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ABSTRACT

We consider boundary value problems for elliptic systems in a domain comple-

mentary to a smooth surface with boundary, which models a crack with its edge.

The same boundary conditions are prescribed on both sides of the surface. We

prove that the singular functions appearing in the expansion of the solution along

the crack edge all have the form r kþ1=2 ð�Þ in local polar coordinates: The loga-

rithmic shadow terms predicted by the general theory do not appear. Moreover,

we obtain that, for a smooth right hand side, the jump of the displacement across

the crack surface is the product of r1=2 with a smooth vector function. We present

two different, but complementing, approaches leading to these results, and

providing distinct generalizations. The first one is based on a Wiener–Hopf

factorization of the pseudodifferential symbol on the surface obtained after

reduction of the boundary value problem. The second approach concerns directly

the boundary value problem and is based on a closer look at the Mellin symbol at

each point of the crack edge.
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INTRODUCTION

Solutions of elliptic partial differential or pseudo-differential equations have
many opportunities of being non-smooth: In certain points they can have a singular
asymptotics instead of a regular Taylor expansion. This happens for elliptic bound-
ary value problems if the domain has conical or edge singularities, see works by
Costabel and Dange (1993a), Dauge (1998), Kondrat’ev (1967), Maz’ya and
Plamenevskii (1984), Maz’ya and Rossmann (1988), Nazarov and Plamenevskii
(1994), or even if the domain is smooth but the operator has some degeneracy, see
Andersson and Chrusciel (1993) and Mazzeo (1992). This also happens for elliptic
pseudo-differential equations posed on a domain with boundary, as soon as they do
not satisfy the transmission condition, see works by Bennish (1993), Chkadna and
Duduchava (2001), Costabel and Stephan (1987), Dnduchava and Natroshvili
(1998), Duduchava and Wendland (1995), and Eskin (1981).

In the case of degenerate Fuchsian equations or pseudo-differential equations on
a smooth n-dimensional manifold m with boundary, the terms of the solution
asymptotics in general have the form

r�þk logq r dðx0Þ

where r ¼ jxnj and x
0, xn are the tangential and normal variables to the boundary,

respectively. Here the exponent � belongs to a finite set of complex numbers and k, q
are non-negative integers. In the case of elliptic boundary value problems on
domains with edges, the solution asymptotics have the more general form

r�þk logq r  ð�,x0Þ

where ðr, �,x0Þ are cylindrical coordinates around the edge and � belongs to a dis-
crete, but in general infinite, set of complex numbers.

In this article, we study a quite general class of elliptic pseudo-differential equa-
tions on the manifold m, together with general elliptic boundary value problems
posed on R

nþ1
nm. In the latter situation the set of generating exponents � is reduced

to f1=2g. Our special concern is the absence of logarithmic terms logq r in the corre-
sponding asymptotics (this issue is also the topic of Andersson and Chrusciel (1993),
for a nonlinear degenerate problem). In fact, these logarithmic terms seem to have
good reasons to appear because of resonances between asymptotics due to the prin-
cipal part of the operator and its Taylor expansion near the boundary e ofm (or the
edge of R

nþ1
nm).

Up to now, the general results on the absence of logarithms concerned the
first term in the asymptotics, those generated by the principal part of the operator
only. For scalar �DO see Eskin (1981), for systems of �DO see Chkadua and
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Duduchava (2001) and for Agmon–Douglis–Nirenberg systems see Costabel and
Dauge (2002): Logarithms are absent from the first asymptotic term

– For systems of classical �DO with principal symbol a0 ¼ a0ðx
0,xn; �

0, �nÞ if
a0ðx

0, 0 ; 0, þ 1Þ�1a0ðx
0, 0 ; 0, � 1Þ is diagonal for all x

0
2 e,

– For Agmon–Douglis–Nirenberg systems if the same boundary conditions
are applied on both sides of the crack surface m.

In the present work, we exhibit quite general conditions for the total absence
of these logarithmic terms in the whole asymptotics for both families of problems:
In Part B for pseudo-differential operators and in Part C for boundary value
problems. It turns out that both results can be applied to a sub-class of these
boundary value problems which is of high practical interest: This is explained in
Part A. The most important model in this class is the crack problem in three-
dimensional linear elasticity, either isotropic or anisotropic: There the boundary
conditions are Neumann, i.e., tractions are prescribed on both faces of the crack
surface.

Part A: Elasticity-like operators.We consider in this part homogeneous second order
coercive systems with constant coefficients in the domain � :¼ R

nþ1
nm, associated

with Dirichlet or Neumann boundary conditions on both sides of the crack surface
m. The prototype of such operators is the system of linear elasticity. We motivate
and illustrate the more general results obtained in the rest of the article by their
application to this case. For such operators we can indeed apply both approaches
(PDE or �DO) to obtain that the asymptotics of solutions around the crack edge e
is logarithm free:

– Either we reduce the problem to a pseudo-differential equation onm and we
prove that the symbol of this equation satisfies our ‘‘continuity property’’
which ensures the absence of logarithm for its solution; the asymptotics of
the solution in the full space is then deduced by a representation formula
from the asymptotics of the solution on m.

– Or we apply directly our result on general Agmon–Douglis–Nirenberg sys-
tems, based on an investigation of properties of the Mellin symbol at each
point of the crack edge e.

Part B: CDO. We consider classical N 
N matrix symbols aðx; �Þ ¼ a0ðx; �Þ þ
a1ðx; �Þ þ � � � of order � 2 R, defined on the cotangent manifold t

�
m, and with

elliptic principal symbols a0. The asymptotics of solutions to the equation

aðx,D
x
Þ/ðxÞ ¼ gðxÞ, x 2m

with a smoth g, contains logarithms in general. We introduce what we call
‘‘generalized continuity property’’ which states that there exists a non-zero complex
number � such that for all x

0
2 e, j 2 N0, �

0
2 N

n�1
0 , m 2 N0:

@m
xn
@�

0

�0 ajðx
0, 0 ; 0, � 1Þ ¼ ð�1Þjþj�

0
j� @m

xn
@�

0

�0 ajðx
0, 0 ; 0, þ 1Þ:
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We prove that under this condition, the asymptotics of / only contains terms of the
form (where the variable r coincides with jxnj)

rð�=2Þþ
þk with k 2 N0 and 
 2 C such that e2i�
 ¼ �:

For integer � and � ¼ ð�1Þ�, our condition coincides with the usual transmission
condition, see Boutet de Monvel (1971)—note that, in this case, the exponents
�=2þ 
 are integer. For � ¼ 1, this condition is our continuity property which we
prove to be satisfied with � ¼ 1 or �1 by the symbols obtained after reduction to the
boundary of a second order elliptic system with constant coefficients—the exponents
�=2þ 
 are then integer translates of 1=2.

Part C: Boundary value problems.We study directly elliptic boundary value problems
on � by means of a two-level representation formula for the edge asymptotics of
their solutions. The first level is the classical Cauchy integral involving the inverse
Mellin symbol at each point of the crack edge e. The second level, that we call Caley
representation formula, concerns the angular variable �: The Mellin symbol is
proved to act between special subspaces of angular functions. We prove that this
fact precludes the appearance of logarithmic terms. This approach yields logarithmic
free asymptotics for any Agmon–Douglis–Nirenberg system with smooth coefficients
(provided a classical ellipticity condition holds along the edge, cf Maz’ya and
Plamenevskii (1980) and Schulze (1998), which ensures the existence of a general
asymptotic expansion).

PART A. SCOPE AND COMMON PRINCIPAL RESULTS

A.I. The Crack Domain and the Elasticity-like

Boundary Value Problem

Let m be a bounded c
1 orientable surface of codimension 1 in R

nþ1. We
assume that the boundary e of m is c1. Let

� :¼ R
nþ1
nm:

be the domain where the boundary value problems are set. For the equations of
linear elasticity (with isotropic or anisotropic material law), the solutions of such
boundary value problems yield the stresses in the domain � around m which repre-
sents a crack with front e. For the equations of electromagnetism (Helmholtz or
Maxwell), the solutions represent the diffracted field around the screen m.

We are going to set our problem and describe our results in a framework
including such problems, which is also covered by the hypotheses of our two
methods.

We denote by x ¼ ðx1, . . . , xnþ1Þ cartesian coordinates in R
nþ1 and by @�x the

partial derivative @�11 � � � @
�nþ1
nþ1 . Let b be a homogeneous integrodifferential form of
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degree 1 with constant coefficients acting on N component vectors u, v 2 H1
ð�ÞN

bðu, vÞ ¼
XN
j¼1

XN
k¼1

X
j�j, j�j¼1

Z
�

a��jk @
�
xuj @

�
x vk dx:

Here u ¼ ðu1, . . . , uNÞ, v ¼ ðv1, . . . , vNÞ. The coefficients a�, �j, k are supposed constant.
We assume that the form b is coercive on H1

ð�ÞN , i.e., that for some constants c,
C > 0 there holds

8u 2 H1
ð�ÞN , Rebðu, uÞ þ Ckuk2L2ð�Þ � ckuk2H1ð�Þ: ðHA1Þ

Moreover, we suppose that b is symmetric on H1
ð�ÞN :

8u, v 2 H1
ð�ÞN , bðu, vÞ ¼ bðv, uÞ: ðHA2Þ

The partial differential operator associated with the form b is

L ¼ ðLjkÞj, k with Ljk ¼ �
X

j�j, j�j¼1

@�x a
��
jk @

�
x:

Hypotheses ðHA1Þ and ðHA2Þ are satisfied for the Laplace equation (N ¼ 1), for
the equations of general elasticity, including the anisotropic case, (N is equal to the
dimension of the space) and for equations of thermoelasticity and electroelasticity
(N is the dimension of the space plus 1).

Since m is orientable, we can define a smooth unit normal vector field n on m,
which is unique if we choose the direction of the normal at some fixed point. After
fixing the field n we can fix the traces ��, taking �þ opposite to the direction of n
(i.e., from ‘‘above’’ if we consider n as pointing upward) and taking �� in the
direction of n (i.e., from ‘‘below’’).

The Neumann operator T associated with b and the normal field n is defined as
T ¼ ðTjkÞj, k with

Tjk ¼
X

j�j, j�j¼1

n� a��jk @
�
x, n� ¼ n�11 � � � n

�nþ1
nþ1 :

Let B denote either the identity (which will be associated with the Dirichlet
operator) or the Neumann operator T on m. We consider solutions u 2 H1

ð�ÞN

of the problem

Lu ¼ f in �
��Bu ¼ 0 on m,

�
ðA:1Þ

with, possibly, conditions at infinity (note that we may relax the condition
u 2 H1

ð�ÞN into u 2 H1
ð� \bRÞ

N for any R > 0, with bR the ball of center 0 and
radius R). We assume that f is a c

1 vector function on R
nþ1, with compact support.
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A.II. State of the Art and Motivations

Due to the presence of the edge e, the domain is highly non-smooth and this
yields strong singularities for the solutions of problem (A.1) along this edge.
The general structure of these singularities is known, and addressed by many
works, see Chkadua and Duduchava (2000), Costabel and Dauge (1993a), Dauge
(1988), Duduchava and Wendland (1995), Grisvard (1985), Kondrat’ev (1970),
Maz’ya amd Rossmann (1988), Nazarov and Plamenevskii (1994), Nazarov and
Plamenevskii (1995a), and Nikishkin (1979). The generic form of these singularities
is

cðx0Þ
XQ
q¼0

r�ðx
0
Þ logq rwqðx

0, �Þ

where x
0 represents coordinates in e, and ðr, �Þ polar coordinates in the planes

normal to e, centered on e. The structure of u in a neighborhood of the boundary
e of m is very important in applications.

For example, in elasticity, the asymptotics of u provides essential data for the
investigation of crack propagation in the quasi-static case. The propagation criterion
is based on the stress intensity factors (the coefficients cðx0Þ of the leading terms in
asymptotics) and on the ‘‘polarization operator’’ (which involves the second terms in
asymptotics), see Nazarov and Plamenevskii (1995b). But the application of these
tools requires that the asymptotic expansion of u contains neither oscillatory terms
(i.e., non real exponents �) nor logarithmic terms (i.e., logq r with q � 1).

– Concerning oscillations, it is known that the solution of the crack problems
never oscillates provided the crack is inside an homogeneous material, even
if the material is anisotropic, see Duduchava and Wendland (1995) and
Nazarov and Plamenevskii (1994).

– Concerning logarithms, although absence of logarithms in the leading terms
was known long ago for isotropic materials (Grisvard, 1989; Nazarov and
Plamenevskii, 1994), the same was not proved for further terms, where
logarithms could appear as shadow singularities.

The main scope of the present investigation is to establish that the structure of
the solution u of the general problem (A.1) is simpler than the general theory would
predict. The main result can be summarized in one sentence:

‘‘The edge asymptotics of u does not contain any logarithmic term log r.’’

Still in the framework of elasticity, this was observed in the case of a curved
crack in the isotropic elastic plane R

2 for the second term in the asymptotics in
Wendland and Stephan (1990, Theorem 2.4) and in the case of a half plane crack
R

2
þ in the anisotropic elastic space R

3 in Duduchava and Wendland (1995, Theorem
4.3); For curved cracks the conjecture was first formulated by S. A. Nazarov.

Moreover, it has been shown Costabel and Dauge (2002) and Duduchava and
Natroshvili (1998), that even in the very general framework of Agmon–Douglis–

874 Costabel, Dauge, and Duduchava



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Nirenberg systems with the same boundary conditions on both sides of the crack m,
the principal part of the asymptotics contains only powers of r with half-integer
exponents (i.e., � ¼ 1=2þ k, k 2 N0), and without any log r term, see also Kozlov
(1990), for scalar operators of order 2m with Dirichlet condition. In this work, we
prove that, in fact, this simple structure extends to the complete asymptotics.

The result that the whole asymptotics does not contain log r terms is by no
way obvious, and is not an easy consequence of the simple structure of its principal
part. Indeed, because the exponents 1=2þ k of the whole asymptotics are all
translated from each other by integers, we should expect log r terms, due to the
interaction between the non-principal terms in the operator and the principal
singularities (see, for example, Kozlov et al. (2001, Remark 10.5.1), where this
interaction is explained).

A.III. Reduction to the Crack Surface and Representation Formulas

One of the essential features of our crack-type boundary value problem (A.1) is
that all information on the singular behavior of u is contained in an N-component
vector function /, defined on the crack surface by the jump of u across m

/ ¼ ½Cu� :¼ �þCu� ��Cu

where C denotes the complementing trace of B, i.e., the Dirichlet trace if B is
Neumann and C ¼ T if B is Dirichlet. Of course, the asymptotics of u will yield
the asymptotics of /. But even more important is that / can be directly obtained as
the solution of a pseudodifferential equation on m of the form

aðx,D
x
Þ/ðxÞ ¼ gðxÞ, x 2m, ðA:2Þ

and analyzed in this respect. The relation between the boundary value problem (A.1)
and the pseudodifferential Eq. (A.2) will be fully explained in § B.II. Let us only
mention that in the case of the Dirichlet problem a ¼ V , where V :¼ �þv ¼ ��v is
the trace of the single layer potential v associated with the operator L, and in the
case of the Neumann problem, a ¼W , whereW :¼ ��Td ¼ �þTd is the Neumann
trace of the double layer potential d. Then u can be reconstructed by the representa-
tion formula

8x 2 �, uðxÞ ¼ Nf ðxÞ þd½u�ðxÞ �v½Tu�ðxÞ, ðA:3Þ

where ½u� :¼ �þu� ��u and ½Tu� :¼ �þTu� ��Tu denote the jumps of the functions
uðxÞ and TuðxÞ across the surface m and N denotes the Newton (volume) potential.
Thus, the asymptotics of u depends only on / because the volume potential part Nf
is smooth and ½Bu� ¼ 0 on m.

Note that the coerciveness hypothesis ðHA1Þ ensures the Fredholm property of
both problems (A.1) and (A.2) in appropriate spaces.
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Thus, two different approaches are available to us: either first study the solution
/ of equation (A.2), then derive the asymptotics of u, or first study the solution u of
problem (A.1), then derive the asymptotics of / ¼ ½Cu�.

First approach. The results are a consequence of Part B where we develop the poten-
tial operator technique based on the Wiener–Hopf factorization, according to the
three main following steps:

Step 1 The boundary value problem (A.1) is reduced to a pseudodifferential
equation of type (A.2) on the crack surface m by invoking the repre-
sentation of solutions (A.3), see § B.II.

Step 2 Asymptotics of solutions / of the pseudodifferential equation on the
crack surface are found using the Wiener–Hopf factorization, see
§ B.III–§ B.VII.

Step 3 By inserting the surface asymptotics into the representation
formula (A.3), the full spatial asymptotic expansion of u is derived,
see § B.IX.

G. Eskin (1981) was the first who applied the Wiener–Hopf factorization to
investigations of asymptotics. The method received then many contributions
(Bennish, 1993; Chkadua and Duduchava, 1998; 2000; 2001; Costabel and
Stephan, 1987; Duduchava and Natroshvili, 1998; Duduchava and Wedland, 1995).

Second approach. It is developed in Part C: it relies on the classical Mellin transform,
cf Kondrat’ev (1967), and more recent representation formulas for the angular part
of singular functions, cf Costabel and Dauge (1994). The main steps are:

Step 1 By separation of variables and Mellin transform in r, the problem is
transformed into systems of ordinary differential equations in the angu-
lar variable � with the parameters x

0 and �, the dual variable of r, see §
C.I.

Step 2 The solutions of these systems are represented by contour integrals
around the unit circle with the Cayley symbols of the principal part
of the operator, see § C.IV.

Step 3 By the Cayley representation formulae, the condition of absence of
logarithm is reduced to compatibility conditions between traces of a
series of right hand sides in the Mellin calculus, see § C.V.

A.IV. Results

In order to state our results, let us introduce local coordinates in a neighborhood
of the edge e which is the crack front.

Definition A.1.

(i) Let x
0
¼ ðx1, . . . ,xn�1Þ denote local coordinates in e.
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(ii) For x
0
2 e, let �

x
0 denote the normal plane to e containing x

0. We take
polar coordinates ðr, �Þ in �

x
0 such that r ¼ 0 is the intersection �

x
0 \ e,

� ¼ �� is �
x
0 \m from below and � ¼ � is �

x
0 \m from above.

(iii) We set xn ¼ r cos � and xnþ1 ¼ r sin �. The n coordinates ðx0,xnÞ are local
coordinates in m and the nþ 1 coordinates x :¼ ðx0,xn,xnþ1Þ are local
coordinates in � in a neighborhood of e.

(iv) The local cylindrical coordinates are ðx
0, r, �Þ and we shall use

ðx
0, r, 0Þ ¼ x 2m and ðx0, 0, 0Þ ¼ x

0
2 e.

(v) The dual variables of x ¼ ðx
0,xn,xnþ1Þ are denoted by � ¼ ð�0, �n, �nþ1Þ.

(vi) We denote by �: x � x the generic map of an atlas on m, and by
j�ðxÞ :¼ ½D�ðxÞ

>
�
�1, the inverse of its Jacobian matrix. g

From the combination of general edge asymptotics (Costabel and Dauge, 1993a;
Dauge, 1988; Maz’ya and Plamenevskii, 1980; Maz’ya and Rossmann, 1988;
Nazarov and Plamenevskii, 1994), and of the particular structure of the principal
part for crack problems (Costabel and Dauge, 2002; Daduchava and Wendland,
1995), we may derive that there holds the following general statement, see § B.2
and C.2.

Proposition A.2.

(i) Any solution u of the boundary value problem (A.1) with a smooth right hand side
f has the following asymptotic expansion as r! 0: For any integer K � 0

u ¼
XN
j¼1

c0j ðx
0
Þ r1=2w0

j ðx
0, �Þ

þ
XK
k¼1

XqðkÞ
q¼0

XjðkÞ
j¼1

c
k,q
j ðx

0
Þ rð1=2Þþk logqrw

k,q
j ðx

0, �Þ

þ ureg,K þ urem,K : ðA:4Þ

The coefficients c0j , c
k,q
j are c1ðeÞ functions depending on f . The regular part ureg,K is a

linear combination of terms of the form cðx0Þ pðxn,xnþ1Þ, with polynomial p and c
1
ðeÞ

coefficient c. The remainder urem,K satisfies @�urem,K ¼ o ðrK�j�jþ1=2Þ as r! 0 for any
multi-index � 2 N

nþ1
0 . The w0

j and w
k,q
j are N-component vector functions in

c
1
ð½��,�� 
 eÞ and depend only on the domain � and the operators ðL,BÞ.

(ii) Any solution / ¼ ½Cu� of the pseudodifferential Eq. (A.2) with a smooth right
hand side g has the following asymptotic expansion as r! 0: For any integer K

/ ¼ r�=2 d0
ðx
0
Þ þ

XK
k¼1

XqðkÞ
q¼0

rð�=2Þþk logq r dk,qðx0Þ

þ /rem,K : ðA:5Þ

Here � is the order of the pseudodifferential operator a. The d0 and dk,q are
N-component vector functions in c

1
ðeÞ. The remainder /rem,K satisfies @�/rem,K ¼

o (rK�j�jþ�=2) as r! 0 for any multi-index � 2 N
nþ1
0 .
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Our main result in this article is that there are no logarithmic terms at all in
expansions (A.4) and (A.5):

Theorem A.3.

(i) Any solution u of the boundary value problem (A.1) with smooth right hand side f
has the following asymptotic expansion as r! 0: For any integer K � 0

u ¼
XN
j¼1

c0j ðx
0
Þ r1=2w0

j ðx
0, �Þ þ

XK
k¼1

XjðkÞ
j¼1

ckj ðx
0
Þ rð1=2Þþk wk

j ðx
0, �Þ

þ ureg,K þ urem,K : ðA:6Þ

The scalar coefficients ckj belong to c
1
ðeÞ and depend on f , while the N-component

vector functions wk
j depend only on the domain � and the operators ðL,BÞ.

(ii) Any solution / ¼ ½Cu� of the pseudodifferential equation (A.2) with smooth right
hand side g has the following asymptotic expansion as r! 0: For any integer K � 0

/ ¼ r�=2 d0
ðx
0
Þ þ

XK
k¼1

rð�=2Þþk dkðx0Þ þ /rem,K : ðA:7Þ

The coefficients d0 and dk,q are N-component vector functions in c
1
ðeÞ.

This result is a consequence of the more general results that we prove in Parts B
and C. Moreover both approaches allow precise representation formulas for the
‘‘angular’’ vector functions wk

j ðx
0, �Þ as linear combinations of simple trigonometric

functions, see §B.IX and C.VII.
Because of the relation / ¼ ½Cu� between u and /, it is quite simple to link the

first terms in expansions (A.6) and (A.7).

. For Neumann: C ¼ Id and:

d0
ðx
0
Þ ¼

XN
j¼1

c0j ðx
0
Þ
�
w0
j ðx

0, �Þ
�
�
,

where ½wð�Þ�� denotes the jump wð�Þ � wð��Þ.
. For Dirichlet: C ¼ T , and let r�1T0ðx

0, �; r@r, @�Þ þ T1ðx
0
Þ@

x
0 be the expression

of T in cylindrical coordinates. Then there holds

d0
ðx
0
Þ ¼

XN
j¼1

c0j ðx
0
Þ T0 x

0, �;
1

2
, @�

� �
w0
j ðx

0, �Þ

� 	
�

:

. Defining s0j ðx
0
Þ 2 c

1
ðeÞ �C

N by

s0j ðx
0
Þ ¼

�
w0
j ðx

0, �Þ
�
�

if C ¼ Id,

s0j ðx
0
Þ ¼ T0 �,x0;

1

2
, @�

� �
w0
j ðx

0, �Þ

� 	
�

if C ¼ T ,

8<:
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we get the common relation

d0
ðx
0
Þ ¼

XN
j¼1

c0j ðx
0
Þ s0j ðx

0
Þ: ðA:8Þ

The vectors s0j ðx
0
Þ, j ¼ 1, . . . ,N are independent of the right hand side and form a

basis of C
N for each fixed x

0. We will address in a forthcoming article formulae and
numerical methods for computing the scalar coefficients c0j ðx

0
Þ.

Conversely, as a consequence of the representation formula (A.3), we obtain the
inverse relation between the coefficients involved in Eq. (A.8): all coefficients c0j ðx

0
Þ

are defined as a composition of some matrices with d0
ðx
0
Þ, see Chkadua and

Duduchava (2000).

A.V. Modular Representation

The asymptotics (A.6) and (A.7) give the possibility of representing u and / as
finite linear combination of non-smooth functions with smooth coefficients: As a
straightforward consequence of (A.7), we obtain the following factorization of the
density /:

Corollary A.4. Any solution / of the boundary pseudodifferential Eq. (A.2) with a
smooth right hand side g satisfies

r��=2 / 2 c
1
ðmÞ

N : ðA:9Þ

As a further consequence of the expansion (A.6), we can prove that a simple
splitting of u holds in local cylindrical coordinates. For this, we first introduce u, a
closed tubular neighborhood of the edge e where the local cartesian coordinates are
well defined. We may take u as a set of the form

u ¼


ðx
0,xn,xnþ1Þ; r � r0, x

0
2 e

�
:

Then we denote by �uu its expression in local cylindrical coordinates

�uu ¼


ðx
0, r, �Þ; 0 � r � r0, � 2 ½��,��, x

0
2 e

�
:

Note that we distinguish the two faces � ¼ �� and � ¼ � of �uu.

Corollary A.5. Let u be any solution of the problem (A.1) with a smooth right hand side
f and denote by �uu its expression in local cylindrical coordinates: uðx0,xn,xnþ1Þ ¼

�uuðx0, r, �Þ. Then �uu admits a splitting in two parts

�uuðx0, r, �Þ ¼ �uu0ðx
0, r, �Þ þ r1=2 �uu1ðx

0, r, �Þ, ðA:10Þ

where �uu0 and �uu1 are c
1
ð �uuÞ in the variables r, � and x

0.

Now, we write Eq. (A.10) in local cartesian coordinates and obtain

uðx0,xn,xnþ1Þ ¼ u0ðx
0,xn,xnþ1Þ þ r1=2 u1ðx

0,xn,xnþ1Þ: ðA:11Þ
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The part u0 is in fact c
1
ðuÞ in the coordinates ðx0,xn,xnþ1Þ. Now we may

wonder if u1 is also a c
1
ðuÞ function. This is not true. For example, for the

Laplace operator with Dirichlet boundary conditions we have u1 ¼ c1 sinð1=2Þ�þ
c2r sinð3=2Þ� þ � � � Replacing the factor r1=2 by another function does not help. We
need to split r1=2u1 into new parts. Again, when L ¼ 	 and n ¼ 2, we simply have

r1=2 u1 ¼ c1ð�
1=2
� 
�� 1=2Þ þ c2ð�

3=2
� 
�� 3=2Þ þ c3ð�

5=2
� 
�� 5=2Þ � � �

with � ¼ rei�. Therefore

r1=2 u1 ¼ �
1=2
ðc1 þ c2� þ c3�

2
þ � � �Þ þ 
�� 1=2ðc1 þ c2 
�� þ c3 
��

2
þ � � �Þ

which means that r1=2u1 can be written as � 1=2u01 þ 
�� 1=2u02 with c
1
ðuÞ functions u01

and u02. This result extends to the wider class of problems satisfying hypotheses ðHA1Þ

and ðHA2Þ, provided a condition on the symbol of the interior operator L: the
symbol ��Lð�Þ of L is defined so that L ¼ LðDxÞ, where Dx ¼ i@x. We require
that this symbol satisfies,

8x
0
2 e, the roots �2C of

detL
�
j�ðx

0
Þð0, 1, �Þ

�
¼ 0 are simple,

�
ðHA3Þ

where we recall, cf Definition A.1, that x
0 stands for x ¼ ðx

0, 0, 0Þ and ð0, 1, �Þ is the
value of the dual variable � ¼ ð�0, �n, �nþ1Þ. Note that L

�
j�ðx

0
Þ �
�
is the principal part

of the symbol of the operator L written in local variables ðx ; �Þ.

Theorem A.6. If hypotheses ðHA1Þ–ðHA3Þ are satisfied, there exist 2N scalar singular
functions �‘ ¼ r1=2’‘ðx

0, �Þ for ‘ ¼ 1, . . . , 2N, with ’‘ 2 c
1
ðe
 ½��,��Þ such that any

solution u of the problem (A.1) with smooth right hand side f can be split as follows

u ¼ u0 þ �1u
0
1 þ � � � þ �2Nu

0
2N , ðA:12Þ

where u0, u
0
1, . . . , u

0
2N are c1ðuÞ-smooth vector functions in local cartesian variables.

PART B. THE WIENER–HOPF APPROACH

In this part we investigate the asymptotics of solutions of a class of
Pseudo-Differential Equations (�DE) on the manifold m; we also study how
these asymptotics are transformed by representation formulas and how they give
back asymptotics for our class of Boundary Value Problems (BVP).

After fixing in § B.I notations for more or less classical functional spaces, includ-
ing anisotropic Bessel potential spaces, we recall in § B.II, how the boundary value
problem (A.1) with Dirichlet or Neumann boundary conditions can be reduced to
the �DE (A.2) on the manifold m. The feedback is governed by the representation
formulas which reconstruct the solution of the BVP in � from the solution of the
�DE on m.

In § B.III, independently from the previous section, we consider the class
of classical �DE on m and recall from Chkadua and Duduchava (2001)
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and Eskin (1981) the general form of asymptotics of the solutions / of such
equations near the boundary e of m.

In § B.IV, we introduce the sub-class of classical �DE where the full symbol
satisfies what we call the ‘‘continuity property’’ ðHB4Þ with respect to the conormal
variable. We state in Theorem B.4 the main result of Part B: the asymptotics of the
solutions do not contain any logarithmic term. We also prove that the �DE (A.2)
obtained from the BVP (A.1) satisfies the continuity property.

In § B.V, before proving the main theorem in its full general framework, we
investigate the simpler situation of scalar �DO in dimension 1. We find a necessary
and sufficient condition, denoted ðHB5Þ and called ‘‘generalized continuity property’’
for the absence of logarithms from the whole asymptotics: the continuity property
ðHB4Þ appears as a particular case of ðHB5Þ.

In § B.VI, we give useful auxiliary propositions relating to �DO in one variable
acting on functions of n variables and in § B.VII, we prove the main Theorem B.4.
Then, in § B.VIII, we show how this latter statement extends to N 
N matrix
symbols satisfying the generalized continuity property on m.

In § B.IX, relying on results from Chkadua and Duduchava (2000), we give, as a
consequence of the simple structure of the solutions / of �DE, the form of vector
functions u defined in � by a certain type of representation formula acting on /. We
prove that the representation formulae (A.3) belong to this type. As a result we have
the statement of Theorem A.3.

B.I. Sobolev and Bessel Potential Spaces

1. Standard spaces.We first recall the definition of the Fourier transform and Sobolev
spaces. LetsðRnþ1

Þ denote the Schwartz space of all rapidly decreasing functions and
s

0
ðR

nþ1
Þ the dual space of tempered distributions. For ’ 2s

0
ðR

nþ1
Þ let

f’ðnÞ ¼fy!n’ðnÞ :¼

Z
R
nþ1

ein�y ’ð yÞ dy, n 2 R
nþ1

denote its Fourier transform in R
nþ1. The inverse Fourier transform f

�1
n!y in R

nþ1

is defined as

f
�1
n!y ðxÞ :¼

1

ð2�Þnþ1

Z
R
nþ1

e�iy�n  ð�Þ dn:

We denote by fx!� and f
�1
�!x the Fourier and inverse Fourier transforms in R

n.
The Sobolev space Hs

ðR
nþ1
Þ is defined as the subspace of s 0

ðR
nþ1
Þ endowed with

the norm

k’k2
HsðRnþ1Þ

:¼

Z
R
nþ1
ð1þ jnj2Þs fy!n’ðnÞ

�� ��2 dn
For an integer s ¼ m an equivalent norm on the space Hm

ðR
nþ1
Þ is

X
jaj�m

Z
R
nþ1
j@ay’ð yÞj

2 dy

 !1=2

:
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For a domain � � R
nþ1 with a smooth boundary (� can be, for example, one of the

half-spaces R
nþ1
� :¼ R

n

R

�), two families of spaces can be defined:

(i) The subspace eHHs
ð�Þ � Hs

ðR
nþ1
Þ of the distributions ’ which are supported

inside �. The extension by 0 outside � of such a distribution yields an
element in Hs

ðR
nþ1
Þ.

(ii) The quotient space Hs
ð�Þ :¼ Hs

ðR
nþ1
Þ=eHHs

ð�c
Þ, where �c :¼ R

nþ1
n� is the

complementary domain. The space Hs
ð�Þ can also be interpreted as the

space of restrictions p�’ of functions ’ 2 Hs
ðR

nþ1
Þ. The space is endowed

with the factor-norm, i.e., the minimal norm of all possible extensions
to R

nþ1.

By eHHs
ð�ÞN , Hs

ð�ÞN , we will denote the spaces of N-vector functions.
For a surface m � R

nþ1 of codimension 1, with a smooth boundary @m, the
spaces Hs

ðmÞ and eHHs
ðmÞ are defined in a standard way, involving some fixed finite

covering fUjg
J
j¼1 of m, appropriate diffeomorphisms { j : Uj ! Vj � R

n
þ and parti-

tion of a unity subordinate to the fixed covering, see, e.g., Eskin (1981) and
Hörmander (1983).

2. Anisotropic weighted spaces. Besides the above classical spaces, we need a
3-parameter class of anisotropic Sobolev spaces with weight. The weight appears
as integer powers of one particular coordinate. We first define these spaces on R

n,
then on R

n
þ, finally on m.

Let �, s 2 R and � 2 N0. We denote by Hð�, sÞ, �
ðR

n
Þ the Hilbert space of

distributions u with finite norm

kuk2
Hð�, sÞ, �ðRnÞ

:¼
X�
k¼0

khD0i�hDisþkxknuk
2
L2ðR

nÞ

’
X�
k¼0

kh�0i�h�isþkf½Dk
nu�k

2
L2ðR

nÞ

where x ¼ ðx0, xnÞ are cartesian coordinates in R
n, Dn :¼ i@n, � ¼ ð�

0, �nÞ are the
corresponding dual variables,

h�i :¼ ð1þ j�j2Þ1=2,

and where

hD0i� :¼f
�1
�0!x0 h�

0
i
�
fy0!�0 , hDi� :¼f

�1
�!xh�i

�
fy!�:

are the Bessel potential operators. For integer �, s 2 N0 we have the equivalent norm

kukHð�, sÞ, �ðRnÞ ’
X�
k¼0

X
�02N

n�1

j�0 j��

X
�2N

n

j�j�sþk

k@�
0

x0@
�
x½x

k
nu�kL2ðR

nÞ:

We define the Frechet spaces

Hð1, sÞ, �
ðR

n
Þ :¼

\
�2N

Hð�, sÞ, �
ðR

n
Þ
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and

Hð1, sÞ,1
ðR

n
Þ :¼

\
�2N

Hð1, sÞ, �
ðR

n
Þ:

The functions in these spaces are Hs globally on R
n and c

1 in R
n
nðR

n�1

 f0gÞ.

On the half-space R
n
þ ¼ R

n�1

 Rþ, we define Hð�, sÞ, �

ðR
n
þÞ as the space of

restrictions to R
n
þ of distributions in Hð�, sÞ, �

ðR
n
Þ. The space eHHð�, sÞ, �

ðR
n
þÞ denotes

the subspace of Hð�, sÞ, �
ðR

n
Þ of distributions with support in R

n
þ.

The spaces Hð�, sÞ, �
ðmÞ and eHHð�, sÞ, �

ðmÞ for a smooth compact manifold m with
a smooth boundary @m are defined in a standard way, involving some fixed finite
covering of m, appropriate diffeomorphisms and partition of a unity subordinate to
the covering, so that the particular coordinate xn corresponds to the distance to @m
in m, see Chkadua and Duduchava (2001, §1.1).

B.II. Reduction to the Boundary

In this section, we explain in more detail the way from BVP (A.1) to �DE (A.2)
and back.

We start from the first Green formula for all u 2 H2
ð�ÞN and v 2 H1

ð�ÞN :

bðu, vÞ ¼ �

Z
�

Lu � v dy

þ

Z
m

�þðTuÞ � �þv d� �

Z
m

��ðTuÞ � ��v d�: ðB:1Þ

Under the symmetry hypothesis ðHA2Þ we have the simplified second Green formula
for all u, v 2 H2

ð�ÞNZ
�

�
u � Lv� Lu � v

�
dy

¼

Z
m

�
�þu � �þðTvÞ � ��u � ��ðTvÞ � �þðTuÞ � �þv þ ��ðTuÞ � ��v

�
d�:

ðB:2Þ

Let us recall a construction for the fundamental matrix of the operator LðD
x
Þ, i.e.,

the distribution FL 2s
0
ðR

nþ1
Þ such that

8x 2 R
nþ1, LðD

x
ÞFLðxÞ ¼ 
ðxÞId, ðB:3Þ

where Id is the identity matrix and 
 is the Dirac distribution at 0

8’ 2 c
1
ðR

nþ1
Þ, ð
, ’Þ ¼ ’ð0Þ:

After choosing in R
nþ1 a system of coordinates x ¼ ðx, xnþ1Þ 2 R

n

R which

particularizes one coordinate, the fundamental matrix of Eq. (B.3) can be written
in the following form, see Hörmander (1983):

FLðxÞ :¼f
�1
�!x

1

2�

Z
l�

L�1ð�, �Þe�i�xnþ1d�

� 	
if  xnþ1 > 0 ðB:4Þ
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where ð�, �Þ 2 R
n

 R represents the dual variables of ðx, xnþ1Þ. The contour lþ

(l�) is situated in the upper (in the lower) complex half-plane Cþ :¼ R! iRþ
(in C� :¼ R! iR�) and is oriented counterclockwise (clockwise, respectively) encir-
cling all roots of the polynomial detLð�, �Þ with respect to the variable � in the
corresponding half-planes � 2 C�.

Taking the columns of the matrix FLðx� yÞ as test functions vðxÞ and inserting
the equation LðDxÞu ¼ f into the second Green formula (B.2), we easily obtain a
representation formula for any u satisfying the equation LðDxÞu ¼ f :

8x 2 �, uðxÞ ¼ Nf ðxÞ þd½u�ðxÞ �v½Tu�ðxÞ, ðB:5Þ

where

8x 2m, ½u�ðxÞ :¼ �þuðxÞ � ��uðxÞ, ½Tu�ðxÞ :¼ �þTuðxÞ � ��TuðxÞ

denote the jumps of the functions uðxÞ and TuðxÞ across the surfacem; the operators
v, d and N are the well-known single layer, double layer and volume (Newton)
potentials:

v/ðxÞ ¼

Z
m

FLðx� �Þ/ð�Þ d�, ðB:6Þ

d/ðxÞ ¼

Z
m

ðTFLÞ
�
ð� � xÞ/ð�Þ d�, ðB:7Þ

Nf ðxÞ ¼

Z
R
nþ1
ðFLÞ

�
ðx� yÞ f ð yÞ dy, x 2 �: ðB:8Þ

Here a
� :¼a

> denotes the hermitian conjugate of the matrix a.
Solving the boundary value problem (A.1) with the help of the representation

formula (B.5) we have to find only one density, either u ¼ ½u� 2 eHH1=2
ðmÞ for the

Neumann problem or w ¼ ½Tu� 2 eHH�1=2
ðmÞ for the Dirichlet problem (due to

the boundary conditions in Eq. (B.5) the other density vanishes on m). Invoking
the well–known jump relations (‘‘Plemelj formulae’’) (see, e.g., (Kupradze et al.,
1979, Chazarain and Piriou, 1982)) we get the following pseudodifferential equations
on the crack surface (compare with Eq. (A.2))

Wðx,D
x
ÞuðxÞ ¼ ��þTNf ðxÞ, x 2m, for Neumann, ðB:9Þ

Vðx,D
x
ÞwðxÞ ¼ �þNf ðxÞ, x 2m, for Dirichlet. ðB:10Þ

Here Wðx,D
x
Þ ¼ �þTd ¼ ��Td is the trace of the composition of the Neumann

operator with the double layer potential and is a hypersingular operator, understood
as a pseudodifferential operator of order 1. Vðx,D

x
Þ ¼ �þv ¼ ��v is the trace of

the single layer potential on the surface m and is a weakly singular integral operator
(pseudodifferential operator of order �1).

Thus, by solving the Eq. (B.9) or (B.10), and inserting the solution into the
representation formula

uðxÞ ¼ Nf ðxÞ þduðxÞ, x 2 �, for Neumann, ðB:11Þ

uðxÞ ¼ Nf ðxÞ �vwðxÞ, x 2 �, for Dirichlet, ðB:12Þ

we obtain a solution of the boundary value problem (A.1).
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B.III. Asymptotics of Solutions of CDE with Classical Symbols

In this section we recall general results on asymptotics of solutions to �DE on a
manifold with smooth boundary from Chkadua and Duduchava (2001) and Eskin
(1981) obtained by the Wiener–Hopf approach.

Let us consider a classical N 
N matrix symbol aðx; �Þ of order � 2 R, defined
on the cotangent manifold t

�
m to m � R

n:

a 2 S�clðt
�
mÞ

N
N
, aðx; �Þ ¼ a0ðx; �Þ þ a1ðx; �Þ þ � � � ,

where ajðx, �Þ are c
1 on the bundle of cotangent unit spheres m
 S

n�1
�t

�
m

(see Chkadua and Duduchava (2001, § 1.2) and Hörmander (1983)) and satisfy

8� > 0, 8x 2m, 8� 2 R
n, ajðx; ��Þ ¼ �

��j
ajðx; �Þ: ðB:13Þ

For any Sobolev exponent s 2 R, the corresponding N 
N system of �DE on m

with symbol aðx; �Þ is continuous from eHHs
ðmÞ

N into Hs��
ðmÞ

N . We are interested in
the structure of any / satisfying for some s 2 R and an integer K > 0:

/ 2 eHHs
ðmÞ

N such that aðx;D
x
Þ/ ¼ g, with g 2 Hs��þK

ðmÞ
N : ðB:14Þ

Further we suppose that the principal homogeneous part a0ðx; �Þ, which we will also
denote by aprðx; �Þ is elliptic, which reads

det aprðx; �Þ 6¼ 0, x 2m, � 2 R
n
nf0g: ðHB1Þ

The following N 
N matrix plays a fundamental role in the structure of the
solutions / satisfying (B.14): for x

0
2 e

bðx
0
Þ :¼ ½aprðx

0, 0 ; 0, þ 1Þ��1 aprðx
0, 0 ; 0, � 1Þ, ðB:15Þ

where we recall that x :¼ ðx0,xnÞ 2m are the local and � ¼ ð�0, �nÞ are the dual
coordinates, with x

0
2 e ¼ @m the edge variable. Note that for all �0 2 R

n�1:

aprðx
0, 0 ; 0, � 1Þ ¼ lim

t!�1
jtj��aprðx

0, 0 ; �0, tÞ:

For any x
0
2 e, let us denote by

�1ðx
0
Þ, . . . , �Nðx

0
Þ the eigenvalues of bðx

0
Þ,

where each eigenvalue is repeated according to its algebraic multiplicity.
The assumption which will ensure the absence of logarithms in the principal

term of the asymptotics of the / satisfying Eq. (B.14) is that b is diagonalizable in
each point x

0 in e, and that the eigenvalues are c
1
ðeÞ, which is written as:

8x
0
2 e, 9 an invertible matrix kðx

0
Þ so that:

bðx
0
Þ ¼kðx

0
Þ diagf�1ðx

0
Þ, . . . , �Nðx

0
Þg

� �
k

�1
ðx
0
Þ

x
0�kðx

0
Þ, x

0� �jðx
0
Þ are c

1
ðeÞ:

8><>: ðHB2Þ
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We need one more assumption on the eigenvalues of bðx0Þ: let us set


jðx
0
Þ ¼ ð2�iÞ�1 log �jðx

0
Þ, j ¼ 1, . . . ,N:

We assume that

9� 2 �
1

2
,
1

2

� �
, 9 a c

1
ðeÞ determination of the 
jðx

0
Þ

such that 8x
0
2 e, ��

1

2
< Re
jðx

0
Þ < �þ

1

2
:

8>><>>: ðHB3Þ

While locally a consequence of ðHB2Þ, this assumption has to be required to hold
globally on e.

The following result, see Duduchava et al. (1999, Lemma A.6), provides a gen-
eral framework where assumptions ðHB2Þ and ðHB3Þ are satisfied.

Lemma B.1. If for any x
0
2 e the two matrices aprðx

0, 0; 0, � 1Þ in Eq. (B.15)
are positive definite, then the matrix bðx

0
Þ is diagonalizable with unitary kðx

0
Þ,

its eigenvalues are real, which means that the numbers 
jðx
0
Þ can be chosen purely

imaginary:


j 2 c
1
ðeÞ, Re 
jðx

0
Þ ¼ 0 for all j ¼ 1, . . . ,N: ðB:16Þ

The main result in this section is the asymptotic structure of solutions / of
Eq. (B.14), whose first term does not contain logarithms. We recall that ðx0, rÞ ¼
ðx
0, r, � �Þ denotes the local cylindrical coordinate system on m in a closed tubular

neighborhood of the edge e ¼ @m (see Definition A.I).

Theorem B.2. (See Chkadua and Duduchava (2001) and Eskin (1981, Chap. 26).
We assume hypotheses ðHB1Þ, ðHB2Þ and ðHB3Þ. We choose

. A determination of the 
j, j ¼ 1, . . . ,N,

. A real Sobolev exponent s,

such that there holds for all x
0
2 e and all j ¼ 1, . . . ,N:

� 1 <
�

2
þRe 
jðx

0
Þ, ðB:17Þ

�
�

2
þ s�

1

2
< Re 
jðx

0
Þ < �

�

2
þ sþ

1

2
: ðB:18Þ

Let / 2 eHHs
ðmÞ

N be a solution of the equation aðx;D
x
Þ/ ¼ g where the right hand

side g is c1ðmÞ
N . Then, for any integer K > 0 the solution /ðx0, rÞ has the following
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asymptotic expansion

kðx
0
Þ rð�=2Þþ	ðx

0
Þ�ðrÞ

h
d0
ðx
0
Þ þ

XK�1
k¼1

rk
X�ðkÞ
q¼0

dk,qðx0Þ logq r
i

þ /rem,K ðx
0, rÞ, /rem,K 2

eHHsþK
ðmÞ

N
ðB:19Þ

with N-vector coefficients d0, dk,q in c
1
ðeÞ

N . Here, the vector 	 is defined as
ð
1, . . . , 
NÞ

> and for any � 2 R, r�þ	 is understood as the diagonal N 
N matrix

r�þ	 :¼ diag r�þ
1 , . . . , r�þ
N

 �

: ðB:20Þ

Remark B.3.

(i) In Eskin (1981, Chap. 26), it is proved that the asymptotics of / has no loga-
rithmic term in its leading summand, and in Chkadua and Duduchava (2001) the
more explicit formula (B.19) is proved.

(ii) It is possible to extend hypothesis ðHB2Þ to certain cases where bðx0Þ is not
diagonalizable: then we assume that we have a canonical Jordan decomposition
with a c

1
ðeÞ dependence. This implies in particular that the geometrical multipli-

cities are constant along e. Then it is proved in Chkadua and Duduchava (2001) that
there holds a decomposition like Eq. (B.19), with explicit logarithmic terms in the
leading summand of the asymptotics. This means that the condition ðHB2Þ is necessary
and sufficient so that logarithms are absent in the leading summand of the asymptotic
of a solution (B.19).

(iii) It is possible to get the first term of the asymptotic expansion without the
smoothness properties on k and 
j , but the further terms are not available so far,
see Chkadua and Duduchava (2001). g

B.IV. Asymptotics of CDE with Symbols Satisfying the
Continuity Property

Here is a condition which ensures that logarithms disappear from the entire
asymptotics (B.19). This condition, called continuity property, applies to the full
symbol

P
j�0 ajðx

0,xn ; �
0, �nÞ:

8x
0
2 e, 8j 2 N0, 8�0 2 N

n�1
0 , m 2 N0,

@m
xn
@�

0

�0 ajðx
0, 0; 0, � 1Þ ¼ ð�1Þjþj�

0
j@m

xn
@�

0

�0 ajðx
0, 0; 0, þ 1Þ:

(
ðHB4Þ

We note that the above condition implies that for all � 2 N
n
0,

@�
x
@�

0

�0 ajðx
0, 0; 0, � 1Þ ¼ ð�1Þjþj�

0
j@�

x
@�

0

�0 ajðx
0, 0; 0, þ 1Þ: ðB:21Þ

On the other hand, concerning the principal symbol, the above condition
implies that

aprðx
0, 0 ; 0, � 1Þ ¼ aprðx

0, 0 ; 0, þ 1Þ,
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whence for all x0 2 e, bðx0Þ ¼ Id. Thus condition ðHB4Þ implies conditions ðHB2Þ and
ðHB3Þ. Here follows the main result about asymptotics of �DE with symbols satisfy-
ing the continuity property.

Theorem B.4. Let aðx; �Þ be an elliptic classical symbol (B.13) of order � > �2 and let
its homogeneous components aj satisfy the continuity property ðHB4Þ on the boundary e.
Let s be a Sobolev exponent such that

�

2
�

1

2
< s <

�

2
þ

1

2
: ðB:22Þ

Any solution / 2 eHHs
ðmÞ

N of the equation aðx;D
x
Þ/ ¼ g where the right hand side

g is c1ðmÞ
N ,a has the following asymptotic expansion for any integer K > 0

/ ¼
XK�1
k¼0

r�=2þk�ðrÞd k
ðx
0
Þ þ /rem,K , /rem,K 2

eHHsþK
ðmÞ

N , ðB:23Þ

where the N-vectors d k, k ¼ 0, 1, . . . belong to c
1
ðeÞ.

We postpone the proof of the theorem until § B.VII.
The assumptions of Theorem B.4 hold for the boundary �DE (B.9) and (B.10)

corresponding to the BVP (A.1). This follows from the following theorem.

Theorem B.5. The symbols of the boundary �DE (B.9) of order � ¼ 1 and (B.10) of
order � ¼ �1 are positive definite and satisfy the continuity property ðHB4Þ. Moreover,
for any volume data f 2 c

1
0 ðR

nþ1
Þ, the right hand sides of Eqs. (B.9) and (B.10) are in

c
1
ðmÞ

N , and Eqs. (B.9) and (B.10) have unique solutions u 2 eHHs
ðmÞ

N and
w 2 eHHs�1

ðmÞ
N , respectively, for any s 2 ð0, 1Þ. Thus asymptotics (B.23) hold for

these solutions.

Proof. We quote Chkadua and Duduchava (2001), Costabel and Stephan (1987),
Duduchava and Wendland (1995) and Duduchava et al. (1995), for the proofs of
positive definiteness of the symbols and unique solvability (also in more general
spaces) of �DE (B.9) and (B.10) and concentrate on the proof of the continuity
property (B.21).

In Chkadua and Duduchava (2001, Example 1.17) it is proved that the symbols
of both Eqs. (B.9) and (B.10) are classicalb and the components of the asymptotic

aIf the requirement g 2 c
1
ðmÞ

N is relaxed into g 2 Hð1, s��þKÞ, �
ðmÞ

N for an integer K > 0

and � � K , we still obtain the asymptotics (B. 23) for the same value K.

bIn Chkadua and Duduchava (2001, Example 1.17) is considered the restriction of a �DO on

R
nþ1 with a classical symbol onto the smooth surfacem of codimension 1 and proved that the

restricted operator is again a classical �DO; explicit formulae for the components of the

asymptotic expansion of the symbol are indicated.
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representation of the symbols have the following form

Wðx; �Þ ¼W0ðx; �Þ þW1ðx; �Þ þ � � � þWjðx; �Þ þ � � � ,

Vðx; �Þ ¼ V0ðx; �Þ þ V1ðx; �Þ þ � � � þ Vjðx; �Þ þ � � � ,

where the homogeneous components Wjðx; �Þ and Vjðx; �Þ (of orders 1� j and
�1� j respectively) are generated by an explicit symbol W and V respectively

Wjðx; �Þ ¼
X

j�j�j�j ¼ j�0

2���

a�, �ðxÞ �
�@��Wðx; �Þ,

ðB:24Þ

Vjðx; �Þ ¼
X

j�j�j�j ¼ j�0
2���

a�, �ðxÞ �
�@��Vðx; �Þ, ðB:25Þ

where the sums are finite since j�j � j�j ¼ j and 2� � � imply 2j�j � j�j � 2nj, and
where the matrices a�, �ðxÞ have c

1
ðmÞ coefficients. The generating symbols W , V

are defined for x 2m and � 2 R
n as follows—the contour lþ is the same as in

Eq. (B.4) and the Jacobian j�ðx
0
Þ as in Definition A.1 (vi):

Wðx; �Þ :¼

Z
lþ

T
�
x;j�ðxÞ ð�, �Þ

�
L�1

�
j�ðxÞ ð�, �Þ

�>

 T

�
x;j�ðxÞ ð�, �Þ

�>
d� ðB:26Þ

Vðx; �Þ :¼

Z 1

�1

L�1
�
j�ðxÞ ð�, �Þ

�
d�: ðB:27Þ

In particular, the principal symbols W0ðx; �Þ and V0ðx; �Þ both have the
following coefficient

a0, 0ðxÞ :¼
�
{
ðxÞ

2� detD{ðxÞ
,

where �
{
ðxÞ is the Gram determinant of the local coordinate diffeomorphisms {.

Since the elliptic differential operator LðDxÞ in Eq. (A.1) is supposed to be
homogeneous of degree 2, its symbol Lð�, �nþ1Þ is even

8n ¼ ð�, �nþ1Þ 2 R
nþ1, Lð��, � �nþ1Þ ¼ Lð�, �nþ1Þ:

As a consequence, with the change of variable �� � � in integrals (B.26) and (B.27),
we find that the generating symbols V andW are even,3,c : For all x 2m and � 2 R

n

Vðx, � �Þ ¼ Vðx, �Þ and Wðx, � �Þ ¼Wðx, �Þ:

cFor this, we use in particular that any contour integral of the integrand in Eq. (B.26)

surrounding all the roots � of detLðj�ðx
0
Þ , ð�, �ÞÞ ¼ 0, is zero, which allows to replace in

Eq. (B.26) lþ by l�:
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Therefore, as a consequence of formulas (B.26) and (B.27), for all x 2m, for all
� 2 R, for all integers j,m ¼ 0, 1, . . . and all multiindices �0 2 N

n�1
0 , there holds

ð@m
xn
@�

0

�0WjÞðx
0, 0 ; 0, � �Þ ¼ ð�1Þ jþj�

0
j
ð@m

xn
@�

0

�0WjÞðx
0, 0 ; 0, �Þ,

ð@m
xn
@�

0

�0VjÞðx
0, 0 ; 0, � �Þ ¼ ð�1Þ jþj�

0
j
ð@m

xn
@�

0

�0VjÞðx
0, 0 ; 0, �Þ: g

B.V. CDE in Dimension 1

Before we start the proof of the main theorem B.4, we want to explain the
principal mechanism responsible for the absence of logarithmic terms by presenting
the result in a very simple situation, namely the case of a scalar elliptic pseudodiffer-
ential equation with constant coefficients on the half-line Rþ. This simple one-dimen-
sional situation allows us to stay free of many of the technical difficulties of the
higher-dimensional case and to concentrate on the essential feature, namely the role
of the continuity condition for the asymptotic expansion of the symbol. We can
show in this case that a natural generalization of this condition is not only sufficient,
but also necessary for the absence of logarithmic terms in the asymptotics of the
solution. The class of operators considered here can be larger than the one obtained
from the 2D crack problem.

We need the following well-known Fourier transform of distributions supported
in the positive half-line, see for instance Eskin (1981). By �þ and �� we denote the
characteristic functions of Rþ and R�, respectively.

Lemma B.6.

(i) ft!�ð�þðtÞ t
��1e��tÞ ¼ �ð�Þeið�=2Þ�ð�þ i�Þ��, � > 0

(ii) ft!�ð�þðtÞ log t t
��1e��tÞ ¼ ð�þ i�Þ��ðc logð�þ i�Þ þ dÞ

with c ¼ ��ð�Þ eið�=2Þ� and d ¼ ðd=d�Þ
�
�ð�Þ eið�=2Þ�

�
.

Another crucial result concerns the additive decomposition of homogeneous
distributions into ‘‘plus’’ and ‘‘minus’’ terms.

Lemma B.7. Let aþ, a�, � 2 C. Then

(i) If � 62 Z, we have the representation�
aþ�þðtÞ þ a���ðtÞ

�
jtj� ¼

a� � e�i��aþ

ei�� � e�i��
ðtþ i0Þ�

�
a� � ei��aþ

ei�� � e�i��
ðt� i0Þ� :

(ii) � 2 Z, we have the representation�
aþ�þðtÞ þ a���ðtÞ

�
jtj� ¼ aþ ðtþ i0Þ� þ

ð�1Þ�a� � aþ

2i�


 ððtþ i0Þ� logðtþ i0Þ � ðt� i0Þ� logðt� i0ÞÞ:
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Proof. It suffices to use the identities

ðt� i0Þ� ¼ �þðtÞ t
�
þ ��ðtÞ e

�i��
jtj�

logðt� i0Þ ¼ �þðtÞ log tþ ��ðtÞ
�
log jtj � i�

�
: g

Let a 2 c
1
ðR;CÞ be a classical elliptic symbol of order � 2 R with constant

coefficients, i.e., að�Þ 6¼ 0 for all � 2 R, and a has an asymptotic expansion in
homogeneous terms

að�Þ %
X1
j¼0

ajð�Þ with 8j 2 N, ajðt�Þ ¼ t ��jajð�Þ, ðB:28Þ

for all t > 0 and � 2 R.
In one dimension, homogeneous functions are determined by two values:

ajð�Þ ¼
�
aþj �þð�Þ þ a�j ��ð�Þ

�
j�j ��j: ðB:29Þ

From the ellipticity follows that aþ0 a
�
0 6¼ 0, and we can define

� ¼
a�0
aþ0

2 C:

By pþaðDÞu we denote the restriction of

aðDÞuðxÞ :¼f
�1
��x að�Þ ðfuÞð�Þ

to the half-line Rþ.

Theorem B.8. Let a be a classical elliptic symbol of order � as above, and let 
 2 C,
s 2 R be chosen such that

e2i�
 ¼ � and
�

2
þRe
�

1

2
< s <

�

2
þRe
þ

1

2
ðB:30Þ

and �=2þ 
 62 f�1, � 2, . . .g. Let u 2 eHHs
ðRþÞ be solution of

pþaðDÞu ¼ g on Rþ ðB:31Þ

with g 2 c
1
ðRþÞ \Hs��

ðRþÞ. Then u has an asymptotic expansion as x! 0:

uðxÞ %
X
k�0

Xqk
q¼0

ckq x
ð�=2Þþ
þk logq x:

This asymptotic expansion for any such u is free of logarithms, i.e., qk ¼ 0 for all
k � 0, if and only if the following condition ðHB5Þ is satisfied

8j � 0, a�j ¼ ð�1Þ
j� aþj : ðHB5Þ
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Note that, reduced to the case of dimension 1 with scalar operators, condition
ðHB5Þ is a generalization of condition ðHB4Þ which corresponds to taking � ¼ 1.

Proof.

(i) We first show the sufficiency of condition ðHB5Þ.
If ðHB5Þ is satisfied, then we can write

að�Þ ¼ a0ð�Þ qð�Þ, ðB:32Þ

where qð�Þ has an asymptotic expansion of the form

qð�Þ % 1þ
X
j�1

qj �
�j with qj ¼

aþj

aþ0
: ðB:33Þ

Thus q is a symbol of rational type.
For a0 we find the factorization

a0ð�Þ ¼ aþ0 ð� þ i0Þ�=2þ
 ð� � i0Þ�=2�
: ðB:34Þ

Let us introduce the corresponding c
1
ðRÞ symbol

a1ð�Þ ¼ aþ0 ð� þ iÞ�=2þ
 ð� � iÞ�=2�
: ðB:35Þ

Then we have a global representation of the symbol a as the product

að�Þ ¼ a1ð�Þ q1ð�Þ ðB:36Þ

with a symbol of rational type

q1ð�Þ % 1þ
X
j�1

q1j ð� þ iÞ�j: ðB:37Þ

Formula (B.36) is deduced from identities (B.32)–(B.34) by Taylor expansion at
� þ i ¼ 1, which allows to expand the functions

��j,
� � þ i0

� þ i

��=2þ

and

� � � i0

� � i

��=2�

in negative powers of ð� þ iÞ.

There is also an expansion for

q�1 %
1

q1ð�Þ
% 1þ

X
j�1

q�1j ð� þ iÞ�j ðB:38Þ

so that q1 q�1 is a symbol of order �1.
The following result is well known from Eskin’s version (1981) of the Wiener–

Hopf method:

Proposition B.9. For h 2 Hs��
ðRþÞ, the equation

pþa
1
ðDÞv ¼ h ðB:39Þ
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has a unique solution v 2 eHHs
ðRþÞ. This solution is given by

v ¼ ðDþ iÞ�ð�=2Þ�
pþðD� iÞ�ð�=2Þþ
½aþ0 �
�1 ~hh, ðB:40Þ

where ~hh 2 Hs��
ðRÞ is an extension of h to the whole line.

For K 2 N and h 2 Hs��þK
ðRþÞ, this solution v has the asymptotic expansion

vðxÞ ¼
XK�1
k¼0

�þðxÞ x
�=2þ
þk e�xdk þ vrem,K ðxÞ ðB:41Þ

with the remainder vrem,K 2
eHHsþK

ðRþÞ given by

vrem,K ¼ ðDþ iÞ�ð�=2Þ�
�kpþðD� iÞ�ð�=2Þþ
þk½aþ0 �
�1 ~hh, ðB:42Þ

and the coefficients dk by

dk ¼
e�i ð�=2Þð �=2þ
þkþ1Þ

�ð �=2þ 
þ kþ 1Þ

�
ðD� iÞ�ð�=2Þþ
þk

�
½aþ0 �

�1 ~hh
��
ð0Þ: ðB:43Þ

Let now u 2 eHHs
ðRþÞ be a solution of (B.31). For K 2 N, let v be defined by

v ¼ qK ðDÞu with qK ð�Þ ¼ 1þ
XK�1
j¼1

q1j ð� þ iÞ�j: ðB:44Þ

Note that ðDþ iÞ�j is a convolution operator with kernel

ð�iÞ j

ð j � 1Þ!
x j�1 e�x �þðxÞ,

cf Lemma B.6
(i) Thus v 2 eHHs

ðRþÞ, and v is solution of

pþa
1
ðDÞv ¼ g� pþa

1
ðDÞ

�
q1ðDÞ � qK ðDÞ

�
u ¼: h,

where h belongs to Hs��þK
ðRþÞ. Therefore v has the expansion (B.41), and we can

recover the expansion of

u & q�1ðDÞ
�
vþ ðq1ðDÞ � qK ðDÞÞu

�
ðmod c

1
Þ

& q�K ðDÞv ðmod eHHsþK
ðRþÞÞ

with q�K ð�Þ ¼ 1þ
XK�1
j¼1

q�1j ð� þ iÞ�j ðB:45Þ
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by simply integrating (B.41):

ðDþ iÞ�j
�
�þðxÞ x

�=2þ
þk e�x
�

¼ ð�1Þ j
�
�

2
þ 
þ kþ 1

� �
�
�

2
þ 
þ kþ j þ 1

� � �þðxÞ x�=2þ
þkþj e�x, ðB:46Þ

except if �=2þ 
þ k 2 f�1, . . . , � jg, where logarithms will appear.
Thus we obtain the asymptotics of u up to regularity eHHsþK

ðRþÞ, and since we
assumed that �=2þ 
 is not a negative integer, no logarithm will appear. We have
shown that condition ðHB5Þ implies that the asymptotics of u is free of logarithms.

(ii) Let us show the converse. We assume that the equality in ðHB5Þ is violated for
some j � 1. Let M be the first such j, so that

að�Þ ¼ a0ð�Þ q
M
ð�Þ þ aMþ1ð�Þ ðB:47Þ

with

qMð�Þ ¼ 1þ
XM�1
j¼1

qj�
�j
þ
�
qþM�þð�Þ þ q�M��ð�Þ

�
j�j�M

and aMþ1ð�Þ ¼ O j�j�M�1
� �

as j�j ! 1.
We will show that there exist g 2 Hs��þMþ1

ðRþÞ and u 2 eHHs
ðRþÞ solution of

(B.31) such that

uðxÞ ¼ c0�þðxÞ x
�=2þ


þ cM�þðxÞ x
�=2þ
þM log x ðB:48Þ

near x ¼ 0. The question of regularity of g ¼ pþaðDÞu is local at x ¼ 0. We can
therefore stay within the framework of quasi-homogeneous distributions and homo-
geneous symbols, discard lower order terms such as aMþ1ð�Þ, and replace ��j by
ð� þ i0Þ�j .

Since the Fourier transform of �þðxÞ x
� is cð� þ i0Þ�1�� , and the Fourier

transform of �þðxÞ x
� log x is ð� þ i0Þ�1��ðc logð� þ i0Þ þ dÞ, see Lemma B.6, we

shall construct the Fourier transform ûu of u in the form

ûuð�Þ ¼ ð� þ i0Þ��=2�
�1 þ ĉcMð� þ i0Þ��=2�
�M�1 logð� þ i0Þ

þ d̂dMð� þ i0Þ��=2�
�M�1: ðB:49Þ

We shall show that there exists ĉcM 6¼ 0 (hence cM 6¼ 0) such that

pþa0ðDÞq
M
ðDÞu 2 Hs��þMþ1

loc ðRþÞ: ðB:50Þ

Since there holds pþðD� i0Þ�=2�
ð1� pþÞ ¼ 0, we have the identities

pþa0ðDÞq
M
ðDÞu ¼ pþa

þ
0 ðD� i0Þ�=2�
 ðDþ i0Þ�=2þ
 qMðDÞu

¼ pþa
þ
0 ðD� i0Þ�=2�
 pþ ðDþ i0Þ�=2þ
 qMðDÞu:
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Therefore, if we prove that pþðDþ i0Þ�=2þ
qMðDÞu belongs to the space
H

s�ð�=2Þ�
þMþ1
loc ðRþÞ, we have proved (B.50). Consider therefore the Fourier trans-

form wð�Þ of ðDþ i0Þ�=2þ
qMðDÞu if ûu has the form (B.49):

wð�Þ ¼ ð� þ i0Þ�=2þ
qMð�Þûuð�Þ

¼ ĉcMð� þ i0Þ�M�1 logð� þ i0Þ

þ
�
qþM�þð�Þ þ q�M��ð�Þ

�
j�j�Mð� þ i0Þ�1 þ wMð�Þ

where

wMð�Þ ¼
XM�1
j¼0

qj ð� þ i0Þ�j�1 þ d̂dM ð� þ i0Þ�M�1

þ ĉcM logð� þ i0ÞO j�j�M�2
� �

þO j�j�M�2
� �

:

Thus we can discard wM , because pþf
�1wM is sufficiently regular. Now we use the

additive decomposition, see Lemma B.7, for � 6¼ 0:�
qþM�þð�Þ þ q�M��ð�Þ

�
j�j�Mð� þ i0Þ�1

¼ qþMð� þ i0Þ�M�1 þ
1

2i�

�
ð�1ÞMq�M � qþM

��
ð� þ i0Þ�M�1 logð� þ i0Þ

� ð� � i0Þ�M�1 logð� � i0Þ
�
:

The only non-regular contribution to pþf
�1w comes from the term

ð� þ i0Þ�M�1 logð� þ i0Þ
h
ĉcM þ

1

2i�

�
ð�1ÞMq�M � qþM

�i
:

This term is absent if

ĉcM þ
1

2i�

�
ð�1ÞMq�M � qþM

�
¼ 0: ðB:51Þ

We see that the possibility of having ĉcM 6¼ 0 together with condition (B.51)
is a consequence of the violation of equality ðHB5Þ for j ¼M. The proof is
complete. g

B.VI. Auxiliary Results on CDO

We need some results for pseudodifferential operators (�DO) of one variable
acting on functions of n variables, and also the connection between �DO in n
variables and reduced �DO in one variable. The suitable function spaces were
introduced in Section B.I. Here, we only need the ‘‘model’’ domain for the boundary
of m, that is R

n
þ ¼ R

n�1

Rþ with coordinates x ¼ ðx0, xnÞ and dual coordinates

� ¼ ð�0, �nÞ.
The following lemma is a particular case of Theorem 1.11 and Lemma 2.9 in

Chkadua and Duduchava (2001).
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Lemma B.10. Let the symbol b ¼ bðx; �nÞ satisfy @�x@
k
�nbðx; �nÞ ¼ Oðj�nj

��k
Þ as

j�nj ! 1 for all k 2 N0, � 2 N
n
0, x 2 R

n, �n 2 R. Let � 2 N0, s 2 R. Then the pseudo-
differential operator bðx;DnÞ is continuous between anisotropic Bessel potential spaces:

bðx;DnÞ : H
ð1, sÞ, �

ðR
n
Þ �!Hð1, s��Þ, �

ðR
n
Þ: ðB:52Þ

If, in addition, supp bðx, �Þ is compact, for all x 2 R
n, then the operator bðx;DnÞ is a

smoothing operator:

bðx;DnÞ : H
ð1, sÞ, �

ðR
n
Þ �!c

1
ðR

n
Þ ðB:53Þ

Proof. It is easy to check that the operator

bðx;DnÞ : H
ð�, sÞ, �

ðR
n
Þ �!Hð���ð�Þ, s��Þ, �

ðR
n
Þ: ðB:54Þ

is bounded, where

�ð�Þ :¼
0 for � > 0,
j�j for � < 0:

�
In fact, the boundedness (B.54) follows from the Mikhlin–Hörmander theorem

on multipliers since for all j�j � n

8� ¼ ð�0, �nÞ 2 R
n, ��@��

h�0i���ð�Þh�is��h�i�

h�0i�h�is

" #
� 1:

The boundedness (B.52) is a consequence of Eq. (B.54).
As for Eq. (B.53), it follows from Eq. (B.52) because the symbol b satisfies

@�x@
k
�nbðx; �nÞ ¼ Oðj�nj

��k
Þ for arbitrary � < 0. g

The following lemma generalizes Eskin’s Wiener–Hopf technique from the
scalar one-dimensional case, see Proposition B.9, to systems of multidimensional
pseudodifferential equations.

Lemma B.11. Let us consider the principal part apr of the symbol a in Eq. (B.13) with
the ellipticity condition ðHB1Þ. We introduce

a
1
ðx0; �nÞ :¼ h�ni

�
aprðx

0, 0; 0, þ 1Þ: ðB:55Þ

Let s, � 2 R such that ð�=2Þ � ð1=2Þ < s < ð�=2Þ þ ð1=2Þ, � 2 N0. Then the system
of equations

pþa
1
ðx0;DnÞu ¼ g, g 2 Hð1, s��Þ, �

ðR
n
þÞ

N , ðB:56Þ

where pþ is the restriction from R
n to R

n
þ, has a unique solution u 2 eHHð1, sÞ, �

ðR
n
þÞ

N ,
represented by the formula

u ¼ ðDn þ iÞ�ð�=2Þ�þðDn � iÞ�ð�=2Þ½aprðx
0, 0; 0, 1Þ��1g, ðB:57Þ

where �þðxnÞ is the characteristic function of the half space R
n
þ.
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For arbitrary K 2 N, K � �, and g 2 Hð1, s��þKÞ, �
ðR

n
þÞ this solution has the fol-

lowing asymptotic expansions

uðx0, xnÞ ¼
XK�1
k¼0

x�=2þkn e�xnd k
ðx0Þ þ urem,K ðx

0, xnÞ, urem,K 2
eHHð1, sþKÞ, �

ðR
n
þÞ

N

¼
XK�1
k¼0

x�=2þkn d k
0 ðx

0
Þ þ u0rem,K ðx

0, xnÞ, u0rem,K 2
eHHð1, sþKÞ, �

ðR
n
þÞ

N :

with the c
1
ðR

n�1
Þ coefficients d k

ðx0Þ defined as

e�ð�=2Þi �=2þkþ1ð Þ

� �=2þ kþ 1ð Þ

�
ðDn � iÞ�ð�=2Þþk½aprððx

0, 0; 0, 1Þ��1g
�
ðx0, 0Þ,

and

d k
0 ðx

0
Þ :¼

Xk
‘¼0

ð�1Þk�‘

ðk� ‘Þ!
d‘ðx0Þ, k ¼ 1, . . . ,M:

For the proof see Chkadua and Duduchava (2001, Lemma 2.6). Note that, by its
mere definition, a1 satisfies itself condition ðHB4Þ.

The following Lemma B.12 will serve for the evaluation of the terms and the
remainders in the Taylor expansions which will provide the next Lemma B.13.

Lemma B.12. Let bðx;DÞ be a �DO such that for a m 2 N its symbol satisfies
bðx; �Þ ¼ xmn �bbðx; �Þ with �bb in S�ðRn

þ 
 R
n
Þ. We suppose that, moreover, there

exists an integer k � 0 such that @�x@
�
�
�bbðx; �Þ ¼ Oðj�0jk�j�

0
j
j�nj

��k��n Þ for all � and
� ¼ ð� 0, �nÞ 2 N

n. Then for all �, s 2 R and � � m, bðx;DÞ is bounded between the
spaces:

bðx;DÞ : Hð�, sÞ, �
ðR

n
Þ �!Hð��k, sþkþm��Þ, ��m

ðR
n
Þ:

Lemma B.13. Let j 2 N0 and let us consider the homogeneous part aj of degree �� j of
the symbol a in Eq. (B.13). For any K 2 N, there holds the expansion of the symbol aj

ajðx; �Þ ¼
X

mþj� 0 j�K�1

xmn ð�
0
Þ
� 0 �aaj;m, � 0 ðx

0; sgn �nÞ �
�j�j� 0j
n j�nj

�
þ aj; rem,K ðB:58Þ

with �aaj ;m, � 0 ðx
0;!Þ ¼ ð1=m!Þ ð1=� 0!Þ! jþj� 0j@mxn@

� 0

�0 ajðx
0, 0; 0,!Þ, x0 2 R

n�1, ! ¼ �1, and
aj ;rem,K bounded between the spaces

aj ;rem,K ðx;DÞ : H
ð1, sÞ,1

ðR
n
Þ
N
�!Hð1, sþK��Þ,1

ðR
n
Þ
N :

If condition ðHB4Þ holds, then �aaj ;m, � 0 ðx
0;!Þ ¼ �aaj ;m, � 0 ðx

0
Þ does not depend on !.
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Proof. The Taylor formula, applied at xn ¼ 0, and at j�nj
�1�0 ¼ 0, gives that

ajðx
0, r; �0, �nÞ is equal to

XK�1
m¼0

xmn
m!
ð@mxnajÞðx

0, 0; j�nj
�1�0, sgn �nÞj�nj

��j
þ xKn a

ð1Þ
j; rem,K ðx; �Þ

¼
XK�1
m¼0

xmn
m!

XK�1�m
j� 0 j¼0

j�nj
��j�j� 0 j ð�

0
Þ
� 0

ð� 0Þ!
ð@mxn@

� 0

�0 ajÞðx
0, 0; 0, sgn �nÞ þ aj; rem,K ðx; �Þ,

where the remainder can be written as

aj;rem,K ðx; �Þ ¼ xKa
ð1Þ
j;rem,K ðx; �Þ þ

XK�1
m¼0

xmn a
ð2Þ
j;rem,m,K�mðx

0; �Þ,

where xKn a
ð1Þ
j;rem,K satisfies the assumptions of Lemma B.12 withm ¼ K and k ¼ 0, and

xmn a
ð2Þ
j;rem,m,K�m with m ¼ m and k ¼ K �m. Taking � ¼ 1 and � ¼ 1, we obtain

the lemma. g

A standard Taylor expansion of the function h�ni
� at �n ¼ �1 yields the follow-

ing expansion of the symbol a1, Eq. (B.55):

Lemma B.14. Let us consider the symbol a1 defined in Eq. (B.55). For any integer
K 2 N, there holds the expansion

a
1
ðx0; �nÞ ¼

X
j�K�1

�aa1j ðx
0
Þ ��jn j�nj

�
þ a

1
rem,K ðx

0; �nÞ ðB:59Þ

with �aa10 ðx
0
Þ ¼ a0ðx

0, 0; 0, þ1Þ, �aa1j ðx
0
Þ ¼ cja0ðx

0, 0; 0, þ1Þ with cj 2 R, and a1rem,K is a
bounded operator between the spaces

a
1
rem,K ðx

0;DnÞ : H
ð1, sÞ,1

ðR
n
Þ
N
�!Hð1, sþK��Þ,1

ðR
n
Þ
N :

B.VII. Proof of the Main Theorem of Part B

We are going to prove Theorem B.4. Let us start by reformulation of the con-
ditions of Eq. (B.14): we consider

/ 2 eHHð�, sÞ, �
ðmÞ

N such that aðx;D
x
Þ/ ¼ g,

with g 2 Hð�, s��Þ, �
ðmÞ

N
ðB:60Þ

for arbitrary �1 < � � 1. In Chkadua and Duduchava (2001, Theorem 1.12) it is
proved that the system (B.14) is Fredholm (or is uniquely solvable) if and only if the
system (B.60) is Fredholm (is uniquely solvable) and these equations have equal
dimensions of kernels and cokernels.
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Since the assertion is local, we can suppose that our domain is the half-space R
n
þ,

and all functions and symbols are compactly supported in the variable x 2 R
n
þ. We

recall that x ¼ ðx0, xnÞ and its dual variable is � ¼ ð�0, �nÞ.
Homogeneous symbols and the kernels of the corresponding �DO with negative

order have singularities at 0. Multiplying them by a function �0 2 c
1
ðRÞ, where

�0ð�nÞ ¼ 0 for j�nj < 1 and �0ð�nÞ ¼ 1 for j�nj > 2 we cut the singularity off. The
perturbation operator is smoothing: ½I � �0ðDnÞ�’ 2 c

1
0 ðR

n
Þ for arbitrary

’ 2 Hð1,�Þ, �
ðR

n
Þ (see Lemma B.10), and will be ignored. Although we do not

write the cutoff function, we suppose it is present and forget about singularities of
symbols at �n ¼ 0.

Since c
1
0 ðR

n
þÞ

N
� Hð1, s��þMþ1Þ,1

ðR
n
þÞ

N , for any M 2 N0, it is sufficient to
derive the asymptotics for a solution of Eq. (B.60). Relying on the expansion of
the classical symbol aðx; �Þ:

a ¼
XM
j¼0

aj þ arem,Mþ1, aj 2 S ��jhomðR
n
þ 
 R

n
Þ
N
N ,

arem,Mþ1 2 S��M�1cl ðR
n
þ 
 R

n
Þ
N
N

ðB:61Þ

we will apply induction on M, starting with the case M ¼ 0.
For M ¼ 0, the Eq. (B.60) (with m ¼ R

n
þ, as agreed) is written in the following

equivalent form

pþa
1
ðx0;DnÞ/ ¼ g1, ðB:62Þ

where a1ðx0; �nÞ is defined in Eq. (B.55) and

g1 :¼ g� arem,1ðx;DxÞ/� ½a0ðx;DxÞ � a
1
ðx0;DnÞ�/:

We observe

(i) The remainder

arem,1ðx;DxÞ : H
ð1, sÞ,1

ðR
n
Þ
N
�!Hð1, sþ1��Þ,1

ðR
n
Þ
N

is bounded.
(ii) Lemma B.13 for j ¼ 0, K ¼ 1 gives that

a0ðx; �Þ ¼ a0ðx
0, 0; 0, sgn �nÞ j�nj

�
þ a0;rem,1ðx, �Þ

with a0;rem,1ðx;DxÞ : H
ð1, sÞ,1

ðR
n
Þ
N
�!Hð1, sþ1��Þ,1

ðR
n
Þ
N bounded.

(iii) Lemma B.14 for j ¼ 0, K ¼ 1 gives that

a
1
ðx; �nÞ ¼ a0ðx

0, 0; 0,þ1Þ j�nj
�
þ a

1
rem,1ðx, �nÞ

with a1rem,1ðx;DnÞ : H
ð1, sÞ,1

ðR
n
Þ
N
�!Hð1, sþ1��Þ,1

ðR
n
Þ
N bounded.

Condition ðHB4Þ yields that a0ðx
0, 0; 0, sgn �nÞ ¼ a0ðx

0, 0; 0,þ1Þ.
Therefore a0 � a

1
¼ a0;rem,1 � a

1
rem,1. Finally, we deduce from the regularity

/ 2 Hð1, sÞ,1
ðR

n
Þ
N , that

g1 2 Hð1, sþ1��Þ,1
ðR

n
Þ
N : ðB:63Þ
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Invoking Lemma B.11 we derive the expansion (B.23) for K ¼ 1:

/ ¼ /0 þ /rem,1,

with

/0ðx
0, xnÞ ¼ d0

ðx0Þx�=2n e�xn , d0
2 c

1
ðR

n�1
Þ
N ,

/rem,1 2
eHHð1, sþ1Þ,1

ðR
n
þÞ

N : ðB:64Þ

Now let M � 1 and suppose we have proved

/ ¼
XM�1
k¼0

/k þ /rem,M ,

with

/kðx
0, xnÞ ¼ d k

ðx0Þx�=2þkn e�xn , d k
2 c

1
ðR

n�1
Þ
N ,

/rem,M 2
eHHð1, sþMÞ,1

ðR
n
þÞ

N : ðB:65Þ

It can be prove that /k 2
eHHð1, sþkÞ,1

ðR
n
þÞ

N , because �=2� s > �ð1=2Þ, see Chkadua
and Duduchava, (2001, Eq. (2.30)). Then the right hand side g1 of Eq. (B.62) can be
represented as follows

g1 ¼ g1rem,Mþ1 �
XM
j¼1

XM�j
k¼0

pþajðx;DxÞ/k �
XM�1
k¼0

pþ½a0ðx;DxÞ � a
1
ðx0;DnÞ�/k,

ðB:66Þ

where

g1rem,Mþ1 ¼ g� pþarem,Mþ1ðx;DxÞ/�
XM
j¼1

pþajðx;DxÞ/rem,M�jþ1

� pþ½a0ðx;DxÞ � a
1
ðx0;DnÞ�/rem,M :

It is clear from the arguments used for the step M ¼ 0 that g1rem,Mþ1 belongs to the
space Hð1, s��þMþ1Þ,1

ðR
n
þÞ

N .
We now use the expansion (B.58) with K ¼M þ 1� j � k for the term

ajðx;DxÞ/k, and the expansion (B.59) with K ¼M þ 1� k for the term
a
1
ðx0;DnÞ/k. Taking into account that condition ðHB4Þ holds, we obtain

g1 ¼ g2rem,Mþ1 �
XM�1
k¼0

X
j,m, � 0

0<jþmþj� 0j�M�k

bj;m, � 0 ðx;DxÞ/k, ðB:67Þ

where g2rem,Mþ1 belongs to Hð1, s��þMþ1Þ,1
ðR

n
þÞ

N and

bj;m, � 0 ðx; �Þ ¼ xmn ð�
0
Þ
� 0 �bbj;m, � 0 ðx

0
Þ ��j�j�

0
j

n j�nj
�,
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with �bbj;m, � 0 ðx
0
Þ defined for x0 2 R

n�1 as follows

�bbj;m, � 0 ðx
0
Þ :¼

�aaj;m, � 0 ðx
0
Þ if mþ j� 0j 6¼ 0,

�aaj; 0, 0ðx
0
Þ � �aa1j ðx

0
Þ if m ¼ 0, � 0 ¼ 0:

(

Now we use formula (B.57), Lemma B.11 to invert the operator a1ðx0;DnÞ, and from
Eq. (B.62) pþa

1
ðx0;DnÞ/ ¼ g1 with the expansion (B.67) of g1, we find

/ ¼ ðDn þ iÞ�ð�=2ÞpþðDn � iÞ�ð�=2Þ �aa�10 ðx
0
Þ
XM�1
k¼0

X
j,m, � 0

0<jþmþj� 0 j�M�k

bj;m, � 0 ðx;DxÞ/k

26664
37775

þ
�
pþða

1
ðx0;DnÞ

��1
g2rem,Mþ1, ðB:68Þ

where �aa0ðx
0
Þ ¼ aprðx

0, 0; 0, 1Þ. Recalling Lemma B.6 (i), and using a Taylor expansion
at �n ¼ 1, we find the following, cf (B.65), for /kðx

0, xnÞ:

fxn!�n ½/k� ¼fxn!�n

�
x�=2þkn d k

ðx0Þe�xn
�

¼ ð�n þ iÞ��=2�k�1eð�=2Þð�=2þkþ1Þi �
�

2
þ kþ 1Þd k

ðx0
� �

¼
XM
q¼0

dkqðx0Þð�n þ i0Þ�ð�=2Þ�k�q�1

þ ð�n þ iÞ�ð�=2Þ�M�q�2 d k
rem,Mðx

0
Þ: ðB:69Þ

and the last summand is ignored in the sequel because it contributes into the
smooth remainder term. From Eqs. (B.68) and (B.69), we see that modulo a
remainder /1

rem;Mþ1 in the space Hð1, sþMþ1Þ,1
ðR

n
þÞ

N , / is a finite sum of terms u

which have the generic form

u ¼ ðDn þ iÞ�ð�=2Þw ðB:70Þ

with

w ¼ pþðDn � iÞ�ð�=2Þ �aa�10 ðx
0
Þ hðxÞ ðB:71Þ

with

h ¼ xmn f�!x

n
ð�0Þ�

0
�bbðx0Þ ��‘n j�nj

�

fx0!�0

�
dðx0Þ

�
ð�n þ i0Þ�ð�=2Þ�q�1

o
, ðB:72Þ

for m, ‘, q 2 N0, �
0
2 N

n�1, and �bb 2 c
1
ðR

n�1
Þ
N
N , d 2 c

1
ðR

n�1
Þ. Let us study

hðxÞ first:

h ¼ xmn �bbðx0Þ
�
ði@x0 Þ

� 0d
�
ðx0Þ 
f�n!xn

n
ð�n þ i0Þ�ð�=2Þ�q�1 ��‘n j�nj

�
o

¼ d1ðx
0
Þf�n!xn

n
@m�n
�
ð�n þ i0Þ�=2�q�‘�1��ð�nÞ

�o
, ðB:73Þ
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with d1ðx
0
Þ :¼ ð�iÞm �bbðx0Þ ½ði@x0 Þ

� 0d�ðx0Þ 2 c
1
ðR

n�1
Þ
N , and where we have used the

formula, cf Lemma B.7,

jtj� ¼ ��ðtÞ ðtþ i0Þ� with ��ðtÞ ¼ �þðtÞ þ e�i����ðtÞ: ðB:74Þ

We note that although we have taken derivatives @m�n j�nj
�, the 
-functions do not

appear due to cutoff functions (see the beginning of the proof ).
Inserting expression (B.73) of h into Eq. (B.71) we find that

wðxÞ ¼ pþf�n!xn

n
ð�n � iÞ�ð�=2Þ �aa�10 ðx

0
Þfxn!�n

�
hðx0, xnÞ

�o
:

Using Eq. (B.73), we find that wðxÞ is equal to

pþf�n!xn

n
ð�n � iÞ�ð�=2Þð�n þ i0Þ�=2�q�‘�m�1��ð�nÞ

o
d2ðx

0
Þ ðB:75Þ

with d2ðx
0
Þ ¼ c�aa�10 ðx

0
Þd1ðx

0
Þ 2 c

1
ðR

n�1
Þ
N . By expanding the function ð�n � iÞ�ð�=2Þ as

a Taylor series in ð�n � i0Þ�ð�=2Þ�p, cf (B.69), and applying the equality

ð�n � i0Þ�ð�=2Þ�p ��ð�nÞ ¼ ð�n þ i0Þ�ð�=2Þ�p, p ¼ 0, 1, . . .

(see Eq. (B.74)), we get

wðxÞ ¼
XM
p¼0

f�n!xn
fð�n þ i0Þ�q�‘�m�p�1gd2, pðx

0
Þ þ wrem,Mþ1ðxÞ, ðB:76Þ

with d2, p 2 c
1
ðR

n�1
Þ
N and wrem,Mþ1 2

eHHð1, s�ð�=2ÞþMþ1Þ,1
ðR

n
þÞ

N .
The restriction operator pþ in front in Eq. (B.75) was eliminated since the

Fourier transform of the analytic function is supported on Rþ.
From Eqs. (B.68)–(B.76) we find

/ðxÞ ¼
XM�1
k¼0

ðDnþ iÞ�ð�=2Þf�n!xn

n
ð�nþ i0Þ�k�1

o
d3,kðx

0
Þ þ

�
pþa

1
ðx0;DnÞ

��1
g3rem,Mþ1

¼
XM�1
k¼0

f�n!xn

n
ð�nþ iÞ�ð�=2Þð�nþ i0Þ�k�1

o
d3,kðx

0
Þ þ

�
pþa

1
ðx0;DnÞ

��1
g3rem,Mþ1:

By transforming ð�n þ i0Þ�k�1 into ð�n þ iÞ�k�1 as above, and using the asymptotics of
½pþa

1
ðx0;DnÞ�

�1g3rem,Mþ1 from Lemma B.11, we finally obtain the desired expansion

/ðxÞ ¼
XM�1
k¼0

x�=2þkn e�xn d k
ðx0Þ þ /rem,Mþ1ðxÞ, ðB:77Þ

with /rem,Mþ1 2 Hð1, sþMþ1Þ,1
ðR

n
þÞ

N , and d k
2 c

1
ðR

n�1
Þ
N . The theorem is

proved. g
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B.VIII. Symbols Satisfying the Generalized Continuity Property

From our investigation of scalar problems in dimension 1, we can conclude that
ðHB4Þ is not the most general condition ensuring the absence of logarithms in the
asymptotics (B.19). In this section, we prove that the result of Theorem B.4 together
with its proof remains valid if we replace condition ðHB4Þ the following generalized
continuity property, inspired from our 1D scalar condition ðHB5Þ: 9� 2 Cnf0g

8x
0
2 e, 8j 2 N0, 8�0 2 N

n�1
0 , m 2 N0,

@m
xn
@�

0

�0 ajðx
0, 0; 0,�1Þ ¼ ð�1Þ jþj�

0
j�@m

xn
@�

0

�0 ajðx
0, 0; 0,þ1Þ:

(
ðHB6Þ

Condition ðHB6Þ also implies conditions ðHB2Þ and ðHB3Þ. The corresponding result
about asymptotics follows.

Theorem B.15. Let aðx; �Þ be an elliptic classical symbol (B.13) of order � > �2
satisfying the generalized continuity property ðHB6Þ on the boundary e. Let 
 2 R be
such that e2i�
 ¼ � and let s be a Sobolev exponent such that Eq. (B.30) holds. Any
solution / 2 eHHs

ðmÞ
N of the equation aðx;D

x
Þ/ ¼ g where the right hand side g is

c
1
ðmÞ

N , has the following asymptotic expansion for any integer K > 0

/ ¼
XK�1
k¼0

r�=2þ
þk�ðrÞ d k
ðx
0
Þ þ /rem,K , d k

2 c
1
ðeÞ

N , /rem,K 2
eHHsþK

ðmÞ
N :

ðB:78Þ

Remark B.16. Since a0 is homogeneous elliptic of order �, the symbol q :¼ a�10 a

is an elliptic symbol of order 0. It is easy to see that the condition ðHB6Þ on a is
equivalent to the transmission condition on q—compare with (B.32)–(B.33). g

The proof of Theorem B.15 follows the same lines as the proof of Theorem B.4
with a few obvious modifications. For example the vector version of Proposition B.9
comes in replacement of Lemma B.11. Besides, everywhere the functions

ð�n þ i0Þ�=2þ
 ð�n � i0Þ�=2�
 and ð�n þ iÞ�=2þ
 ð�n � iÞ�=2�


replace j�nj
� and h�ni

�, respectively.

B.IX. Spatial Asymptotics of Solutions to BVP

We have already performed the first two steps of the analysis of asymptotics of
the solution of the boundary value problem (A.1) by the Wiener–Hopf method: (i)
the reduction to a �DE (A.2) on the boundary, (ii) the asymptotics of the solution of
this �DE. There remains to derive the spatial asymptotics of the solution u to BVP
(A.1), represented by the formula (B.5),

u ¼ Nf þd½u� �v½Tu�,
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if we know the asymptotics of the densities ½u� or ½Tu�. Note, that since f 2
c
1
0 ðR

nþ1
Þ, the summand Nf only contributes to the regular part of u.

Therefore, we only need to apply either the single layer potential v, or the
double layer potential d to a function / defined on m, the asymptotic expansion
of which being of the form (B.23).

Thus, let us by denote by a either the single layer potential v, or the double
layer potential d, see (B.6), associated with an homogeneous elliptic second order
N 
N system LðDxÞ in R

nþ1 with constant real coefficients.d Let q be the order of a
(q ¼ �1 if a ¼v and q ¼ 1 if a ¼ d). We consider u defined on � by

uðxÞ ¼a/ðxÞ, supp/ �m, x 2 �: ðB:79Þ

For any x
0
2 e, let �1ðx

0
Þ, . . . , �‘ðx

0
Þ be all different roots of the polynomial

equation

detL
�
i

{
ðx
0
Þð0, 1, �Þ

�
¼ 0, Im � < 0: ðB:80Þ

We recall that ð0, 1, �Þ represents the value of the dual variable � ¼ ð�0, �n, �nþ1Þ
and that i

{
ðx
0
Þ is the Jacobian of the local coordinate diffeomorphism �, cf

Definition A.1.
We assume that it is possible to enumerate �1ðx

0
Þ, . . . , �‘ðx

0
Þ so that

The multiplicities n1, . . . , n‘ of �1ðx
0
Þ, . . . , �‘ðx

0
Þ

are constant on e.

�
ðHB7Þ

Therefore the �m are c
1
ðeÞ.

Since L is a N 
N elliptic system of order 2, there holds

n1 þ � � � þ n‘ ¼ N

and since its coefficients are real, the roots of Eq. (B.80) with Im � > 0 are the
conjugate of the �mðx

0
Þ. Let for x

0
2 e and m ¼ 1, . . . , ‘ the angular functions

 m,� be defined as

 m,�1ðx
0, �Þ :¼ cos � þ �mðx

0
Þ sin �,

 m,þ1ðx
0, �Þ :¼ cos � þ �mðx

0
Þ sin �:

ðB:81Þ

Theorem B.17. Let / be a N-vector function on m with the following infinite asymp-
totics without logarithms: 9� 2 R, 8K > 0

/ ¼
XK�1
k¼0

r�þk�ðrÞd k
ðx
0
Þ þ /rem,K ,

dHere we restrict consideration to the potential operators related to a second order system.

For more general results we quote Chkadua and Duduchava (2001).

904 Costabel, Dauge, and Duduchava



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

with

d k
2 c

1
ðeÞ

N , /rem,K 2
eHH�þK

ðmÞ
N :

We assume that � is not an integer and that the N 
N second order system L satisfies
hypothesis ðHB7Þ. Leta denote either the single or the double layer potential associated
with L and q its order, and let u be defined on � by a/.

Then for arbitrary K 2 N, the potential-type function u has in local cylindrical
coordinates ðx0, r, �Þ the following asymptotic expansion free of logarithms as well

u ¼
X‘
m¼1

X
!¼�1

�ðrÞ

" Xnm�1
j¼0

r��q sin j�  ��q�jm,! ðx
0, �Þ d j

m,!ðx
0
Þ

þ
XKþq�1
k¼1

Xpðm, kÞ

j¼0

X
j�j�Nðm, kÞ

r��qþk  ��q�jþkm,! sin�1 � cos�2 � dk, j, �m,!

#
þ urem,K ðB:82Þ

where urem,K 2 H�þK
loc ðR

nþ1
Þ
N and the coefficients d j

m,! and d j, k, �m,! are c
1
ðeÞ.

The proof is a direct adaptation of proofs in Chkadua and Duduchava (2000,
2001).
As a straightforward corollary of Theorems B.5 and B.17 combined with

. formulas (B.9) and (B.11) for Neumann conditions,

. formulas (B.10) and (B.12) for Dirichlet conditions,

we obtain:

Theorem B.18. Let the N 
N second order system L satisfy hypotheses ðHA1Þ, ðHA2Þ,
and ðHB7Þ. Then any solution u of BVP (A.1) with f 2 c

1
0 ðR

nþ1
Þ has the following

asymptotic expansion in local cylindrical coordinates ðx0, r, �Þ

u¼
X‘
m¼1

X
!¼�1

�ðrÞ

"Xnm�1
j¼0

r1=2 sin j � 1=2�j
m,! ðx

0, �Þd j
m,!ðx

0
Þ

þ
XK�1
k¼1

Xpðm,kÞ

j¼0

X
j�j�Nðm,kÞ

r1=2þk 1=2þk�j
m,! ðx

0, �Þ sin�1 � cos�2 �dk, j,�m,!

#
þ urem,K ðB:83Þ

where urem,K 2 HK
locðR

nþ1
Þ
N and the coefficients d j

m,! and d j, k, �m,! are c
1
ðeÞ.

For the particular case of isotropic elasticity we have to deal with the Lamé
equation

LðDxÞu ¼ �	uþ ð�þ �Þgrad div u ¼ f , ðB:84Þ

with a right hand side f 2 c
1
0 ðR

3
Þ. Equation (B.80) has one triple root �1 ¼ �i

and for the singular functions (B.81) we get

 1,�1ð�Þ ¼ ei� and  1, 1ð�Þ ¼ e�i�:
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The asymptotics of the displacement uðxÞ has the form

uðx0, r, �Þ ¼
X
!¼�1

"X2
j¼0

r1=2 sin j �ei!ð1=2�jÞ� d j
!ðx

0
Þ

þ
XK�1
k¼1

Xpk
j¼0

X
j�j�Nk

r1=2þkei!ð1=2�jþkÞ� sin�1 � cos�2 � dk, j, �! ðx
0
Þ

#
þ urem,K ðx

0, r, �Þ: ðB:85Þ

The stress Tðx,DxÞuðxÞ has a similar asymptotics as the displacement, starting with
the exponent r�ð1=2Þ instead of r1=2.

PART C. THE MELLIN APPROACH

C.I. General Edge Asymptotics

In our second approach, we consider the boundary value problem (A.1) as a
special case of boundary value problems on domains with edges. For such problems,
the method of Mellin transformation is a well-developed technique that allows
precise descriptions of the solutions in the neighborhood of the edge.

The general description of solutions of problems like (A.1) on a wedge originates
from Kontratiev’s work (1967) and was developed in the subsequent works (Maz’ya
and Plamenevskii, 1980; Maz’ya and Rossmann, 1988; Nazarov and Plamenevskii,
1994) and (Costabel and Dauge, 1993a; Dauge, 1988), among other contributions.
As a preparation for our proof on the absence of logarithm, we are going to explain
the general edge structure in the framework of the above papers.

We keep the local cylindrical coordinates ðx0, r, �Þ around the edge e, see
Definition A.1. As this will be of constant use, we introduce the notation y for the
two normal cartesian coordinates ðxn,xnþ1Þ, which will be also alternatively denoted
by ð y1, y2Þ. Let us consider as domain for the boundary value problem the wedge
W! ¼ e
 �! where �! is the plane sector fy % ðr, �Þ j � 2 ð�!,!Þg of opening 2!.
Let @��! be the two sides of �!. They correspond to the two sides @�W! of W!. The
situation which is the aim of our investigation corresponds to taking ! ¼ �.

But for a while, let us consider the more general case of an elliptic N 
N system
L ¼ ðLk‘Þ of order 2d complemented by two sets B� of m :¼ dN boundary condi-
tions on @�W!. The general framework of edge asymptotics demands a supplemen-
tary condition of ellipticity along the edge, see Maz’ya and Plamenevskii (1980),
Maz’ya and Rossmann (1988). A natural way to satisfy this condition is to suppose
that ðL,B�,BþÞ is associated with a coercive form b on Hd , see Dauge (1988),
as stated in Part A (but now with order 2d and more general boundary conditions).

Thus, let us consider u solution in Hd
ðW!Þ

N of the following boundary value
problem with a right hand side f 2 c

1
ðW!Þ

N

Lu ¼ f in W!

��B�u ¼ 0 on @�W!:

�
ðC:1Þ
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The solution u has an infinite edge asymptotics, mainly determined by the expansion
of the problem ðL,B�,BþÞ in ‘‘homogeneous components’’ ðLj,Bj

�,B
j
þÞ, j � 0, with

respect to the variables y normal to the edge e.
In the coordinates ðx0, yÞ 2 e
 �!, the system L has variable coefficients, in

general. We write it with the notation

L ¼ Lðx0, y; @
x
0 , @yÞ:

For any x
0
2 e, let L0

½x
0
� be the principal part of the operator Lðx0, 0; 0, @yÞ.

We denote similarly the boundary operators in local coordinates by B�ðx
0, r; @

x
0 , @yÞ

and their principal parts in y ¼ 0 by B0
�½x

0
�.

For each x
0 fixed in e, the singular exponents associated with x

0 are the complex
numbers � such that there exists nonzero solutions w ¼ wð�Þ to the problem

L0
½x
0
�ðr�wÞ ¼ 0 in �!

��B
0
�½x

0
�ðr�wÞ ¼ 0 on @��!:

(
ðC:2Þ

Due to the dependency on x
0 of the coefficients of ðL0,B0

�Þ, the set �½x0� of such
� varies in general with x

0
2 e, see Maz’ya and Rossmann (1988), Costabel and

Dauge (1993a).
The Ansatz for solutions in the form r�wð�Þ has a close relation with the Mellin

transform which allows a diagonalization of ðL0,B0
�Þ½x

0
� for each x

0. Let us recall the
Mellin transform ��Mð f Þð�Þ of a function f defined on Rþ:

Mð f Þð�Þ ¼

Z 1

0

r�f ðrÞ
dr

r
:

We have the formula Mðr@rf Þð�Þ ¼ �Mð f Þð�Þ which is the foundation of the Mellin
symbolic calculus. Thus the Mellin symbol ��A

0
½x
0
�ð�Þ of problem (C.2) is defined

after writing L0 and B0
� in cylindrical coordinates as

r�2dl0
½x
0
�ð�; r@r, @�Þ

and

r���, hb0
�, h½x

0
�ð�; r@r, @�Þ, ��, h ¼ degB�, h, ðh ¼ 1, . . . ,mÞ,

by A
0
½x
0
�ð�Þ :

H2d
ð�!,!ÞN �!L2

ð�!,!ÞN 
 C
2m

’ --�!ðl
0
½x
0
�ð�, @�Þ’, ��b

0
�½x

0
�ð�, @�Þ’Þ:

For each x
0
2 e, ��A

0
½x
0
�ð�Þ�1 is meromorphic in C and the set of its poles is �½x0�.

It is possible to classify the singularities occurring in the asymptotics of a
solution u of problem (C.1) in

(i) Leading singularities,
(ii) Shadow singularities.
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(i) The leading singularities. They are denoted s0 and are directly obtained from
the Mellin transform ��Mð f Þ½x0�ð�Þ of f ,e via the Mellin symbol A0

½x
0
� of problem

(C.2) by the inverse Mellin formula

s0ðx0, yÞ ¼
1

2i�

Z
�0
r�
�
A

0
½x
0
�ð�Þ

��1
Mðr2df , 0, 0Þ½x0�ð�Þ d�, ðC:3Þ

where the 0 in ð f , 0, 0Þ stand for the zero boundary conditions and �0 is a suitable
contour surrounding the poles � 2 �½x0� in the right half plane Re � > d � 1.f

(ii) The shadow singularities. They require for their definition the Taylor
expansion of the coefficients of L and B� with respect to y: Let

L ¼
X

jijþjkj�2d

‘i, kðx0, yÞ @i
x
0 @ky

and

B�, h ¼
X

jijþjkj���, h

bi, k
�, hðx

0, yÞ @i
x
0 @ky

be the expressions of L and B�. Then for j 2 N we define

Lj
½x
0
� :¼

X
jij�2d

X
jkj�j�j¼2d�j

@�y ‘
i,k
ðx
0, 0Þ

y�

�!
@i
x
0 @ky

and

Bj
�, h½x

0
� :¼

X
jij���, h

X
jkj�j�j¼��, h�j

@�y b
i, k
�, hðx

0, 0Þ
y�

�!
@i
x
0 @ky :

Let Aj
½x
0
� denote the triple ðLj

½x
0
�,Bj

�½x
0
�Þ. Then the shadow singularities s1, . . . , s p

are recursively defined as

s pðx0, yÞ ¼ �
1

2i�

Z
�0þp

r�
�
A

0
½x
0
�ð�Þ

��1
M
�
rbð f p, g

p
�Þ
�
½x
0
�ð�Þ d�, ðC:4Þ

with ð f p, g
p
�Þ ¼ A

1s p�1 þ � � � þA
ps0:

Here b is the collection of degrees ð2d, . . . , 2d, ��, 1, . . . , ��,mÞ and rbð f , g�Þ is a
condensed notation for

ðr2d f , r��, 1g�, 1, . . . , r
��,mg�,m, r

�þ, 1gþ, 1, . . . , r
�þ,mgþ,mÞ:

eDefined by Mð f Þ½x0�ð�, �Þ ¼
R1
0 r�f ðx0, yÞðdr=rÞ as a natural extension of the formula on Rþ.

fMore precisely, for any K 2 N we obtain the contribution modulo oðrK Þ to the infinite

asymptotic series by using a contour which surrounds the (finite set of ) poles � 2 �½x0� [N

contained in the strip d � 1 < Re � � K .
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(iii) The complete asymptotics. The sum s0 þ s1 þ � � � þ s p þ � � � gives the
asymptotics of u as r! 0.

In the most general case, the structure of the s p is quite difficult to describe
because of the possible change of multiplicities in the singular exponents �½x0�, see
Costabel and Dauge (1993a, 1994). If hypotheses are made to avoid any change of
multiplicity, see Maz’ya and Rossmann (1988), each s p can be decomposed into
elementary terms of the form cðx0Þ r�ðx

0
Þþp logq ruðx0, �Þ. Thus we obtain the follow-

ing expansion in local cylindrical coordinates: For any K 2 N

u ¼
X

Re �þp�K

Xqð�, pÞ
q¼0

Xjð�, p, qÞ
j¼1

c
�, p, q
j ðx

0
Þ r�ðx

0
Þþp logq ru

�, p, q
j ðx

0, �Þ þ urem,K : ðC:5Þ

The exponents �ðx0Þ belong to �½x0� [N and their real part is > d � 1. The coeffi-
cients c

�, p, q
j are c

1 functions on e and depend on f . The remainder urem,K satisfies
@�urem,K ¼ oðrK�j�jþ1=2Þ as r! 0 for any multi-index � 2 N

nþ1
0 . The u

�, p, q
j are

angular N-component vector functions in c
1
ð½�!,!� 
 eÞ and depend only on

the domain � and the operators ðL,BÞ.
The log r terms come either from nontrivial Jordan chains in A

0
½x
0
�
�1, or from

resonances between A
0
½x
0
�
�1 and the Mellin transforms Mðr2df , 0, 0Þ½x0�, see

Eq. (C.3), or M
�
rbA1s p�1 þ � � �

�
½x
0
�, see Eq. (C.4).

C.II. Crack Asymptotics, First Results

From now on, we concentrate on the situation of a crack, i.e., when the opening
! is �, and when the same boundary conditions are applied on both sides of the crack,
i.e., B� ¼ B. Thus the boundary conditions are denoted by B ¼ ðB1, . . . ,BmÞ and the
order of Bh is �h, h ¼ 1, . . . ,m. The boundary problem takes then the form

Lu ¼ f in W�

��Bu ¼ 0 on @�W�,

�
ðC:6Þ

where we assume that f 2 c
1
0 ðR

nþ1
Þ.

In this situation there holds

8x
0
2 e, �½x0� ¼

k

2
; k 2 Z

� (
: ðC:7Þ

This has been known for a long time for the Laplace operator, see Grisvard (1985).
It is proved for elasticity systems in Duduchava and Wendland (1995), for general
second order Petrovskii-elliptic systems (such as thermoelasticity or electroelasticity
for example) in Chkadua and Duduchava (2000, 2001), for general scalar elliptic
Dirichlet problems of order 2m in Kozlov (1990), and finally in the general frame-
work of Agmon–Douglis–Nirenberg elliptic systems in Costabel and Dauge (2002).

Therefore the assumptions on the constant multiplicity of the singular exponents
are satisfied and expansion (C.5) holds with �ðx0Þ ¼ k=2. This clear separation of the
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spectrum allows a decomposition of leading singularity s0 in (quasi-)homogeneous
elementary parts �0

� for � of the form � ¼ k=2 according to:

�0
�½x

0
� ¼

1

2i�

Z
�ð�Þ

r�A0
½x
0
�ð�Þ�1Mðr2df , 0, 0Þ½x0�ð�Þ d�, ðC:8Þ

where �ð�Þ is the circle with center � and radius 1=4.

Definition C.1. If �0 is defined by a residue formula like (C.8) on the circle �ð�Þ,
we call sequence of shadows associated with �0, the infinite sequence �p, p � 1,
defined by

� p
½x
0
� ¼ �

1

2i�

Z
�ð�Þþp

r�A0
½x
0
�ð�Þ�1


M
�
rb11r2½0, 1�ðA

1� p�1
þ � � � þA

p�0
Þ
�
½x
0
�ð�Þ d�: ðC:9Þ

Here �ð�Þ þ p is the contour around �þ p translated from �ð�Þ and 11r2½0, 1� is the
characteristic function in r of the interval ½0, 1�. g

By linearity, we obtain that a decomposition of s0 in a sum of �0
� provides the

corresponding decomposition of the shadow s p in a sum �
p
�, where ð�

p
Þp is the

sequence of shadows associated with �0
�. Therefore, from now on we only consider

elementary leading singularities of the form (C.8) and their sequence of shadows.
The result of Costabel and Dauge (2002, Thms. 5.2 and 5.3) gives moreover:

(i) In the leading singularities the noninteger exponents kþ 1=2 have no log r
terms and the corresponding basis of singular functions

�
rkþ1=2 u

kþ1=2
j

�
j
has

the dimension m.
(ii) Let �max :¼ maxf�1, . . . , �mg. For any integer � � �max, the functions

r�u�j ð�Þ are polynomials in the variables ð y1, y2Þ. Moreover, the shadows
of polynomials are polynomials.

Therefore:

(i) For an exponent � ¼ 1=2þ k, the elementary leading singularities have
the form

�0
�½x

0
� ¼

Xm
j¼1

cjðx
0
Þ rkþ1=2 u

kþ1=2
j ðx

0, �Þ, cj 2 c
1
ðeÞ:

(ii) For a positive integer � � �max, �
0
� is a finite sum of terms of the form

cðx0Þ ð yÞ with smooth c and polynomial  (homogeneous of degree �).
Moreover, the sequence of shadows �

p
� associated with �0

� have a similar
structure with homogeneous polynomials of degree �þ p.

As a consequence, we have obtained the statement of Proposition A.2 (i).
But, when � ¼ 1=2þ k, since �þ p ¼ 1=2þ kþ p is a singular exponent, i.e., a

pole ofA0
½x
0
�
�1, we should expect resonances inside the integrand of the shadows�

p
�,
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between M
�
rbA1� p�1

þ � � �
�
½x
0
� and A

0
½x
0
�
�1, i.e., poles of order >1, which would

yield log r factors. We are going to prove that, in fact, there are no resonances.

C.III. ‘‘Cayley’’ Representation Formulae

Our method is a direct continuation of Costabel and Dauge, (1993b) where
‘‘Cayley representation formulae’’ are introduced to describe the angular behavior
(in �) of the singular functions. It is shown there that any singularity can be expressed
by combination of two fundamental types of functions which, using the complex
writing � of the cartesian variables y ¼ ð y1, y2Þ

� ¼ y1 þ iy2 ¼ rei�,

can be written as, for any � 2 C, � 2 C with � 62 R
�, and � 2 C with j�j < 1:

ð�� þ �Þ� and ð� þ ��Þ�:

The above functions have to be interpreted in the following way:

ð�� þ �Þ� ¼ �
�
�
1þ �

�

�

��
and ð� þ ��Þ� ¼ ��

�
1þ �

�

�

��
, ðC:10Þ

which means in polar coordinates r > 0, � 2 ð��,�Þ:

ð�� þ �Þ� ¼ r�e�i��
�
1þ �e2i�

��
and ð� þ ��Þ� ¼ r�ei��

�
1þ �e�2i�

��
: ðC:11Þ

The action of a partial differential operator Qð@1, @2Þ on ð�� þ �Þ
� and ð� þ ��Þ�

exhibits its Cayley symbols Qþð�Þ and Q�ð�Þ as follows:

Qþð�Þ :¼ Q
�
�þ 1, ið�� 1Þ

�
and Q�ð�Þ :¼ Q

�
1þ �, ið1� �Þ

�
and there holds, if Q is homogeneous of degree q

Qð@yÞ ð�� þ �Þ
�
¼ Pqð�Þð�� þ �Þ

��qQþð�Þ

Qð@yÞ ð� þ ��Þ
�
¼ Pqð�Þð� þ ��Þ

��qQ�ð�Þ,

(

where Pqð�Þ is the polynomial �ð�� 1Þ � � � ð�� qþ 1Þ, of degree q.
Let us fix x

0
2 e. Let L�½x0�ð�Þ be the two Cayley symbols of L0

½x
0
� and B�½x0�

those of B0
½x
0
�. We have the following formulas, valid for any � 2 C, which are the

matrix version of the above ones: let q 2 C
N be a vector, there holds

L0
½x
0
�ð@yÞ



ð�� þ �Þ�q

�
¼ P2dð�Þð�� þ �Þ

��2d Lþ½x0�ð�Þq

L0
½x
0
�ð@yÞ



ð� þ ��Þ�q

�
¼ P2dð�Þð� þ ��Þ

��2d L�½x0�ð�Þq:

(
ðC:12Þ

These Cayley symbols allow to describe for any x
0 and � the space Z½x0�ð�Þ of the

homogeneous functions v of degree �, solutions of the equation without boundary
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conditions

L0
½x
0
�v ¼ 0:

Due to the ellipticity of the operator L0
½x
0
�, the equations

detL�½x0�ð�Þ ¼ 0

have m roots inside the unit disc j�j < 1, counting multiplicity, and no roots on the
unit circle j�j ¼ 1. Let us denote

��1 ½x
0
�, . . . ,��m� ½x

0
�, �þ1 ½x

0
�, . . . ,�þmþ ½x

0
� ðC:13Þ

the distinct roots of detL�½x0� and detLþ½x0� inside the unit disc.
For a while let us assume that these roots are simple (i.e., m� ¼ m). Thus,

let q�‘ ½x
0
� 2 C

N be nonzero elements of kerL�ð��‘ Þ, and for any (noninteger) � 2 C

let us define the N-component functions

wþ‘ ½x
0
�ð�Þ :¼ ð�þ‘ ½x

0
�� þ �Þ� qþ‘ ½x

0
� and

w�‘ ½x
0
�ð�Þ :¼ ð� þ ��‘ ½x

0
��Þ� q�‘ ½x

0
�:

Formulas (C.12) give immediately that these functions solve the equation
L0
½x
0
�v ¼ 0, thus belong to Z½x

0
�ð�Þ.

As proved in Costabel and Dauge (1993b, Th. 2.1), these 2m functions form a
basis of the space Z½x0�ð�Þ and, moreover, we obtain ‘‘stable’’ expressions of w�‘ ½x

0
�ð�Þ

with respect to the parameter x
0 without the assumptions that the roots �þ‘ ½x

0
� are

simple, by using contour integrals in � around the disc D
 of radius with 
 < 1 such
that D
 contains all roots �

�
‘ ½x

0
�: There exists N-component polynomials of degree

d � 1 in � depending smoothly on x
0, denoted q�‘ ½x

0
�ð�Þ for ‘ ¼ 1, . . . ,m, which

define a basis fw�‘ ½x
0
�g of Z½x0�ð�Þ:

wþ‘ ½x
0
�ð�Þ ¼

Z
j�j¼


ð�� þ �Þ� Lþ½x0�ð�Þ�1qþ‘ ½x
0
�ð�Þ d�

w�‘ ½x
0
�ð�Þ ¼

Z
j�j¼


ð� þ ��Þ� L�½x0�ð�Þ�1q�‘ ½x
0
�ð�Þ d�:

8>><>>: ðC:14Þ

This basis allows the construction of a 2m
 2m matrix n½x
0
�ð�Þ whose inverse has

the same poles as the inverse of the Mellin symbol A½x0�ð�Þ�1: For this let us intro-
duce W½x

0
�ð�Þ the N 
 2m matrix the 2m columns of which are

wþ1 ½x
0
�ð�Þ, . . . ,wþm½x

0
�ð�Þ, w�1 ½x

0
�ð�Þ, . . . ,w�m½x

0
�ð�Þ:

Let us recall that B0
½x
0
� is the m
N matrix of the principal parts of the bound-

ary operators Bðx0, 0; 0, @yÞ. Let h� be the trace operators (acting on
homogeneous functions)g

h�v ¼ v
��
r¼1 and �¼��

and hþv ¼ v
��
r¼1 and �¼�

:

gThe degree of homogeneity and the trace on r ¼ 1 completely determine an homogeneous

function: If v is homogeneous of degree � and V :¼ v
��
r¼1

, then vðr, �Þ ¼ r�Vð�Þ.
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The characteristic matrix of the problem is then the 2m
 2m scalar matrix given by

n½x
0
�ð�Þ ¼

h�B
0
½x
0
�

hþB
0
½x
0
�

� �
W½x

0
�ð�Þ:

The formula describing ½A0
½x
0
�ð�Þ��1 involves a right inverse to the operator L0 on

homogeneous functions of degree � (i.e., without boundary conditions) and the
inverse of the matrix n½x

0
�ð�Þ allows the correction of boundary conditions.

Let H� be the space of N-component vector functions homogeneous of degree �
on the plane sector ��. And let f � v ¼ R½x

0
�ð�Þ f be a solution operator of the

problem L0
½x
0
�v ¼ f , acting from H

��2d into H
�. According to Costabel and

Dauge (1993b), it is possible to construct such an operator with c
1 regularity in

x
0 and analytic dependency in �.

Our first representation theorem for the inverse symbol A0
½x
0
�
�1 is the following,

see Costabel and Dauge (1993b, Th. 4.4)—We write it directly for the Mellin inte-
grand r�½A0

½x
0
�ð�Þ��1 in view of application in formulas (C.8) and (C.9):

Theorem C.2. Let R½x0�ð�Þ be a right inverse to L0
½x
0
�, acting from H

��2d into H
�.

We have for any x
0
2 e, any � 2 C and any ðF,G�Þ 2 L2

ð��,�ÞN 
 C
m

 C

m:

r�
�
A

0
½x
0
�ð�Þ

��1�
F,G�

�
¼ R½x

0
�ð�Þ

�
r��2dF

�
þW½x

0
�ð�Þn½x

0
�ð�Þ�1




�
G� � h�B

0
½x
0
�R½x

0
�ð�Þ

�
r��2dF

��
: ðC:15Þ

Formula (C.15) will be applied recursively to special subsets of triples ðF,G�Þ
which have the property to be the traces (in r ¼ 1) of homogeneous functions repre-
sentable by Cayley integrals like (C.14):

Definition C.3. For any � 2 C, let us denote by H
�
0 the subspace of homogeneous

N-component functions f 2 H
� which admit a representation as:

f ¼

Z
j�j¼


ð�� þ �Þ� qþð�Þ d�þ

Z
j�j¼


ð� þ ��Þ� q�ð�Þ d� ðC:16Þ

with N-component vectors q� meromorphic in � (and without pole in the annulus

 � j�j � 1). Such a representation is made unique if we assume that the q� are
holomorphic outside the unit disc and tend to 0 as j�j ! 1.

We can define a special solution operator R0½x
0
�ð�Þ acting on the subspace H��2d

0

into H
�
0: For f 2 H

��2d
0 represented by (C.16) with the uniqueness constraint, we

define R0½x
0
�ð�Þ f by

R0½x
0
�ð�Þ f ¼ P2d ð�Þ

�1

Z
j�j¼


ð�� þ �Þ� Lþ½x0�ð�Þ�1qþð�Þ d�

þ P2d ð�Þ
�1

Z
j�j¼


ð� þ ��Þ� L�½x0�ð�Þ�1q�ð�Þ d�: ðC:17Þ
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The vector function obviously belongs to H
�
0 and if P2d ð�Þ 6¼ 0, formulae (C.12) give

immediately that L0
½x
0
�R0½x

0
�ð�Þ f ¼ f .

C.IV. Representation of Singularities

We start from the expression (C.8) of the leading singularity �0. The function

ðx
0,�Þ � Mðr2df , 0, 0Þ½x0�ð�Þ

is c1ðeÞ in x
0 and analytic in � in the disc 
� encircled by the contour �ð�Þ. Using the

representation (C.15) with analytic F and zero G�, we find that the only pole of
r� ½A0

½x
0
�ð�Þ��1Mðr2df , 0, 0Þ½x0�ð�Þ inside 
� is � ¼ � and that there holds

�0
½x
0
� ¼

1

2i�

Z
�ð�Þ

W½x
0
�ð�Þn½x

0
�ð�Þ�1w0

½x
0
�ð�Þ d� ðC:18Þ

with a 2m-component vector function ðx0,�Þ � w0
½x
0
�ð�Þ which is c

1 in x
0 and

analytic in �. Since the pole of nð�Þ�1 is of order 1, see Costabel and Dauge
(2002), and since by construction, the columns of W½x

0
�ð�Þ belong to the special

space H
�
0 of homogeneous functions, we have obtained

Lemma C.4. The leading singular function x
0��0

½x
0
� is c

1
ðeÞ with values in H

�
0,

which means that there exists N-component vectors q�0 ½x
0
�ð�Þ meromorphic in � and c1

in x
0 such that

�0
½x
0
� ¼

Z
j�j¼


ð�� þ �Þ� qþ0 ½x
0
�ð�Þ d�þ

Z
j�j¼


ð� þ ��Þ� q�0 ½x
0
�ð�Þ d�: ðC:19Þ

The first shadow singularity �1 is given by

�1
½x
0
� ¼ �

1

2i�

Z
�ð�Þþ1

r�
�
A

0
½x
0
�ð�Þ

��1
M
�
11r2½0, 1�ðr

b
A

1�0
Þ
�
½x
0
�ð�Þ d�: ðC:20Þ

The following lemmas give that the structure of A1�0 is compatible with representa-
tions of the type (C.16).

Lemma C.5. Let � 2 C. For any j 2 N, the operator Lj acts from c
1
ðe,H�

0Þ into
c
1
ðe,H�þj�2d

0 Þ.

Proof. The operator Lj is a linear combination with c
1
ðeÞ coefficients of terms of

the form y� @i
x
0 @
y with j
j � j�j ¼ 2d � j. The derivative @i

x
0 acts only on the coeffi-

cients depending on x
0 and do not change the angular structure, so we may discard it.

We are left with y� @
y, which we can write as a linear combination of terms

� �1 �
�2@
1 @
2

�
with 
1 þ 
2 � �1 � �2 ¼ 2d � j:
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It is clear that it suffices to prove that for any 
1, 
2, �1 and �2 with

1 þ 
2 � �1 � �2 ¼ 2d � j, and for any function qð�Þ meromorphic in �, there
exists q0ð�Þ also meromorphic in � such that

� �1 �
�2 @
1@
2

�

Z
j�j¼


ð�� þ �Þ� qð�Þ d� ¼

Z
j�j¼


ð�� þ �Þ�þj�2d q0ð�Þ d�:

We have

@
1@
2
�

Z
j�j¼


ð�� þ �Þ� qð�Þ d� ¼

Z
j�j¼


�
1ð�� þ �Þ��j
j qð�Þ d�:

With the equality � ¼ ð�� þ �Þ � ��, we transform � �1 �
�2 into a linear combination

of terms of the form � �1 ð�� þ �Þ�2 . Thus we are left with integrals of the formZ
j�j¼


�nð�� þ �Þ�þj�2d�n qð�Þ d�:

As @n�ð�� þ �Þ
�þj�2d

¼ c �nð�� þ �Þ�þj�2d�n, we integrate by parts n times in the above
integral and obtain the result. g

In the same way, we obtain the corresponding result for the trace operators:

Lemma C.6. Let � 2 C. For any j 2 N0 the operator B j acts from c
1
ðe,H�

0Þ into
c
1
ðe,H�þj�q

0 Þ, where H
��q
0 is the space of m-component functions homogeneous of

degree ð�� �1, . . . , �� �mÞ with Cayley representation like (C.16).

Let us return to Eq. (C.20). Let ðF1,G1
�Þ½x

0
� be the traces on r ¼ 1 of

A
1
½x
0
��0
½x
0
�. We have

M
�
1r2½0, 1�ðr

b
A

1�0
Þ
�
½x
0
�ð�Þ ¼

1

�� ð�þ 1Þ
ðF1,G1

�Þ½x
0
�:

By Lemma C.5, r�þ1�2dF1
½x
0
�ð�Þ belongs to c

1
ðe,H�þ1�2d

0 Þ: There exists q�½x0�
such that

r�þ1�2dF1
½x
0
� ¼

Z
j�j¼


ð�� þ �Þ�þ1�2d qþ½x0�ð�Þ d�

þ

Z
j�j¼


ð� þ ��Þ�þ1�2d q�½x0�ð�Þ d�:

We define for � 2 C the following element f 10½x
0
�ð�Þ 2 H

��2d
0 :

f 10½x
0
�ð�Þ :¼

Z
j�j¼


ð�� þ �Þ��2d qþ½x0�ð�Þ d�þ

Z
j�j¼


ð� þ ��Þ��2d q�½x0�ð�Þ d�:

Of course, f 10½x
0
�ð�þ 1Þ ¼ r�þ1�2dF1

½x
0
�. Let us denote

f 1½x0�ð�Þ :¼ r��2dF1
½x
0
� � f 10½x

0
�ð�Þ:

Asymptotics Without Logarithmic Terms 915



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

It is clear that in the representation formula (C.15), we may take as right inverse
of r��2dF1,

R0½x
0
�ð�Þ

�
f 10½x

0
�ð�Þ

�
þR½x

0
�ð�Þ

�
f 1½x0�ð�Þ

�
,

instead of R½x0�ð�Þ
�
r��2dF1

�
. Therefore we have the following decomposition in four

parts of the integrand of Eq. (C.20):

r�
�
A

0
½x
0
�ð�Þ

��1
M
�
11r2½0, 1�ðr

b
A

1�0
Þ
�
ð�Þ

¼
1

�� ð�þ 1Þ

�
r�
�
A

0
½x
0
�ð�Þ

��1
ðF1,G1

�Þ

�
¼

1

�� ð�þ 1Þ

�
U1 þU2 þU3 þU4

�
ð�Þ: ðC:21Þ

where

U1ð�Þ ¼ R½x
0
�ð�Þ f 1½x0�ð�Þ,

U2ð�Þ ¼ R0½x
0
�ð�Þ f 10½x

0
�ð�Þ,

U3ð�Þ ¼W½x
0
�ð�Þn½x

0
�ð�Þ�1

�
�h�B

0
½x
0
�R½x

0
�ð�Þ f 1½x0�ð�Þ

�
,

U4ð�Þ ¼W½x
0
�ð�Þn½x

0
�ð�Þ�1

�
G1
� � h�B

0
½x
0
�R0½x

0
�ð�Þ f 10½x

0
�ð�Þ

�
:

Coming back to Eq. (C.20), we have to compute the contour integral

�1
½x
0
� ¼ �

1

2i�

Z
�ð�Þþ1

ðU1 þU2 þU3 þU4Þð�Þ
d�

�� ð�þ 1Þ
:

Let us compute the residue in � ¼ �þ 1 of each of the four terms.

(i) As f 1½x0�ð�þ 1Þ ¼ 0, the residue of ð�� ð�þ 1ÞÞ�1U1ð�Þ is 0.
(ii) The residue of ð�� ð�þ 1ÞÞ�1U2ð�Þ is equal to U2ð�þ 1Þ, which coincides

with R0½x
0
�ð�þ 1Þ f 10½x

0
�ð�þ 1Þ, so it belongs to H

�þ1
0 .

(iii) As f 1½x0�ð�þ 1Þ ¼ 0, the pole of ð�� ð�þ 1ÞÞ�1U3ð�Þ is of order 1, and the
residue is a linear combination of the w�‘ ½x

0
�ð�þ 1Þ, therefore belongs to

H
�þ1
0 .

(iv) Finally, the pole of ð�� ð�þ 1ÞÞ�1U4ð�Þ in �þ 1 is, a priori, of order 2:

1

2i�

Z
�ð�Þþ1

W½x
0
�ð�Þ

n½x
0
�ð�Þ�1

�� ð�þ 1Þ




�
G1
� � h�B

0
½x
0
�R0½x

0
�ð�Þ f 10½x

0
�ð�Þ

�
d�: ðC:22Þ

916 Costabel, Dauge, and Duduchava



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

The term (C.22) is itself the sum of an element of H�þ1
0 , cf. (iii), and of

1

2i�

Z
�ð�Þþ1

W½x
0
�ð�Þ

n½x
0
�ð�Þ�1

�� ð�þ 1Þ




�
G1
� � h�B

0
½x
0
�R0½x

0
�ð�þ 1Þ

�
r�þ1�2dF1

��
d�: ðC:23Þ

By construction G1
� is the couple of traces h�B

1
½x
0
��0
½x
0
�. Therefore

G1
� � h�B

0
½x
0
�R0½x

0
�ð�þ 1Þ

�
r�þ1�2dF

�
¼ h��

1
½x
0
�,

where

�1
½x
0
� :¼ B1

½x
0
��0
½x
0
� � B0

½x
0
�R0½x

0
�ð�þ 1Þ

�
L1
½x
0
��0
½x
0
�
�
:

The m-component function �1
½x
0
� belongs to c

1
ðe,H�þ1�q

0 Þ by virtue of Lemmas
C.5 and C.6. Gathering the results for �1, we have obtained

Lemma C.7. The first shadow singularity �1
½x
0
� is the sum of �1

0½x
0
� which belongs to

c
1
ðe,H�þ1

0 Þ and of �1
1:

�1
1 :¼

1

2i�

Z
�ð�Þþ1

W½x
0
�ð�Þ

n½x
0
�ð�Þ�1

�� ð�þ 1Þ

�
h��

1
½x
0
�

�
d� ðC:24Þ

where �1
½x
0
� belongs to c

1
ðe,H�þ1�q

0 Þ.

C.V. The Relation of Compatibility

Our aim is to show that, in the Laurent expansion of

ð�� ð�þ 1ÞÞ�1n½x
0
�ð�Þ�1

�
h��

1
½x
0
�
�
,

the coefficient in front of the term ð�� ð�þ 1ÞÞ�2 is zero. Sincen½x
0
�ð�Þ�1 has a pole

of order 1 in �þ 1, the necessary and sufficient condition for this coefficient to be
zero is that

h��
1
½x
0
� 2 rgn½x

0
�ð�þ 1Þ, ðC:25Þ

which is the ‘‘relation of compatibility.’’

Lemma C.8. Let � be of the form 1=2þ k with k 2 Z. Let x
0
2 e. Then the range of

n½x
0
�ð�Þ is the subspace of the

ðb1�, . . . , b
m
�, b

1
þ, . . . , b

m
þÞ

which satisfy bh� ¼ �b
h
þ for h ¼ 1, . . . ,m.

Asymptotics Without Logarithmic Terms 917



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

Proof. Let us fix x
0 and let us drop it in the notations. In the case when the roots ��‘

are distinct, according to Costabel and Dauge (2002, §3), nð�Þ has the general
structure, by m
m blocks:

Eð�Þ 0
0 Eð�Þ

� �
e�i��Bþ

�e�i��B�

�e�i��Bþ e�i��B�

� �
Fþð�Þ 0

0 F�ð�Þ

� �
where Eð�Þ is a diagonal matrix everywhere invertible except on a finite number of
integers, F�ð�Þ are everywhere invertible and the two matrices B� are invertible, due
to the ellipticity of the boundary value problem, see Costabel and Dauge (2002, §4).
The statement of the lemma for � ¼ � is straightforward in this case. The general
case where the ��‘ are not supposed distinct is obtained by perturbation. g

Lemma C.9. Let � be of the form 1=2þ k with k 2 Z. Let � belong to H
��q
0 . Then

h�� ¼ �hþ�.

Proof. Let �h denote the components of �, for h ¼ 1, . . . ,m. The component �h

belongs to H
���h
0 , which means that there exists functions p�h meromorphic in �

and such that

�h ¼

Z
j�j¼


ð�� þ �Þ���h pþh ð�Þ d�þ

Z
j�j¼


ð� þ ��Þ���h p�h ð�Þ d�:

It remains to compute the traces h� of �h. We use the formulae

ð�� þ �Þ� ¼ �
�
�
1þ �

�

�

��
and ð� þ ��Þ� ¼ ��

�
1þ �

�

�

��
:

There holds (since j�j < 1)

�� ¼ rei��, �
�
¼ re�i��,�

1þ �
�

�

��
¼ ð1þ �e2i�Þ�,

�
1þ �

�

�

��
¼ ð1þ �e�2i�Þ�:

Whence

h��h ¼ eþið���hÞ�
Z
j�j¼


ð1þ �Þ���hpþh ð�Þ d�þ e�ið���hÞ�
Z
j�j¼


ð1þ �Þ���hp�h ð�Þ d�

hþ�h ¼ e�ið���hÞ�
Z
j�j¼


ð1þ �Þ���hpþh ð�Þ d�þ eþið���hÞ�
Z
j�j¼


ð1þ �Þ���hp�h ð�Þ d�

As � ¼ 1=2þ k, we have obtained the lemma. g

The consequence of Lemmas C.8 and C.9 for �1
½x
0
� is now clear: Eq. (C.25)

holds. Therefore the function �1
1½x

0
� defined in Eq. (C.24) also belongs to

c
1
ðe,H�þ1

0 Þ. Which means that, finally, the first shadow singularity �1
½x
0
� belongs

to c
1
ðe,H�þ1

0 Þ, i.e., satisfies at its degree of homogeneity exactly the same property
as �0

½x
0
�, see Lemma C.4.
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The proof of this property can be immediately generalized to the following:

Proposition C.10. Let � 2 C of the form 1=2þ k with integer k. Let F ½x0�ðr, �Þ belong
to c

1
ðe,H��2d

0 Þ and G�½x
0
�ðrÞ be the traces on � ¼ �� of a m-component vector

function �½x0� 2 c
1
ðe,H��q

0 Þ. Then the N-component function �½x0� defined as

�½x0� ¼
1

2i�

Z
�ð�Þ

r�
�
A

0
½x
0
�ð�Þ

��1
M
�
11r2½0, 1�ðr

2dF , rqGÞ
�
½x
0
�ð�Þ d�

belongs to c
1
ðe,H�

0Þ.

Therefore, with the help of Lemmas C.5 and C.6, we see that the procedure for
the analysis of the successive shadows �2, . . . ,�p is recursive. Therefore for
all p 2 N0,�

p belong to c
1
ðe,H

�þp
0 Þ and, thus, do not contain any logarithmic term.

C.VI. Absence of Logarithms, General Results

Examining the arguments of the proofs of Lemmas C.4 to C.6 and Proposition
C.10, we can see that, in fact, the result we have proved does not use any ellipticity in
the edge variable x

0
2 e, only the smooth dependency. In the next statement, we

select the hypotheses which are sufficient to obtain our result on the absence of
logarithms in shadow singularities:

Hypothesis C.11. Let x
0� ðL0,B0

Þ½x
0
� be c

1
ðeÞ with values in the space

Op2d, qEll ðR
2
Þ of ðN
NÞ elliptic systems homogeneous of order 2d with constant coef-

ficients in R
2, with complementing boundary conditions homogeneous of degree

q ¼ ð�1, . . . , �mÞ with constant coefficients. The Mellin symbol of ðL0, ��B
0
Þ½x

0
� is

denoted by A
0
½x
0
� with �� and �þ the traces on fð y1, y2Þ j y1 < 0g from below and

from above, respectively.
For any j 2 N, let x

0� ðLj,B j
Þ½x

0
� be a matrix-function with coefficients Lj

k, ‘½x
0
�

and B j
h, ‘½x

0
�, c1ðeÞ with values in the space of operators

Op2d�jðR2
Þ for Lj

k, ‘ and Op�h�jðR2
Þ for Bj

h, ‘,

where for p 2 Z, OppðR2
Þ is defined as the space of finite linear combinations with

c
1
ðeÞ coefficients of partial differential operators of the form y�@i

x
0@
y with

j
j � j�j ¼ p. We denote the triple ðLj, ��B
j
Þ½x

0
� by A

j
½x
0
�. g

The proofs of Lemmas C.4 to C.6 and Proposition C.10 then yield

Theorem C.12. Let ðLj,B j
Þj�0 be a sequence of operators satisfying Hypothesis C.11.

Let � ¼ 1=2þ k with k 2 Z and let �ð�Þ be the circle with center � and radius 1=4.With
the function ðx0,�Þ� ðF,G�Þ½x

0
�ð�Þ supposed to be c

1
ðeÞ in x

0 and analytic in �,
with values in L2

ð��,�Þ 
C
m

 C

m, we define the following leading singularity, which
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is a generalization of Eq. (C.8):

�0
½x
0
� ¼

1

2i�

Z
�ð�Þ

r�
�
A

0
½x
0
�ð�Þ

��1
ðF,G�Þ½x

0
�ð�Þ d�,

and its sequence of shadows ð�p
½x
0
�Þp according to Definition C.1. Then, for any integer

p � 0, �p
½x
0
� belongs to c

1
ðe,H

�þp
0 Þ. In particular �p

½x
0
�ðr, �Þ can be written in the

form r�þpwðx0, �Þ with w 2 c
1
ðe
 ½��,��Þ � C

N .

In fact this statement extends to the wider class of Agmon–Douglis–Nirenberg
systems with covering boundary conditions:

Hypothesis C.13. Let N 2 N, r ¼ ð�1, . . . , �NÞ, s ¼ ð�1, . . . , �NÞ,

m ¼
1

2
ð�1 � �1 þ � � � þ �N � �NÞ

and q ¼ ð�1, . . . , �mÞ. Let x
0� ðL0,B0

Þ½x
0
� be c

1
ðeÞ with values in the space

Opr,s,q
ADNðR

2
Þ of ðN
NÞ Agmon–Douglis–Nirenberg elliptic systems homogeneous

of order �k � �‘ with constant coefficients in R
2, with complementing boundary

conditions homogeneous of degree �h � �‘ with constant coefficients.
For any j 2 N, let x

0� ðLj,B j
Þ½x

0
� ¼: Aj

½x
0
� be a matrix-valued function with

coefficients Lj
k, ‘½x

0
� and B j

h, ‘½x
0
�, c1ðeÞ with values in the space of operators

Op�k��‘�jðR2
Þ for Lj

k, ‘ and Op�h��‘�jðR2
Þ for B j

h, ‘,

with OppðR2
Þ as in Hypothesis C.11. g

The Mellin transform and the Cayley representation can be used with the same
success in the framework of Agmon–Douglis–Nirenberg systems, see Costabel and
Dauge (1993b, 2002), which allows to obtain:

Theorem C.14. Let ðLj ,B j
Þj�0 be a sequence of operators satisfying Hypothesis C.13.

Let � ¼ 1=2þ k, �ð�Þ, and ðF,G�Þ½x
0
�ð�Þ be as in Theorem C.12. We define the

following leading singularity:

�0
½x
0
� ¼

1

2i�

Z
�ð�Þ

r��s
�
A

0
½x
0
�ð�Þ

��1
ðF,G�Þ½x

0
�ð�Þ d�,

and its sequence of shadows ð�p
½x
0
�Þp by an obvious modification of Definition C.1, with

b ¼ ð�1, . . . , �N , �1, . . . , �m, �1, . . . , �mÞ and � replaced with �� s as above.
Then �p

½x
0
� is homogeneous of multi-degree �þ p� s, i.e., its j-th component �

p
j

satisfies �
p
j ½x

0
�ðr, �Þ ¼ r�þp��j jðx

0, �Þ with  j 2 c
1
ðe
 ½��,��Þ.

We obtain as a corollary (and a generalization of Theorem A.3) that the asymp-
totics along a crack edge of the solutions of Agmon–Douglis–Nirenberg systems
associated with coercive bilinear forms contain no logarithmic term:

Corollary C.15. Let ðL,BÞ be an ðN
NÞ Agmon–Douglis–Nirenberg elliptic system of
order �k � �‘ with smooth coefficients in R

nþ1, with complementing boundary
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conditions homogeneous of degree �h � �‘ with smooth coefficients. Let us assume
that ðL,BÞ is associated with a coercive bilinear form. Let �max :¼ maxf�1, . . . , �mg.
Any solution u of problem (C.6) (with a smooth right hand side f ) which belongs
to Hs�s

ðW�Þ with s � �max has the following asymptotic expansion as r! 0: For any
integer K > k0

u ¼
Xm
j¼1

c0j ðx
0
Þ r1=2þk0�sw0

j ðx
0, �Þ þ

XK
k¼k0þ1

XjðkÞ
j¼1

ckj ðx
0
Þ r1=2þk�s wk

j ðx
0, �Þ

þ ureg,K þ urem,K , ðC:26Þ

where k0 is the smallest integer such that 1=2þ k0 > s� 1. The regular part ureg,K is in
c
1
ðR

nþ1
Þ. The remainder urem,K belongs to CKþ1�s

ðW�Þ and is flat of order K � s

near e.

C.VII. Angular Description of Singular Functions

For simplicity, let us go back to the situation where Hypothesis C.11 is satisfied
and let us consider �0

½x
0
� like in Theorem C.12, as well as its sequence of shadows

ð�p
½x
0
�Þp. Theorem C.12 tells us that �p

½x
0
� belongs to c

1
ðe,H

�þp
0 Þ, which means

that there exist meromorphic �� q�½x0�ð�Þ (with c
1
ðeÞ dependence on x

0) such that

�p
½x
0
� ¼

Z
j�j¼


ð�� þ �Þ�þpqþ½x0�ð�Þ d�þ

Z
j�j¼


ð� þ ��Þ�þp q�½x0�ð�Þ d�:

But, in fact, the vector-functions q�½x0� are not arbitrary meromorphic
functions in the unit disc: their poles belong to the set of the roots f��‘ ½x

0
�g‘¼1,...,m� ,

cf Eq. (C.13).
As a consequence, as we are going to show, it is possible to give a modular

representation of the �p
½x
0
�, if we assume

The multiplicities n�‘ of ��‘ ½x
0
� are constant on e: ðHC1Þ

Let a½x0� denote the set fð��‘ ½x
0
�, n�‘ Þg of the roots with their multiplicities.

Definition C.16. Under hypothesis ðHC1Þ, for any � 2 C and p 2 N, let us denote by
c
1
ðe,H�

a, pÞ the subspace of homogeneous functions f ½x0� 2 H
� which admit a

representation as:

f ½x0� ¼

Z
j�j¼


ð�� þ �Þ�qþ½x0�ð�Þ d�þ

Z
j�j¼


ð� þ ��Þ� q�½x0�ð�Þ d� ðC:27Þ

where the functions qþ½x0� and q�½x0� are meromorphic in �, c1 in x
0, with poles only

in the roots �þ‘ ½x
0
� of order � pnþ‘ and ��‘ ½x

0
� of order � pn�‘ , respectively. Let us

denote by c
1
ðe,H�

a, pÞ the space c
1
ðe,H�

a, pÞ � C
N . g
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With these definitions, we have the following properties.

(i) By Eq. (C.14), the kernel elements w�‘ ð�Þ belong to c
1
ðe,H�

a, 1Þ.
(ii) The definition (C.17) of R0 gives us that for any � 2 C and any p 2 N,

R0 acts:

R0 : c
1
ðe,H��2d

a, p Þ �!c
1
ðe,H�

a, pþ1Þ:

(iii) The proof of Lemma C.5 yields that for any � 2 C and any p 2 N, Aj acts:

A
j : c1ðe,H�

a, pÞ �!c
1
ðe,H�þj�2d

a, p Þ 
 c
1
ðe,H�þj�q

a, p Þ:

Revisiting the proofs of Lemma C.4 and Proposition C.10 we obtain

Theorem C.17. Under the assumptions of Theorem C.12 and under hypothesis ðHC1Þ,
for any p 2 N0 the edge singular functions �

p belong to c
1
ðe,H

�þp
a, pþ1Þ.

Since there holds for any � 2 C, for any � and �0 2 C

ð�� þ �Þ� ¼ ð�0� þ �Þ
�
þ
P
k�1

c�, kð�� �0Þ
k�kð�0� þ �Þ

��k

ð� þ ��Þ� ¼ ð� þ �0�Þ
�
þ
P
k�1

c�, kð�� �0Þ
k�

k
ð� þ �0�Þ

��k,

any function � in c
1
ðe,H�

a, pÞ has a representation as

� ¼
Xmþ
‘¼1

Xpnþ‘ �1
k¼0

�k
�
�þ‘ ½x

0
�� þ �

���k
cþk, ‘½x

0
� þ

Xm�
‘¼1

Xpn�‘ �1
k¼0

�
k�
� þ ��‘ ½x

0
��
���k

c�k, ‘½x
0
�,

with c
1
ðeÞ coefficients c�k, ‘. As a corollary of Theorem C.17 we obtain

Corollary C.18. Under the assumptions of Theorem C.12 and under hypothesis ðHC1Þ,
for any p 2 N0 the edge singular functions �

p have representations as

�p
½x
0
� ¼

Xmþ
‘¼1

Xð pþ1Þnþ‘ �1

k¼0

�k
�
�þ‘ ½x

0
�� þ �

��þp�k
c
p,þ
k, ‘ ½x

0
�

þ
Xm�
‘¼1

Xð pþ1Þn�‘ �1

k¼0

�
k�
� þ ��‘ ½x

0
��
��þp�k

c
p,�
k, ‘ ½x

0
�, ðC:28Þ

with coefficients c
p,�
k, ‘ 2 c

1
ðeÞ.

Let us denote by �‘,! for ! ¼ �1 the fundamental functions

�‘,þðx
0, r, �Þ ¼ �þ‘ ½x

0
�� þ � and �‘,�ðx

0, r, �Þ ¼ � þ ��‘ ½x
0
��:

The comparison with the fundamental angular functions introduced in Eq. (B.81)
is quite simple: Since, if L is real,

�‘ ¼
ið�þ‘ � 1Þ

�þ‘ þ 1
and �‘ ¼

ið1� ��‘ Þ

��‘ þ 1
,
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there holds

�‘,!ðr, �Þ ¼ ð�‘ þ 1Þ r ‘,!ð�Þ, ‘ ¼ 1, . . . , n!‘ , ! ¼ �1,

and conditions ðHB6Þ and ðHC1Þ are two formulations of the same assumption.
Coming back to the expansion (C.28), we note that the N-component vector

functions

d
p
‘,þðx

0, yÞ :¼
Xð pþ1Þnþ‘ �1

k¼0

�k�
ð pþ1Þnþ‘ �1�k

‘,þ ðx
0, yÞ c

p,þ
k, ‘ ½x

0
�

d
p
‘,�ðx

0, yÞ :¼
Xð pþ1Þn�‘ �1

k¼0

�
k
�
ð pþ1Þn�‘ �1�k
‘,� ðx

0, yÞ c
p,�
k, ‘ ½x

0
�

are polynomial in y, therefore c
1
ðR

nþ1
Þ, and there holds

�p
½x
0
� ¼

X
!¼�1

Xm!

‘¼1

�
��ð pþ1Þðn!‘�1Þ
‘,! ðx

0, yÞ d
p
‘,!ðx

0, yÞ: ðC:29Þ

If condition ðHA3Þ holds (i.e., if n�‘ ¼ 1, ‘ ¼ 1, . . . ,m) Eq. (C.29) takes the
simpler form

�p
½x
0
� ¼

X
!¼�1

Xm!

‘¼1

��
‘,!ðx

0, yÞ d
p
‘,!ðx

0, yÞ, ðC:30Þ

which means that the singular factors ��
‘,! do not depend on p.

As a final consequence of formulas (C.29) and (C.30), we obtain ‘‘modular
representations’’ of the solutions of elliptic BVP in the domain � ¼ R

nþ1
nm:

Theorem C.19. Let the hypotheses ðHA1Þ, ðHA2Þ, and ðHC1Þ be satisfied.

(i) Any solution u of the boundary value problem (A.1) with smooth right hand side f
has the following asymptotic expansion as r! 0: For any integer K � 0

u ¼
X
!¼�1

Xm!

‘¼1

�
1=2�ðKþ1Þðn!‘�1Þ
‘,! ðx

0, yÞ d ½K �‘,!ðx
0, yÞ þ ureg,K þ urem,K , ðC:31Þ

where the vector-coefficients d ½K�‘,! are c
1
ðR

nþ1
Þ and the regular parts ureg,K and urem,K

are as in Proposition A.2.

(ii) If the multiplicities n!‘ are all equal to 1, cf hypothesis ðHA3Þ, then u admits the
global decomposition

u ¼
X
!¼�1

Xm
‘¼1

�1=2
‘,!ðx

0, yÞ d1‘,!ðx
0, yÞ þ ureg,1, ðC:32Þ

where all vector-coefficients d1‘,! and ureg,1 are c
1
ðR

nþ1
Þ.
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Remark C.20. The multiplicities n!‘ are in fact the order of the poles of the inverse of
the Cayley symbol L!ð�Þ�1 in �!‘ . They can be smaller than the total multiplicity of
�!‘ . An example for this is the case of isotropic elasticity in R

3 where L�ð�Þ�1 have 0
as only pole, but the multiplicity is 2 (and not 3). The fundamental functions �‘,!

are simply

�þ ¼ � ¼ ð y1 � iy2Þ and �� ¼ � ¼ ð y1 þ iy2Þ,

and expansion (C.31) takes the form, compare with Chkadua and Duduchava (2000)

u ¼ �
1=2�ðKþ1Þ

d ½K �þ ðx
0, yÞ þ � 1=2�ðKþ1Þ d ½K �� ðx

0, yÞ þ ureg,K þ urem,K , ðC:33Þ

with c
1
ðR

nþ1
Þ
N coefficients d ½K �� . g
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