (3.44)) we find that =i,
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Let R" = [0, 00} and

WE(RY) = {p € WF,(R) : suppy C R"},

SID(IRY) = Span{®)} 1. (3.50)

+10

if, as usual, Sgl)(Wlﬁa(]Rﬂ) denotes the subspase of W} (IR™) generated by splines
S (IR™) (see subsection 3.4), we can define the spline projector

Pps s WE(IRT) — SI(WE,(RT)) (3.51)

as follows: let

Be(r) = gs@% («--5]),

o e (3.52)
pe={e (o)),
then
An) ) 1 Tm7\|*®
R N
n 2 j7€:1 gm

gn(0) = 1510, (0);

the Toplit operator is right invertible unless m = 1 (then it is invertible), since ind g, =
A )

- [%} (see [5, 12, 25]). The operator Pgﬂm = EJ)(TEM)*D is a projector (3.51),
but it does not suit our purposes Plgl) P (%) #+p (%) We would prefer other operator
— quasiprojector, which is defined as follows

NG (n) A

Pre e = By T2 DO WE (IRT) — SO(WE (RT)), 1<k<m<oo, (3.53)

m " gm

(n)
where D is defined in (3.52) and
B &)= 3 ().
=[5l

The inverse (Ty,, )" to the T6plitz operator Ty, = || @y, (j—)||35=, exists (sce [5, 12, 25])
since we suppose (1.28) fulfilled, which implies (1.27) (see (3.6)) and, additionally,
ind g,,, = 0 since g,,(0) is real valued.

A n
PR+, has the following properties

AR A A A ) A A A o
(P]P{+,m) = Em (Tgm) D Em Tng = Em Tgm RngmD = PIR*,m + Km )
Foar(2)=5(). =[]
RT,m n n)’ 2 Y



(n)

(n)
where K" = ﬁm (I — Rm)lg is a finite ([%}—dimensional) operator since
R..¢:=1{0,...,0, 5[%]4—17"'}

and [ — R, is [@}-dimensional projector. Another example of the quasiprojector is
A1)

) A
Operators P+ ,, and Pc\ are both restrictions of the projector P (see (3.47))

to the half-axes R* and to the interval & = [0, 1], respectively.

Hy(R) and Z*(IR) (1 < p < 00,5 € IR, 0 < t < oo) denote the Bessel and
Zygmound spaces (see definitions in [29, 60, 61]); H]'(IR) = W"(IR) for integer m =
1,2,... and ZY(IR) = C*(IR) (the Holder spaces) for non-integer ¢t € IR"\{0, 1,...}.

the operator Ps,., defined in (1.19).

Remark 3.9 In [21, 23] it is proved that:

(i) if —co<s<v<m+1ands < m+ 1/2, then there exists a constant C,
independent of n = 1,2, ..., such that

inf{[|(u — v)|H; (R)| : v € SR (R)} < Cn* " |[u Hy (R) |
for any v € H)(IR);

(i) of 0 < s <wv < m, there exists a constant C, independent of n = 1,2,..., such
that
inf{||(u — )| Z*(R)|| : v € ST (R)} < O~ ||u|2¥(R)|

for any u € Z¥(IR).

Better approximation can be gained with non—uniform meshes. If A,, = {z1,...,2,} C
= [0,1] are such that |z; — ;1] ~ £ (%)q (¢ > 1), then we write A,, € M, (see
[21]). Let

LEM(S) :={p € Ly() : " *Drp € Lp(), k=1,...,m}.
Lemma 3.10 Ifu € LE™(3), p < v, A, € My, ¢ = m(p — ), then
(T = QE)ulLE()| < Cn~™ [[ul LE™(I)]],
(7 = QE)ul LA ()] < Cn~!|lulW;" ()]
where Q) are the orthgonal projectots QU : Ly(F) — ST (Ly(S)) (see below).

We conclude this subsection by several remarks on orthogonal projectors.
The projector P™ in (3.47) is not orthogonal, i.e. a self adjoint one (in Ly(IR)-
space). To construct the orthogonal projector we should consider the operators

DMy { / o }:OOO ,
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which are bounded

va?) : W;ﬁa(R) - gp,a(z)
(as D™ in (3.40)). Then

DIWEMe — { S 6 / <I>m(y—(j—£))q)m(y)dy} =

l=—0c0 ‘o =0

= { Z 66@2m+1(j_£)} :T902'm+1§

J=—o00 j=—00

(see (3.13)). Due to Lemma (3.6) Ty,  is invertible for all m = 1,2,.... Therefore
the operator
P () _ gm0 1)
QM = gm0, p

m 92m+1
is a projector
Qo W) = YW (R)), 1<k<m
(@) = Qw
and is self-adjoint (Q)* = Q™. since

(,DE;L))* = Egl)’ (ES:))* = Dfr?)v
0 * 0 .m0
( 92m+1> o g2m+1 ngm+1'

Tk + ; ;
For the space W, (IR™) we can define a quasiprojector

A () (n) A ()

A - TI/m n) (117m
Q. = Epy (Tpp) ' Dy WL (IRT) — SEO (W, (RT))
A (1)
where D,, is the restriction of D™ to R" :

[e.9]

A (1) n N
Dy =3 00 0 [ O )0y, b € W (RY);
N——

m,[%}—i—l

[%] —times

Tosmir = | Pomi1(j —€)|13%=, is a Téplitz matrix and is invertible in £, ,(N) (see (3.53).

Since
A () A (R)

Dm Em - T92m+1Rm
(see (3.54) for R,,), we easily find that

A (n) —~

(Qn )? = QW+EKW,
I (n) A 1 A
Km = Em T92m+1 ([ - Rm)T92m+1Rng2m+1Dm +

(n) A (1)

A
+Em (I - Rm)T_l Dm )

g2m+1
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where K (" is a finite dimensional operator.

If we define -
m
Do o [0t (- 1 [5]) et
j=1
we can prove that DIWEM — = T, ., (see (3.52)) where T5,  is a right invertible

Toplitz matrix (operator); the operator @g]j) = Eﬂ?)Tg_2 +1D7(7?) would be a projector,
but non self-adjoint, because gomi1 # Gomr1-
Again, for m = 1 the operatorrs Qg") = Q(ln) coinside and represent orthogonal

projectors.

3.5 Banach algebra technique in approximation methods.

In the present subsection we recall some results from [41] which would be applied to
prove stability results claimed in Theorems 1.5 and 1.8.

The algebraic approach to the proof of stability was first suggested by A. Kozak in
[35] and developed further in [56]. We stick here to the sheme suggested in [41].

Let X be a Banach space and X,, C X—subspaces with projections P, : X — X,
converging to the identity strongly: P, — ¢ as n — oo for all p € X.

0,(X) will denote the Banach algebra of sequences A := {A, },en of uniformly
bounded linear operators A, : X,, — X,,, with the pointwise composition as multipli-
cation

{An}{Bn}n = {Aan}n

and endowed with the uniform norm
HA}all = sup [[An].
Let ©y(X) denote the ideal of sequences {7}, }, converging to 0 in norm
Qo(L) = {10} € Q(X) : lim | T,,|| = 0}. (3.55)

We consider two further ideals

Qu(X) = {{By + P,T|x, }n : {Bu}n € Q(X), T iscompactin X},

A sequence {A,,} € Q,(X) is called stable if

(a) it converges strongly to some bounded operator in ?7: lim, A,p = Ap for all
p e X;

(b) An are invertible for all sufficiently large n > Ny and the inverses are uniformly
bounded sup ||A;, ]| < M < .
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It is easy to ascertain thet stability is equivalent the invertibility of the quotient class
{A,}° corresponding to the sequence {A,}, in the quotient algebra Q(X)/Qo(X).

The next theorem was proved in [56]. The short and clegant proof exposed here is
suggested in [41].

Theorem 3.11 A sequence {A,}, € Q(X) is stable if and only if:
(1) the limit operator A,p = lim A, is invertible;
(ii) the quotient class {A,}n is invertible in the quotient algebra (X)) /Qo(X).
Proof. It is easy to check that
Q.(X) NQ(X) = Qo(X). (3.57)

The quotient class {A4,}° € Q,(X)/Qo(X) is invertible if and only if the quotient
classes {4, }¢ € Qp(X)/Q(X) and {A,,}7 € Q(X)/Q(X) are both invertible. In fact,
if {A,,}5 and {A,}; are invertible, there exist {C,},, {Sn}n € 25(X) such that

{Cn}n{An}n = {[ + Tn}m {Tn}n € Qc(X)a
{Sn}n{An}n = {I + Kn}nv {Kn}n < QS(X),

where [ is the identity operator. If B, = C,, + S,, — C,,AS,,, then

where, due to (3.57), {1, K.}, € Qy(X); similarly is proved that {A4,},.{Bn}n, =
{I — K, T,,},, and, therefore, { B, } is the inverse to {B,}° in Q4(X)/Q(X).
The inverse assertion is trivial, since Qy(L) is contained in both ideals 2.(X) and

Q(X).
To conclude the proof it remains to note that invertibility in the quotient algebra
0,/Q5(X) is equivalent to the invertibility of the limit operator A in X. 0

After ”algebraizing” an approximation scheme in Theorem (3.11) we should apply
a localization principle from [24] (see Section 4). The concluding propositions in this
section will be applied to implement the local principle.

Let
C(R):={be C(R) : b(—o0) = b(c0)}, (3.58)
C*R):={be C(R):D'bec CR), (=1,...,k}, '
and the norm of an operator A in W, (IR) is denoted by || A[|").
For a polinomial
"k
Ag(n) == (1 +2m)" = ( ), ) (2min)*
=0
the operator
k
k. r-Iykr . _ k ¢ -
ANy :=F )\0]-"4,0—;)<€ D'y, peCP(R) (3.59)

A S WEL(R) = Ly o(IR)
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is, obviously, bounded (see (3.14) for the Fourier transforms F*'). It is less obvious
but also well- known that the inverse operator to A* exists and

A Fo=F I\ Fo, AN =ANANFp=0p ¢ecCPR) (3.60)
(see [12, 16, 29, 61] for the Bessel potential operators).

Lemma 3.12 Let a € Vl(IR)ﬂC’(IR), b e C’k(]R) and 1 < p < o0, 0< %—Fa > 1,
kEkmeN,1<k<m. Then

k an)
B (a)bI —bBW(a) = > B; (a)Tj + Rn, (3.61)
=0
where
()
(n) o ()0 y(n A . A—kpn) k
B"(a):= E;"T{D™,  B; (a):= A*B"(@)A",  lim |[R,[{% =0,  (3.62)
and 2 Ty, ..., T}, are some compact operators in W;a(]R).

Proof. For k = 0 the claim was proved in [27, Sect. 2.7.5] in the following stronger
form:

if R, := B{"(a)bl —bB{"(a), then lim ||R} [0 = 0. (3.63)
Since the operator (3.59) and the inverse

A* L, o(R) — WH(R) (3.64)

D,

are isomorphisms, we have to prove that

k
A = AF[BM (a)bI — B (a =Y BT, + R?, Tim [[R2 [l =0, (3.65)
7=0
where T}, ..., T}, are compact in L, (IR).

In (3.35) we already proved that
D'EME =n'EM A, 1< m;
it can be easily verified that

A'TYE = TYA'E, n'A'DWp =DWAL g,

A1) A
2Note that if B; ie. Bj(-n) converge to some bounded operators B; strongly as n — oo, then

/\ (")

k ~
Z i (@)T; =T+ Ry, ||IRn||](,k& — 0 (see Lemma (3.13) below)
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where A1p(z) == n [ (x4 1) — p(z)] = Dp(x) + R3p(x), |R3¢llpa < (20)7[l0]|2.
for all p € W2p, (IR). These formulas result into the following:

‘B k (n CA—k _ ( ) 14
DB (a)A™F = BV ()A A () DA+ R, (3.66)
| R mnpa < Myin Y[, for all z <k-1, andall v €W}, (IR).

Since DA* = W0 = F~lg,,F is a convolution operator (see [12, 14]) with the

9o,k
symbol
(270i)*

9er(0) = 0 + 2700

operators
Tio : D'VD'A™"  are compact in L, o(IR) provided 1 <k—1,0<i<k (3.67)
(3.67) follows from [14, Theorem | since 9'b(£00) = gy x(+o0) = 0.
From (3.59), (3.65) and (3.66) we find that

k
AW =3"DIBWbI — bB (a)]ATF =

= ij( ’; ) ( f ) [BSY (a)(D~b) —

/=0 ;‘:%

—(D'70) B ())D'A o + Rip + Ry,

RS :=[B™ (a)bI —bB™  (a)]A% A F¢ (3.68)
with lim ||} |, = 0. Since

lim A AFp=0 forall @€ L,.(R),

n—oo

due to (3.63) the last summand in (3.68) converges to 0 uniformly

lim || RS0 = 0. (3.69)

n—oo

Due to (3.63), (3.68), (3.69) can proceed in (3.68) as follows

Aﬁ)if)( ) ( )[B(”) () — BY ()] (D= b)DIA* + R = ZB o)T, + R2,
(= 0

where lim |R%||,.o = 0 and T]/ are linear combinations of operators (D*~'b)D'A~* for
0<i¢</{¢<k, i<k and thus are compact due to (3.67). 0
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Lemma 3.13 Let b € C*(IR) and 1 < p < oo, O<%—i—o¢> L, kkmeN,1<k<m.
Then the commutator

[P™ bl =T+ R,, [A B]:=AB - BA (3.70)
where P™ are projections (see (3.47)),
lim [[Rulp0 =0,
and T is a compact operator in W, (IR).

() _ p) -1
Proof. From (3.47) and (3.68) we find that P;"” = B;"(g; ") and from (3.66) we
get

B (g, ) AT = BT DAY = DI Py, e W, I(RR).

J m

Therefore from (3.48) we derive

(n)
lim B, (9o = Jim APBY (g,)AHe = AR forall o € W, (IR)

n—oo

(see (3.62)) and
()
lim ||B; T —T'|%) =0 (3.71)

n—oo

for any compact operator 7" in W, (IR). In (3.71) we applied a well-known assertion:
if operators B converge strongly in a Banach space X and K is compact, then B, K
converges in norm (see e.g. [36, Theorem 10.6]). (3.70) follows from (3.61) and (3.71).

O
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