THE GREEN FORMULA AND LAYER POTENTIALS

ROLAND DUDUCHAVA

The explicit form of all possible variants of the Green formula is described for a
boundary value problem when the “basic” operator is an arbitrary partial differ-
ential operator with variable matrix coefficients and the “boundary” operators
are quasi—normal with vector—coefficients. If the system possesses a fundamental
solution, a representation formula for the solution is derived and boundedness
properties of the relevant layer potentials, mapping function spaces on the bound-
ary (Bessel potential, Besov, Zygmund spaces) into appropriate weighted function
spaces on the domain are established. We conclude by discussing some closely
related topics: traces of functions from weighted spaces, traces of potential-type
functions, Plemelji formulae, Calderén projections, and minimal smoothness re-
quirements for the surface and coefficients.

Contents

Introduction

1

The Green formula and boundary value problems

1.1. The Green formula for quasinormal BVP . . . . .. ... .. ... ... ...
1.2. Partial integration and the special Green formula . . . . . . . ... .. .. ..
1.3. About “boundary” operators in the Green formula . . . . . . . ... .. ...

Spaces
Representation of solutions and layer potentials

Auxiliary propositions
4.1. On pseudodifferential operators . . . . . . . . .. ... ...
4.2. On traces of functions . . . . . . . . . . . ...

Proofs

5.1. Proof of Theorem 1.6 . . . . . . . . . . . .
5.2. Proof of Theorem 1.7 . . . . . . . . . . .
5.3. Proof of Theorem 3.2 . . . . . . . . . . .

Consequences and related results

6.1. Traces of generalised potentials on the boundary . . . . . . .. ... ... ..
6.2. The trace theorem for weighted spaces . . . . . . . . ... ... ... ... ..
6.3. The Calderén projections . . . . . . . . . . . ...
6.4. The Plemelji formulae for layer potentials . . . . . . . ... ... ... .. ..



6.5. On the smoothness of solutions and coefficients . . . . . . . . . . . . . . ... 46

6.6. Concluding Remarks . . . . . . . . . . ..o 48
References 49
Introduction

Let Ot C R” be a domain with a smooth boundary 9Q+ = .7, Q= := R™\QF and let
U(t) = (n(t),...,vu(t)), t €. be the outward unit normal vector (see Fig.1).

Tn

X2

Let ’y§ denote the trace operators on the boundary:

Yiu(t) = lim  u(x).
r—t
zeQ* tes

We consider a boundary value problem of the form

A(z, Dy)u(z) = f(), z € OF,
vobju(t) = g;(t), j=0,...,w—1, tes, w<m,

(0.1)

with a partial differential operator (we call it a “basic” operator) with N x N matrix coef-
ficients

Az, Dy) =Y aa()02,  an € C™(QF CV*N) (0.2)
la|<m
and with a quasi-—normal system of “boundary” operators
JtD) = Y b)), bja €C(S,CY), my<m—1, j=0,... w-1
|a]<my

with vector— row coefficients of length N. Extending arbitrarily the “boundary” operator
system {b;}Z; " to a DIRICHLET system {b; } , it is possible to find then unique system



of “boundary” differential operators {cj};z\of_l such that the GREEN formula

mN—1

/ (Au)'v—u"A%v)dy =+ ) 7{ buc;ud,.s (0.3)

Q+ =05

holds (see Theorem 1.6) with the formally adjoint operator A* to (0.1). The system {c; }mN !

is a DIRICHLET system if and only if the “basic” operator A(x, D,) is normal.
Moreover, if the basm operator is normal, it is possible to prescribe parts of both

systems {bj}kN "and {c; }] kN N=1if they are both DIRICHLET systems, and find missing

parts in a unique way such that the GREEN formula (0.3) holds.

For a formally self-adjoint operator of even order m = 2¢ a simplified GREEN
formula is proved separately (see Theorem (1.7))

The GREEN formula (0.3) was proved in [Tal, Ta2] for a rectangular system of
“basic” operators with ¢ x k matrix coefficients with an injective principal symbol (see
[LM1, Ch.2, Theorem 6.1] for scalar elliptic operators (i.e. N = 1) and [Rol, RS2] for
elliptic AGMON-DOUGLIS-NIRENBERG systems; see also the survey [Agl, §4]). All the
investigations mentioned in [LM1, Rol, RS2, Tal, Ta2] are based on local diffeomorphisms
which replace the domains QF by the half-space R? . The present approach is direct and relies
on the partial integration formulae (1.23)—(1.24), which follow from the GAuss divergence
formula and the STOKES formula for differential forms. Other important ingredients are the
special GREEN formula with the normal derivatives B; = 9% as “boundary” operators (see
Theorem 1.10; for similar formulae, the interested reader may also consult [CP1, CW1, Dil,
Sel]) and Lemma 4.7 (see [LM1, Ch. 2, Lemma 2.1] and [RS2, (11)] for the scalar case).

Moreover, the approach is constructive and allows us to write the “boundary” differ-
ential operators {c;(z, D )}m_]\é_1 in explicit form (see Theorem 1.11) provided the “bound-

ary” operators {b;(x, D )}mN ! are fixed. The algorithm is purely algebraic and involves

only the coefficients of the dlfferentlal operators A(x, D,) and B,(z, D,).

Let us note that expllclt formulae were previously known only for the symbols of
the operators c;(z, D,), j =0,...,mN —1 (cf. [Tal, §8.33]).

In order to demonstrate an essential application of the Green formula, let us assume
that A(z, D,) has a two-sided inverse on the entire space R™

A(z,D,)Fa(z,D,) =1, Fa(x,D,)A(z,D,) =1,

i.e. the operator has a fundamental solution. As is well know, this entails that A(z, D,) is
elliptic and (for n > 2) it has even order m = ord A = 2¢. We “insert” the distributional
SCHWARTZ kernel v, ,(y) = x:(z — y)#a(x,y) of the fundamental solution Fa (z, D,), suit-
ably truncated near the diagonal set z = y into the GREEN formula (0.3). Making ¢ — 0
yields a representation of the solution u(z) to the elliptic equation A(z, D,)u(z) = f(z) in

the domain Q*
20-1

Xo= (z)u(z) = Nozf(x) £ > V75 Bju() (0.4)

7=0

where yq+ stands for the characteristic function of Q* C R™. The operators

Nospla) = [ [Fatwo)] ety = [ Hategeiy,

: (0.5)
Vid(a) = ]2 G DAL (.7)| w(r) des =0,
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are the volume (NEWTON) and the layer potentials, respectively (see (3.3)—(3.7)).

The layer potentials Vy,..., Vg1 extend functions defined on the boundary into
the domain and their continuity properties have essential applications in many investigations.
A partial list includes potential theoretic methods (see [CW1, DNS1, Gul, KGBBI, Lol,
MMT1, Sel] etc.), a priori estimates of solutions of BVPs (see [CW1, DNS1, DN1, Gr3, LM1]
etc. and Corollary 3.4), full asymptotic expansions of solutions to crack—type and mixed
BVPs for elliptic partial differential equations (see [CD2]).

As a particular case of Theorem 3.2 we can formulate the following (see §1 for the

definition of the BESSEL potential Hf ,,.(Q2F), BEsov B (.#) and other spaces).

Theorem 0.1 Let s € R, 1 <p <oo,1<qg< o0, pj = ordCj < ord A = 20. The layer
potentials

sH20—j+L
V, X)) Ho @), =020 1 (0.6)

are all continuous when either X3 () = H3 () or X)() = B; ().

Theorem 0.1 is proved with the help of Lemma 4.8, which has independent interest.
It allows the representation of the layer potentials in (0.5) in the form of volume potentials,
i.e. pseudodifferential operators (PsDOs). For the sake of this introduction, below we record
a slightly particular case of this lemma.

Lemma 0.2 Let s >0, s¢ N, k=0,1,..., 1 <p<oo, 1 <qg<oo. Let Alx,D,) in (0.2)
be a normal operator det o/ (t,U(t)) # 0 for allt € . and have order ord A = m.

For a DIRICHLET system {Bj};.";ol of “boundary” differential operators of order
m — 1 with C*®—-smooth N x N matriz coefficients there exists a continuous linear operator

s+m—1+% —

m—1 .
Z j(§=§0 B;:;m_l—J (y> - IHlp,loc (Q ) (07>
such that )
~s—1+= —
1B Pb =, APOcH,, " (OF) (0.8)

=0 1 and arbitrary ® = & Byl
fO’/’]— ,-..,m — 1 ana arbvitrary —<(p07-”790m71)€ jéjo D, ( )

A similar assertion is proved in [LM1, Ch.2, Theorem 6.1] for the scalar case; see
also [LM1, Ch.2, Lemmata 2.1 and 2.2] and [Hr2, Theorem 1.2.6]. Our proof is carried out
for matrix—valued operators, it is more transparent and the spaces involved are more general

(we consider weighted spaces HJ (0F) as well).

Theorem 0.1 can be derived from the results on PsDOs with the transmission prop-
erty (see [Bol, Grl, Gr2, Jo2, RS1] and the survey [BS1, Theorems 2.17, 2.21]). The approach
suggested here is different, works for weighted spaces and seems to be simpler. It has con-
sequences which are perhaps difficult to obtain by the methods suggested earlier (see, e.g.,
§8 6.3-6.5 below).

In §1.1 we discuss the GREEN formula (0.3) and related topics. Namely, we recall
the definitions of normal operators, DIRICHLET systems of operators and formal adjoint
BVPs (see [LM1]), and we also introduce systems of quasi-normal operators. BVPs with
quasi-normal “boundary” operators include mixed—type problems arising in elasticity, the
diffraction of electromagnetic waves and many other problems in mathematical physics. Our
main results are Theorems 1.6 and 1.7, dealing with GREEN’s formula. The proofs are
deferred to §§5.1, 5.2. In §1.2 we set the stage by discussing several prerequisites, such as
the GUNTER and the STOKES tangential derivatives, and various partial integration formulae
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for a domain and on the surface, respectively, based on the GAUSS divergence formula and
the STOKES formula for differential forms (see Lemma 1.8). A particular GREEN formula
is proved in Theorem 1.10 for arbitrary “basic” operators when the “boundary” operators

are given by the normal derivatives B; = 9. In Theorem1.11 we find the explicit record for

;@ngq in the GREEN formula (0.3) when the extended

DIRICHLET system {b;(z, Dw)};”:]g_l is fixed.

In §2 we define the BESSEL potential H'¥ (OF), the BEsov B, (OF) and the

A p,loc p,q,loc
ZYGMUND Z"F(QF) spaces with weights .

In §3, relying on the GREEN formula for an elliptic differential equation (provided
the “basic” operator has a fundamental solution), a representation formula for a solution
is derived. The result on the continuity of the layer potentials, intervening in the afore-
mentioned representation formula of solutions, as well as of more general potential-type
operators is also formulated (cf. Theorem 0.1).

More concretely, we prove the continuity of layer potentials from the boundary BESSEL
potential H?(.#") and BESov spaces B> (), B> (.) (including ZyGMUND spaces Z*(-7)
= B, () into appropriate weighted BESSEL potential spaces ]HI;”];OC(Qi) as well as BEsOv
spaces B"F

o qloc(m), defined both in the exterior Q~ and the interior QT of the surface . (see

Theorem 3.2). In the last part of this section, a priori estimates for solutions of the BVP
(0.1) are obtained when the "basic” operator is hypoelliptic (see Corollary 3.4 and Remark
3.5).

the “boundary” operators {c;(x, D)}

In §4 a basic auxiliary result, i.e. Lemma 4.8, is proved. This lemma plays a crucial
role in the proof of Theorem 3.2 in § 5.3.

In §5 we present the proofs of Theorems 1.6, 1.7 and 3.2.

In §6.1 we prove that the generalized layer potentials, involving integral operators
with supersingular kernels on the boundary surface, have well defined traces on the boundary
of the domain, when interpreted as classical PsDOs. Such interpretation of supersingular
integral operators is necessary because they encounter in many problems of mathematical
physics (e.g. derivatives of the double layer potential for a second order differential operator)
and does not exist in usual sense.

In §6.2 we extend the trace theorem (see also Theorem 4.6) and the basic Lemma
4.8 to functions in weighted spaces.

In §6.3 we prove a theorem on the CALDERON projections, related to the GREEN
formula (0.3) and the corresponding layer potentials (0.5). Its essence is that the operators
Pij = +7EB;V; for j = 0,...,2¢ — 1 are proved to be projections (Pfij)2 = Pij?
P, ; + P ; = I in the spaces H3(.”) and B} ().

In §6.4 we establish the PLEMELJI formulae (the jump relations) for the layer
potentials.

In §6.5 we indicate how to substantially weaken the smoothness assumptions on
the boundary . = 9OF of the domain and on coefficients of the differential operators. Such
results are important especially in the context of the recent progress in the theory of BVPs for
differential equations in domains with LIPSCHITZ boundaries. These investigations are based
on results for layer potentials on L1PSCHITZ surfaces (see [Kel,Ke2, MMP1, MMT1,MT1] and
the[ liter]ature cited therein). Most recent and general results in this direction are obtained
in [IMT2|.

Most of the above-mentioned results on the GREEN formula, layer potentials, the
PLEMELJI formulae under minimal restrictions on the boundary manifold and coefficients
are known for second order equations (see [MMT1, MT1, MT2| for recent results). Less is
known for higher order equations (see [CP1, CW1, Dil, Grl, LM1, Rol, Sel]). CALDERON
projections have been investigated in [Sel] (see also [CP1, CW1, Grl, Dil}).

Acknowledgements: The author thanks E.Shargorodsky who suggested the first



version of Theorem 2.2 and Lemma 4.8, as well as the results of §6.4. E.Shargorodsky,
M.Mitrea and F.-O.Speck also had made many valuable remarks while reading the manuscript.
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a) INTAS 96 — 0876;
b) Academy of Sciences of Georgia 1.2.97.

1 The Green formula and boundary value problems

1.1. The GREEN formula for quasi—nmormal BVPs. Let O, 9Q = . and
v

(t) .be the same as in the Introduction " and consider a partial differential operator with
N x N matrix coefficients
Az, Dy) = Y an(2)0, aq € C(QF,CVN). (1.1)
la|<m
The operator
A, D) = Y (1) 0%faal@)] 1. (1:2)
la|<m

where 2" denotes the transposed matrix to 4, is the formal adjoint to A(z, D,) with respect
to the sesquilinear form

(u,0) = / ()] o (y)dy.

O+
Definition 1.1 (see [LM1, Ch.2, §1.4]). The operator A(z,D,) in (1.1) is called normal
on . if
inf |det #(t,7(1))| #0, tes, [{[=1, (1.3)
where ofy(x, &) denotes the homogeneous principal symbol of A
o(w,8) = Y aa(w)(—i6)*, z€OF, ¢eR™ (1.4)

laj=m

The condition (1.3) means that the surface .7 is not characteristic for the operator
A(z,D,). Normal operators contain, as a subclass, elliptic operators on the surface

inf |det @ (t,&)| #0 forall te€.”, ¢&e€S™ (1.5)

where S"7! := {¢ € R" : |{| = 1} is the unit sphere in R"; these two definitions coincide for
operators with constant coefficients since the unit normal vector /() runs through the entire
unit sphere if ¢ ranges over the closed smooth surface .. In fact, the surface . = 9Q7F
is the boundary of the domain Q" and thus any connected part of this boundary can be
continuously deformed to the unit sphere. If we suppose that the unit normal, while ranging
over the surface ., leaves some (obviously open) domain on the unit sphere uncovered, we
end up with a contradiction.
Let us consider a BVP with mixed conditions

A(z, Dy)u(z) = f(z), r € QF,
(1.6)
vEbju(t) = g;(t), j=0,...,w—1, te, w<mN,

DOptimal smoothness constraints on 9Q = . will be discussed later on in §6.5.
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where A(z, D,) is the “basic” operator, defined in (1.1) and

bi(t, D) = > b3, bja € C(F,CY) (1.7)

la]<my

are “boundary” differential operators with vector-row coefficients of length NV and ord b; =
m; <m — 1.

Together with (1.6) we will consider the boundary value problem with the formal
adjoint “basic” operator

A*(z, Dy )o(z) = d(z), x € OF,
(1.8)
’y;cmN,j,lv(t) = h](t), j = O, c. ,w* — 1, te s

és%e (1.3))1; heretw* < mN, orde¢; = p; < m — 1, and c;(¢, D;) are some “boundary”
ifferential operators

ci(t, D)) = Y a0, ¢ €C®(S,CY) (1.9)

o <p;

with vector-row coefficients of length N.
A particular case of BVP (1.6) is the following

A(x, D )u(z) = f(2), r € QF,
(1.10)
vEBju(t) = Gj(t), j=0,....0—-1, te.”,

where
JD) =Y b3, bja € C(,CVN)

la|<m;

are “boundary” operators with N x N matrix coefficients and ord B; = m; < m — 1. The
formal adjoint BVP of (1.10) can be written in the form

A*(z, D,)v(x) = d(z), T € QF
(1.11)
7§Cm,j,10(t):Hj(t), j:O,...,g*—l, te s

(see (1.2)), where * < m and C,(t, D;) are some “boundary” differential operators

t Dt Z cja 3?, Cj,a ECOO(,Y,CNXN)

| <pj

with ord C; = p; <m — 1.

The BVPs (1.10) are encountered, e.g., in elasticity, when the displacement or the
stress fields are prescribed (these BVPs are denoted there by I+ and by I1* | respectively).
The BVPs (1.6) also cover the mixed problems of elasticity when the normal component

of the displacement and both tangent components of the stress fields (I11* BVP) or the
normal component of the stress and both tangent components of the displacement fields
(IVE BVP) are prescribed (see [KGBB1, §§1.8-1.10]).
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Definition 1.2 A system {B;(t, D:)}; "3 of differential operators with matriv N x N coeffi-

cients is called a DIRICHLET system of order k if all participating operators are normal on
S (see Definition 1.1) and, after renumbering, ordB; =j, j=0,1,... .,k — 1.

A system of differential operators {b;(t, Dt)}kN Y with row-vector coefficients of
length N 1is said to be a DIRICHLET system of order k Zf

{b;(t, DYYN " = A4 {B(t. D)V,

where {b;(t, D;)}* ' is o DIRICHLET system and 4 is a constant kN x kN matriz, in-

j=w
terchanging rows.

Definition 1.3 A system {b;(t, Dt)} :01 is said to be quasi—normal system if:

i. the principal homogeneous symbols b;o(t,v(t)), j =0, ...,w—1 evaluated at the normal
vectors & = U(t) are linearly independent vector-rows for all t € % on the boundary;

ii. operators bo(t, Dy), ..., by,_1(t, Dy) with equal order are, at most, N.

Lemma 1.4 For any arbitrary quasi-normal system of operators {b;(t, Dt)};’:_ol, ordb; <

m — 1, there exists a non—unique extension up to a DIRICHLET system
{B;(t, Do)}t = A {bj(t, Do)}
of order m with some constant mN x mN matriz F4).

Proof. Let us select among the “boundary” row-operators {bj(t,Dt)}‘]‘-’:_Ol those
with equal orders m; and add to the selected rows new rows of differential operators of the
same order in such a way that the resulting NV x N matrix-operator B, (¢, D;) will have linearly
independent rows in the principal homogeneous symbol %, (¢, 7(t)), i.e. will be normal.
Next we extend the system {B;(t,D;)}i_ up to a DIRICHLET system {B;(t, D;)}7 ' of
order m by adding normal operators with missing orders (say, 8;;7’5, kE=0+1,...,m—1).

As the concluding step we rearrange rows in the extended system {b;(¢, D) ;”:]\6_1
with the help of some matrix %) which has entries 0 and 1 to get a DIRICHLET system
{B;(t, D)}y u

Definition 1.5 (1.8) is called formally adjoint to BVP (1.6) if there exist two systems of
“boundary” differential operators

b(t. D)= Y bu(t)d5, (D) = > cra(t)Of

la|<m; | <pa
b, Cha € C°(F,CN),  jk=0,...,mN -1,

which are extensions of systems {bj(t,Dt)};f’;Ol and {c;(t, Dy)};_ 81, respectively, such that
the GREEN formula
mN—-1
/((Au)TE —u'A*)dy = + Z %bju@dTY (1.12)
Q* =05

holds® with u,v € C>®(QF,CV).

2)The integral ¢ is used to underline that integration is performed over the closed surface ..
7



For BVP (1.10) and its formal adjoint (1.11) the GREEN formula (1.12) takes the
form

/((AU)T u' A*v)dy = i%f Bju)' Cud,.7 (1.13)
0y

o =

where the “boundary” differential operators {B;(t, Dy)}7 " and {C;(t, Dy)}7" have N x N
matrix coefficients. If (1.8) is formally adjoint to BVP (1 8) then )

m;+p; =m—1, j=0,....w—1. (1.14)

Since the DIRICHLET systems participating in the GREEN formulae (1.12) might
differ from the DIRICHLET systems in (1.13) only by some rearrangement of rows (cf. (5.1)),
we will address most frequent more convenient formula (1.13).

Theorem 1.6 If either {b;(t, D)}’ = or {c(t, Dy)}; ml=1 s a fived DIRICHLET system of
“boundary” operators, then the GREEN formula (1. 12) holds, then the related system (re-
spectwely, {c;(t, Dy)}it = or {bj(t, Dt)}mN 1) is unique and BVP (1.8) is formally adjoint

to (16).
The related system {c;(t, Dt)}mN L (the system {b;(t, Dy)}; =1 respectively) is a

DIRICHLET system if and only if the baszc operator A(x, D,) is normal.
If the “basic” operator A(x, D ) is normal, w = kN, w* = (m—k)N, the related sys-

tems {b,(t, Dt)}?]:\[o*l, {cmn—j-1(t, Dt)} N are fived and one of them is quasi-normal,

then the GREEN formula (1.12) holds zf and only if both of them are DIRICHLET systems
ordb; = ordeyw_j—1 = j (of order k and m — k, respectively). The extended systems

{b; (t Dy} B and {c;(t, Dy}t =1 n (1.12) are then DIRICHLET systems (of order m)
and are umque

The proof is deferred to § 5.1. The first part of the Theorem for scalar elliptic
operators has been proved earlier (see [LM1, Ch. 2, Theorem 2.1]) and for elliptic AGMON—
DOUGLIS-NIRENBERG systems—in [Rol, RS1]. The most general case, to our best knowledge,
is considered in [Tal, Ta2], where the “basic” and “boundary” operators have “rectangular”
k x ¢ matrix coefficients and the “basic” operator has an injective principal symbol.

It is well-known that if A(z, D,) is scalar (IV = 1), is elliptic and has real valued
coefficients (or complex valued coefficients and n > 2) than 1t is proper elliptic and has even
order ord A(x,Dy) = m = 2/ (see [LM1, Ch.2, §§1.1]). Although for the non-scalar case

N =2,3,...) matters are different (see §6.6), many elliptic systems arising in applications
to, e.g., elasticity, thermo elasticity, hydrodynamics) have even order. Let us consider some
simplification of GREEN’s formula for such systems, especially when the system is formally
self-adjoint.

Assume that the operator in (1.1) has even order m = 2¢. Then, it can be repre-
sented in the form

Az, Do) = Y (=)0%a05(2)00,  aap € CF(QF,CVN) (1.15)
o, B8] <€

(the representation is not unique) and with it one associates the following sesquilinear form

A (uv) = [ Y [aasy)duly )] oou(y)dy, w0 e CFOF,CY). (1.16)

o lallBl<e

3)(1.14) follows, e.g., from the formulae (1.38) for “boundary” operators {C;(t, D;) ;7‘:_01

9



Theorem 1.7 For an arbitrary “basic” differential operator (1.15) of even order 2¢ and an
arbitrary DIRICHLET system {B,(t, D;) ﬁ;é of order £ of “boundary” differential operators

with matriz N x N coefficients there exists a system {C;(t, Dy) ?;é of “boundary” operators
with ord Bj + ord C; = 2¢ — 1 such that

o (u,v) = /(Au) Udin/ (Cju) ' Bjud, ., wu,ve CP(QFCY). (1.17)
O =05

If A is formally self-adjoint, A = A*, we get the following simplified GREEN for-
mula

/ [(Aw) "0 —u"Av] dy = j:Z/ C,u) ' Bjv — (Bju) ' Cju v]d . (1.18)

The proof is deferred to § 5.2. A slightly different proof in the scalar case, N = 1, and for
elliptic operators can be found in [LM1, Ch. 2, § 2.4].

1.2. Partial integration and the special Green formula. Let us
consider “extended” normal derivatives

Ope) = 0(x) -V = p(a)O,, V:=(01,...,0,), z€R", j=01,..., (L19)

where U(z) = (11(x),...,vp(x)), x € R™ is some C*®-smooth vector field which coincides
with the unit normal vector field on . and stabilises to the unit normal vector to the
coordinate hyperplane z,, = 0 in a neighbourhood of infinity: #(z) = 7™ := (0,...,0,1)
when |z| > R for a sufficiently large R.

A first order linear differential operator

V= 53% ()8, h(z) = (hi(x), ..., ha(x)) (1.20)

can be applied to arbitrary function p € C*(”) defined only on the surface .# if the operator
h(x) - V is tangent, i.e., the directing vector h(x) is tangent to .7

Vie.”, () h(t)=0.
In fact, then we can write
. t+ Mot
() Volt) = i 2D i,

where Ah.»(t) is the projection of the tangent vector Ah(t) onto the surface . (the projection
is correctly defined for small |A| < ¢).

The following two classes of tangent operators are of special interest for us the
GUNTER ¥, and the STOKES .#, derivatives:

De = (Drs - Dn), D= 05— vi(1)050) = d; -V,

%x e ['ﬂj,k}] %JC = Vj(x)ak — Vk(x)ﬁj = Tﬁj,k -V. (121)

nxn ’
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It is easy to ascertain that the corresponding directing vectors are tangent to .#:
7(t) - di(t) = 0(t) - mi(t) =0, te.”.

Only n — 1 out of n derivatives 2, ..., %, and out of n? derivatives A, 1, ..., My,
are linearly independent and the following relations are valid:

== i, Y kD=0,
=1 k=1 (1.22)
v%j,k = Vj@k — l/k@j , /%j’j =0, /ﬂj,k = —«%k,j .

The tangent derivatives ; were introduced in [Gul, §1.3]), while .#;;, for n = 3 in
[KGBB1, Ch. V]|. The derivatives . are natural entries of the STOKES formula (1.27).

Lemma 1.8 For a first order differential operator (1.20) and for a “tangent” differential

operator
G = Z Ga(2) D = Z gs(x B reQF

la|<k 1BI<k
(see (1.21)—(1.22)) the following formulae hold:

/ Fi(z) - V] o@g)dy = + f R(r) - 7(r) [u(r)] " o(1)dy.” — / YRy, (1.23)

(OFS

§ 1Gu() o) s - 74 G0 dn (1.24)

where
G = Y (205 [@)] = X ()3 [5@)] (1.25)
o <k 18I <k
(2; Z vOjvpu(z) + v05u(x) ,  (Mjr)yu(r) = —Mjpu(z) = My ju(z) .

In particular,

[ ort)) 5y = + § W5 — [ Wl Ty
B

[1Guw) Tty = [ ) Gy, (126

where the (usual) adjoint operator G* is defined as follows (cf*. (1.25)):

¢ =Y 12 [0 =X ) [5@)]

o<k 1BI<k

DTt is worth to underline that the formally adjoint operators 95, M) on the domains OF (see (1.26))
and the “surface” adjoints (Z;)%, (4 k)% (see (1.25)) differ by a lower order terms (%;)%u = Z;u + hju,
(M 1)u = M} u+ fjru, where h; and f;; are functions.
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PD:u(zr) = —0ju(x) — 8;(I)uju(:c) , AMpu(r) = —Owvju(r) + Oppu(x)

J J

Proof. Formula (1.23) is a direct consequence of the GAUSS formula on divergence

/0ku(y)dy =+ j{ vi(T)u(T)d; ., E=1,2,...,n
o+ 7

(see [Dil], [Sil, 4.13(4)]) which yields

/@mmﬁ@@z/@wwmm@—/MMWMww
O+

[@E=

— £ f () ) o0 [ (o)) Do)y
S

To prove the first formula in (1.26) we apply (1.23) and note that 7(¢)-(¢) = 1. For
the second formula in (1.26) it suffices to take a first order tangent operator G(D) = h(t)V,

apply (1.23) and note that h(t) - #(t) = 0.
It suffices to prove formula (1.24) for the generators %; and .. To this end we
recall the STOKES formula

]{(///j’ku)(T)dTy = %[Vj(T)(aku)(T) —vp(T)(Ou)(T)|d =0, jk=1,...,n. (1.27)
7 2%

This formula is well-known for n = 2,3 (see, e.g., [Dil, Sil]). In general, for n = 2,3,...,
(1.27) follows from another STOKES formula on external differential forms

]{dw—O, ord w= dim.¥ — 1
5
(see [Scl, (VL.7;3)], [Cal, Ch.III, §4.10]). In fact, it is easy to verify that
vids = (1) Adz,,
m#j
(see [Scl, (VI.6;48)] for a detailed proof). With this formula at hand the integrand in (1.27)

can be represented as a total differential

M ud S = (=17 (Opu) Adxy, — (1)1 (0u) Adx,, = d ((—1)j+ku/\dxm>

for j > k and we get (1.27). Since A}, ; = — M, j, My, = 0 (see (1.22)), (1.27) is proved for
all jk=1,...n.

12



From (1.27) we derive the following rule of partial integration for the generator .#;

§ L) 5 = § [T ()] 4,5 f T () AV

S 4 4

— p O 4 k=0

B

where (A1,)%, = —Mj, = My; and (1.24), (1.25) are proved for the generators .#j. Invok-
ing the relations (1.22) we find

n

(D)5 ==Y _(Mip)yvi = ZVka vy, + ;05

k=1

which yields (1.24) for another generator ;. ]

Example 1.9 Let

Z ajk 8 8k, ajk € Coo(m, (CNXN)
7,k=0

be an arbitrary second order operator with variable coefficients and consider the DIRICHLET
problem (Au = f in QF and v;u =g on .”) or the NEUMANN problem (Au = f in QF and

S ajrviveOku = g on ). Applying the partial integration (1.23), we arrive at GREEN s
5, k=0
formula (1.13) with

n

By(z,D,) =1, Bi(z,Dy)ulz) = Y azu(@)y(x)dhulz),

3,k=0
Co(w,D,) =1, Ci(z, Do)u(z) = — > vi(a)d;al,(z)ulx),
3,k=0

for the DIRICHLET problem and with
Bo(z, Z aj,(2)v;(2)Ou(z), By(zr,Dy) =1,

]k 0
Co(z, D, )u Zyk 2)0;a;x(x)u(z), Ci(z,D,) =1,

7,k=0

for the NEUMANN problem.

Thus, via partial integration (see (1.23)) we can obtain the special GREEN formula
for an arbitrary “basic” operator (not necessarily elliptic; cf. the foregoing Example 1.9).
But it is not certain that “boundary” operators in the obtained formula are normal even if
the “basic” operator is elliptic. On the other hand, the normality of one of two systems of

13



“boundary” operators is necessary in order to replace them by arbitrary system of “bound-
ary” operators of our choice (see §5.1). For this reason we derive the special GREEN formula
in Theorem 1.10.

The operator A(x, D,) in (1.1) can be written in the form

m—1

Az, Dy) = ado(, 7(2)) 05y + Y Ami(x, D)0y,
7=0
m—1 " '

= (, V() iy + D Am—y(@, Ma)05, (1.28)

7=0

Ak(ma -@x)_ Z a%a(x)'@;? = ;&k(x7%fli) - Z akﬁ(x)'%x )

| <k 1BI1<k

Dy =D Dy, .///f::,///fil M
aeNl, BeNP" e k=12,...,m,

where @ (x, £) is the homogeneous principal symbol (see (1.4)) and the derivatives 9y (), Z;,
M, are defined in (1.19)-(1.21).

Theorem 1.10 Let A(z, D,) be defined as in (1.1) and

m

Bi(t, Dy) == 85y, Ci(t, Dy) == Z (D) AL, (t, D) (1.29)
j=k+1
m—k—1
Z * ]A:L —j—k— 1(t7 -@t)7 t)u = Zatkyk
7=0

Hence the GREEN formula (1.13) is valid.
Proof. Applying (1.26) we find the following:

m—1 m
/(Au) vdy = :I:Z Z j{[’@algufvf,(ﬁ;)jklA;‘njvdTY—i- /UTA_*vdy

o k=0 j=k+17, o
= Z 7{ WE8ku) L Crud,. + / u A*udy .
0 O*
The GREEN formula (1.13) for BVPs (1.10), (1.11) with operators (1.29) is proved. ]

BVP (1.10) with the normal “boundary” operators By = 0% k =0,...,m — 1, is
called the DIRICHLET problem.

The GREEN formulae (1.13) with operators (1.29) can be found in [Sel, (5.3)], [Tv1,
Ch.III, (5.41)], [CW1, (1.5)], [CP1, Dil]. This special formula is a crucial component of the
proof of Theorem 1.6.

1.3. About “boundary” operators in the Green formula. Next
we discuss the problem of finding “boundary” differential operators {C;(t, D;) T:_Ol in the

14



m—1

GREEN formula (1.13) in explicit form, provided the DIRICHLET system {B;(t, D;)}7"," is
fixed.

mN—-1 :

Similar formulae hold for the “boundary” differential operators {c;(t, D;)}7,"" in

the GREEN formula (1.12).
Since {B,(z, DI)};”;Ol is a DIRICHLET system, to simplify the representation for-
mulae hereafter, we suppose (cf. (1.14))

ordBj=j, ordCj=m-1-j, j=0,...,m—1. (1.30)
Let us introduce, for convenience, the following vector—operators of length m:
N (m) -1 T
D (.T,Dm) = {85(90) ,...,65(96),],} s
B™(x,D,) = {Bo(z, Dy), ..., By _1(z, D,)} ", (1.31)
C™(x,D,) := {Co(z, Dy), ..., Cp (2, Ds)} " .
When applied to a vector—function they produce longer vector—functions, e.g.,
B™)(z, D,)u := {Bj(x, Dx)u};nz_o1 :

Then the GREEN formula (1.13) takes the form

/ (Au)T - T—u” - Av)dy = + 74 BT . Compd,. (1.32)

QF 7

while the representation (1.28) acquires the form
— T —
A(z,D,) = [A(m“>(x, .@x)} D (4, D), (1.33)

AT, D,) = (e, 7(2)), Ar(2. ). ... An(x. F,).}

where “” denotes the formal scalar product of vectors. For the DIRICHLET system B(™ (t, Dy)
we introduce the m x m lower—triangular matrix—operator

%O’O(LU, 17(.1')) 0 tee 0
e, gy = | P Al 31
Bm—l,O(ma -@:z:) Bm—l,l(xa -@x) Tt %m—l,O(im J(ZE))

with the entries B,x(x, Z,) representing “tangent” differential operators of order j — k,
compiled of matrix coefficients of the representations

7j—1
B;(1, Dy) = Bio(x, 7)) + > Bjkle, 2.)0% ), (1.35)
k=0

where %;(x, &) stands for the principal homogeneous symbol of B;(z, D) ( =0,...m—1;

of. (1.28)).
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Invertible block matrix—operators of type (1.34) will be referred to as admissible
operators (cf. [Agl, §4]).
Since the entries of the principal diagonal in (1.34) are non—degenerate in the vicinity
of .7
det B;o(z,V(z)) # 0, j=0,....m—1

(we remind that the operators B, (¢, D;) are normal), b{™*™)(z, 2,) is admissible on .7

%’&é(x,ﬁ(m)) 0 0
D _1 17 ...
[b(mxm) (ZL‘7 @z)] -1 _ Bl,O'(a.fj 996) <@1,0 (.T,IJ(QE)) o ‘ O : (136)
Em—l,o(l‘, @z) Em—m(% @z) T f%jﬁzlq,o(xa ﬁ(x))

Bj i= —PBo(w, U(x))Bjx(x, 2:) B4 (v, 7(2)).

The set of admissible matrix—operators is an algebra: finite sums, products and
even inverses (when meaningful) of admissible matrix—operators are admissible again.

The representations (1.35), in the notation introduced above, can be written in the
form

BM™ ($, DI> — b(mxm)(l.’ @x)ﬁ(m) (m’ Dx) ) (1.37)

Theorem 1.11 Let the DIRICHLET system B (x,D,) be fized and suppose that the con-

vention (1.30) holds. Then the system C™ (z, D,) in the GREEN formula (1.13) (see (1.31))
1s found as follows

. -1 - * T "
G (z,D,) = [(wam) (z, 2, )} [(D<m>) (:,;,Dx)] (A (2, 2,)S,,,  (1.38)
where (bm*™ ) (z, D,) denotes the “surface” adjoint to b (x, 9,) (see (1.24), (1.25)),

while (At™™)" (x, 9,) is the formally adjoint (see (1.26), (1.25)) to the following lower—
triangular matriz—operator

Ay (x, V(x)) 0 0
Al(% Ds)  o(x,V(x)) - 0
A(mxm)(x’ 2,) = (1.39)
Am_Q(I, @x) Am_g(l’, -@x> cee 0
A, (2, D) Apo(x,2,) - H(x,U(z))

cf. [Sel, (7a)], [G’r]]) compiled of “tangent” differential operators of the representation (1.28)
see also (1.33)); S, in (1.38) is the skew—identity matriz of order m:
0 0 1
o 0 --- 1 0
T e (1.40)
o 1 --- 0 O
1 0 0 O
Proof. The proof is a byproduct of the proof of Theorem 1.6 (see § 5.1). m
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Remark 1.12 If a boundary operator B;(x, D,) has order ord B; > m — 1, by using repre-
sentations (1.28) for the “basic” operator and representation (1.35) for a "boundary” opera-
tor Bj(z, D,,) then the boundary values vy B;(t, Dy)u(t) of a solution to the “basic” equation
A(z,D,)u = f in (1.10) can be found provided the boundary values of the normal derivatives

{75 0ryu(t) };:01 are known (or, due to Lemma 4.7, if the datae {75 C;(z, Dy )u(t) }?:_01 are
known for some DIRICHLET system {C;(z, Dx)}?:()l). Details can be found in [Hr2, §20.1].

Therefore the orders of the “boundary” operators B;(x, D,) in (1.10) are restricted: ord B; <
m — 1 for all 7 = 0,ldots, ¢ — 1.

2 Spaces

We proceed by recalling several definitions and properties of function spaces from [CD1, Tr1,
Tr2| which are going to be needed in the sequel.

S(R™) denotes the SCHWARTZ space of all rapidly decaying functions and S'(R")
— the dual space of tempered distributions. Since the FOURIER transform and its inverse,

defined by

Fp&) = /eigxgp(x)dx and . F N(z) = (QW)_”/e_ixgw(f)df, r,§ €R* (2.1)

Rn Rn
are continuous in both spaces S(R™) and S'(R"), the convolution operator
a(D)p =Wl :=.F 'aFp with acSR"), ¢ecSR") (2.2)

is a continuous transformation from S(R") into S'(R™) (see [Dul, DS1]).
The BESSEL potential space H?(R") is defined as a subset of §'(R") and is endowed

with the following norm (see [Tr1, Tr2]):
[lulH (R™)[] := [(D)*u| Ly(R™)[|, where (€)° := (1+[¢[*)2 . (2.3)

For the definition of the BESOV space B;Vq(R”) (1<p<oo,1<g<o00,s€R)see

[Tr1]: the space By (R") (1 < p < oo, s > 0) coincides with the trace space yﬁnH;JrE(RTl)
(RT™ :=R" ® R") and is known also as the SOBOLEV-SLOBODECKII space W3 (R™). It is
known also that B3 ,(R") = H3(R™) for s > 0 (see [Tr1]).

The space B, (R") for s > 0 coincides with the well known ZYGMUND space
Z*(R™), while for s € R™ \ N both B, (R") and Z*(R™) coincide with the HOLDER space
C*(R™).

The space ﬁ;(Rﬁ) is defined as the subspace of H3(R") of those functions ¢ €
H>(R™), which are supported in the half space, supp ¢ C @, whereas H? (R} ) denotes the
quotient space H(R") = H(R") / ]ﬁl;(Rﬁ), R™ := R" \ R} and can be identified with the
space of distributions ¢ on R"! which admit extensions fyp € H?(R"). Therefore r, H;(R") =
H,(RY), where ry = rgn denotes the restriction from R" to the half-space R’.

The spaces I@Z’q(Ri) and B; (R}) are defined similarly [Tr1, Tr2].

Next we define the BESSEL potential space with weight, (see [CD1, §1.3], [Es1, §§23
and 26]).
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Let s € R, m € Ny and 1 < p < oo; by HP™(R’}) we denote the space of functions
(of distributions for s < 0 ) endowed with the norm

[l ™ (R =Y NaulHH (RE)]. (2.4)
k=0

Obviously, H¥°(R") = H?(R"). The space B (R ) is defined in a similar way:
||ulByg (R[] := Z By 5 (RS

Let

Hsoo Rn . m Hsm Rn 7 Bsoo Rn . m Bsm Rn (25>
meENy meNg

with an appropriate topology which turns them into FRESHET spaces.
Let .# be a compact, C*°—smooth n—dimensional manifold with a smooth bound-

ary [ := 9.4 # 0. The spaces H3(.4), Hi(A), B, (M), B, (M), B3 (), H™ (M),
B (.4 ) and @;:;”(/// ) can be defined by a partition of unity {¢;}{_, subordinated to some
covering {Y]}ﬁ:1 of A and local coordinate diffeomorphisms

EEjZXj—>1/j, XJ‘CRSLF, j:L,f

In particularLfor a compact domain QT C R™ and non-compact Q= = R"\ O
the spaces HE™(QF), Hy™(Q*), Hy™ (QF), IB%; mioe(§¥F) ete. are defined as described above.

For a compact domain Q7 the subscripts com and loc can be omitted.
From the embedding theorems of SOBOLEV we get that

> (QF), B> (Qi) C COO(Qi) (but ¢ Coo(m) )

p,loc p,q,loc
pelx)=0(1) as z€Q, |z|]— o0 (2.6)

whatever the parameters s € R and 1 < p < oo are.

Let IL(X{, X3) denote the space of all linear bounded operators between the BANACH
spaces, A : X; — Xo.

The next two theorems summarise some results on interpolation (see [BL1, Tr2]),
which will be used later on.

Theorem 2.1 Let Int[X,, Xy denote one of the interpolation methods either the real [Xy,Xa]yg ,
or the complex (X1,Xs)y (see [BL1, Tr2]). Then

X =1Int[X) X}, X'=Int[X! X (2.7)

imply
L(X', X") ¢ L(X}, X" ﬂL(X’Q, X4,

e., the boundedness A : X| — XY and A : X, — XI implies the boundedness A : X' — X"
provided the spaces X' and X" are properly interpolated (see (2.7)).
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Theorem 2.2 (see [BL1, §§6.2,6.4]). Let

s=0s1+ (1 —=")sg, s,80,51€ER, 0<I<1,
1 0, 1—9 1 ¥ 1—9
- =—+ ’ 1§p7p07p1§007 -=—+ ) 1§q7QO7Q1§OO (28>
p D Do q q1 do

Y
and — :=0 if r = oo. Then
r

(FIzo (M), HE: (M), = H3(M)
[Hzo (M), H! (M)

Po,90 )T PL,q1 p,q

0a = Bs (M), (B, (M),B: (I\\/[[))19 =B (M), (2.9)
where Ml = QF C R™ or M = .# is a smooth manifold. N B

The same interpolation results (2.9) hold for the spaces H (M) and Bj (M) if M
has the boundary OM # ().

Let us point out that a slight modification of the proof allows one to establish
results, similar in spirit to those discussed in the theorem above, for weighted spaces ]I-]I;"“(M),

~51I€ S,k ~5’]§ . . .
H>* (M), By~ (M) and B+ (M), where k is arbltraNry integer.
Let us agree to denote by X2 (M) (by X>™(M)) the following spaces

either H>™(M) or B (M) (either H>™(M) or By(M)), (2.10)

where 1 < g < oo is arbitrary.

3 Representation of solutions and layer potentials

Throughout the present section we assume that the differential operator A(x, D,) in (1.1)
is invertible on R™ or, in other words, has a fundamental solution (see [Hr2, §4.4]), which is
understood either as the inverse

Fa=AYz,D,): C2 (R") — Z2'(R"),

com

A(r,D,)Fap =FaA(z, D)o =, @€ OF(0F),

or as the distributional SCHWARTZ kernel 4 (z,y) : C°(R™) — 2'(R") of the operator F o
(see [Hr2, Theorem 5.2.1))

A(z,D,) Ha(z,y) =0(x —y)In (3.1)

with §(z), Iy, standing for the DIRAC function and the identity N x N matrix, respectively.
The distributional kernel J#4 (x,y) is also called a fundamental matrix (for A(z, D,)).

We suppose that A(z, D,) is elliptic with even order, ord A = m = 2/ (see §6.6).
Then the inverse Fo = Fu(z, D,) is a pseudodifferential operator® with a symbol from the
HORMANDER class S™™(Q%, R") (see, e.g., [EgS1, Hr2, Sb1l, Tvl]). This yields the inclusion
sing supp #a = Agn or, in other notation, £ € C®((R" @ R") \ Agn).

5)See §4.1 for some elementary information about PsDOs.
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Moreover, if A(z, D,) is hypoelliptic (see §4.1) a fundamental solution Fa(x, D,)
is a PsDO as well and® sing supp #a= Agn.

Since A(x, D,) has a fundamental solution F4, the adjoint operator A*(x, D) in
(1.2) has it, too, and

Fa-=Fa,  Ha(vy) = [Haly2)]", (3.2)

where - (z,y) is the SCHWARTZ kernel of the fundamental solution Fa- of the adjoint
operator.

As a first application of the GREEN formula (1.13) we can get the representation
of a solution of BVP (1.10). For this purpose let us consider v, ,(y) = xe(x — y)#Za~(y, z),
where - (z,y) is the kernel of the fundamental solution Fa« (see (3.2)) and x. € C*(R"),
Xe(x) =1, xe(x) = 0 for |z| > ¢ and |z| < €/2, respectively. Inserting each vector—-column
of the N x N matrix v, ,(y) into the GREEN formula (1.13), sending ¢ — 0 and recollecting
the result as a vector, we find the following

(0(x — )N, u) = xa (v)u(x) = Nox f(z) £ Z VyiBju(r), x€QF, (3.3)
Noso(o)i= [ [Fatroa)] ey = [ Atz ey, (34)

where yq+ is the characteristic function of O C R" and

Vivla) = § [ DIAa (e elr)de = § (S DA (@)] olr)de

7

= Y ¢ Ha(r, ) (N)e(T)drS j=0,---,20—1 (3.5)
lol<pj o
(cf. (1.9), (1.11)) are the layer potentials.
The integrals in (3.3)-(3.5), as well as the similar ones considered later (see (3.11))
are understood as the functionals J, (z, ), (ataf/”i/j,fﬁ) (x,-) etc.) with a parameter z € R”

applied to the test function (1) (to ¢/ (7)p(7)).
Summing up (3.3) for the domains QF we get

20—-1

u(z) = Faf(z +Zv (3.6)
[v](ﬂzzwu()—wv(% tes, zeR"\I=Q"UQ",

where f = Au = Au

QtnQ-

and
R\

Fap(z) := Ng-v(z) + No+v(x) = /%/A(x,y)go(y)dy (3.7)

6) Almost all results of the present and forthcoming sections are valid for hypoelliptic operators, but
operators might have odd order m = 2¢ + 1. Operators with odd order can be found also among properly
elliptic systems (terminology from [Agl, LM1, Rol]; see §6.6 and [Hrl, §4.1], [Tvl, Ch.1, Theorem 2.2].
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is the fundamental solution of A(z, D).
The pseudodifferential operators a(x, D) and b(z, D) are called locally equivalent
at xg € R™ if '
inf |[x [a(-, D) — b(:, D)] [H,(R™)[| =0, (3-8)

where the infimum is taken over the set of all smooth functions x € C§°(R™) which are equal
to the identity, x(x) = 1, in some neighbourhood of xy. The local equivalence at xq is usually
denoted as follows

a(z, D) X b(x, D)

(see [Sm1]) and we refer to [Dul] for the elementary properties of this local equivalence.

Lemma 3.1 If the operator A(z, D,.), defined in (1.1), has constant matriz—coefficients a, =
const, then the fundamental solution Fao = Fa(D) exists provided 7 A(D) # 0. If, in

addition, the symbol
(&)=Y aa(—i€)*, EER"

|| <m
is elliptic, det /(&) # 0 for all |§| > R, then the fundamental solution Fa = Fa(D) is a
convolution
Fa(D)=F_, [o71(¢)] (3.9)

and the SCHWARTZ kernel of Fa (D) depends on the difference of the arguments, J#a(x,y) =
Ha(r —y).

In the general case of non—constant coefficients, a fundamental solution F 5 : C§°(R™)
— 2'(R™)) and the convolution operator F a,(xo, D), which is the fundamental solution of
the principal part Ag(xo, D) (see (1.4)) with coefficients frozen at zo (cf. (3.9)), are locally
equivalent

Fa X Fa(zo, D,) (3.10)

at an arbitrary point xo € R™.

Proof. All claims, except (3.10), can be found in [Hrl, §§3,4], [Hr2, §11].

Local equivalence (3.10) follows from the obvious equivalence A (z, D,) ~ A (g, D,)
(see [Dul]) and from the elementary property: if operators are locally equivalent and invert-
ible, the inverses are locally equivalent as well. [

If A(z,D,) is hypoelliptic and has a fundamental solution, we can only indicate
the symbol of the fundamental solution, which is the symbol of a parametrix (see §4.1).
In particular, the principal symbol of the fundamental solution coincides with the inverse
ay (2, &) of the principal symbol of A(x, D,).

If A(x, D,) has constant matrix—coefficients but is not an elliptic operator, the con-
dition sing supp #x = Agn might fail (see [Hr2, §10.2]); if this is the case, the fundamental
solution F 4 is not a pseudodifferential operator.

Let 5 € Nj and consider the following generalised layer potentials

V@la) = § [CE DA ()] el = 3 f et @)l e,
7 || <p o
G(t,D) = Y calt) ,ca € CF(F), H(w,y) = (v — )" Hal(z,y). (3.11)

la|<p

") Fundamental solutions exist also for operators with analytic coefficients a,(x) (see [Jol].
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If Go(t,D;) = I and (8 = 0, then we get the single layer potential

Vi¥g(z) = Vip(z) = Voi(a fﬁﬁ 2, T)Y(T)d,S . (3.12)

Theorem 3.2 Let e Nj,s € R, 1 <p<oo,1<qg<o0,m=2l, Az, D,) be elliptic with
a fundamental matriz Ha(z,y). The generalised layer potential V(g) with p = ord G < 2/,

k=0,1,...,00, has the following continuity properties:
VY L m() — T o) (3.13)
B, () — Hy Mt @n OB T @R, sy
B, (F) — By I o) (3.15)

The result also holds for the Bessel potential spaces B;’q(y) withp=1,00,1< ¢ <
oo provided s > 0. In particular, it holds for the ZYGMUND spaces (the case p=q = 00):
VG 23(F) — e AR (E) (3.16)
The proof is deferred to §5.3.

Remark 3.3 If the operator (1.1) has constant matriz coefficients a,(x) = const, the re-
striction p = ord G < 2¢ in Theorem 3.2 turns out to be superfluous.

In fact, the potential operators V 8’“ VO are well defined even for k > 20+0).

Moreover, a potential-type operator G(z, D )V(ﬁ) (see (3 11) for G(x, D)) is well defined for
arbitrary p = ord G € N and restricted to the surface, yG(x D)V can be interpreted as

a pseudodifferential operator of order =20+ 1+ u—|5| on 7, although it has a hypersingular
kernel when —2¢ + 14 p— |B| > 0 (see §6.1).

Corollary 3.4 Let se R, 1 <p<oo, 1 <qg<oo,m=2(,k=0,1,...,00, A(x,D,) be
elliptic and have a fundamental solution. Then any solution u(x) of the system

A(z,Du=f, feHT*FHQE),

f e B 2ROF) (or f e Z572F(QF) with s — 20 > 0) satisfies a priori estimates

20—1
[ H ) | <M[Hf|Hs 2@ + 3 IrEoulByy w@,

7=0
20—1
B ()] <M[Hfuﬁss 2R+ 3 [ ulByy <y>r|] (3.17)
7=0
20—1
(Hu!ZS”“@i)II < M[HfIZ”““(Qi)H S ||v;a;urzsff’f<f>u]) .
=0

Similar estimates hold for the domain 2™, although we should replace u with xu
where x € C°(27) is an arbitrary smooth function with a compact support.
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Proof. The proof follows from Theorem 3.2 and the representation formula (3.3).

Remark 3.5 When the operator A(x, D,) is hypoelliptic and has no fundamental solution,
then a parametriz Ra(z, D,) can be used instead (see §4.1 below). Specifically, inserting the
truncated SCHWARTZ kernel of the parametriz into the GREEN formulae similarly to (3.3)
we get the following representation for the solution of the BVP (1.14):

201
Xo= (2)u(z) = No+ f(x) £ Z VEBju(z) + Tu(r), z€QF, (3.18)

J=0

where the operator T has order —oo. From Theorem 3.2 and the representation formula
(3.18) we get the following a priori estimate

201 L
s,k O+ s— O+ j S_E_J’k s—m,k (O +
ulH* Q) || < M ||| 4@+ v obulH, () + fJu[H ™ Q5| (3.19)

J=0

for arbitrary m = 1,2,... (¢f. (3.17)). Similar inequalities hold for the spaces B **(QF)
and Z5=298(QF) (with s — 20 > 0) as well. For the domain Q1= we should replace u by xu,
X € C5°(27) (see Corollary 3.4).

Remark 3.6 Different a priory estimates have been proved, e.g., in [LM1,Ch.2,§4]. In
contrast to (3.19) they contain half as many traces ’y;a;nju, 7=0,....,m—1 in the right—

hand side. They are used in [LM1,Ch.2,8§5] in order to establish the FREDHOLM property
of BVP (1.14), provided the SHAPIRO—LOPATINSKII conditions hold.

4 Auxiliary propositions

4.1. On pseudodifferential operators. If the convolution operator in (2.2)
admits a continuous extension

Wo  Ly(R") — Ly(R"),
we write a € M,(R") and call a(§) a (FOURIER) L,~multiplier. Let
M (R") = {{€)"a(§) 1 a € My(R")} , vER,
where (§) is defined in (2.3). It is easy to observe, that the operator
W H(R™) — HS ™ (R™)

is continuous if and only if a € MY (R") (cf., e.g., [DS1, CD1]).

If Of a € MY ™(R™) for all k = 0,...,m, then W0 is continuous between weighted
spaces
WP H™(R") — Hy "™ (R")

(see [CD1, Theorem 1.6]).
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As an example we consider the BESSEL potential operators
Wiy = (D) X7 (RY) — X (R,
Wi, —ieny = 7+(Dp — (D)0 0 Xp™(RY) — Xp7(RY), (4.1)
Weritenyr = (Dn+i(D))" + X5™(RY) — X3™(RY), reR

(cf. (2.10)), where r, is the restriction operator (from R" to R’} ), while ¢ is an arbitrary
extension of a function ¢ € XJ™(R}) to lp € X>™(R) (a right inverse to 7). The above
considerations lead to results which are independent of the particular choice of the extension
and restriction operators. In fact, r (D, —i(D"))"p_ = 0 for p_ € X5™(R") due to the
PALEY—WIENER theorem on the FOURIER transforms of functions supported on half spaces.

The operators in (4.1) are isomorphisms for arbitrary » € R and the inverse iso-
morphisms are (D)~" and (D,, £i(D’))™" (see, e.g., [CD1, §1.3]).

The next theorem is a slight modification of the MIKHLIN-HORMANDER—LIZORKIN
multiplier theorem. The proof can be found in [Hr2, Theorem 7.9.5] and [Sr1].

Theorem 4.1 If the inequality

70%a(e)l < M{g), €eR", |8< |3 +1, B<1,

holds for some M >0, thena € () M (R). n

1<p<oo
Let a € M (R"). Then the operator
Wo =ria(D) : X5(RY) — X777(RY)

is continuous. If a symbol a(a: €¢) depends on the variable x and a € C(R",S'(R")), the
corresponding operator (see (2.2))
)=

a(z, D)p(x) = Wy () = (F2,0(2,8) Fyep(y)) (), ¢ €SR") (4.2)

is called a pseudodifferential operator (in brief PsDO). Here C(Q2, %) denotes the set of

all continuous functions a : © — 2. Let M{™*™)(R", R") denote the class of symbols a(z, £)
for which the operator in (4.2) extends to a continuous mapping

a(r, D) : Hp(R") — H 7 (R™)

and M (R",R") := |J M (R, R").

seR

Theorem 4.2 Let Ny :={0,1,...}. If the estimates

/ 9000 ala, )| < Ma(e), €€ R (4.3)
J

hold for some M,, > 0 and alla, f € N§, |5 < [g] +1, [B<1,then a€ ) M,g'j)(]R”,R").

1<p<oo
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Moreover, if (4.3) holds for all 8, =0,1,... and |f'| < [g} + 1, the PsDO

a(z, D) : Hy™(R"™) — H;~™(R")
1s continuous for arbitrary m € Ny.

Proof. The first part is proved in [Sh2, Theorems 4.1 and 5.1] and the second part
in [CD1, Theorems 1.6]. ]

If the estimates

0200 a(2,€)| < Capx(©)’?, vER, 2€K, (€R", aBeN]

hold for all compact K C QF, we write a € S¥(Q2*, R") and call S*(Q*, R") the HORMANDER
class. If rq is the restriction to Q2 C R™ and a € S¥(2*,R"), the operator

rosa(z, Dy) : X3™ (OF) — X5 UWMOF), seR, 1<p< oo (4.4)

p,com p,loc

(see (2.10)) is continuous.
The matrix—symbol 7 (x,§) (and the corresponding operator A(z, D,)) is called
hypoelliptic &/ € HS"" (Q*, R") = HS} ¢’ (QF,R") if the following hold:
a) Cri [§]" <oz, < Cax €], z €K,
b) |[02070(w, )] o~ (2, §)] < Caprlé| T, ¢ R

for all multi-indices o, 3 € NZ and all compact sets K C QF (see [Hrl, §4.1], [Sb1, §5]). If
hypoelliptic, A(z, D,) has a parametrix

Ra(z,D,)A(x,D,)=1—-"Ti(x,D,), A(x,D,)Ra(x,D,)=1—-Ty(x,D,),
(%)

where the PsDOs T (x, D, ) and Ty(x, D,) have order —oo, i.e. are continuous from X3
into C>°(Q%).

In [Hr2, §7], [Sb1, §5] the symbols of parametrices are written explicitly, expecially
for classical PsDOs (see [Sb1, §5.5]). We remind only the fact that the principal homogeneous
symbol of a parametrix coincides with the inverse to the principal homogeneous symbol of

the operator (Za )y (¢, &) = (., &) = oy (2, €).

Corollary 4.3 Let A(x, D,) be hypoelliptic with the symbol o/ € HS""°(R", R") and A(z, D,)
have a fundamental solution. Then the generalised fundamental solution

FOu(x) = / A (@, yyuly)dy
Rn

(cf. (3.7)) is continuous
FO . xe (R?) — X200 Ry (4.5)

p,com p,loc

(see (2.10)) provided 8 € N, p,s € R, m € Ny, 1 <p < o0.
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Proof. The symbol of PsDO FE@(D) reads as

T (2,€) = (~i0)* Ba(w,€)

where Za (z, £) is the symbol of a parametrix Ra (z, D, ) of the hypoelliptic operator A(z, D,)

and Za €S7V(R™,R") (see [Sbl, §5.5]). Therefore ﬁ’l(f) €S~ IPl(R*, R") and continuity
(4.6) follows from Theorem 4.2. ]

Remark 4.4 The generalised volume potentials

N(ﬁ) /% z,y)u(y)dy (4.6)

(cf. (3.6)) are continuous, as usual PsDOs of order —2¢ — |(3|, between the spaces

N(ﬁ) Xsm (Q:I:) N X5+24+|5|7W(Q_) )

p,com p,loc

Since the symbol of these operators are rational functions, they possess the transmission
property and are also continuous in the following sense

N2 Xyl (@) — X500 (@)
(see [BS1, Bol, GH1, RS1] for details).
Lemma 4.5 Let .¥ = 001 be C*°-smooth and

a(z,8) = ay(x,&) + ap—1(x,&) + -+ ap_p(z,§) + -+,

ay_ (2, N) = N a,_p(2,8), z€Qf, £€€R*, A>0

be a classical N x N matriz-symbol a € S*(QF R") with v < —1. Let Ha(x,y) be the
SCHWARTZ kernel of the corresponding PsDO a(x, D) and

j[,%/xT nd,.s, x€QF (4.7)

be the corresponding potential-type operator, i.e. the restriction of the domain of definition
of the PsDO a(x, D) to the boundary . = 0Q*.
If v < —1 the trace

’Y;Va@()—aftD /«%/tT Td, s, tes

from the domains QF and Q~, respectively, coincides with the direct value of the potential—
type operator (4.7) (i.e. with the full restriction of PsDO a(x,D) to ) and represents a
pseudodifferential operator

ay(t, D) HX"() — H" V(7). (4.8)
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with the full classical symbol

o0

(ly(t, £/> = Z a’y,IH-l—k(ta gl) y a7 v+1—k € Sy—i_l_k(y? Rn)

k=0
and the principal symbol

a,Y’,pr(%j(I>7 5/) = ay,l/-l-l(%j (I)v £/>

~ on dj}}(i)(ow) / ay (%’(aﬁ), f;jl((),x)T(g’,A)> d\, zeU;.

—00

Here Z,.(t) denotes the JACOBIAN and

4, = (det || (94, 05%) | (n-1)x(n1))? with dyze; = (Dpsey1, - ., Opoeyn)

denotes the square root of the GRAM determinant of the local (coordinate) diffeomorphisms
7 Uj—>‘/j,j:1,2,...,N Oij CRnil tO‘/J C .
If v = —1, the restriction of the potential-type operator (4.7)

to the surface is understood in the CAUCHY principal value sense (cf. (6.30) below) and
ay(t, Dy)p(t) represents a CALDERON—ZYGMUND singular integral operator (i.e. ay(t, Dy)o(t)
is a PsDO of order 0); The traces ﬁ;Va and the restriction as(t, D;) are related as follows

ToVaplt) o= iy (1,50 pl0) + a6, D)(1), 1E.7 . (1.9

where U(t) is the outer unit normal vector at t € % and an(t,§), & € R", denotes the
homogeneous principal symbol of a(t, D).

Proof. The proof, including a detailed description of the lower order terms of the
asymptotic expansion of the symbol of a PsDO on the manifold .#; can be found in [CDI1,
§ 1.4, Example 2| with two differences. First, the proof in [CD1] is carried out for pure
convolution operators with symbols a(§) but it can be extended to the case of PsDOs with
classical symbols a(z,£) by minor modifications. Second, for the coefficient in (4.9) there
has to be quoted a (different) formula from [Es1, (3.26)].

A different proof of (4.9), including the formula for the coefficient, can be found in
[IMT1, Appendix CJ. n

4.2. On traces of functions. Let us recall the following theorem on traces,
which will be generalised later in Theorem 6.4 for weighted spaces.

Theorem 4.6 The trace operator

%iu—{’yyu’y/ ,...,ny(;iu}, fyg;i::fy;, fyi, = iaﬂ uECOO(Q), (4.10)



_ ksl
‘@lz’t : H}SJloc(Q ) — & Bppp ](y)a 1 < p < o0,
’ j:0
. o R
IBp,q,loc(g2 ) - ® Bp’q (y)7 1 S b, q S &)

is a retraction, provided m € Ny, k < s — 1/p, i.e. is continuous and has a continuous
wnverse from the right, called a coretraction:

— k 8_%_j s O£
(‘@ki) ! : jGEO Bpap (y) - Hp,loc(Q )7
b el o (4.11)
j§0 Bp qp (y) - IB%Z,q,loc(gz )
Proof. The proof can be found in [Tr1, §2.7.2] ]

The next lemma generalises [LM1, Ch2, Lemma 2.1], proved there for the scalar
case (see also [RS2, (11)].

Lemma 4.7 Let
Q")(z,D,) == {Qo(z,Dy), ..., Qu-1(z, D)},

G(x,D,) :={Go(x,D,), ..., Gm_1(z, D)} (4.12)
be two DIRICHLET systems on .. Then
Q") (z, D,) = QE"™ (x, 2,)G™ (x,D,), (4.13)

where Q(énxm) (x, D) is the admissible matriz and thus invertible (see (4.15), (4.16), (4.18)
below).

Proof. The following representations are similar to (1.28), (1.33)
Q). Da) = Q" (2, 2:) - DU (. D)

J
Gj(x,D,) = GV"V(2,2,) - DV (2,D,), j=0,....m—1, (4.14)

where

QY V(. Z) = {Qui(0, Z), -, Qa(w, Z), 25, 5(2)}

GV (@, ) = {Gyy(w, Zu), . Gya (v, Z0), Gy, 7())}

Therefore the lower—triangular matrix—operators

2oo(x, V() 0 e 0
Q) (3 7,) = Quo(z,Z:) 1ol v(x)) - 0 . (4.15)
Q10 %:) Qu-11(2,Z:) -+ Lm1o(xV(2)) |
Go0(z, () 0 b 0 ]
A O R
Gm-10(,%2:) Guo11(2, %) -+ Gn-r0(x.V(1)) |

det 2i(x) £0, det%(x)£0, te, j=0,...,m—1
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are admissible (see (1.34), (1.36)) and

Q" (z, D) = a"™ ™ (2, 2,)D™ (2, D,), G"(x,D,) = g™ (2, 2,) D" (x,D,). (4.17)
From (4.15)—(4.17) we get (4.13) with the following admissible matrix—operator

&, 70) = d " (@, 2,) [ (w0, 20)] (4.18)

(cf. (1.35), (1.37)). n
Lemma 4.8 Let s >0, s ¢ N, 1 <p<oo, 1 <p,q<ooand A(x,D,) in (1.1) be a normal

(not necessarily elliptic) operator; let further {Bj(x,Dgc)}}”:_O1 be a DIRICHLET system of
order m — 1. Then there exists a continuous linear operator

m—1 sbm—1—i s—i—m—l—l—% _
Z j(§0 BP:; ! ](y) - Hp,loc (Q ) (419>
m—1 s+m—1—1 S+m_1+% —_
<gz j(§0 BP:Z ' ](‘y) - IB%p,q,loc (Q ))
such that
ViB; 2P =;, j=0,1,....,m—1, (4.20)
APD W, "(OF)  (APD B r(OF) (4.21)

for arbitrary
® = (Qo,...,0m 1) € ?@3: Bstm=1-i () (@ € :Lgol B;;m—l—j(y)> .
Proof. Let us recall the following property of the space X;(Qi):
XE(QF) = {u € XHOQT) : Zifu = 0} (4.22)

1 1

(cf. (2.10)) which holds under the constraints — + ¢ < p < — 4+ £ + 1 (see [Tr1] and [Sh1,
p p

Lemma 1.15]). Due to (4.22), the condition (4.21) can be reformulated as follows

1
REAPD = (YT APD, .. AVTAPD} =0, 0<s—k— 5 < 1, keNy,  (4.23)

1
(cf. (4.10)). For 0 < s < —, the condition (4.23) may be omitted. The operators
p

Bm+j(x7DI> = a;’(x)A(anfﬁ)a OrdBm—i—j :m+J, J:O,,k
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are normal

Bjo(t, V(1)) = (-izvf(t)> o(t, U(t)) = (=i) h(t, v(t)),
deot By soft, 7(6) £0, tE€.F, j=0,... K

and combining them with the above DIRICHLET system B (x, D,) we get a new DIRICHLET
system B %+ (z D,). Therefore

E(er“)(% D,) = bl(m+htD)x(mtk+1) (5 @x)f)(erkH)(x’ D,), (4.24)

and b((mFE+)x(m+k+1) (3. ) is admissible (see (1.34), (1.36)). By defining

m-+k .
— s+m—1—
q)O T (9007'-'790m—17 Oa---70 ) € j§0 ]Bpﬂ J<y), (425)
(k+1)—times

we can match conditions (4.20) and (4.23) (which replaces (4.21)) and reformulate the prob-
lem as follows: let us look for a continuous linear operator

m-+k L s+mtk+i
Fo: 'S B (S) — Hy @) (4.26)

p,q,loc

mik o s+m+k+% -
<,@0: j(i{)() Bp; 1 NS)—B (Q ))
such that
S BHED g g — plm kD) x (i) (g 4 EPntED) g g
= plm kDX RD) (4 G VR Py = Dy (4.27)

Here we have used the fact that b((mTk+1)x(m+k+1) (3 9 ) ig a “tangent” differential operator

and Z,, .41 = ;ﬁ(m+k+1) (cf. (4.10)). Thus,
%$+k+190‘1)o = [b((m+k+1)X(m+k+1))(x’ -@x)rl o,

and it remains to apply a coretraction (4.3): the function

_ -1 ((m+k+1)x (m+k+1)) -1 stmtkty o
‘@(JCDO - ‘@m+k+1 [b (‘T’ 91‘)] Dy € Hp,loc (Q ) (428)
(in B;;ﬁtkﬁ(ﬁ)) solves equation (4.27). ]
Let us consider the following surface J-function
(08 065,0) 5 = / WP E(F) AT, g e CR(F), veCEQE)  (4.29)
5%
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and its normal derivatives 5(5,]?) = 050y

(g® 8% v /g o))y, k=1,2,..., (4.30)
S
== 0y [v(x = —Opyp(x) — divii(z) .
7j=1

Obviously, supp (g ® 6{(;)) = suppg C .¢ for arbitrary k € Nj.
The definition (4.29)-(4.30) can be extended to less regular functions (i.e. not
necessarily C'*). More precisely, the following lemma holds.

Lemma 4.9 Let 1 <p<oo (1<qg<00),s<0,9€B; (&) (orgeB; (&)). Then

1/m_

~S—k—i/, 7,11
g@@emwffﬁﬂ&m%sm,Qm&e&mm<QQ,

where p' = p/(p — 1) and k,m € Ny are arbitrary.

Proof. We concentrate on the case g € B; () since the case g € BS (.7) is very
similar.

The distribution g ® 52’2) in (4.29) and (4.30) is a properly defined functional on the
space X 5TF(QF), where, for conciseness, X£(QF) denotes either HH(Q*) or BE (QF) (see

Theorem 4.6). Moreover, relying again on Theorem 4.6 on traces we get the inequalities

—sth+d
(g ® 6%, v)] < Culg)llgIBs ()X, (9],

skt
(9@ 65, 0)] < Cul(@)llgIB; ,(xwlX, 7 (@)l

where x € C5°(27) is a cut— off function which equals 1 in the neighbourhood of . C Q.

Therefore, by duality, g ® 5 ) e Xp com” (QF).
To prove the result for the weighted spaces let us note that

m!
ohpm(a) = Gy M),
E(=1)kml 1)km! o (4.31)
O p™ () = 30— (div o(2)) 7 p" I (w), m,k € No,
7j=1 ]‘( .7)
where p = p(z) 1= dist (z,.7), x € Q*. In fact, if t, € .7 is a point for which the distance
p(z) ;= dist (z,.7) = dist (x,t,) from 2 € OF to the boundary .7 is attained then

B5(1,yp(x) = lim p(x + hi/(t,)) — p(x)

=1
h—0 h

)

because p(z+hi/(t,)) —p(z) = h due to the obvious equality x—t, = p(x)¥/(t,). For arbitrary
m, k € Ny the first formula in (4.31) follows by a standard approach and is used to prove
the second one.
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Now we apply definition (4.30):

(p'(9©8%)), )0 = / G(PIVE((05) o ) (7)d,

7

k
=35 [ aml-0s — div o) @l () (4:32)

X

(—1)0 / G(IVEIE) ] (1)dy 7 = (1) g @ 6%0) 0)y if <K,

3%
0, of 0>k
According to the the portion of the lemma we have proved so far, p‘(g ® (59) €
~s—k Zfi,,m - ~sfkfi,, N
Xp,co:,; P (Q*) and the inclusion g ® 5(;) € Xpeom” (%) for arbitrary m € N follows
from the definition of the weighted space. [

Particular cases of the foregoing lemma are well-known: e.g., see [Esl] for Lo—case,
m =k =0 and [DW1, Gr3, Shl, Tail] for L,case and again m =k = 0.

As a direct application of definition (4.29) we can write the generalised layer po-
tential (3.11) as a volume potential

Vo) = / G D)4 wn)] (e@swdy = FYalp®d)(@).,  reQ* (433)

R

1
The representation (4.33) has only one shortcoming: p®§» & X3, (QF) for s > ——
p

even for p € C*(.) (i.e. Lemma 4.9 is precise). In fact, locally . can be interpreted as
R and Q*—as R?. Then 1 @ dga-1 = §(z,,) & X3 ,,.(R7) if s > —1/p’ (see [Esl] for p = 2
and [Trl, Tr2| for 1 <p < 00).

p loc

D, loc(

5 Proofs

5.1. Proof of Theorem 1.6. It suffices to prove the theorem for the particular case
of the BVP (1.10) and the corresponding GREEN formula (1.13) because of the following

argument. First we extend the system {b;(t, D;)}5=g of “boundary” differential operators
up to a DIRICHLET system

{B;(t, Do)}y = Ho{b;(t, D)™

Jj=

of order m (see Lemma 1.4). If the GREEN formula (1.13) is proved we get that

mN—1
/((Au) T —u' A%) dy_izj[ (Bju)"Cjud,." =+ ) _ }{bu cud..7, (5.1)
0+ =0
where {c;(t, D;) }j- m T =2T{C,(t, Dy)}1t! is a decomposition in rows.

Thus, We can concentrate on BVP (1.10) and the corresponding GREEN formula
(1.13). Moreover, we suppose that this choice of extension is made and B (z, D,) (see
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(1.31)) is the fixed DIRICHLET system of order m — 1. Without loss of generality we can
suppose that ordB; = j, j = 0,...,m — 1; otherwise we have just to renumber these
operators.

In Theorem 1.10 we have already proved the GREEN formula

/ [(Aw) "o —u"A*v] dy = + %(ﬁ(m)u)T LGy d,. S (5.2)

0F S

(see (1.32)) with the special operators D™ (z, D,) defined in (1.31) and
G™(z,D,) == {Go(x, D), ..., Gpoi(z, D)}
N * T «
= [(D(Wﬂ) (ZL‘,Dx)] (A(mxm)) (l‘, @x)gm’ (53)

(see (1.29)) with skew identity matrix S}, = S,, (see (1.40)) and the formally adjoint matrix—
operator (A™™)* (2, 9,) to (1.39). B B(m) — {8]} :1 is a DIRICHLET system. Due to

Lemma 4.7 .

D™(t, D) = [(b™™) (t,2,)] B™(t,D,), te.” (5.4)

(see (1.36)). Inserting (5.4) into (5.2), taking into account (5.3), and applying the partial
integration formula (1.24) we get

/ [(Auw) "o —u"A=v] dy = £ f(f)(m)u)T LGy d,.
o+ 2

()] B [(B0) ] e g vy

(BM™y)T . Cmy d,. (5.5)

where C(™ (x, D) is defined by (1.38) and is unique. Due to this formula the operators
Ci(t,Dy), k=0,1,...,m — 1 are normal iff the matrix <7 (¢, 7(t)) on the main diagonal of
the block—matrix (A(me) (z, @w))* is invertible for all ¢t € . | i.e. iff the “basic” operator
A(z,D,) is normal (see Definition 1.1).

If the DIRICHLET system {C;(t, D;)}7! is fixed (instead of {B;(t, D;)}7'), the
proof proceeds similarly with a single dlfference instead of A(x, D,) the proof starts with
the formally adjoint operator A*(z, D,)

Now let us suppose that the “basic” operator is normal and that the systems
{b;(t, D)} "3 and {C,,_; (¢, Dy)}is, J 1 are fixed.

If one of them is a DIRICHLET system (of order k or m — k, respectively,), we extend
it up to a DIRICHLET system {Bjo(t, D;)}7" (or {Cjo(t, D)}7') of order m and write

the GREEN formula (1.13) (see (5.5)). Next we replace the system {Crj10(t, Do)}, ot
ord Cp,_j_10 = j (or the system {B;o(t, D;)}iZ), ord Bjg = J, see (1.14), (1.30)) by the ﬁxed

=0

system {C,,—; 1(t, D;) }75, 5=t (by the system {B;(t, D;)}*Z} respectively) with the help of

]0’
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(m=k)x((m=k)) (¢, .@t)f transposed to an admissible® (with an admissible matrix

bExk) (¢, 9,), respectively; see Lemma 4.7). Another part of the system remains unchanged.
The relation between the entire systems has the form

C{™(t, D)) = ™ ™(t, 2)C (¢, D) (B (¢, Dy) = 6™ (¢, 2) B (¢, Dy)),
where the participating block—matrices are defined as follows
I 0 bR (¢ 9 0
(mxm) . k (mxm) _ )t

and by I, we denote the identity matrix of order /.
Inserting the obtained representations into the GREEN formula we find

/[ —u'A*v]dy =+ ]{ ) C Vv d,.

0+ S

a matrix [c(

_— . T —
— 4 7{ (BIw)T - ctmxm) Cm) ¢, 7 = + 7{ (B“%) .Cm) 4.7 |
b 7
Due to the structure of the relation matrix c(™*™ (¢, &,), the first part of the transformed sys-
tem B(™) = [c(mxm)] ! ﬁém) remains unchanged and coincides with the system {B;(¢, D) f;é
fixed at the beginning.
Similarly, if the system {B; (¢, D) k_l is changed, the second part of the trans-

formed system Cm) .= [b(me)] ! Cé ™) in the GREEN formula remains unchanged and coin-
cides with the second part {C,,—;1(t, D¢)}jL,,  of the system fixed at the beginning.

The uniqueness of the full DIRICHLET systems {B;(t, D;)}7" and {C;(t, Dy)}7!
follows from the proved part of the theorem. In fact, after one full DIRICHLET systems is
fixed and another one is chosen, we can replace the chosen full DIRICHLET system by a new
one with the help of an admissible matrix. If the admissible matrix is not identity, it will
change the fixed full system.

Assume that {b;(t, D;)}3Z RN (or {emn—j(t, Dt)}(m RIN= ") is not a DIRICHLET sys-
tem. Then (see Definition 1.2):

i. if the linear independence of rows is missing, then the GREEN formula (1.14) can not be

valid because, by the first part of the Theorem, both systems of “boundary” operators
must be DIRICHLET systems;

ii. if one or several orders are missing, then the structure of the connection matrix

(™)t 9,) (of b™*™)(t, D), respectively) does not allow to maintain fixed partg
of “boundary” systems in the GREEN formula.

5.2. Proof of Theorem 1.7. If we apply (1.26), we get
Sw)i= [ 3 (aaswduts)] Tty

o lallB1<e

/ (Au) "ody + Z/ TB vd,., wu,v € CF(QE,CN) (5.6)
O*

8)1t is easy to ascertain that the relation between DIRICHLET systems with diminishing orders is established
by a transposed (and therefore upper triangular) admissible matrix; see Lemma 4.7.
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with some systems {]§j} _p and {C yl i—0, Which we can not control and, therefore, can not
change. Therefore we start again and proceed with the help of the representations
18]
B ] - -
0 = bso(2)0y,) + Y a2, 2)0% ) baolr) = 7(z) = 11" (@) ... v (2)
j=1
(B € Ny; cf. (1.28)); by inserting them into (1.16) and applying (1.26) we get

|8l

o (u,v) ::/ Z [aag mem -y, 2, 51], v(y)dy

o lallBl<
18| —
=2 D / (b5 1515 (0 D)t s (0)05uy)] " 05, 0(y)dy

lal,1B1<€ 5=0 5

- / A(y, D,)u(y)] o(y)

-1

k}

H—
i [M]~

/ [y (. Dule)] T 95 Mol

fors =0 k=0
/—1
- / Ay, D, )u(y) o(y)dy + / (o (r, DYu(r)) o7V (5.7)
0+ =0

because we can not get anything different in the first group of summands than in (5.6).
Thus, we get the GREEN formula (1.17) with special “boundary” operators C; = Cy; and

B; = ﬁé(y) (j=0,...,£—1). Now we can apply (5.4) with m = ¢ and replace {QJ - 2 in
(5.7) by another DIRICHLET system {B _¢ (see (5.5)), which gives us the clalmed formula
(1.17).

If A is formally self-adjoint, A = A*, then &/ (u,v) = &/ (v,u) and from (1.17)
written for pairs u,v and v, u we get the simplified GREEN formula (1.18). [

5.3. Proof of Theorem 3.2. Due to Theorem 1.6 we can suppose that the GREEN
formula (1.13) is valid and let {C,(z, Dx)}ze ' be the DIRICHLET system, participating in

formula (1.13). Without loss of generality we can assume that ord C; = 2( — ord Bj — 1 =
20 —j—1 (see (1.14)). Due to Lemma 4.7 we have that

m

G(J}, Dw) = Z G.u—j(x7 @$)024—j—1(x7 D:C)a (58>
=0
cha 9%, xeQF, k=1,2,...,u.
|a|<k

Then (see Lemma 1.8)

= 75 75 Cojr (1. DA (2,7 | (G (7. D) o), S
0



and it suffices to concentrate on the case of generalised layer potentials

VWo(z) = C;(r, D,)#," oM, = FP (o0
) 2(@) = ¢ |75C5(r D) (w,7) | p(7)ds ailp®dz)(x),

5
F(ﬂ) — + C. D %(ﬁ) T d Q:I: 5.9
Q)= [ PG D) AD @ m)] wldy,  we (59)
[QE=

(see (3.5), (4.33)). Let us consider the symbol
F)w.) = (-0 Fa(2.6) [Gw0)| . FY) esH PR R

of the PsDO F (see Corollary 4.3), where Za(x,§) is the symbol of the fundamental
solution of A(x, D ) HpeB (V)¢ eB; (7)) and s <0, then

Y 5,5/ S ﬁ;,_com ﬂ]B D,q, om

where p’ = p/(p—1). From (5.9) and (4.4) we derive the continuity results (3.13)—(3.15) for
5 < 0.
Next we take s > 0, s € N. We define the operators

e@]@zgijj, \IIJ'Z:(O,...,O,QO,O,...,O>,

where ¢ stands at j-th place and & is from Lemma 4.8 (see (4.12), (4.14)).Easy to ascertain,
that these operators and their composition with A, considered between the following spaces

s+20—m;—1 s+2ﬁfl+% N
P By () — H, e (QF), (5.10)
s+20—m;—1 8+2£—1+7 N .
Bp’q (y> - IBgp q,loc (Q )
AZ; B NS) — (O, (5.11)
s+20—m;—1 ~s—1+% — .
]BP:Z ’ (y) - IBgp,q,loc (Q )

are continuous. Moreover, fyyBij =0 for k # j and fy;Bj P =1.
Let us consider v!?) 2 (y) == xe(x — y)Ji/A(?) (y,x), where J#a~(x,y) is the kernel of the

fundamental solution F A~ (w, D,) and x. € C*(R"), x:(z) = 1, xo(z) = 0 for |z| > € and
|z| < €/2, respectively. By inserting

oy) =vQW), u=Pp, peB(S) (peBN(S)
into the GREEN formula (1.13) and sending ¢ — 0, similarly to (3.3) we find the following

VP p(x) = XL (2) Zyo(x) - NI AP ()

- / ¢y () (@ — )P O Ha) (@, 1), () P )y (5.12)

at+vy<2t QF
0#£a<p
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(see (4.6) for N ) where ¢}, c2g, € C(R"), and X(f)(x) =0 for §#0, Xf)(a:) = x=(x),
zeQE (j=0,...,20—1).

Applying Remark 4.4 and Lemma 4.8 from (5.12) we derive the following continuity
results:

+20—m;—1 s5+20—p; 1+|B|+— sH2U—pi—1+|pl+L —
V(ﬁ) : B;p " <y> - Hp loc ’ (Qi) ﬂBp,p,loc ’ p(Q )7

j (5.13)
s+20—m;—1 s+20— M]71+|m+
Bp,q (‘5/) - IBp g,loc (Qi)
Since m; + p; = 20 — 1 (see (1.14)), (5.13) implies the continuity
8 s s+20—pj =1+ |8+ = s+20—pj =148+ =
VP B (F) — Hyy, HOE)NB, @), (514
s sH2U—p; =148+ 5 == . '
By () — B, 1o Q) j=0,...,20—1,
provided
s>2—p =1, s#20—mj+k, keN, p°:=min{uo,...,p21}- (5.15)
Continuity in (5.14), in its turn, yields the following continuity
s s+20—p1;—1+|Bl+ 1k~ s4+20—p1j—1+|B]+ 1k
Vi) By () — O NB, 0 @), 51
) s20—py— 1B+ Lk :
Bp7q<y) - ]Bp,q,loc ’ (Q )7
because € Ny is an arbitrary multi-index in (5.14) and ka(ﬂ) = V(.ﬁl’ﬂﬁk) in local

coordinates, in which p*(x) := [dist (z, ¥)]* =

The continuity (3.14), (3.15) for s <0 and the cases (5.16) is proved. The missing
cases in (3.14), (3.15) are filled in with the interpolation (2.9). The continuity (3.16) follows
almost automatically.

Let us consider the remaining case, i.e. the continuity (3.13) for s > 0. We recall
that (3.13) has been proved for s < 0, while the continuity (3.13) follows from (3.14) for p = 2

and s > 0, because B} ,(.) = Hy(.*’) and ng(m) = H5*(QF) (see §2). At this stage, we
only need to observe that the desired continuity claim follows from the first interpolation
result in (2.9). ]

6 Consequences and related results

6.1. Traces of generalised potentials on the boundary. Let A(z, D,) in
(1.1) be an elliptic differential operator with even order m = 2¢ and Fp = Fa(z, D) be its
fundamental solution. J#4 (x,y) is the corresponding SCHWARTZ kernel (i.e, the fundamental

matrix of A(z, D,)).
Let us consider a Potential-type operator

Vio(, D) =Bz, D)VIC(2), ze@*, tes =00t (61

where V¥ g ¢ NG, is a generalised single layer potential

= %%A/’Eﬁ)(l’,T)(p(T)dTy (6.2)
2
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(cf. (3.12), (3.11)) and

B(z,D,) = Y ba(2)d, by €CQFCVN), zeQF,

la|<m (63)
Clt,Z) = > )PP, ca€CO(S,CVN), tes
e <p
are some differential operators of orders m,pu = 0,1,---. t is a tangent differential
operator and it can be restricted to the boundary Y (see (1.2 1 22))

Theorem 6.1 Let € Nj, s € R, 1 < p < 00,1 < g < o0, mpu € Ng. Then the
potential—type operators

s+20—1—m— u+\ﬁ|+ k

Vg)c((l}, Dx) : B;p(‘y) - Hp loc (Qi> (64>
s s+20—1—m— ,u+|ﬂ\+ k
IEBp,q(‘sﬂ) — B p,q,loc (Qi) (65)
are continuous for all k =0,1,...,00.

Moreover, the traces yfﬁvg)c(a:, D) exist and are classical pseudodifferential oper-
ators with symbols

N
V) =Y V) (1 + TS yn(LE), teS, R, (6.6)
k=0
Vipgnaq € STHTIHMIn—IBI=N=1( gy

where N € Ny is arbitrary and ”//95@ L (t,€) are homogeneous of order —20+1+m+pu— || —
k(k=0,1,---,N).

The result 18 also valid for s > 0 and 1 < p,q < oo. In particular, it is valid for the
ZYGMUND spaces (the case p = q =

Vive(t, D) : Z3(F) — L2 mmmntlolh(oF) (6.7)

Proof. Continuity in (6.4), (6.5) and (6.7) follows from Theorem 3.2 and we

shall concentrate on the traces 'y;Vg )C(ZE, D,). Without loss of generality we can suppose

C(z, Z2.) = I because a composition of classical PsDOs is classical. Decomposing B(z, D,,)
similarly to (1.28)

B(z,D,) =

NE

BN (2, 2,)054

i

0

where B (z, 9,) is a tangent differential operator of order k, we find

VY (2,D,) =Y BN (z, 2, )V (z,D,),
k=0
VI (@, D,) =V (2,D,) =k, VO (z,D,). (6.8)
V(I)
If £k =20,1,---,20 — 1 the generalised potentials {/,(f)(x,Da;) are PsDOs due to
Lemma 4.5 and the traces ’ﬁ}Véﬁ )(:1:, D,) are well defined classical PsDOs on ..
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Let us consider the representation

20—1

Az, Dy) = (0, H(x)) 030 + Y Avei(x, D)0 (6.9)

k=0

(cf. (1.28)), where 2%(z, &) is the principal symbol of A(z, D,) (cf. (1.13)) and

At Z) =) aja)2, tes j=01,.. 20-1

|| <j

are tangent differential operators. Since J#a(x,y) is the kernel of the fundamental solution,
we get

A(z, D)) (,y) = Az, D) (x — y)’ Ha(x,y)
(@ — y)’ Az, Do) Ha(z,y) + Bz, D) Ha(x,y) (6.10)
= (z— )%5(x — y) + Bz, D) Ha(2,) = dg.00(x — y) + E(z, Dy) Ha(z,y)
(cf. (3.1) and (6.9)), where

0, if 3=0,

E(z, D) = ¥
( ) Z Ey (2, 20)05y, if B#0
k=0

and ord E; = j. On the other hand, by invoking (6.9), we find

21
Az, Do) AZ (2,y) = (@, 5(2)) 0%y AN (,9) + DD Goriy (2, D) Oy Ha (2,y)
k=0 v<p
= dg,00(x —y) + E(x, Dy) Ha(z,y) . (6.11)
Now we recall that A(x, D,) is elliptic, which implies det .o (x,v(x)) # 0 in the

neighbourhood of the boundary .# (see (1.5)). This ensures solvability of the equation (6.11)
and we find:

0% D (2, y) = 85,0 0(x — y) [, 7(x))] "
20—1

+ Z ZH% k(T Do 0V(I)J£/I,Eﬂ’)(a:,y) . (6.12)

k=0 v<p

Applying the mathematical induction and invoking (6.12) we obtain the represen-

tation
20—1

Iy A =N THYY, (2, 20) 0 KA (2,y) (6.13)

k=0 v<p8

for arbitrary m = 20,20+ 1,--- .
The representation (6.13), inserted into (6.8), shows that all generalised potentials

{7,25 )(x, D,) have traces on .# which are classical PsDOs (see [CD1, § 1, Example 2]).  m
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Remark 6.2 The representation (6.12) for f = 0 is well known in the literature (see, e.q.,
[KGBB1,§6.7] and [Nal]).

Remark 6.3 In the definition of the potential-type operators V](3ﬁ,)c (x,D,) in (6.1), C(t, %)
can be an arbitrary classical pseudodifferential operator on the boundary . .

6.2. The trace theorem for weighted spaces. The next Theorem generalises
Theorem 4.6.

Theorem 6.4 The trace operator
Rifu = {’y&iu,fy;iu, . ,fyljfu}, u € C°(0F)

(see (4.10)) is a retraction

s,m (OVE k s—5—J
’%lj: : Hp,loc<Q ) - ,@0 Bp,p (y)7
A (6.14)
s,m rays 3_5—]
]Bpquoc(Q ) — jéjo Bpg” (),

1
provided 1 < p,q < oo, m € Ny, k < s— — and has a coretraction.
p

We will present two different proofs of this assertion.

Proof 1. If m = 1,2,... the continuity results in (6.14) follow directly from
Theorem 4.6 since H_;7 (QF) and B, (€2*) are subspaces of H ,,.(2*) and of B (%),
respectively.

To find a continuous coretraction %, ' we use the representation formulae (3.6),
setting there Au(z) = 0:

~

Pz (V) (@) = u(w) = ) {[Ver;Bjlu(z) — [V;Beyjlu(z)} (6.15)

J

I
=)

for z € OF U Q™. Now the continuity of %,,' follows from Theorem 3.2.
Proof 2. Let us dwell on the case of the half-spaces Q* = R” and k = 0, because

the cases k # 0 and of arbitrary domains QF can be treated as in [Tr1, Theorem 2.7.2, Steps
6-7] and [Tr1, Theorem 3.3.3].
Let us recall an alternative definition of (equivalent) norms in the spaces B;  (R")

and H3(R") = F3 ,(R™):

/B (R = [1{29.F " 1x; F o} [€a (Lp(R™)) ||

leF5 (R = {277 1x; F 0} 2o | Lp(R™, 4| (6.16)

(see [Tr1, §§2.3.1,2.5.6], where
X; € C°(R™), suppxo C {x e R" : |x| <2},

suppx; C {z € R" : 2771 < |z| < 27%1} ij(x) =1.
=0
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In [Trl, §2.3.1, Step 5] the coretraction %, is defined as follows
Hy (@' 1) ZQ L e Vi) Z Lo (N) Zy v ()] (6.17)

where

%( ) ¢( ]/\)7 j€N7 ¢07¢6080(R)7
supp ¥y € (0,1), suppe € (1,2), F 'p(0) =.F '(0) =

Then .7 ~14;(0) = 27 which yields (%, '¢)(2',0) = ¥(2',0). We proceed as in [Tr1, §2.7.2-
(30)]

s+m+

o 2s olBry " R < Cof| {205 2L [(=in, ) 0]

o

)T Lo xi @) Fpxle W) [t (LR |

J=0

= G| {2z L, e O T @) F o))}

J=0

£ (Ly(®R") |

R

< GH{F e},

where 1™ (t) := 9/ (¢). Similarly we find

by (Lp(R™)) || = [|IB} 4 (R")

s+m+

e % el (R < Csll {297 7 x; T} ) ILy(R™, &)]| < Col| o[ H(R™)]]. m

Corollary 6.5 Let s > 0, s ¢ N, 1 < p < o0 (1 < p,q < o) and A(z,D,) in (1.1)

be a normal (not necessarily elliptic) operator; let further {Bj(x, Dy)}7"! be a DIRICHLET

system of order m (see Definition 1.2).
Then for arbitrary k € Ny there exists a continuous linear operator

k) . mél B;J;m*jfl(y) N H$+m 1+ k(Qi)
Jj=0 ’

p,loc

p,q,loc

({@(l@) : mél B;ng—j—l(y) . Berm 1+ k(Q:I:))
j=0 7

such that
ViB;2Wd =, j=0,1,...,m—1,

AP0 CELIE  (ason cE )

for arbitrary

mol —Jj— s+m—j—
2= (p0-npmm) € @ BRTHS) (R EBMTHS)).
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Proof. The proof emploies Theorem 6.4 and proceeds as in Lemma 4.8. =

6.3. The Calderén projections. Throughout this subsection it is assumed
that the conditions of Theorem 1.6 hold and the GREEN formula (1.13) is valid. Let

s+j+1
Hz’i(A,Bj,Y) = {’yfﬁngo : peH, ! P(QF), A(x,D,)p = 0} ,
(6.18)

s+i+i
BZ:ZE(A7BJ>5/) ::{ Bjp 1 p€E qu] (Qi> A(z, D:c)GDZO}

forj=0,....,20 -1, seR, 1<p<oo, 1<q< o0, where ’yf,u denote the traces (see
Introduction).

Theorem 6.6 The decompositions
Hy () = Hy~ (A, By, ) @ Hy ¥ (A, By, ),
B, () =B, (A, B;,.) @ B 7 (A, .7),
H (A, By, ) NH* (A, By, ) =0, By (A B;,.7)NB (A B;,.”) =0 (6.20)

(6.19)

hold and the corresponding CALDERON projections
Py, : H)(Y) — Hy*(A,B;,.¥),

A (6.21)
B;,q(y> - B;f;,q (AvB.i?y)

are defined as follows
Py, =+y,B;V; for j=0,...,20—1. (6.22)

Proof (see [Sel, Lemmata 5 and 6] for a simpler case). We will prove (6.19)-
(6.20) for the BESOV spaces. For the BESSEL potential spaces we have to prove only the
continuity property (6.21) while the others (including (6.22)) follow from the embedding
B, () CH}(S) for 1<r<p<oo,1<qg<o0,s€R.

First we note that Pi are PsDOs of order 0 (see Lemma 4.5). The continuity (6.21)
follow from the boundedness of PsDOs (see, e.g., Theorem 4.2) provided the inclusions

Im P i C Hgi(A, B;,.) CH}(), Im P i C IB%;”{;(A, B;,.) C B} () (6.23)

hold; here Im PjE A denotes the image in appropriate spaces. The inclusions (6.23) follow

because AV ;p(z )—Ofor:cEQ UQtand j=0,...,2¢ — 1.
Inserting u = Zjp, f = Au=AP;p (ct. (5 10), (5.11)) into (3.3) we get

20—1
k=0

forall j =0,...,20 — 1 and all x € Q~ UQT. Since the first summand in (6.24) and its
derivatives are continuous across the surface .

(770Nt AZ;0)(t) = (750Nt AZ;p)(t) tes, aeNj,
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by invoking (5.10), (5.11) we get

(V3 BrVie)(t) — (75 BiV;9)(t) = BrZo(t) = bie(t) (6.25)
where j,k=0,---,2¢ — 1. Formula (6.25) yield
PLie+Pae=7BVie—1,BVio =0, 9B (¥) (6.26)

and with (6.21) they imply (6.19).
To prove (6.20) (for the BESOV spaces) let us apply formula (6.24), written for the
homogeneous equation f = Au = A% =0 and a similar one for the outer domain 7:

Xot Zio(x) = £V p(z), j=0,...,20—-1, z€Q UQT.

Taking the sum, applying the operator B, and invoking (5.10), (5.11) we find the represen-
tation of a function ¢ € By~ (A, Bj,.”) N BT (A, By, .7)

o(z) =B,;Vjlpl(z), j=0,...,20—1, z€Q UQt, (6.27)

where [p](t) :=v5¢(t) —v5¢(t). Thus [¢](t) = 0 on .7 implies p(z) = 0 for all x € R™
From (6.20), (6.23) and (6.26) we get that Pi,j are projections:

(Pi,j)Q = Pi,j (Pzix,j + PX,J‘) = Pid : .

Example 6.7 If in Example 1.9 we take the Laplacian A(z, D,)u(x) = Au(x) = 0 in the
plane domains QF C R? (see (1.1)), the spaces H3(.) and BS () are decomposed into the
spaces of harmonic functions in Q1 and in Q.

6.4. The Plemelji formulae for layer potentials. Let

Viult: D)e(t) = § B0, D) [Gim DA (7)) el (629

7

for j =0,...,20—1 denote the restriction of the potential-type operator B;V} on the surface

t € . (see (3.5)). According to Theorems 3.2 and 6.1, V;, is a pseudodifferential operator
and
Vie @ Hy(7) —H(), (6.20)
s s—mj— 20—-1 '
Bp,q(y) - prq o (‘y)

are continuous provided 1 <p<o0,1<¢<o00,s€R (1<p<o0,1<g<o0ifs>0).
We have already explained in §6.1 in what sense the operator Vj; should be un-
derstood when its order is strictly positive, i.e. ord Vi = mj + e — 204+ 1 > 0. Since

ord Vj; = 0 (see (1.14)), V;; becomes a CALDERON-ZYGMUND singular integral operator
and the integral in (6.28) is understood in the CAUCHY principal value sense:

Vit D)e(t) =lim ¢ B,(t.D) [CF DA (17)] eds . (630)

I\ (L)

Here . (t, &) := S"1(t,e) N.¥ is the part of the surface . inside the sphere S"(¢,¢) with
radius € centred at ¢ € /. Then Vj; is continuous in the spaces H () and By () (see
(6.29)).
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Theorem 6.8 Let the BVP (1.11) be formally adjoint to (1.10) and suppose that the GREEN

formula (1.13) holds . Then, for the traces f;Bij we have the following PLEMELJI for-
mulae:

(0B DIVip) (1) = (3B, DoIVasg) 1) for (6:31)
(5B, Do)Vy9)(t) = %50(0) + V(. D)lt), 1€, (6:32)
kj=0,...20—1, peH(S).

Proof. (6.31) follows from (6.25).
Let t € .% be the projection of x € QF, i.e. x € F/(t) ( recall that 7(t) is the unit
normal vector, directed outwards, into 7). The potential-type operator

Vigla f%A o)
T (6.33)
Hjalw,x —y) = Bj(w, D,) Cﬂfﬁsﬁf@wﬂ C myent,
restricted to .#) has order 0 and has the following CALDERON-ZYGMUND kernel
%,A € COO(RTL ® Rn \ ARH) 5 (634)
[ Hjalw,x —y)| < Mole —y|'™,  z,yeR", a#y. (6.35)
Then the truncated operator
Vi () = j{ Hialx,x —1)p(1)d, ", >0 (6.36)
A\I (Le)
(see (6.30)) has C*°-smooth kernel (see (6.34)) and
lim (15VY,.) (1) = (5 V2, ) (1) (637
Due to the definition (6.30) and the continuity property (6.37),
(V3 Bz, Do) V) (1) = (Vi(t. D)) (1) + lim (75 V5.0) (1), (6.38)

Viserle) = § Hialoa - nplr)d S w0, peCN).

Z(t,e)
Since £ > 0 is sufficiently small there exists a diffeomorphism
x o H(t,e) — L(t,e), =)= (2 g(2)) e S(te) .S,
v = (21,... 20 1) € H(t,e) CRIT (6.39)
gty =te s, (Og)(t)=0, k=1,....n—1
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and .%y(t, €) is the projection of the part .#(t, ) into the tangent plane R}~ ! to .7 at t € ..
By changing the variable 7 = 3(y'), ¥ € #(t,¢) in the integral (6.38) we find the following

Vjjep(r) == ]{ Ha(x,x — 2y )GY )XW )y )y, |z —t]| <2, x&HAlte),

Rn—1

where . is the characteristic function of the part .#(t,e) C R*~! and

Gy) = Vlgrad g(y')? +1=1+ O (ly' — 1)) (6.40)

is the GRAM determinant (see [Scl, §IV.10.38], [Sil, §3.6]).
Next we note that

V,.p(z) = f Hya (w2 — o ()0 (oely))dy + o (1) (6.41)

as € — 0 uniformly for z € R™ in the vicinity of .#(t, ¢).
In fact, the remainder kernel

Hin(2,y) = Ha(w,w — (YY) DY) — Hale,x —y)
is weakly singular
| Hoa(, )| < Milz —y*™,  zyeR", z#y (6.42)

(cf. (6.34); see (6.37) and [CD1, §1.4]) and it is almost obvious that

g5 f Ao~ )ty ), =0

e—0
20 (t,E)

for arbitrary ¢ € C*°(.¥). By the same reasons
Vicp(x) == @(t) % HKialr,x —y)dy +o0(1) as e—0, (6.43)
So(t,e)
because [p(3(y')) — o(t)] < Maly' — 1.
If in the definition of the kernel J& o(x,x — ¢') in (6.33) the differential opera-
tors Bj(x, D), Cj(x,D,) and A(xz, D,) are replaced by their principal parts B,(t, D),

C;o(t,D,) and Ag(t, D,), respectively, the remainder kernel is weakly singular and admits
an estimate similar to (6.42). Therefore, as in (6.43),

V,p(x) == p(t) 7{ HKioalx,x —y)dy +0(1) as e—0, (6.44)
fo(t,s)
where the kernel is homogeneous of order 1 — n:
Hoalr, \2) = N""Hoalr,2), m2€R™, z#0. (6.45)

We can simplify the integral (6.44) furthermore:
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1. First we replace the domain of integration .#(¢,e) by the ball
Bte)={ly —t|<e:y eR"'}.

Observe that mes Z(t,e) — mes.#(t,e) = O (¢), while the corresponding integrals
differ by ¢ (1) as e — 0.

2. Next it is possible, by freezing coefficients at ¢, € . as ¢ — 0, to consider a pure
convolution kernel . a(to, * — y') which is translation invariant; the remainder has
a weak singularity and contributes a term ¢ (1) in (6.44).

3. Due to the described simplifications, the domain of integration |y’ — ¢t| < € can be
translated (shifted) to the origin and stretched up to the unit ball [/| < 1; the integral
is invariant with respect to translations and dilations (stretching).

Finally, taking the traces, we get the following
(Vo Vjep) (t) :=Eco p(t) + 0 (1) as e—0, (6.46)
where 4% denote the traces on different faces of the surface; the integral

Co = % Hioa(to,y)dy'

ly’|<1

1
is independent of ¢ > 0 and ¢y, € .. Invoking (6.26) we find c¢q = 7 Now (6.38) and (6.46)
vield (6.32). .

Remark 6.9 Applied to the operator Bj(x, D)V, (4.9) gives

(7,j5:ﬂBj (z, Dz)ngp) (t) = :|:CO2(t)

o(t)+V,,;(t,D)p(t) te.S, (6.47)

where co(t) = iB;(t,U(t))N;;(t, U(t)) and A ;(t,U(t)) is the symbol of the pseudodifferential

operator on R"

Ny D)pl0) = [ By D) [ DA )] ey, (649

Rn

associated with the potential operator V;; in (6.30). From (6.26) we find co(t) = 1.
It is possible to find the symbol AB;(t,vU(t))N;;(t,V(t)) directly by invoking (1.38).

6.5. On smoothness of solutions and coefficients. It is possible to diminish
substantially the smoothness requirements, imposed in §2 on the coefficients and on the

9+m_1
boundary. We need only to ensure an invariant definition of the relevant spaces H,, * ?(.%),

9xm_1
By, 7() etc. and the continuity of operator (1.1) and of its formal adjoint (1.2) in

appropriate spaces. For more refined results for the second order equations on domains with
L1pScHITZ boundary we refer to [MMT1, MT1] and the literature cited therein.
Let the boundary 092 = . be C*“-smooth.
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If the integers w, ly, ..., ¢y, and the coefficients a,(z) of the operator A(x,D,) in
(1.1) satisfy the following conditions

1

w>’19+%—— >0, aq € ClUl (R, CVN), (6.49)
p

>|19+%—k] for 19—%20,
6.4 =0 for 19+%—k20, ﬁ—%gO, (6.50)

>k—19—% for 19+%—k:<0

m_1 m_ 1
for all k = 07 17 cee, M, then the spaces Hgi 2 (y)7 IBZ,jq: v (y) are Wellfdeﬁned, the traces
IB%;::; P NS = 7,?/132;77700(@) exist and the operators
Alr,Di) : H,LE (OF) — Hy,f (0F),
9+ —— P I L —
BP,Q,ZQOC(Q ) - IBp,q,foc(gz ) (651)

are continuous. m gom
In fact, let 19—3 > 0. Since 0%p € H T3l

p,loc

(QF) we get a, 0% € Ho

p,loc (m) C
HZ;OC% (QF) for a, € CP+5~ll(R? ONV*N) || < m (we remind that a multiplication operator
al is continuous in HY (%), By (<) provided a € C*(Z) and p > v; see [Trl, Corollary

2.8.2)).

Now let ¥ — g < 0. If v+ % — o] > 0 we have 0%p € HN%_IQ‘(ﬁ)C Ly 10c(QF)

p,loc
and a,0%p € Lp10.(QF) C HZ;OC%(Q_) for a, € C(R™,CN*N). If 9 + % — |a| < 0, then
aa0%p € H;:,Jlroc%_'a‘(ﬁ) C HZZ_OC%(Q_) for a, € ClOI=9=%(R", ONV*N) |a| < m. This yields

the boundedness result (6.51).

1
The condition (6.49) can be slightly improved, provided the condition w > |0 + % — —‘ >
p
1
0 holds: ifs—i—%—i——ZOands—% < 0 we can take
p
_ m n m
Ca € H 1, (QF)  for 9 + 5 la| > 5 v — B <0, (6.52)
m m
— _9— = oy
wimmax {0~ Z ol + 20 - 3}
In fact, under the conditions (6.52) and ¢ € szoc% (QF) we get 0% € Hﬁ;?ilal (QF) c
O e 1=5E(QF) for a small £ > 0. Therefore, a,0% € Hz’loc(m) C Hz;f (QF).
1
Under the conditions (6.49) and (6.50), Lemma 4.8 with s = — % — — > 0 (which
p

1
implies ¥ > % + — and w > m) remains valid.
p
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Theorem 3.2 can also be extended, based on Lemma 4.8 with weaker smoothness
requirements. We leave these results for forthcoming publications.

6.6. Concluding Remarks. As we have already mentioned, if A(x, D,) in
(1.1) is scalar (N = 1), elliptic and has real valued matrix—coefficients (or complex valued
coefficients and n > 2), then it is proper elliptic and has even order ord A(x,Dy) = m = 2/
(see [LM1, Ch.2, §§1.1]).

For the non—scalar case N = 2,3, ... matters are different. The operator

o —10; — Oy )

A(D,) = ( PRSP (6.53)

is elliptic
_ & —G+i& _

and has order 1.
Let us consider the BVP (1.10) with an elliptic “basic” operator A(z, D,), ord A=

m, with quasi-normal “boundary” operators bo(x, D,),...,b,_1(z, D,) and the following
conditions:
1
uEHZ(Qi), fGH;_m(Qi), seR, 1<p, o0, s—§>m—1. (6.54)

The FREDHOLM properties and the solvability of the BVP (1.10) is completely
determined by the factorisation of the “lifted” principal homogeneous symbol

oy (£, €, 0) = (A=) " (t, '+ M0(t), tes, £eTt.S), xeR, (6.55)
where 7 (t,.7) :={¢ € R" : - U(t) = 0} is the tangent space to .7 at t € ., and “(z, &)

is the principal homogeneous symbol of A(xz, D,) (see (1.4)).
The symbol &7,,)(t,£’, A) in (6.55) admits the following factorisation

A+l
A —il¢|

Ay (t, & N) = A_(t,,N) ( ) oy (t, &N, (6.56)
where &/*(t,£',\) and &/ (t, &', \) are rational, uniformly bounded (with their derivatives)

and have analytic continuation in the lower (Im A < 0) and the upper (Im A > 0) complex
half-planes, respectively (see [Dul, Esl, Lo2, Sh1] and the most recent paper [CD1, §1.7]).

The factors &7 in (6.56) do not influence the FREDHOLM and solvability properties of
the equation and we are left with the middle factor. This leads locally to the problem of

A+l ®
invertibility of a PsDO (or of a convolution operator) with the symbol ( 3 i ZI?D in the
—i
space H> (R’ ) (details see, e.g., in [CD1, §1.7], [Es1, Sh1]). If m = 2 this PsDO has a kernel

which is eliminated by the SCHAPIRO-LOPATINSKII condition; this condition in the scalar
case N = 1 can be written as follows

det [by(t, &, \))]mum 0, t€, e€T(t,S), (6.57)

where AJ,..., A% _, are all roots of the polynomial equation @ (¢,£',A\) =0, Im X > 0 (see,
2
e.g., [LM1, Rol] and [EgS1, Ch.2, §2]). As we see, the number of boundary conditions in
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the BVP (1.10) in the scalar case equals % and is independent of the space where BVP is

considered.

For the matrix case, conditions are formulated in terms of unique solvability of the
initial boundary value problem for ordinary differential equations (see [Agl, Esl, Hr2, Rol]).
If the “basic” operator in the BVP (1.10) has even order (see (6.53)), a problem arises: the
values of the parameters

1 1
— — =int = 6.58
s—=in eger + 5 (6.58)
are critical and the BVP (1.10) under the conditions (6.54) is not FREDHOLM (moreover,
A(z,D,) has a non—closed range; see [CD1, §1.5]). In the case when (6.58) does not hold,
the number of boundary conditions w in (1.10) also depends on the space parameters s — —.

p
The details will be discussed in further publications.
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