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Boundary value problems (BVPs) for tangent differential operators (TDOs) on
smooth surfaces with smooth boundary encounter in applications rather often.
The purpose of the present paper is to give a simplest possible approach for the
investigation of such problems, which will be available not only for mathemati-
cians with solid background in differential geometry and topology, but also for
engineers and applied mathematicians. For this we use the Günter’s and Stokes’s
tangent derivatives, defined with the help of the outer unit normal vector to the
surface. We find explicit representation of the dual operator on the surface and
explicit Green formula for TDOs and corresponding BVPs.
As an example we consider the Laplace-Beltrami operator ∆S on the smooth
closed surface in details: it is proved that −∆S is self adjoint and positive
definite on non-constant functions. As a consequence it is proved that ∆S − νI
is invertible (has the fundamental solution) for arbitrary ν > 0.
For the Laplace-Beltrami operator ∆C on an open smooth surface C ⊂ S ,
with the smooth boundary Γ := ∂C an explicit Green formula is derived and
proved that the Dirichlet boundary value problem has a unique solution in the
Sobolev space W1

2(C ). For the Neumann boundary value problem the solvabil-
ity is proved under the usual orthogonality condition on the data.

1 CALCULUS OF TANGENT DIFFERENTIAL OPERATORS

Boundary value problems (BVPs) for tangent differential operators (TDOs) on smooth
surfaces with smooth boundary encounter in applications rather often (see [Ha1, § 72] for
the heat conduction by surfaces and. [Zo1] for shell problems in elasticity). Theory of such
BVPs for TDOs (and even theory of BVPs for pseudodifferential operators) is developed
long ago and is rather complete. In the recent book [MMT1] one can find, together with a
competent survey and references, a rather complete theory of BVPs (including the theory of
potential operators) on non smooth Lipschitz surfaces. But all these results require a rather
solid background in differential geometry and topology.

The purpose of the present paper is to give a simplest possible approach to the investi-
gation of aforementioned problems, which will be available for engineers and applied math-
ematicians. For this we use the Günter’s and Stokes’s tangent derivatives, defined with the
help of the outer unit normal vector to the surface (see [Du2, Gu1, KGBB1]). We find ex-
plicit representation of the dual operator on the surface and explicit Green formula for TDOs
and corresponding BVPs.

Let S be a smooth surface of co–dimension 1 in Rn, which divides Rn into a bounded
Ω+ ⊂ Rn and the complementary unbounded Ω− := Rn \ Ω

+
domains with the common

boundary S := ∂Ω+; let ~ν(t) = (ν1(t), . . . , νn(t)), t ∈ S be the outward unit normal
vector to Ω+ at t ∈ S (see Fig.1).
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Fig. 1

We extend the outer unit normal continuously in some small neighborhood US ⊂ Rn of
the boundaryS and define the normal derivative

∂~ν(x) := ~ν(x) · ∇ =
n∑

k=1

νk(x)∂k, , ∇ := (∂1, . . . , ∂n) , x ∈ Rn , j = 0, 1, . . . . (1.1)

∂~ν(x) applies only to those functions which are defined in some neighborhood U ⊂ US , but
not to functions defined only on the surface S .

In contrast to ∂~ν(t) any first order linear differential operator

~h(t) · ∇ :=
n∑

k=1

hk(t)∂k , ~h(t) = (h1(t), . . . , hn(t)) , (1.2)

with the directing vector ~h(t) tangent to the surface S

∀t ∈ S , ~ν(t) · ~h(t) ≡ 0 ,

can be applied to a function ϕ ∈ C1(S ) defined only on the surface S . In fact, we define

~h(t) · ∇ϕ(t) := lim
λ→0

ϕ(t + λ~hS (t))

λ
, ϕ ∈ C1(S ) ,

where λ~hS (t) is the projection of the tangent vector λ~h(t) onto the surface S (the projec-
tions are defined for small |λ| < ε).

The following two classes of differential operators are of special interest for us: Günter’s
derivatives

Dx := (D1, . . . , Dn) , Dj := ∂j − νj(x)∂~ν(x) = ~dj · ∇ (1.3)

and Stokes’s derivatives

Mx := [Mj,k]n×n , Mj,k := νj(x)∂k − νk(x)∂j = ~mj,k · ∇ (1.4)
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(see [Du2, KGBB1]). The corresponding directing vectors are tangent to S

~ν(t) · ~dj(t) ≡ ~ν(t) · ~mj,k(t) ≡ 0, t ∈ S .

and, therefore, the Günter and the Stokes derivatives are tangent.
Only n−1 out of n derivatives D1, . . . , Dn and out of n2 derivatives M1,1, . . . , Mn,n are

linearly independent and the following relations are valid:

Dj :=
n∑

k=1

νkMk,j ,

n∑

k=1

νkDk = 0 ,

Mj,k = νjDk − νkDj , Mj,j = 0 , Mj,k = −Mk,j .
m+1∑

i,j,k=m−1

εi,j,kνiMj,k = 2
∑

i,j,k∈{m−1,m,m+1}
j<k

εi,j,kνiMj,k = 0 , m = 2, . . . , n− 1 ,

(1.5)

where εi,j,kis the Levi-Chivita symbol: εi,j,k = 0, εi,j,k = 1 or εi,j,k = −1 depending whether
two of three indices i, j, k have the same value, the triple (i, j, k) is obtained from the ordered
triple (m− 1,m, m + 1) by an even or an odd permutation, respectively.

The derivatives Dj were introduced in [Gu1, §1.3]). The derivatives Mj,k for n = 3 were
intensively explored in [KGBB1, Ch. V] and for n > 3 see [Du2]. The derivatives Mj,k are
natural entries of the Stokes formula.

In the sequel we use the following standard notation

Dα
x := Dα1

1 . . . Dαn
n , α ∈ Nn

0 ,

M β
x := M β1

1 . . . M βm
m , β ∈ Nm

0 , m =
n(n− 1)

2
, (1.6)

where M1 := M1,2, . . . , Mm := Mn−1,n are non–vanishing Stokes’s derivatives Mj,k, j <
k, j, k = 1, . . . , n (the other non–vanishing Stokes’s derivatives differ from the selected ones
only by the sign). In contrast to the case of the usual derivatives ∂α it does really matters in
which sequence we apply the derivatives D

αj

j and M βk

k in (1.6), because they have variable
coefficients. In this connection let us write precisely what is meant under the dual operators:

(D∗
x)α

S := (D∗
n)αn

S . . . (D∗
1 )α1

S , α ∈ Nn
0 ,

(M ∗
x )β

S := (−1)|β|(Mm)βm . . . (M1)
β1

S , β ∈ Nm
0 , (1.7)

where A∗
S denotes the “surface” dual operator:

∮

S

[Au(τ)]> v(τ) dτS =

∮

S

u>(τ)A∗
S v(τ) dτS . (1.8)

which differs from the formally adjoint operator (see the next lemma).
Note, that we use the same operators (M1)

∗
S = −M1 = −M1,2, . . . , (Mm)∗S =

−Mm := −Mn−1,n for the “surface” dual operators to the Stokes derivatives, because these
operators are skew-symmetric (Mj,k)

∗ = −Mj,k on the surface (see (1.13)). Therefore The
skew-symmetric M>

x = −Mx matrix operator in (1.4) is self adjoint

M ∗
x = [M ∗

j,k]
>
n×n = −[−Mj,k]n×n = [Mj,k]n×n = Mx . (1.9)
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Lemma 1.1 (see [Du2, Lemma 1.8]). Let G(D) be a “tangent” differential operator

G(D) =
∑

|α|≤k

gα(t)Dα
t =

∑

|β|≤k

fβ(t)M β
t , t ∈ S . (1.10)

Then
∮

S

[G(D)u(τ)]> v(τ) dτS =

∮

S

u>(τ)G∗
S (D)v(τ) dτS , (1.11)

where

G∗
S (D) =

∑

|α|≤k

(D∗
t )α

S

[
gα(t)

]>
I =

∑

|β|≤k

(−1)|β|M α
t

[
fβ(t)

]>
I ,

(Dj)
∗
S u = −

n∑

k=1

Mk,jνku , (1.12)

(Mj,k)
∗
S u = −Mj,ku . (1.13)

Next lemma provides some additional properties of the derivatives.

Lemma 1.2 The “surface” dual (Dj)
∗
S (cf. (1.8)) to the Günter derivative is written as

follows:
(Dj)

∗
S ϕ = −∂j + νj∂

∗
~ν = −Djϕ + νjGS ϕ , (1.14)

where GS (t) denotes the mean (Gaussian) curvature of the surface S :

GS (t) := div ~ν(t) :=
n∑

k=1

∂kνk(t) =
n∑

k=1

Dkνk(t) , t ∈ S . (1.15)

Proof. Due to (1.12) we get

(Dj)
∗
S ϕ = −i

n∑

k=1

Mj,kνkϕ =
n∑

k=1

(νj∂k − νk∂j)νkϕ

=
n∑

k=1

νj∂kνkϕ−
n∑

k=1

ν2
k∂jϕ−

n∑

k=1

νkν
(j)
k ϕ

= νj∂
∗
~νϕ− ∂jϕ− 1

2
∂j

(
n∑

k=1

ν2
k

)
ϕ

= −∂j + νj∂
∗
~ν

= −∂j + νj

n∑

k=1

νk∂kϕ + νj

n∑

k=1

ν
(j)
k ϕ

= −∂j + νj∂~νϕ + νjGS ϕ

= −Dj + νjGS , ν
(m)
k (t) := ∂mνk(t) , j, k = 1, . . . , n , t ∈ S ,
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because
n∑

k=1

ν2
k(t) ≡ 1 =⇒ ∂j

(
n∑

k=1

ν2
k(t)

)
≡ ∂j1 ≡ 0 (1.16)

and both equalities in (1.14) are proved.
To prove (1.15) we proceed as follows

n∑

k=1

Dkνk =
n∑

k=1

(
ν

(k)
k − νk

n∑
j=1

νjν
(j)
k

)
= GS −

n∑
j=1

νj

2
∂j

(
n∑

k=1

ν2
k

)
= GS

(see (1.16)) and the lemma is proved.

The formally adjoint A∗ to a differential operator A and the “surface” adjoint A∗
S are

different, but the difference is a lower order operator.
We can define the Sobolev space on a smooth surface S as follows

W`
p(S ) := {ϕ ∈ D′(S ) : Dαϕ ∈ Lp(S ) , ∀α ∈ Nn

0 , |α| ≤ `} (1.17)

end endow it with the norm

‖ϕ
∣∣W`

p(S ) ‖ :=
∑

|α|≤`

‖Dαϕ
∣∣Lp(S )‖ .

Lemma 1.3 For Günter’s gradient ∇S := (D1, . . . , Dn) we get the following:

‖∇ϕ
∣∣L2(S )‖2 = ‖∇S ϕ

∣∣L2(S )‖2 + ‖∂~ν ϕ
∣∣L2(S )‖2 , ϕ ∈ W 1

2 (US ) , (1.18)

ϕ ∈ C1(S ) , ∇S ϕ ≡ 0 if and only if ϕ(t) ≡ const . (1.19)

Proof. In fact,

‖∇S ϕ
∣∣L2(S )‖2 =

n∑
j=1

∮

S

Djϕ(t)Djϕ(t)dtS

=
n∑

j=1

∮

S

(∂jϕ(t)− νj(t)∂~ν(t)ϕ(t))(∂jϕ(t)− νj(t)∂~ν(t)ϕ(t))dtS

=
n∑

j=1




∮

S

(∂jϕ(t)∂jϕ(t)dtS −
∮

S

νj(t)∂jϕ(t)∂~ν(t)ϕ(t)dtS

−
∮

S

∂~ν(t)ϕ(t)νj(t)∂jϕ(t)dtS − ν2
j (t)

∮

S

∂~ν(t)ϕ(t)∂~ν(t)ϕ(t)dtS




= ‖∇ϕ
∣∣L2(S )‖2 − ‖∂~νϕ

∣∣L2(S )‖2

and (1.18) follows.
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To prove (1.19) we have to show only that ∇S ϕ ≡ 0 implies ϕ(t) ≡ const (the inverse
implication is trivial). If we suppose the contrary ϕ(t) 6= const, there exists a smooth curve
L ⊂ S restricted to which ϕ(t) is not constant: γL ϕ(t) 6= const. Since the tangent
derivative ~̀

L ·∇ along L is a linear combination of the Günter derivatives, we get ∂sγL ϕ =
0 where ∂s is the derivative with respect to the arc length on L . Then γL ϕ = const and we
get a contradiction, which indicates that ϕ ≡ const.

W`
2(S ) is a Hilbert space with the scalar product

(ϕ, ψ)2
W`

2(S ) :=
∑

|α|≤`

∮

S

Dα
x ϕ)(t)Dα

x ψ(t)dtS . (1.20)

Under the space W−`
2 (S ) with a negative order −`, ` ∈ N, is understood, as usual, the

dual space of distributions to the Sobolev spaceW`
2(S ).

We can indicate large classes of self adjoint operators on the surface. For example,
special polynomials of the operators Mj, j = 1, . . . ,m with variable coefficients

A(x, Mx)u =
M∑

j=1

bj(x)M
mj

j b>j (x)u , bj ∈ [C∞(S )]N×N , (1.21)

or all polynomials with constant self adjoint N ×N matrix coefficients

B(Mx)u =
M∑

j=1

ajM
mj

j u , a>j = aj = const ∀j = 1, . . . ,M , ∀mj ∈ N0 , (1.22)

are self adjoint on the surface A∗
S (Mx) = A(Mx). An analogue of the Laplace operator

∆̃S :=
m∑

k=1

M 2
k =

n∑

j<k, j,k=1

M 2
j,k , m :=

n(n− 1)

2

is, obviously, self adjoint (∆̃S )∗S = ∆̃S (see (1.12)) and even non–negative

(∆̃S ϕ, ϕ)S :=
m∑

k=1

∮

S

(Mkϕ, Mkϕ)S ≥ 0 , ϕ ∈W1
p(S ) . (1.23)

∆̃S is an elliptic operator on the surface S as well. In fact, since |~ν(t)| = 1 and the symbol
∆S (t, ξ) is defined on the cotangent manifold

T ∗(S ) = {(t, ξ) : t ∈ S , ξ = (ξ1, . . . , ξn) ∈ Rn, (~ν(t), ξ) = 0} , (1.24)
we find easily that

∆̃S (t, ξ) =
m∑

k=1

M 2
k (t, ξ) =

1

2

m∑

j,k=1

M 2
j,k(t, ξ) = −1

2

n∑

j,k=1

[νj(t)ξk − ξjνk(t)]
2

= |ξ|2 − (~ν(t), ξ)2 = |ξ|2 for ξ ∈ T ∗(S ) . (1.25)

As it is clear from (1.25) the operator ∆̃S is not elliptic on Rn because its symbol vanishes
in the normal direction to the surface S :

∆̃S (t, ξ) = |ξ|2 − (~ν(t), ξ)2 = 0 for all ξ = |ξ|~ν(t) , t ∈ S . (1.26)
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2 THE GREEN FORMULA

Let C ⊂ S ⊂ Rn be a smooth surface of co–dimension 1 with the smooth boundary
Γ = ∂C (see Fig. 2) and consider the following boundary value problem on the surface

{
A(t, Dt)ϕ(t) = f(t), t ∈ C ,

(B`(t, Dt)ϕ)+(s) = g`(s), ` = 0, . . . , µ− 1, s ∈ Γ = ∂C ,
(2.1)

where A(t, Dt) is the ”basic” tangent differential operator and Bj(t, Dt) are the ”boundary”
tangent partial differential operators:

A (t, Dt) = [Ajk(t, Dt)]N×N :=


 ∑

|α|≤m

aj,k,α(t)Dα
t




N×N

, aj,k,α ∈ C∞(C ) ,

B`(t, Dt) = [B`,j,k(t, Dt)]1×N =


 ∑

|α|≤m`

b`,j,k,α(t)Dα
t




1×N

, b`,j,k,α ∈ C∞(UΓ) ; (2.2)

UΓ denotes some neighborhood of Γ ⊂ C .
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Fig. 2

Note, that in a “tangent” differential operator of order one

L(t,Dt) :=
n∑

k=1

`k(t)∂k , t ∈ UC , ~ν(t) · ~̀(t) ≡ 0 , ∀t ∈ C , (2.3)

we can replace the usual derivatives ∂j by Günter’s tangent derivatives

L(t,Dt) :=
n∑

k=1

`k(t)(Dk + νk(t)∂~ν(t)) = L(t, Dt) + ~ν(t) · ~̀(t) = L(t, Dt) (2.4)
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and write the surface dual as a formal adjoint operator

L∗S (t, Dt) :=
n∑

k=1

(Dk)
∗
S `k(t) =

n∑

k=1

(−Dk + νk(t)GS (t)`k(t)

= −L∗(t, Dt) + ~ν(t) · ~̀(t)GS (t) = −L∗(t,Dt) , (2.5)

L∗(t, Dt) = L∗(t, ∂t) :=
n∑

k=1

Dk`k(t)I =
n∑

k=1

∂k`k(t)I

(cf. (1.14)).

Lemma 2.1 For a “tangent” differential operator of order one (2.3) we have the following
rule for “integration by parts”:

∮

C

[L(t, Dt)ϕ(t)]> ψ(t)dtC = −
∮

Γ

~̀(s) · ~νΓ(s)[ϕ(s)]>ψ(s) dsΓ

+

∮

C

[ϕ(t)]> L∗(t,Dt)ψ(t)dtC (2.6)

(cf. (2.4) and (2.5)). Here ~νΓ(s) is the unit inward normal vector to Γ at the point s ∈ Γ,
which is tangent to the surface ~ν(s) · ~νΓ(s) ≡ 0 for all s ∈ Γ. In particular,

∮

C

[L(t, Dt)ϕ(t)]> ψ(t)dtC =

∮

C

[ϕ(t)]> L∗(t, Dt)ψ(t)dtC (2.7)

if either L∗C (t,Dt) is tangent to the boundary (~νΓ(s), ~̀(s)) ≡ 0, ∀s ∈ Γ, or C is a closed
surface Γ = ∂C = ∅ (see Fig. 1).

Proof. We apply the Gauss formulae in the following form

DkχC (t) = −νΓ,k(t)δΓ(t) , (2.8)

where χC (t), t ∈ S is the characteristic function of the surface C ⊂ S and δΓ is a surface
delta-function:

〈δΓ, v〉 :=

∮

Γ

v(s) dsΓ , v ∈ C(S ) . (2.9)

In combination with formulae (2.4), (2.5) this leads to the following result:
∫

C

[L(t, Dt)ϕ(t)]>ψ(t)dtC =

∫

S

[L(t, Dt)ϕ(t)]>χC ψ(t)dtS

=

∫

S

ϕ>(t)L∗(t, Dt)χC ψ(t)dtS =
n∑

k=1

∫

S

ϕ>(t)Dk[χC `k(t)ψ(t)]dtS
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= −
n∑

k=1

∫

S

ϕ>(t)[νk(t)δΓ(t)`k(t)ψ(t) + χC Dk[`k(t)ψ(t)]dtS

= −
∮

Γ

~̀(s) · ~νΓ(s)[ϕ(s)]>ψ(s) dsΓ +

∮

C

[ϕ(t)]> L∗(t, Dt)ψ(t)dtC

and (2.6) is proved.

Definition 2.2 The operator A(t,Dt) in (2.1) is called normal on Γ = S if

inf |detA0(s, ~νΓ(s))| 6= 0, s ∈ Γ , |ξ| = 1 , (2.10)

where A0(t, ξ) denotes the homogeneous principal symbol of A

A0(t, ξ) :=
∑

|α|=m

aα(t)(−iξ)α, (t, ξ) ∈ T ∗(C ). (2.11)

Definition 2.3 A system {Bj(t, Dt)}k−1
j=0 of differential operators with matrix N ×N coeffi-

cients is called a Dirichlet system of order k if all participating operators are normal on S
(see Definition 2.2) and, after renumbering, ordBj = j, j = 0, 1, . . . , k − 1.

Definition 2.4 A boundary value problem




A∗(t, Dt)v(t) = d(t), t ∈ C ,

(Cm−`−1(t,Dt)v)+(s) = h`(s), ` = 0, . . . , µ∗ − 1, s ∈ Γ
(2.12)

(see (2.1)), where µ∗ ≤ m and C`(t,Dt) are some “boundary” differential operators

C`(t,Dt) =
∑

|α|≤µj

cj,α(t)Dα
t , c`,α ∈ C∞(Γ,CN×N)

with ordC` = ` ≤ m − 1, is called a dual BVP to (2.1), if there exist two systems of
“boundary” differential operators

Bj(t, Dt) =
∑

|α|≤mj

bjα(t)Dα
t , Ck(t, Dt) =

∑

|α|≤µk

ckα(t)Dα
t ,

bjα, ckα ∈ C∞(Γ,CN), j, k = 0, . . . , m− 1 ,

which are extensions of systems {Bj(t, Dt)}µ−1
j=0 and {cj(t, Dt)}µ∗−1

j=0 , respectively, such that
the Green formula

∫

C

((Au)>v − u>A∗
S v)dtC = −

m−1∑
j=0

∮

Γ

(Bju)>CjvdτΓ (2.13)

holds with u, v ∈ C∞(Ω−+ ,CN).
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If (2.12) is formally adjoint to BVP (2.1), then

mj + µj = m− 1, j = 0, . . . .ω − 1. (2.14)

Theorem 2.5 If either {Bj(t, Dt)}m−1
j=0 or {Cj(t,Dt)}m−1

j=0 is a fixed Dirichlet system of
“boundary” operators, then the Green formula (2.11) holds. The related system (respec-
tively, {Cj(t, Dt)}m−1

j=0 or {Bj(t, Dt)}m−1
j=0 ) is then unique and BVP (2.12) is formally adjoint

to (2.1).
The related system is a Dirichlet system if and only if the “basic” operator A(x,Dx) is

normal.

Proof. The proof is verbatim to the proof of a similar [Du2, Theorem 1.6], if we apply the
rule for “integration by parts” (2.6).

In the next theorem we consider a special case, which encounter in applications most
frequent. For this we need the Sobolev–Slobodetski spaces Ws

2(Γ) and Bessel potential
Hs

2(Γ) spaces for arbitrary s ∈ R (see. e.g., [Tr1] for the definition).

Note, that a function ϕ ∈ Ws
p(S ) (and ϕ ∈ Hs

p(S )) has the trace ϕ+ ∈ Ws− 1
p

p (Γ) on

the boundary, provided 1 < p < ∞ and s >
1

p
(see [Tr1] for details).

For p = 2 the Sobolev–Slobodetski Ws
2(Γ) for p = 2, the Bessel potential Hs

2(Γ) and
even the Besov Bs

2,2(Γ) spaces coincide (i.e., equivalent norms).

Theorem 2.6 Let the ”basic” tangent differential operator A(t, Dt) in (2.1) be self adjoint
on the surface

A∗
S (t, Dt) = A(t, Dt) (2.15)

and elliptic of even order (1) m = 2µ.
Let the ”boundary” operators {Bj(t, Dt)}ν−1

j=0 in (2.1) be normal and have different
orders mj 6= mk < 2µ for j 6= k, Then there exist operators {Cj(t, Dt)}ν−1

j=0 such that:

i. the system B0(t, Dt), . . . ,Bν−1(t,Dt),C0(t, Dt) . . .Cν−1(t, Dt), is a Dirichlet sys-
tem;

ii. The following special Green formula holds

(Au, v)S −
ν−1∑
j=0

((Bju)+, (Cjv)+)Γ = (u,Av)S −
ν−1∑
j=0

((Cju)+, (Bjv)+)Γ , (2.16)

with u, v ∈ C∞(Ω−+ ,CN), where

(u, v)S :=

∮

S

u>(t)v(t)dtS , (ϕ, ψ)Γ :=

∮

Γ

ϕ>(s)ψ(s)dsΓ . (2.17)

iii. The BVP (2.1) is self dual relative to the Green formula (2.16) (see Definition 2.4).

(1)The order of an elliptic operator is automatically even if the dimension of the underlying surface is more
than two: n > 2.



3. BOUNDARY VALUE PROBLEMS FOR THE LAPLACE-BELTRAMI OPERATOR 11

iv. The BVP (2.1) is Fredholm in the space

A := (A,B0, . . . ,Bµ−1) : Ws+2µ
p (S ) −→Ws

p(S )×
µ−1∏
j=0

W
s+2µ− 1

p
−mj

p (Γ) (2.18)

for arbitrary s > 0, 1 < p < ∞ and has a solution u ∈Ws+2µ
p (S ) only for those data

(f, g0, . . . gµ−1) ∈ Ws+2µ
p (S ) ×

µ−1∏
j=0

W
s+2µ− 1

p
−mj

p (Γ) which satisfy the orthogonality

condition

(Au, v)S −
µ−1∑
j=0

((Bju)+, (Cjv)+)Γ = 0 (2.19)

for all solution v ∈ C∞(S ) (see the Corollary 2.7 below) of the homogeneous BVP
(2.1) with f = g0 = · · · = gµ−1 = 0.

Proof. The proof is verbatim to the proof of a similar Theorems in [LM1, Ro1]. To prove
that BVP (2.1) is Fredholm, we apply the quasi-localization (see [CDS1, Du1, Ra1, Si1],
“freezing” coefficients and rectifying the surface. The proof is then reduced to the case of
BVPs with constant coefficients on Rn.

Corollary 2.7 Let conditions of Theorem 2.6 hold. Then all solutions of homogeneous BVP
(2.1) with f = g0 = · · · = gµ−1 = 0 are infinitely smooth

Ker A ⊂ C∞(S ) . (2.20)

Moreover, the Fredholm property of BVP (2.18), its kernel, cokernel (understood as the
kernel of the dual BVP; cf. (2.19)) and indices are independent of s > 0.

Proof. Proof is standard and based on the existence of the parametrix for the BVP (2.18).

Remark 2.8 For conciseness we have avoided to formulate Theorem 2.6 and Corollary 2.7
for a general elliptic BVP (2.1) and its dual BVP (2.12), which are similar (see [LM1, Ro1]
for the case S = Ω ⊂ Rn).
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Let C ⊂ S be smooth surfaces as in § 2: S is cosed and C has a smooth boundary
∂C = Γ 6= ∅:

The Laplace-Beltrami operator

∆S ϕ(t) :=
n∑

k=1

D2
kϕ(t) , t ∈ S , (3.1)

where Dj := ∂j − νj(x)∂~ν(x) are Günter’s tangent derivatives, represents a projection of the
Laplace operator

∆u(x) :=
n∑

k=1

∂2
ku(x) , x ∈ Rn

onto the surface S (see [MP1] for the Laplace-Beltrami operator on the unit sphere).
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Lemma 3.1 Let S be µ–smooth and ` ∈ N0, ` ≤ µ. The Laplace-Beltrami operator ∆S is
elliptic on the surface S and self adjoint

∆S (t, ξ) ≡ |ξ|2 , ∀(t, ξ) ∈ T ∗(S ) , (∆S )∗S = ∆S . (3.2)

For arbitrary ` = 0, −+1, . . . the operator

−∆S : W`+2
2 (S ) →W`

2(S ) (3.3)

is positive definite (coercive) on non–constant functions

(−∆S ϕ, ϕ)W`
2(S ) =

n∑

k=1

(Dkϕ, Dkϕ)W`
2(S ) = ‖∇S ϕ

∣∣W`
2(S )‖ > 0 (3.4)

for ∀ϕ ∈W`+2
2 (S ) , ϕ 6= const .

Proof. Let us prove that ∆S is elliptic. We proceed straightforwardly (2) (cf. (1.25)):

∆S (t, ξ) =
n∑

k=1

D2
k (t, ξ) =

n∑

k=1

[ξk − νk(t)(~ν(t), ξ)]2

= |ξ|2 − 2(~ν(t), ξ)2 + |~ν(t)|2(~ν(t), ξ)2

= |ξ|2 − (~ν(t), ξ)2 = |ξ|2 for (t, ξ) ∈ T ∗(S ) . (3.5)

Now let us prove that ∆S is self adjoint on the surface (see the second equality in (3.2)).
For this we apply (1.14) and proceed as follows:

(∆S )∗S ϕ =
n∑

k=1

(D∗
k )2

S ϕ =
n∑

k=1

(−Dk + νkGS )2ϕ

=
n∑

k=1

D2
kϕ +

n∑

k=1

ν2
kG

2
S ϕ−

n∑

k=1

νkGS Dkϕ−
n∑

k=1

Dk(νkGS )ϕ

= ∆S ϕ + G 2
S ϕ− GS

n∑

k=1

νkDkϕ−
n∑

k=1

νkDk(GS ϕ)−
(

n∑

k=1

Dkνk

)
GS ϕ

= ∆S ϕ + G 2
S ϕ− G 2

S ϕ = ∆S ϕ , (3.6)

because
n∑

k=1

νkDk = 0 and
n∑

k=1

Dkνk = GS

(see the second equality in (1.5) and (1.15)).

(2)Note that due to (3.5) the Laplace-Beltrami operator ∆S is not elliptic on Rn and ∆S (t, ξ)|ξ|2 −
(~ν(t), ξ)2 = 0 in the normal direction to the surface S (cf. (1.26)).
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To prove (3.4) we apply (1.14), the second equation in (1.5), and proceed as follows:

(−∆S ϕ, ϕ)W`
2(S ) = −

n∑

k=1

(Dkϕ, (Dk)
∗
S ϕ)W`

2(S )

=
n∑

k=1

(Dkϕ, Dkϕ)W`
2(S ) −

n∑

k=1

(Dkϕ, νkGS ϕ)W`
2(S )

= ‖∇S ϕ
∣∣W`

2(S )‖ −
(

n∑

k=1

νkDkϕ, GS ϕ

)

W`
2(S )

= ‖∇S ϕ
∣∣W`

2(S )‖ > 0 provided ϕ ∈W`+2
2 (S ) , ϕ 6= const

(cf. the second equality in (1.5) and (1.19)).

Theorem 3.2 Let S be µ-smooth and ` ∈ N0, ` ≤ µ. The perturbed Laplace-Beltrami
operator

∆S − νI : Ws+2
2 (S ) →Ws

2(S ) (3.7)

is invertible for arbitrary s ∈ R, provided ν > 0 (i.e. ∆S−νI has the fundamental solution).

Proof. As an elliptic operator on the closed surface ∆S − νI in (3.7) is Fredholm for
s = 0, 1, . . .. On the other hand,

(−(∆S − ν)ϕ, ϕ)W`
2(S ) = ‖∇S ϕ

∣∣W`
2(S )‖+ ν‖ϕ

∣∣W`
2(S )‖ ∀ϕ ∈W`+2

2 (S ) . (3.8)

and, therefore, Ker (∆S − νI) = ∅.

The same is true for the dual operator, which is the same and, therefore, Coker (∆S −
νI) = ∅, which yields the invertibility.

The dual operator, which is again ∆S−νI , but between spacesW−s
2 (S ) →W−s−2

2 (S ),
is also invertible. Then for non-integer s ∈ R the invertibility of the operator (3.7) follows
by the interpolation (see [Tr1].

Remark 3.3 ∆S−νI is invertible as an operator between more general Sobolev-Slobodetski
spacesWs+2

p (S ) →Ws
p(S ) and the Bessel potential spaces Hs+2

p (S ) → Hs
p(S ) for arbi-

trary s ∈ R, 1 < p < ∞ and ν > 0.

Let us consider the Dirichlet
{

(∆C (t, Dt)ϕ)(t) = f(t), t ∈ C ,

ϕ+(s) = g(s), s ∈ Γ = ∂C
(3.9)

and the Neumann
{

(∆C (t, Dt)ϕ)(t) = f(t), t ∈ C ,

(D~νΓ(s)ϕ)+(s) = h(s), s ∈ Γ = ∂C
(3.10)
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boundary value problems for the Laplace-Beltrami operator ∆C (see (3.1)) on the open sur-
face C with the boundary Γ (see Fig. 2). The normal derivative D~νΓ(s) is defined as follows

D~νΓ(s) :=
n∑

k=1

νΓ,k(s)Dk =
n∑

k=1

νΓ,k(s)∂k , (3.11)

~νΓ(s) := (νΓ,1(s), . . . , νΓ,n(s)) , s ∈ Γ .

D~νΓ(s) is a tangent derivative on the surface C and is normal to the boundary Γ.

Note, that BVPs (3.9) and (3.10) describe the stationary (3) heat transfer process in a thin
conductor having the shape of the surface S (see [Ha1, § 72]).

For the participating functions in (3.9) and (3.10) we suppose

f ∈Ws
p(S ) , ϕ ∈Ws+1

p (S ) ,

g ∈Ws− 1
p

p (Γ) , h ∈Ws−1− 1
p

p (Γ) , 1 < p < ∞ , s > 0 .
(3.12)

Corollary 3.4 For the Laplace-Beltrami operator ∆C on the open surface C with the bound-
ary ∂S := Γ the following Green formulae are valid (see (2.17) for notations):

(∆C (t,Dt)ϕ, ψ)C + (∇C ϕ,∇C ψ)C = −(D~νΓ
ϕ, ψ)Γ , (3.13)

(∆C (t,Dt)ϕ, ψ)C − (D~νΓ
ϕ+, ψ+)Γ = (ϕ,∆C (t,Dt)ψ)C − (ϕ+,D~νΓ

ψ+)Γ (3.14)

for arbitrary ϕ, ψ ∈ C∞(M ).

Proof. We apply (2.6), (1.14), the second equality in (1.5) and proceed as follows:

∮

C

∆C (t, Dt)ϕ(t)ψ(t)dtC = −
n∑

j=1

∮

C

D2
j ϕ(t)ψ(t)dtC

= −
n∑

j=1

∮

Γ

[νΓ,j(s)− νj(s)(~νΓ(s), ~ν(s))]Djϕ(s)ψ(s)dsΓ

−
n∑

j=1

∮

C

Djϕ(t)Djψ(t)dtC +

∮

C

GS (t)
n∑

j=1

νj(t)Djϕ(t)ψ(t)dtC

= −
∮

Γ

D~νΓ(s)ϕ(s)ψ(s) dsΓ−
∮

C

∇C ϕ(t)∇C ψ(t)dtC ,

because (~νΓ(s), ~ν(s)) ≡ 0. This proves (3.13). (3.14) follows if we apply (3.13) twice and
take the difference.

(3)We consider the stationary heat conduction only for simplicity. For the time dependent process, which is
represented by a Hypoelliptic operator, one can obtain similar results.
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Theorem 3.5 Let 1 < p < ∞, s > 0. The Dirichlet problem (3.9), (3.12) has a unique

solution ϕ ∈Ws
2(S ) for arbitrary right–hand side g ∈Ws− 1

p
p (Γ).

The Neumann problem (3.10), (3.12) has a solution ϕ ∈ Ws
p(S ) only for those right–

hand sides h ∈Ws−1− 1
p

p (Γ) which satisfy the condition
∮

Γ

h(s)dsΓ = 0 . (3.15)

If the condition (3.15) holds, the Neumann problem has a solution ϕ0 ∈ Ws
p(S ) and a

general solution reads ϕ = ϕ0 + const.

Proof. First we prove the uniqueness. Taking g = 0 (h = 0) we should prove that the
corresponding homogeneous Dirichlet BVP has only a trivial solution ϕ = 0 (the homoge-
neous Neumann BVP has only a constant solution ϕ = const, respectively). In fact, due to
(2.20) these solutions are infinitely smooth and by taking ψ = ϕ in the Green formula (3.13)
we get ∮

Γ

|∇C ϕ(s)|dsΓ = 0 =⇒ ∇C ϕ(s) ≡ 0 =⇒ ϕ(s) ≡ const (3.16)

(cf. (1.19)). For the Neumann BVP the result is proved. For the Dirichlet BVP we have in
addition ϕ(s) = 0 ∀s ∈ Γ and this yields ϕ(t) = 0 ∀t ∈ C .

For the proof of existence we recall that the BVPs (3.9) and (3.10), with conditions(3.12),
are Fredholm (see Theorem 2.6.) and their kernels coincide with cokernels. Therefore, by
the part proved already, the Dirichlet BVP (3.9) is solvable uniquely, while for solvability of
the Neumann problem there must hold the orthogonality condition (3.15) for the data with
the solution v(t) ≡ const of the homogeneous equation (cf. (2.19)).

To implement another approach to the investigation of BVPs (3.9) and (3.10) (the poten-
tial method) we recall that we have proved existence of the fundamental solution Kν(t, t−τ)
to the perturbed Laplace-Beltrami operator ∆S−νI , which is minded as the Schwartz kernel
of the inverse operator (see Theorem 3.2). Then any solution the Dirichlet

{
(∆C (t, Dt)ϕ)(t)− νϕ(t) = f(t), t ∈ C ,

ϕ+(s) = g(s), s ∈ Γ = ∂C
(3.17)

and the Neumann
{

(∆C (t, Dt)ϕ)(t)− νϕ(t) = f(t), t ∈ C ,

(D~νΓ(s)ϕ)+(s) = h(s), s ∈ Γ = ∂C
(3.18)

boundary value problems with the perturbed Laplace-Beltrami operator ∆C − νI , ν > 0,
and under the conditions (3.12), is represented as follows

ϕ(t) = (NS f)(t) + (WΓϕ+)(t)− (VΓ(D~νΓ(s)ϕ)+)(t) , t ∈ S , (3.19)
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where

(NS f)(t)ϕ(t) :=

∮

S

Kν(t, t− τ)f(τ) dτS ,

(WΓψ)(t) :=

∮

Γ

[
(D~νΓ(s)Kν)(t, s− t)

]>
ψ+(s) dsΓ , (3.20)

(VΓψ)(t) :=

∮

Γ

Kν(t, t− s)ψ+(s) dsΓ , t ∈ S

are the volume (Newton), the double and the single layer potentials, respectively.
The proof of (3.19) is standard: by inserting the solution ϕ of (∆S − νI)ϕ = f and

the fundamental solution ψ = Kν(t, t − τ), (∆S − νI)Kν(t, t − τ) = δ(t − τ) truncated
properly around the diagonal t = τ on the distance ε > 0, into the Green formula (3.14),
written also for ∆S − νI , we get the representation formula (3.19) by sending ε → 0.

The potentials have the standard mapping properties and for them are valid the standard
Plemelj formulae

Theorem 3.6 Let 1 < p < ∞, r ∈ R. Then the direct values of the double and the single
layer potential operators are bounded between the spaces:

NS : Hs
p(S ) −→ Hs+2

p (S ) ,

: Ws
p(S ) −→Ws+2

p (S ) ∩Hs+2
p (S ) ,

VΓ : Hs
p(Γ) −→ H

s+1+ 1
p

p (S ) ,

: Ws
p(Γ) −→W

s+1+ 1
p

p (S ) ∩Hs+1+ 1
p

p (S ) , (3.21)

WΓ : Hs
p(Γ) −→ H

s+ 1
p

p (S ) ,

: Ws
p(Γ) −→W

s+ 1
p

p (S ) ∩Hs+ 1
p

p (S ) .

The following Plemelj formulae hold for the layer potentials:

(WΓϕ)−+ (s) = −+
1

2
ϕ(s) + W0(s,Ds)ϕ(s) ,

(D~νΓ
VΓϕ)−+ (s) = +−1

2
ϕ(s) + W∗

0(s, Ds)ϕ(s) , (3.22)

(Vϕ)−(s) = (Vϕ)+(s) = V−1(s, Ds)ϕ(s) ,

(D~νΓ
Wϕ)−(s) = (D~νΓ

Wϕ)+(s) = W+1(s, Ds)ϕ(s) ,

where Φ−(s) denotes the trace of Φ(t) on Γ from the surface S c, complemented to S
(outer with respect of Γ, which is the common boundary Γ = ∂S = ∂S c). The operators
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W0(s,Ds) and V−1(s,Ds) are the direct values of the corresponding double and the single
layer potentials on the boundary Γ and represent PsDOs of order −+1. W∗

0(s, Ds) is the dual
(adjoint) PsDO to W0(s, Ds).

Proof. The proof is verbatim to the case of domains in Rn and we quote for details [Du2,
Fi1, KGBB1, Le, Ma1] etc.

Following the “indirect potential method” one looks for a solution of the Dirichlet BVP
(3.17) as the double layer potential and for the solution to the Neumann BVP (3.18) as the
single layer potential with unknown densities. From boundary conditions we derive appro-
priate boundary integral equations, which are PsDOs of order 0 (or singular integral opera-
tors). These equations are Fredholm and BVPs can be investigated by a standard procedure
(see, e.g., [Fi1, KGBB1, Ma1]). We get existence of solution of BVPs (3.17) and (3.18).

Recall that the BVPs (3.9) and (3.10) are Fredholm (see Theorem 2.6.iv) and we know
their kernels (see (3.16)). Since BVPs (3.9) and (3.10) are the limits of Fredholm BVPs
(3.17) and (3.18), respectively, as ν → 0, we can derive the second part of Theorem 3.5 on
existence of solutions from the existence of solutions to BVPs (3.17) and (3.18).

Following the “direct potential method” one applies the representation formulae (3.19)
and reduces BVPs to the equivalent boundary pseudodifferential equations of order −1 for
the Dirichlet BVP and of order +1 for the Neumann BVP (see [CS1, DNS1, DW1, Ma1]
etc.), which are Fredholm in appropriate spaces. Conclusions for BVPs (3.17) and (3.18) and
then for BVPs (3.9) and (3.10) are similar as in the foregoing “indirect potential method”.
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