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ABSTRACT

We consider boundary value problems for elliptic systems in a domain comple-
mentary to a smooth surface with boundary, which models a crack with its edge.
The same boundary conditions are prescribed on both sides of the surface. We
prove that the singular functions appearing in the expansion of the solution along
the crack edge all have the form rk+'/21//(9) in local polar coordinates: The loga-
rithmic shadow terms predicted by the general theory do not appear. Moreover,
we obtain that, for a smooth right hand side, the jump of the displacement across
the crack surface is the product of r'/> with a smooth vector function. We present
two different, but complementing, approaches leading to these results, and
providing distinct generalizations. The first one is based on a Wiener—Hopf
factorization of the pseudodifferential symbol on the surface obtained after
reduction of the boundary value problem. The second approach concerns directly
the boundary value problem and is based on a closer look at the Mellin symbol at
each point of the crack edge.

"Dedicated to Prof. W. L. Wendland for his 65th anniversary.

*Correspondence: Martin Costabel, Institut Mathématique, UMR 6625 du CNRS,
Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France; E-mail: costabel@
univ-rennesl.fr.

869

DOI: 10.1081/PDE-120021180 0360-5302 (Print); 1532-4133 (Online)
Copyright © 2003 by Marcel Dekker, Inc. www.dekker.com



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

870 Costabel, Dauge, and Duduchava

Key Words: Edge asymptotics; Crack surface; Boundary value problems;
Pseudodifferential operators; Wiener—Hopf factorization; Mellin symbol.

INTRODUCTION

Solutions of elliptic partial differential or pseudo-differential equations have
many opportunities of being non-smooth: In certain points they can have a singular
asymptotics instead of a regular Taylor expansion. This happens for elliptic bound-
ary value problems if the domain has conical or edge singularities, see works by
Costabel and Dange (1993a), Dauge (1998), Kondrat’ev (1967), Maz’ya and
Plamenevskii (1984), Maz’ya and Rossmann (1988), Nazarov and Plamenevskii
(1994), or even if the domain is smooth but the operator has some degeneracy, see
Andersson and Chrusciel (1993) and Mazzeo (1992). This also happens for elliptic
pseudo-differential equations posed on a domain with boundary, as soon as they do
not satisfy the transmission condition, see works by Bennish (1993), Chkadna and
Duduchava (2001), Costabel and Stephan (1987), Dnduchava and Natroshvili
(1998), Duduchava and Wendland (1995), and Eskin (1981).

In the case of degenerate Fuchsian equations or pseudo-differential equations on
a smooth n-dimensional manifold .# with boundary, the terms of the solution
asymptotics in general have the form

1o 1 d(2)

where r = |z,| and 2, #,, are the tangential and normal variables to the boundary,
respectively. Here the exponent A belongs to a finite set of complex numbers and k, ¢
are non-negative integers. In the case of elliptic boundary value problems on
domains with edges, the solution asymptotics have the more general form

P log? r (0, 2)

where (r, 6, 2") are cylindrical coordinates around the edge and A belongs to a dis-
crete, but in general infinite, set of complex numbers.

In this article, we study a quite general class of elliptic pseudo-differential equa-
tions on the manifold .#, together with general elliptic boundary value problems
posed on R""\ 7. In the latter situation the set of generating exponents A is reduced
to {1/2}. Our special concern is the absence of logarithmic terms log? r in the corre-
sponding asymptotics (this issue is also the topic of Andersson and Chrusciel (1993),
for a nonlinear degenerate problem). In fact, these logarithmic terms seem to have
good reasons to appear because of resonances between asymptotics due to the prin-
cipal part of the operator and its Taylor expansion near the boundary & of .# (or the
edge of R\ 7).

Up to now, the general results on the absence of logarithms concerned the
first term in the asymptotics, those generated by the principal part of the operator
only. For scalar ¥YDO see Eskin (1981), for systems of WDO see Chkadua and



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Asymptotics Without Logarithmic Terms 871

Duduchava (2001) and for Agmon—Douglis—Nirenberg systems see Costabel and
Dauge (2002): Logarithms are absent from the first asymptotic term

— For systems of classical ¥DO with principal symbol ay = ay(2’, z,,; £, &,) if
ag(#’,0;0, + 1) 'ag(«/,0;0, — 1) is diagonal for all 2’ € &,

— For Agmon—Douglis—Nirenberg systems if the same boundary conditions
are applied on both sides of the crack surface .#.

In the present work, we exhibit quite general conditions for the rotal absence
of these logarithmic terms in the whole asymptotics for both families of problems:
In Part B for pseudo-differential operators and in Part C for boundary value
problems. It turns out that both results can be applied to a sub-class of these
boundary value problems which is of high practical interest: This is explained in
Part A. The most important model in this class is the crack problem in three-
dimensional linear elasticity, either isotropic or anisotropic: There the boundary
conditions are Neumann, i.e., tractions are prescribed on both faces of the crack
surface.

Part A: Elasticity-like operators. We consider in this part homogeneous second order
coercive systems with constant coefficients in the domain Q := R"!\_Z, associated
with Dirichlet or Neumann boundary conditions on both sides of the crack surface
. The prototype of such operators is the system of linear elasticity. We motivate
and illustrate the more general results obtained in the rest of the article by their
application to this case. For such operators we can indeed apply both approaches
(PDE or ¥DO) to obtain that the asymptotics of solutions around the crack edge &
is logarithm free:

— Either we reduce the problem to a pseudo-differential equation on .# and we
prove that the symbol of this equation satisfies our ““continuity property”
which ensures the absence of logarithm for its solution; the asymptotics of
the solution in the full space is then deduced by a representation formula
from the asymptotics of the solution on ./Z.

— Or we apply directly our result on general Agmon—Douglis—Nirenberg sys-
tems, based on an investigation of properties of the Mellin symbol at each
point of the crack edge &.

Part B: WDO. We consider classical N x N matrix symbols a(z; &) = ay(z; &) +
a;(2; &) +--- of order v € R, defined on the cotangent manifold 7 *.#, and with
elliptic principal symbols a,. The asymptotics of solutions to the equation

a(z,D,)p(r)=g), xe€M

with a smoth g, contains logarithms in general. We introduce what we call
“generalized continuity property” which states that there exists a non-zero complex
number A such that for all 2/ &, j € Ny, o € N§~!, m e Ny:

I o a(2',0;0, — 1) = (=1 1A a;(2/,0;0, +1).
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We prove that under this condition, the asymptotics of ¢ only contains terms of the
form (where the variable r coincides with |z,|)

PR with keN, and § e C such that ¢*™ = A.

For integer v and A = (—1)", our condition coincides with the usual transmission
condition, see Boutet de Monvel (1971)—note that, in this case, the exponents
v/2 4§ are integer. For A = 1, this condition is our continuity property which we
prove to be satisfied with v = 1 or —1 by the symbols obtained after reduction to the
boundary of a second order elliptic system with constant coefficients—the exponents
v/2 + § are then integer translates of 1/2.

Part C: Boundary value problems. We study directly elliptic boundary value problems
on 2 by means of a two-level representation formula for the edge asymptotics of
their solutions. The first level is the classical Cauchy integral involving the inverse
Mellin symbol at each point of the crack edge &. The second level, that we call Caley
representation formula, concerns the angular variable 6: The Mellin symbol is
proved to act between special subspaces of angular functions. We prove that this
fact precludes the appearance of logarithmic terms. This approach yields logarithmic
free asymptotics for any Agmon—Douglis—Nirenberg system with smooth coefficients
(provided a classical ellipticity condition holds along the edge, ¢f Maz’ya and
Plamenevskii (1980) and Schulze (1998), which ensures the existence of a general
asymptotic expansion).

PART A. SCOPE AND COMMON PRINCIPAL RESULTS

A.lL. The Crack Domain and the Elasticity-like
Boundary Value Problem

Let .# be a bounded %™ orientable surface of codimension 1 in R, We
assume that the boundary & of .# is €. Let

Q:=R"\7.

be the domain where the boundary value problems are set. For the equations of
linear elasticity (with isotropic or anisotropic material law), the solutions of such
boundary value problems yield the stresses in the domain € around .# which repre-
sents a crack with front &. For the equations of electromagnetism (Helmholtz or
Maxwell), the solutions represent the diffracted field around the screen /.

We are going to set our problem and describe our results in a framework
including such problems, which is also covered by the hypotheses of our two
methods.

We denote by x = (xy,...,X,,) cartesian coordinates in R and by 9% the

partial derivative 8?1---837:1‘. Let b be a homogeneous integrodifferential form of
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degree 1 with constant coefficients acting on N component vectors u, v € H'(Q)"

N N
W =323 3 / i oy 0L dx.
=1 |al],|pl=1

Jj=1k
Here u = (uy,...,uy), v=(vy,...,vy). The coefﬁments a4, /3 are supposed constant.
We assume that the form & is coercive on H/(Q)", i.e., that for some constants c,
C > 0 there holds

vu e H'(Q)",  Reb(u, )+ Clulfzq) = clulliyq)- (Da1)
Moreover, we suppose that 5 is symmetric on H'(Q)":

Vu, v e H'(Q)Y,  b(u,v) = b(v,u). (Ha2)
The partial differential operator associated with the form b is

L=(Ly), with Ly=— Y ofd/ o

lol, 1B]=1

Hypotheses (94;) and (94,) are satisfied for the Laplace equation (N = 1), for
the equations of general elasticity, including the anisotropic case, (N is equal to the
dimension of the space) and for equations of thermoelasticity and electroelasticity
(N is the dimension of the space plus 1).

Since ./# is orientable, we can define a smooth unit normal vector field n on .Z,
which is unique if we choose the direction of the normal at some fixed point. After
fixing the field n we can fix the traces y., taking y, opposite to the direction of n
(i.e., from “above” if we consider n as pointing upward) and taking y_ in the
direction of n (i.e., from “‘below”).

The Neumann operator T associated with » and the normal field n is defined as

( J)ik with

Tim Y Wdl ol
leel, |Bl=1

Let B denote either the identity (which will be associated with the Dirichlet
operator) or the Neumann operator T on .#. We consider solutions u € H'(£)"
of the problem

Lu=f in
{ yoBu=0 on ., (A1)
with, possibly, conditions at infinity (note that we may relax the condition
u e H'(Q)Y into w e H(2 N %)Y for any R > 0, with % the ball of center 0 and
radius R). We assume that f is a ¢ vector function on R""!, with compact support.
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A.Il. State of the Art and Motivations

Due to the presence of the edge &, the domain is highly non-smooth and this
yields strong singularities for the solutions of problem (A.1) along this edge.
The general structure of these singularities is known, and addressed by many
works, see Chkadua and Duduchava (2000), Costabel and Dauge (1993a), Dauge
(1988), Duduchava and Wendland (1995), Grisvard (1985), Kondrat’ev (1970),
Maz’ya amd Rossmann (1988), Nazarov and Plamenevskii (1994), Nazarov and
Plamenevskii (1995a), and Nikishkin (1979). The generic form of these singularities
is

Q ’
c(2) Z P Jog? r tpq(sz’, 0)

q=0

where 2’ represents coordinates in &, and (r,6) polar coordinates in the planes
normal to &, centered on &. The structure of u in a neighborhood of the boundary
& of . is very important in applications.

For example, in elasticity, the asymptotics of u provides essential data for the
investigation of crack propagation in the quasi-static case. The propagation criterion
is based on the stress intensity factors (the coefficients c(2”) of the leading terms in
asymptotics) and on the “polarization operator’ (which involves the second terms in
asymptotics), see Nazarov and Plamenevskii (1995b). But the application of these
tools requires that the asymptotic expansion of u contains neither oscillatory terms
(i.e., non real exponents A) nor logarithmic terms (i.e., log? r with ¢ > 1).

— Concerning oscillations, it is known that the solution of the crack problems
never oscillates provided the crack is inside an homogeneous material, even
if the material is anisotropic, see Duduchava and Wendland (1995) and
Nazarov and Plamenevskii (1994).

— Concerning logarithms, although absence of logarithms in the leading terms
was known long ago for isotropic materials (Grisvard, 1989; Nazarov and
Plamenevskii, 1994), the same was not proved for further terms, where
logarithms could appear as shadow singularities.

The main scope of the present investigation is to establish that the structure of
the solution u of the general problem (A.1) is simpler than the general theory would
predict. The main result can be summarized in one sentence:

“The edge asymptotics of u does not contain any logarithmic term logr.”

Still in the framework of elasticity, this was observed in the case of a curved
crack in the isotropic elastic plane R* for the second term in the asymptotics in
Wendland and Stephan (1990, Theorem 2.4) and in the case of a half plane crack
lR?%r in the anisotropic elastic space R? in Duduchava and Wendland (1995, Theorem
4.3); For curved cracks the conjecture was first formulated by S. A. Nazarov.

Moreover, it has been shown Costabel and Dauge (2002) and Duduchava and
Natroshvili (1998), that even in the very general framework of Agmon—Douglis—
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Nirenberg systems with the same boundary conditions on both sides of the crack .Z,
the principal part of the asymptotics contains only powers of r with half-integer
exponents (i.e., A = 1/2+k, k € N;), and without any logr term, see also Kozlov
(1990), for scalar operators of order 2m with Dirichlet condition. In this work, we
prove that, in fact, this simple structure extends to the complete asymptotics.

The result that the whole asymptotics does not contain logr terms is by no
way obvious, and is not an easy consequence of the simple structure of its principal
part. Indeed, because the exponents 1/2+ k of the whole asymptotics are all
translated from each other by integers, we should expect logr terms, due to the
interaction between the non-principal terms in the operator and the principal
singularities (see, for example, Kozlov et al. (2001, Remark 10.5.1), where this
interaction is explained).

A.III. Reduction to the Crack Surface and Representation Formulas

One of the essential features of our crack-type boundary value problem (A.1) is
that all information on the singular behavior of u is contained in an N-component
vector function ¢, defined on the crack surface by the jump of u across .#

¢=[Cul:=y,Cu—y_Cu

where C denotes the complementing trace of B, i.e., the Dirichlet trace if B is
Neumann and C = T if B is Dirichlet. Of course, the asymptotics of u will yield
the asymptotics of ¢. But even more important is that ¢ can be directly obtained as
the solution of a pseudodifferential equation on .# of the form

a(z,D,)p(r)=g(x), 7€M, (A.2)

and analyzed in this respect. The relation between the boundary value problem (A.1)
and the pseudodifferential Eq. (A.2) will be fully explained in § B.II. Let us only
mention that in the case of the Dirichlet problem a = V, where V := y, v = y_7"is
the trace of the single layer potential ¥~ associated with the operator L, and in the
case of the Neumann problem, a = W, where W := y_T% = y, T% is the Neumann
trace of the double layer potential 2. Then u can be reconstructed by the representa-
tion formula

Vx € Q, u(x)= Nf(x)+ Z[ul(x) — 7V [Tu](x), (A.3)

where [u] := y,u — y_u and [Tu] := y, Tu — y_Tu denote the jumps of the functions
u(x) and Tu(x) across the surface .# and N denotes the Newton (volume) potential.
Thus, the asymptotics of # depends only on ¢ because the volume potential part Nf
is smooth and [Bu] = 0 on .Z.

Note that the coerciveness hypothesis ($,;) ensures the Fredholm property of
both problems (A.1) and (A.2) in appropriate spaces.
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Thus, two different approaches are available to us: either first study the solution
¢ of equation (A.2), then derive the asymptotics of u, or first study the solution u of
problem (A.1), then derive the asymptotics of ¢ = [Cu].

First approach. The results are a consequence of Part B where we develop the poten-
tial operator technique based on the Wiener—Hopf factorization, according to the
three main following steps:

Step 1 The boundary value problem (A.1) is reduced to a pseudodifferential
equation of type (A.2) on the crack surface .# by invoking the repre-
sentation of solutions (A.3), see § B.II.

Step 2 Asymptotics of solutions ¢ of the pseudodifferential equation on the
crack surface are found using the Wiener—Hopf factorization, see
§ B.III-§ B.VII.

Step 3 By inserting the surface asymptotics into the representation
formula (A.3), the full spatial asymptotic expansion of u is derived,
see § B.IX.

G. Eskin (1981) was the first who applied the Wiener—Hopf factorization to
investigations of asymptotics. The method received then many contributions
(Bennish, 1993; Chkadua and Duduchava, 1998; 2000; 2001; Costabel and
Stephan, 1987; Duduchava and Natroshvili, 1998; Duduchava and Wedland, 1995).

Second approach. It is developed in Part C: it relies on the classical Mellin transform,
cf Kondrat’ev (1967), and more recent representation formulas for the angular part
of singular functions, cf Costabel and Dauge (1994). The main steps are:

Step 1 By separation of variables and Mellin transform in r, the problem is
transformed into systems of ordinary differential equations in the angu-
lar variable 0 with the parameters 2" and A, the dual variable of r, see §
C.I

Step 2 The solutions of these systems are represented by contour integrals
around the unit circle with the Cayley symbols of the principal part
of the operator, see § C.IV.

Step 3 By the Cayley representation formulae, the condition of absence of
logarithm is reduced to compatibility conditions between traces of a
series of right hand sides in the Mellin calculus, see § C.V.

A.IV. Results

In order to state our results, let us introduce local coordinates in a neighborhood
of the edge & which is the crack front.

Definition A.1.

(i) Leta =(#y,...,7,_,) denote local coordinates in &.
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(i) For 2’ € &, let I, denote the normal plane to & containing 2’. We take
polar coordinates (r,0) in IT,, such that » = 0 is the intersection I1,, N &,
0 = —mis [1,, N.# from below and 6 = 7 is 1, N .# from above.

(i) We set z, = rcos® and 2, = rsind. The n coordinates (2’,7,) are local
coordinates in .# and the n+ 1 coordinates z := (2, ,,2,;,) are local
coordinates in 2 in a neighborhood of &.

(iv) The local cylindrical coordinates are (2',r,6) and we shall use
(@',r,0) =2 € .# and (2/,0,0) = 2’ € &.

(v) The dual variables of # = (2/, 2, 7,,) are denoted by & = (£, &,,&,,1).

(vi) We denote by «: z +>x the generic map of an atlas on .#, and by
J(2) = [Di(z)"]7", the inverse of its Jacobian matrix. |

From the combination of general edge asymptotics (Costabel and Dauge, 1993a;
Dauge, 1988; Maz’ya and Plamenevskii, 1980; Maz’ya and Rossmann, 1988;
Nazarov and Plamenevskii, 1994), and of the particular structure of the principal
part for crack problems (Costabel and Dauge, 2002; Daduchava and Wendland,
1995), we may derive that there holds the following general statement, see §B.2
and C.2.

Proposition A.2.

(1) Any solution u of the boundary value problem (A.1) with a smooth right hand side
f has the following asymptotic expansion as r — 0: For any integer K > 0

N
u= Z c?(}/) rl/zlpjo(ﬁ(", 0)
=

K gqk) jk) N N
+ Z > Zc A"y P Joglr (2, 0)

q=0 j=
+ uregK + Urem K - (A4)

The coefficients cj, & are €>(&) functions depending on f. The regular part e,  is a
linear combination of terms of the form c(2") p(2,,, Zp41), with polynomial p and € (&)
coefficient c. The remainder urem K vamﬁes Bﬁurem =0 ‘ﬂHl/z) as r — 0 for any
multi-index B € N"+l. The 1/1/ and !/I] ‘" are N-component vector functions in
€¢>°([—m, 7] x &) and depend only on the domain Q and the operators (L, B).

(i) Any solution ¢ = [Cu] of the pseudodifferential Eq. (A.2) with a smooth right
hand side g has the following asymptotic expansion as r — 0: For any integer K

K q(k)
¢ =r"d0) + Z Z SRS T O
k=1 ¢=0
+ ¢rem,K' (AS)

Here v is the order of the pseudodifferential operator a. The d° and d" are
N-component vector functions in €°°(&). The remainder @,  satisfies 3” Dremkx =
o (K72 as r — 0 for any multi-index B € NI+,
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Our main result in this article is that there are no logarithmic terms at all in
expansions (A.4) and (A.5):

Theorem A.3.

(1) Any solution u of the boundary value problem (A.1) with smooth right hand side f
has the following asymptotic expansion as r — 0: For any integer K > 0

K jk)
u= Zc,(z)ﬂ/zwj(z 9)+Z /Zc (") DYk 6)
+ Ureg K + Urem K - (A6)

The scalar coe]ﬁczenls CJ belong to €*°(&) and depend on f, while the N-component
vector functions l/lj depend only on the domain Q and the operators (L, B).

(i) Any solution ¢ = [Cu] of the pseudodifferential equation (A.2) with smooth right
hand side g has the following asymptotic expansion as r — 0: For any integer K > 0

K

¢ =r"d )+ A ) + ok (A.7)

k=1
The coefficients d° and d*1 are N -component vector functions in €°°(&).

This result is a consequence of the more general results that we prove in Parts B
and C. Moreover both approaches allow precise representation formulas for the
“angular” vector functions lp]/?'(%", ) as linear combinations of simple trigonometric
functions, see §B.IX and C.VII.

Because of the relation ¢ = [Cu] between u and ¢, it is quite simple to link the
first terms in expansions (A.6) and (A.7).

e For Neumann: C = Id and:
N
A’ =Y @) [0,
j=1
where [§/(0)], denotes the jump Y(7) — Y(—m).

e For Dirichlet: C = T, and let /' Ty(«', 6; rd,, 3,) + T,(2)d, be the expression
of T in cylindrical coordinates. Then there holds

) = Zc ) [T(J(f 0; = >1///(x 9)}
e Defining sj(-)(%’) € (&) ® C" by

&ﬁ=WW@] if € =1d,
(') = |:T0(9 2'; >./,J(z 9)} ifC=T,
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we get the common relation
N
d’() =" @) (). (A.8)
=1

The vectors sjo(zr’), j=1,..., N are independent of the right hand side and form a
basis of CV for each fixed 2. We will address in a forthcoming article formulae and
numerical methods for computing the scalar coefficients Q?(%’).

Conversely, as a consequence of the representation formula (A.3), we obtain the
inverse relation between the coefficients involved in Eq. (A.8): all coefficients c_?(xr/)
are defined as a composition of some matrices with d°(z), see Chkadua and
Duduchava (2000).

A.V. Modular Representation

The asymptotics (A.6) and (A.7) give the possibility of representing # and ¢ as
finite linear combination of non-smooth functions with smooth coefficients: As a
straightforward consequence of (A.7), we obtain the following factorization of the
density ¢:

Corollary A.4. Any solution ¢ of the boundary pseudodifferential Eq. (A.2) with a
smooth right hand side g satisfies

¢ e €°CH)N. (A.9)

As a further consequence of the expansion (A.6), we can prove that a simple
splitting of # holds in local cylindrical coordinates. For this, we first introduce %, a
closed tubular neighborhood of the edge & where the local cartesian coordinates are
well defined. We may take % as a set of the form

U= {2, 2y 2011) 7 < 19, 7' € E}.

Then we denote by % its expression in local cylindrical coordinates
U={(,r,0;0<r<ry, 0e[-mnl 2 €8}

Note that we distinguish the two faces 0 = —m and 6 = 7 of uU.

Corollary A.5. Let u be any solution of the problem (A.1) with a smooth right hand side
f and denote by u its expression in local cylindrical coordinates: u(x',x,,,.,) =
u(2',r,0). Then & admits a splitting in two parts

(7', r,0) = iig(«',r,0) + r'? i, (4, r,0), (A.10)
where uy and a; are (600(@) in the variables r, 6 and 2.
Now, we write Eq. (A.10) in local cartesian coordinates and obtain

YA P . 1/2 YAV
u(%/:%na%rﬂrl):uO(%/v‘%n’%nJrl)—i_r/ ul(%/’%m%wrl)' (All)
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The part u is in fact €°°(%) in the coordinates (4, #,,%,.;). Now we may
wonder if u; is also a €*°(%) function. This is not true. For example, for the
Laplace operator with Dirichlet boundary conditions we have u; = ¢; sin(1/2)6 +
¢yrsin(3/2)6 + - - - Replacing the factor r'/? by another function does not help. We
need to split /%4, into new parts. Again, when L = A and n = 2, we simply have

PPuy =)=+ e =P+ (=)

with ¢ = re”. Therefore

172

PPup =i+ e+l )+ F el ol + )

1/2 ’

which means that r'/?u; can be written as ¢'/?u| + £"%uy with $°(%) functions }
and u5. This result extends to the wider class of problems satisfying hypotheses (H4;)
and (94,), provided a condition on the symbol of the interior operator L: the
symbol &— L(§) of L is defined so that L = L(D,), where D, = id,. We require
that this symbol satisfies,

V2’ € &, the roots teC of (Sr0)
det L(,# (2")(0,1,7)) =0 are simple, A3

where we recall, cf Definition A.1, that 2’ stands for 2 = (27,0, 0) and (0, 1, 7) is the
value of the dual variable £ = (£, &,,&,,1). Note that L(,# (") ) is the principal part
of the symbol of the operator L written in local variables (z; §).

Theorem A.6. If hypotheses (Ha1)—(Daz) are satisfied, there exist 2N scalar singular
Sunctions oy = r'?@(27,0) for £ = 1,...,2N, with ¢, € €>(& x [, 7]) such that any
solution u of the problem (A.1) with smooth right hand side f can be split as follows

/ /
U=uy+ou +---+ oy, (A.12)
where uy, uy, ... sy are €°°(U)-smooth vector functions in local cartesian variables.

PART B. THE WIENER-HOPF APPROACH

In this part we investigate the asymptotics of solutions of a class of
Pseudo-Differential Equations (WDE) on the manifold .#; we also study how
these asymptotics are transformed by representation formulas and how they give
back asymptotics for our class of Boundary Value Problems (BVP).

After fixing in § B.I notations for more or less classical functional spaces, includ-
ing anisotropic Bessel potential spaces, we recall in § B.II, how the boundary value
problem (A.1) with Dirichlet or Neumann boundary conditions can be reduced to
the WDE (A.2) on the manifold .#. The feedback is governed by the representation
formulas which reconstruct the solution of the BVP in @ from the solution of the
WDE on ./Z.

In § B.III, independently from the previous section, we consider the class
of classical WDE on .# and recall from Chkadua and Duduchava (2001)
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and Eskin (1981) the general form of asymptotics of the solutions ¢ of such
equations near the boundary & of ..

In § B.IV, we introduce the sub-class of classical WDE where the full symbol
satisfies what we call the “continuity property” ($g,) With respect to the conormal
variable. We state in Theorem B.4 the main result of Part B: the asymptotics of the
solutions do not contain any logarithmic term. We also prove that the WDE (A.2)
obtained from the BVP (A.1) satisfies the continuity property.

In § B.V, before proving the main theorem in its full general framework, we
investigate the simpler situation of scalar YDO in dimension 1. We find a necessary
and sufficient condition, denoted ($ps) and called “generalized continuity property”
for the absence of logarithms from the whole asymptotics: the continuity property
(Hp4) appears as a particular case of (Hgs).

In § B.VI, we give useful auxiliary propositions relating to ¥DO in one variable
acting on functions of n variables and in § B.VII, we prove the main Theorem B.4.
Then, in § B.VIII, we show how this latter statement extends to N x N matrix
symbols satisfying the generalized continuity property on ..

In § B.IX, relying on results from Chkadua and Duduchava (2000), we give, as a
consequence of the simple structure of the solutions ¢ of WDE, the form of vector
functions u defined in Q by a certain type of representation formula acting on ¢. We
prove that the representation formulae (A.3) belong to this type. As a result we have
the statement of Theorem A.3.

B.1. Sobolev and Bessel Potential Spaces

1. Standard spaces. We first recall the definition of the Fourier transform and Sobolev
spaces. Let & ([R”“) denote the Schwartz space of all rapidly decreasing functions and
&'(R"1) the dual space of tempered distributions. For ¢ € &/(R"™") let

Fo®) = Fpcl®i= [ ondy, EeR

denote its Fourier transform in R"*!. The inverse Fourier transform % g_l,y in R"!
is defined as

1 iy
Fe ) i= o fR e de

We denote by 7, and 7 gix the Fourier and inverse Fourier transforms in R".
The Sobolev space H(R"!) is defined as the subspace of &’(R"*!) endowed with
the norm

ol = /RM“ 1|7 @) de

For an integer s = m an equivalent norm on the space H”(R""") is

12
(Z A’1+1|3;¢(y)lzdy> :

o] <m
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For a domain @ ¢ R""! with a smooth boundary (€2 can be, for example, one of the
half-spaces [R:’_fl = R" x R¥), two families of spaces can be defined:

(i) The subspace H'(Q) c H(R""") of the distributions ¢ which are supported
inside Q. The extension by 0 outside © of such a distribution yields an
element in HY(R").

(i) The quotient space H'(Q) := HY(R""")/H'(Q°), where Q¢ := R\ is the
complementary domain. The space H(2) can also be interpreted as the
space of restrictions pqe of functions ¢ € H*(R"™"). The space is endowed

with the factor-norm, i.e., the minimal norm of all possible extensions
to RiH—l.

By H'(Q)", H'(Q)", we will denote the spaces of N-vector functions.

For a surface .# C R""! of codimension 1, with a smooth boundary 3.#, the
spaces H* (/) and H*(.#) are defined in a standard way, involving some fixed finite
covering {U,/‘}_/{:l of ./, appropriate diffeomorphisms s; : U; — V; C R, and parti-
tion of a unity subordinate to the fixed covering, see, e.g., Eskin (1981) and
Hormander (1983).

2. Anisotropic weighted spaces. Besides the above classical spaces, we need a
3-parameter class of anisotropic Sobolev spaces with weight. The weight appears
as integer powers of one particular coordinate. We first define these spaces on R",
then on R, finally on .Z.

Let u, s€R and x € Ny. We denote by H**“(R") the Hilbert space of
distributions « with finite norm

K
2 k k. 112
el o ery = Y XDV DY xullZ, g
k=0

~ Y IHEY & F DNl e
k=0

where x = (¥, x,) are cartesian coordinates in R”, D, :=id,, £ =(£,£,) are the
corresponding dual variables,

@ =1 +18H",
and where
DV = F oL A EV T e, (D) =T (6T .

are the Bessel potential operators. For integer u, s € Ny we have the equivalent norm

K

! k
lulyoosy =Y D Do 18 AGullw)-

k=0 afeNn—l ﬁEN”
[ |=p  |Bl<s+k

We define the Frechet spaces
H(oo,.v),fc([Rn) — ﬂ H(M,.Y),K(Rﬂ)

neN



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Asymptotics Without Logarithmic Terms 883
and
H(oo,s),oo(Rn) — m H(oo,x),/c(Rn).
keN

The functions in these spaces are H® globally on R” and > in R"\(R"~" x {0}).

On the half-space R%L =R x R, We define H*- “(R}) as the space of
restrictions to R of distributions in H**""“(R"). The space H(“ -4(R%) denotes
the subspace of H***"*(R") of distributions with support in R’

The spaces H***(_#/) and H****(_#) for a smooth compact manifold .# with
a smooth boundary 9.# are defined in a standard way, involving some fixed finite
covering of .4, appropriate diffeomorphisms and partition of a unity subordinate to
the covering, so that the particular coordinate x, corresponds to the distance to 0.4
in ./, see Chkadua and Duduchava (2001, §1.1).

B.II. Reduction to the Boundary

In this section, we explain in more detail the way from BVP (A.1) to WDE (A.2)
and back.
We start from the first Green formula for all € H*(Q)" and v € H'(Q)":

b(u,v) = —/ Lu-vdy
Q

+/// y+(Tu)'y+$da—/:” y_(Tu)-y_vdo. (B.1)

Under the symmetry hypothesis (£ 4,) we have the simplified second Green formula
for all u,v € HX(Q)"

/(u.n_Lu.v)dy
Q

B /// ()@u v (Tv) —y_u-y_(Tv) =y (Tu) -y, ¥ + y_(Tu)- )/j) do.
(B.2)

Let us recall a construction for the fundamental matrix of the operator L(D,), i.e.,
the distribution F; € &'(R"™") such that

vx e R™ L(D,)F,(x) = 8(x)Id, (B.3)
where Id is the identity matrix and § is the Dirac distribution at 0
Yo e €™, (3.9) = 9(0).

After choosing in R"™' a system of coordinates x = (x,x,4,) € R" x R which
particularizes one coordinate, the fundamental matrix of Eq. (B.3) can be written
in the following form, see Hérmander (1983):

o At r)e—fwdf] it F x>0 ®B.4)
Ly
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where (§,7) € R" x R represents the dual variables of (x,x,,;). The contour %
(Z_) is situated in the upper (in the lower) complex half-plane C, =R & iR,
(in C_ :=R @ iR_) and is oriented counterclockwise (clockwise, respectively) encir-
cling all roots of the polynomial det L(§, t) with respect to the variable t in the
corresponding half-planes t € C,..

Taking the columns of the matrix F;(x — p) as test functions v(x) and inserting
the equation L(D,)u = f into the second Green formula (B.2), we easily obtain a
representation formula for any u satisfying the equation L(D,)u = f"

Vx € Q, u(x)= Nf(x)+ Z[ul(x) — ¥ [Tu](x), (B.5)
where
Vo€, [u)(z):=yu@)—y-u), [Tullx):=y, Tu@)—y Tu)

denote the jumps of the functions u(#) and Tu(z) across the surface .#; the operators
v, 9 and N are the well-known single layer, double layer and volume (Newton)

potentials:
760 = [ Fux =) do (B.6)
700 = [ (15 @ = 9o do. (B.7)
N = [ F G -nfdy. ke (B.5)

Here .«/* := .o/ T denotes the hermitian conjugate of the matrix .o7.

Solving the boundary value problem (A.1) with the help of the representation
formula (B.5) we have to find only one density, either ¢ = [u] € ﬁl/z(%) for the
Neumann problem or  =[Tu] € HY 2() for the Dirichlet problem (due to
the boundary conditions in Eq. (B.5) the other density vanishes on .#). Invoking
the well-known jump relations (‘“Plemelj formulae™) (see, e.g., (Kupradze et al.,
1979, Chazarain and Piriou, 1982)) we get the following pseudodifferential equations
on the crack surface (compare with Eq. (A.2))

Wi(x,D,)p(x) = —y,TNf(x), 2 € .4, for Neumann, (B.9)
V(z,D,)W(2) =y, . Nf(x), xe, for Dirichlet. (B.10)

Here W(«,D,) =y, T2 = y_TZ is the trace of the composition of the Neumann
operator with the double layer potential and is a hypersingular operator, understood
as a pseudodifferential operator of order 1. V(z,D,) =y, = y_7" is the trace of
the single layer potential on the surface .# and is a weakly singular integral operator
(pseudodifferential operator of order —1).

Thus, by solving the Eq. (B.9) or (B.10), and inserting the solution into the
representation formula

u(x) = Nf(x) + Yo(x), x e, for Neumann, (B.11)
u(x) = Nf(x) — 7"¥(x), x e, for Dirichlet, (B.12)

we obtain a solution of the boundary value problem (A.1).
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B.III. Asymptotics of Solutions of WDE with Classical Symbols

In this section we recall general results on asymptotics of solutions to WDE on a
manifold with smooth boundary from Chkadua and Duduchava (2001) and Eskin
(1981) obtained by the Wiener—Hopf approach.

Let us consider a classical N x N matrix symbol a(z; ) of order v € R, defined
on the cotangent manifold 7 *.# to .4 c R":

ae SUT M & a(a;E) =ag(z;E) +aj () -,

where a;(z,0) are € on the bundle of cotangent unit spheres xS T
(see Chkadua and Duduchava (2001, § 1.2) and Hormander (1983)) and satisfy

Vi >0, Vo e, V& e R, a(z; r8) = 1" a;(x; £). (B.13)

For any Sobolev exponent s € R, the corresponding N x N system of WDE on .#
with symbol a(z; &) is continuous from H*(.#)" into H*™"(.#)" . We are interested in
the structure of any ¢ satisfying for some s € R and an integer K > 0:

¢ e H'(4)"  such that a(z;D,)p =g, with ge H'"*Kw)N.  (B.14)

Further we suppose that the principal homogeneous part ay(z; &), which we will also
denote by ap(2; §) is elliptic, which reads

det ay(1:6) #0. 7 e.d, &eR\{0}, (Hn1)

The following N x N matrix plays a fundamental role in the structure of the
solutions ¢ satisfying (B.14): for 2’ € &

b(2') := [a,(2',05 0, + 1] " a,(«',0;0, — 1), (B.15)

where we recall that 2 := (2, ,) € .4 are the local and & = (£,&,) are the dual
coordinates, with 2’ € & = 8.4 the edge variable. Note that for all £ € R"!:

(050, £ D)= lim [1]ay(+,0: 1)

For any 2’ € &, let us denote by
M), ..., Ay(2") the eigenvalues of b(z),

where each eigenvalue is repeated according to its algebraic multiplicity.

The assumption which will ensure the absence of logarithms in the principal
term of the asymptotics of the ¢ satisfying Eq. (B.14) is that b is diagonalizable in
each point 2’ in &, and that the eigenvalues are 4°°(&), which is written as:

V2’ € &, 3 an invertible matrix 2 '(z) so that:

b(2') = A (2')(diag{r, (2), ..., Ay(a)})# (@) (Hr2)
2= A ('), 2 (a) are €7(6).
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We need one more assumption on the eigenvalues of b(z'): let us set
8;(«) = @mi) ' log a2, j=1,...,N.

We assume that

e <—%, %), Ja %*(&) determination of the §;(«")
(Ds3)

1 1
such that V2’ e &, n— 3 < Res; (") < n+ 5

While locally a consequence of ($y,), this assumption has to be required to hold
globally on &.

The following result, see Duduchava et al. (1999, Lemma A.6), provides a gen-
eral framework where assumptions ($y,) and (Hp3) are satisfied.

Lemma B.1. If for any 2" € & the two matrices a,(2',0;0, £1) in Eq. (B.15)
are positive definite, then the matrix b(2) is diagonalizable with unitary H#(2'),
its eigenvalues are real, which means that the numbers 8_/(,%‘/) can be chosen purely
imaginary:

5, € 6(8), Redi(«)=0 forall j=1,...,N. (B.16)

The main result in this section is the asymptotic structure of solutions ¢ of
Eq. (B.14), whose first term does not contain logarithms. We recall that (2/,r) =
(2',r, & m) denotes the local cylindrical coordinate system on .# in a closed tubular
neighborhood of the edge & = 0.4 (see Definition A.I).

Theorem B.2. (See Chkadua and Duduchava (2001) and Eskin (1981, Chap. 26).
We assume hypotheses (9g1), (Dpa) and (Hy3). We choose

o A determination of the 8, ) = 1,...,N,
o A real Sobolev exponent s,

such that there holds for all 2/ € & and all j =1,...,N:

% ’
— 1 <3+ Re (@), (B.17)
Y sk o Res(r) < — Vst (B.18)
3 S 3 i\ 7 S 2 .

Let ¢ € ﬁ‘v(%)N be a solution of the equation a(x; D, )¢ = g where the right hand
side g is €°(M)N. Then, for any integer K > 0 the solution ¢(«',r) has the following
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asymptotic expansion

K—1 o(k)

A (') PP () [do(y/) + 3R db ) log! r]
=1 4=0
+ ¢rem,K(ﬂ/’ r)» ¢rem,K € ﬁH—K('ﬂ)N (B 19)

with N-vector coefficients d°, d"7 in %>(&)N. Here, the vector A is defined as
(81,...,8x)" and for any p € R, ¥*** is understood as the diagonal N x N matrix

PATA = diag( P r’“”s”'}. (B.20)
Remark B.3.

(i) In Eskin (1981, Chap. 26), it is proved that the asymptotics of ¢ has no loga-
rithmic term in its leading summand, and in Chkadua and Duduchava (2001) the
more explicit formula (B.19) is proved.

(i) It is possible to extend hypothesis ($p,) to certain cases where b(z") is not
diagonalizable: then we assume that we have a canonical Jordan decomposition
with a ¥*°(&) dependence. This implies in particular that the geometrical multipli-
cities are constant along &. Then it is proved in Chkadua and Duduchava (2001) that
there holds a decomposition like Eq. (B.19), with explicit logarithmic terms in the
leading summand of the asymptotics. This means that the condition (§p,) is necessary
and sufficient so that logarithms are absent in the leading summand of the asymptotic
of a solution (B.19).

(iii) It is possible to get the first term of the asymptotic expansion without the
smoothness properties on " and §;, but the further terms are not available so far,
see Chkadua and Duduchava (2001). |

B.IV. Asymptotics of WDE with Symbols Satisfying the
Continuity Property

Here is a condition which ensures that logarithms disappear from the entire
asymptotics (B.19). This condition, called continuity property, applies to the full

symbol } ;. a2, x5 &8,

Vi'e &, VieN, Vo eNI™' meN,,
m oo 0. 4o | ey aa’ 0. (534)
8,,”35/ aj(%, 0, 0, — l) = (—1)1 8,”3$/ aj(%,(), O, + 1)
We note that the above condition implies that for all 8 € N,
P a(#,0;0, — 1) = (=115 0% a,(«),0; 0, + 1). (B.21)

On the other hand, concerning the principal symbol, the above condition
implies that

a,,(2/,0;0, — 1) =a,(«/,0;0, + 1),
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whence for all 2’ € &, b(z") = Id. Thus condition ($g4) implies conditions ($g,) and
($p3)- Here follows the main result about asymptotics of WDE with symbols satisfy-
ing the continuity property.

Theorem B.4. Let a(z; &) be an elliptic classical symbol (B.13) of order v > —2 and let

its homogeneous components a; satisfy the continuity property (9g4) on the boundary & .
Let s be a Sobolev exponent such that

1
=. B.22
+3 (B.22)

o<

Any solution ¢ € ITIS(./% YW of the equation a(z; D,)¢ = g where the right hand side
g is ()N * has the following asymptotic expansion for any integer K > 0

K—1
¢ = rPund @) + ks bremi € )Y, (B.23)
k=0

where the N-vectors d*, k =0,1,... belong to €°°(&).

We postpone the proof of the theorem until § B.VII.
The assumptions of Theorem B.4 hold for the boundary WDE (B.9) and (B.10)
corresponding to the BVP (A.1). This follows from the following theorem.

Theorem B.5. The symbols of the boundary WDE (B.9) of order v =1 and (B.10) of
order v = —1 are positive definite and satisfy the continuity property (9gs). Moreover,
for any volume data f € €5° (R"™™"), the right hand sides of Eqs. (B.9) and (B.10) are in
%w(%)N, and Egs. (B.9) and (B.10) have unique solutions ¢ € H*(#)" and
v e B ')V, respectively, for any s e (0,1). Thus asymptotics (B.23) hold for
these solutions.

Proof. We quote Chkadua and Duduchava (2001), Costabel and Stephan (1987),
Duduchava and Wendland (1995) and Duduchava et al. (1995), for the proofs of
positive definiteness of the symbols and unique solvability (also in more general
spaces) of WDE (B.9) and (B.10) and concentrate on the proof of the continuity
property (B.21).

In Chkadua and Duduchava (2001, Example 1.17) it is proved that the symbols
of both Egs. (B.9) and (B.10) are classical® and the components of the asymptotic

Af the requirement g € °(#)" is relaxed into g € H® ™04 (;\N for an integer K > 0
and k¥ > K, we still obtain the asymptotics (B. 23) for the same value K.

°In Chkadua and Duduchava (2001, Example 1.17) is considered the restriction of a WDO on
R"*! with a classical symbol onto the smooth surface .# of codimension 1 and proved that the
restricted operator is again a classical WDO; explicit formulae for the components of the
asymptotic expansion of the symbol are indicated.
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representation of the symbols have the following form

W(z; ) = Wo(z: &) + Wi(z: 8) + -+ Wiz §) + -+,
V(z;8) = Vo(x;:6) + Vi@ 8) + -+ V(2§ + -+,

where the homogeneous components Wj(z; &) and Vj(z; &) (of orders 1—; and
—1 —j respectively) are generated by an explicit symbol W and V respectively

Wi &)= Y agp@)EEW 9,

lal—1fl =20 (B.24)
2B<a
Vi &)= Y agg(0)EEV(2:8), (B.25)
lee| =Bl =j=0
2B<a

where the sums are finite since |¢| — |8] =/ and 28 < « imply 2|8| < |«| < 2nj, and
where the matrices a, 4(#) have ¢°°(.#) coefficients. The generating symbols W, V
are defined for 2 € .# and & € R" as follows—the contour &, is the same as in
Eq. (B.4) and the Jacobian ¢ (2") as in Definition A.1 (vi):

W) = L T(v: () E D)L (£ (E.0) "

x T(7; 7 (2) (1) dr (B.26)
Vo= [ L (e D) (B27)

In particular, the principal symbols Wy(z; &) and Vy(2; &) both have the
following coefficient

,0(7) = 2 det Dae(z)’

where I',,(7) is the Gram determinant of the local coordinate diffeomorphisms ».
Since the elliptic differential operator L(D,) in Eq. (A.1) is supposed to be
homogeneous of degree 2, its symbol L(§,§,,,) is even

VE=(68,1) e R"™,  L(—& —&,41) = LE &)

As a consequence, with the change of variable t+— — 7 in integrals (B.26) and (B.27),
we find that the generating symbols ¥V and W are even,3,°: Forall # € .# and § € R"

V(“I, - s) = V(J{s s) and W(le - s) = W(%a é)

°For this, we use in particular that any contour integral of the integrand in Eq. (B.26)
surrounding all the roots 7 of det L(#,(2") , (& 7)) =0, is zero, which allows to replace in
Eq. (B.26) ¥, by ¥ _.
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Therefore, as a consequence of formulas (B.26) and (B.27), for all 2 € ., for all
A € R, for all integers j,m =0, 1,... and all multiindices o’ € N{;*l, there holds

@ W)(',0;0, — ) = (=)@ o2 w)(2', 00, 2),
@ & V', 030, —2) = (=)@ 82 V) (@',0; 0, ). m

B.V. WDE in Dimension 1

Before we start the proof of the main theorem B.4, we want to explain the
principal mechanism responsible for the absence of logarithmic terms by presenting
the result in a very simple situation, namely the case of a scalar elliptic pseudodiffer-
ential equation with constant coefficients on the half-line R, . This simple one-dimen-
sional situation allows us to stay free of many of the technical difficulties of the
higher-dimensional case and to concentrate on the essential feature, namely the role
of the continuity condition for the asymptotic expansion of the symbol. We can
show in this case that a natural generalization of this condition is not only sufficient,
but also necessary for the absence of logarithmic terms in the asymptotics of the
solution. The class of operators considered here can be larger than the one obtained
from the 2D crack problem.

We need the following well-known Fourier transform of distributions supported
in the positive half-line, see for instance Eskin (1981). By x, and x_ we denote the
characteristic functions of R, and R_, respectively.

Lemma B.6.
i) o) 7™ = T ™+ i)™, 1> 0
(i) 7 a(x(0) log it~ e™) = (A + it) (clog(x + it) + d)

with ¢ = =T(u) ™" and d = (d/d)(T(1) &"?").

Another crucial result concerns the additive decomposition of homogeneous
distributions into “plus” and “minus” terms.

Lemma B.7. Let a*, a~, y € C. Then

(1) If y € Z, we have the representation

N a — efirry +
- - i0)’
(a X+([) t+a X*(t)) 11" = ey — p—iny (t+ IO)
- _ my +
_4 D oy,

eirry _ e—im/
(i) y € Z, we have the representation

_ - _ t
(@ ety 0) 1 = o iy + =

x ((t 4+ i0)Y log(t + i0) — (¢ — i0)” log(z — i0)).
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Proof. It suffices to use the identities

(t£i0) = x (0 + x_ (e ™ |1)”
log(r £i0) = x (1) logt + x_(¢)(log|t| £ im). [ |

Let a € €°(R; C) be a classical elliptic symbol of order v € R with constant
coefficients, i.e., a(§) #0 for all £ € R, and a has an asymptotic expansion in
homogeneous terms

o0

a®)~ > a(®) with VjeN, a#) =174, (B.28)

Jj=0

forall 1 > 0 and &£ € R.
In one dimension, homogeneous functions are determined by two values:

aj(€) = (af x, (&) + a; x_(©)) 161" (B.29)

From the ellipticity follows that ag ay # 0, and we can define

By p,a(D)u we denote the restriction of

a(Dyu(x) := F ;.1 . a(€) (Fu)(&)
to the half-line R,.

Theorem B.8. Let a be a classical elliptic symbol of order v as above, and let § € C,
s € R be chosen such that

2ins __ v _l v l
e =N and 2+Re$ 2<s<2—i—Re§+2 (B.30)

and v/2+8¢{—1, —2,...}. Letu e ITI‘Y([R+) be solution of
praDu=g on R, (B.31)
with g € €°(R,) NH " (R,). Then u has an asymptotic expansion as x — 0:
9k
u(x) ~ Z Z Cpg XD Jog? x.
k>0 ¢=0

This asymptotic expansion for any such u is free of logarithms, i.e., q, =0 for all
k >0, if and only if the following condition (9ys) is satisfied

Vi=0, a =(-1)/Ad. (Hps)



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016
™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

892 Costabel, Dauge, and Duduchava

Note that, reduced to the case of dimension 1 with scalar operators, condition
(Hps) 1s a generalization of condition ($p4) which corresponds to taking A = 1.

Proof.

(i) We first show the sufficiency of condition ($gs).
If ($Hps) 1s satisfied, then we can write

a(€) = ay(§) q(8), (B.32)
where ¢(&) has an asymptotic expansion of the form
+
s . a:
&) ~ 1+ q&7 with g =—. (B.33)
Jj=1 0

Thus ¢ is a symbol of rational type.
For ay we find the factorization

ay(§) = aj (€ +i0)"* (& — i0)">7. (B.34)
Let us introduce the corresponding ¢*°(R) symbol
a*(§) = ay €+ - )" (B.35)

Then we have a global representation of the symbol « as the product

a(§) = a>(&) 4> (&) (B.36)
with a symbol of rational type
@ ~1+> ¢ E+i7 (B.37)
Jj=1

Formula (B.36) is deduced from identities (B.32)—(B.34) by Taylor expansion at
&+ i = oo, which allows to expand the functions

= ( 5;_-‘_ i?)u/2+a i ( i__ l’?)v/2—6

in negative powers of (& + i).
There is also an expansion for

1 .
T~ — ~ ] Pl )~ B.38
q e +j221q, (& + i) (B.38)

so that ¢® ¢~ is a symbol of order —oo.
The following result is well known from Eskin’s version (1981) of the Wiener—
Hopf method:

Proposition B.9. For h e H7"(R,), the equation
pLa> (D) =h (B.39)
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has a unique solution v € ﬁ‘V(RJr). This solution is given by
v=(D+ i) Pp (D — i)y a1 h, (B.40)

where h € H7"(R) is an extension of h to the whole line.
For K € N and h € H*""K(R.), this solution v has the asymptotic expansion
K-1
V() =D x4 ()X 4 v 1 (%) (B.41)
k=0
with the remainder vy, x € HK(R,) given by

Veem ik = (D + )P p (D — iy g (B.42)

and the coefficients dj, by

671’ (/2)(v/2+8+k+1)

d. =
FTT(v2+8+k+1)

((D — i)y P (T ))(0). (B.43)

Let now u € ﬁs([&r) be a solution of (B.31). For K € N, let v be defined by
K-l '

v=q"Du with @ =1+ ¢°E+7. (B.44)
J=1

Note that (D + i)™ is a convolution operator with kernel

(—iy’
(- D!

x/ e X+(x),

cf Lemma B.6
(i) Thus v € H'(R,), and v is solution of

pra™(D)y =g — p,a™®(D)(¢*(D) — ¢"(D))u =: h,

where & belongs to H‘Y7”+K(R+). Therefore v has the expansion (B.41), and we can
recover the expansion of

u=q (D) (v+ (D) - ¢“(D)u) (mod 6>)
=¢ XDy (mod HE(R,))

K—1
with ¢ 5@ =14+> ¢ E+i)” (B.45)
=
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by simply integrating (B.41):

(D + l.)—j[XJr(x) xv/2+8+/c efx]
v
N F(§+5+k+ 1)

=D — X () XA o7 (B.46)
r(3+8+k+j+1)
except if v/2+8+k € {—1,..., —j}, where logarithms will appear.

Thus we obtain the asymptotics of u up to regularity HHK (R,), and since we
assumed that v/2 4 § is not a negative integer, no logarithm will appear. We have
shown that condition ($gs) implies that the asymptotics of u is free of logarithms.

(ii) Let us show the converse. We assume that the equality in (gs) is violated for
some j > 1. Let M be the first such j, so that

a(€) = ap(®) ¢" (&) + arr 41 (6) (B.47)

with

M—1
@ =14 g7 + (ghxe© + qux-®) 157
=1

J

and a4, (§) = O(1€] ") as [&] > oo. B
We will show that there exist g € H"™™(R,) and u € H'(R,) solution of
(B.31) such that

v/2+48

u(x) = coxe () X7 4 cprxp () XM Jog x (B.48)

near x = 0. The question of regularity of g = p a(D)u is local at x =0. We can
therefore stay within the framework of quasi-homogeneous distributions and homo-
geneous symbols, discard lower order terms such as a,,;(§), and replace £ by
(&E+1i0)7.

Since the Fourier transform of y,.(x)x” is £+ i0)""77, and the Fourier
transform of x,(x)x"logx is (& +i0)""7(clog(¢ + i0) + d), see Lemma B.6, we
shall construct the Fourier transform # of u in the form

() = (E+0)"27° 7 4 8y(E + i0) M og(g + i0)

+ dyg (£ + i0) P ML (B.49)
We shall show that there exists ¢, # 0 (hence ¢;; # 0) such that
P+ao(D)g™ (Dyu € Hi MM (R,). (B.50)
Since there holds p, (D — i0)”/ 2_‘3(1 —py) =0, we have the identities

prap(D)g" (Dyu = p,af (D — i0)"*7 (D + i0)"**° g (D)u
= pyag (D —i0)"*7 p, (D +i0)"*" " (D)u.
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Therefore, if we prove that p+(D+i0)”/2+8qM(D)u belongs to the space

H‘fo_c(”/ D=HMALR ), we have proved (B.50). Consider therefore the Fourier trans-

form w(€) of (D + i0)"/** ¢ (D)u if @i has the form (B.49):
w(&) = (€ +i0)"* T ¢" &)a(&)
= &y (84 10y og(& + i0)
+ (g x4 ) + g x—(©) 167 (E +i0)™" + wp(8)

where
M-1 _ A
W@ =Y qE+i0)7 +dy E+i0) M
=0

+ ¢y log(€ +i0) O(Ig ™) + O(lg ™ 72).

Thus we can discard wy,, because p 7 ~li,, is sufficiently regular. Now we use the
additive decomposition, see Lemma B.7, for & # 0:

(@b x+®) + g x—©) 1877 E +i0)™!
=M — 1 - =M .
= gii(6 +10) "+ 2= (=g — i) (€ + 10) ™ log( + i0)

— (£~ i0)™" log(& - 0)).
The only non-regular contribution to p, % ~!w comes from the term

A—M—1 . A 1 M —
(& +i0) log(& + i0) [CM + Yin (=D)"qn — QL)]

This term is absent if

R 1 Mo
cy + 3im ((—1) am — qL) =0. (B.5D)

We see that the possibility of having ¢,, # 0 together with condition (B.51)
is a consequence of the violation of equality (9gs) for j = M. The proof is
complete. |

B.VI. Auxiliary Results on ¥DO

We need some results for pseudodifferential operators (VDO) of one variable
acting on functions of n variables, and also the connection between WDO in n
variables and reduced WDO in one variable. The suitable function spaces were
introduced in Section B.I. Here, we only need the ““model”” domain for the boundary
of ., that is R = R x R, with coordinates x = (x,x,) and dual coordinates
E=(£.£).

The following lemma is a particular case of Theorem 1.11 and Lemma 2.9 in
Chkadua and Duduchava (2001).
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Lemma B.10. Let the symbol b =Db(x;§,) satisfy azagb(x; £,)=0(&,"") as
|&,] — oo for all k e Ny, e Nj, x e R", &, € R. Let k € Ny, s € R. Then the pseudo-
differential operator b(x; D,,) is continuous between anisotropic Bessel potential spaces:

b(x; D,)) : H®9K(R") — HES)-%(R"). (B.52)

If, in addition, supp b(x, -) is compact, for all x € R", then the operator b(x; D)) is a
smoothing operator:

b(x; D,) : H®9(R") — ¢®(R") (B.53)
Proof. It is easy to check that the operator

b(x; D) : H® K (R") — HEoW:s=):6 (R, (B.54)
is bounded, where

(V) = 0 for v>0,
o= lv] for v<0O.

In fact, the boundedness (B.54) follows from the Mikhlin-H6rmander theorem
on multipliers since for all |a| < n

<s’>“"<“><s>”<s>”] -

VE=(£,¢,) e R", oF - -
The boundedness (B.52) is a consequence of Eq. (B.54).
As for Eq. (B.53), it follows from Eq. (B.52) because the symbol b satisfies
aifalgnb(x; £,) = O(I&,| ") for arbitrary v < 0. [ |

The following lemma generalizes Eskin’s Wiener—Hopf technique from the
scalar one-dimensional case, see Proposition B.9, to systems of multidimensional
pseudodifferential equations.

Lemma B.11. Let us consider the principal part a, of the symbol a in Eq. (B.13) with
the ellipticity condition (Hy;). We introduce

a™ (¥ &) = (£,)"ap (¥, 0, 0, + 1). (B.55)

Let s, v € R such that (v/2) —(1/2) <s < (v/2) + (1/2), k € Ny. Then the system
of equations

P a (i DJu=g, geH TR, (B.56)

where p._ is the restriction from R" to R, has a unique solution u € HE <RV,
represented by the formula

u=(D,+ i) "y (D, — i)y " a,(x,0,0,1)] g, (B.57)

where x,(x,) is the characteristic function of the half space R’
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For arbitrary K € N, K < k, and g € H®S" KR 1his solution has the fol-
lowing asymptotic expansions

K—-1
u(x/, x") = Z XZ/2+/C€7x”dk(x,) + urcm,K(x,s xn)s Urem,x € H(OO’AHK)’K([R’J?)N
k=0

K-1
=2 + ek (Y. x,). ek € HOOHOARY)Y.
k=0

with the €°(R"™") coefficients d*(x') defined as

e—(n/z)i( v/24+k+1)

m ((D,, — i)*(v/2)+k[apr((x/’ 0: 0, 1)]71g)(xlj 0),

and

df(x) = i(_l)H d'), k=1,....M
0 . [:O(k—ﬁ)! N ge ey

For the proof see Chkadua and Duduchava (2001, Lemma 2.6). Note that, by its
mere definition, a* satisfies itself condition (Hgy).

The following Lemma B.12 will serve for the evaluation of the terms and the
remainders in the Taylor expansions which will provide the next Lemma B.13.

Lemma B.12. Let b(x; D) be a WDO such that for a m € N its symbol satisfies
b(x; £) = X7 b(x; &) with b in S "(RL x R"). We suppose that, moreover, there
exists an integer k >0 such that 80‘8Vb(x £) = O(1€)*~ 'y‘|§n k=) for all « and

=(,y,) e N". Then for all i, s € IR and k > m, b(x; D) is bounded between the
spaces.

b(x; D) . H(u,s),K(Rn) N H(ufﬁ, s+;+m7v),xfﬁ(Rn).

Lemma B.13. Let j € Ny and let us consider the homogeneous part a; of degree v — j of
the symbol a in Eq. (B.13). For any K € N, there holds the expansion of the symbol a;

(e = Y XE) A, (Visgn £)6TE + 2 rem & (B.58)

m+|y|<K-1

with a;., ,/(X; ©) = (1/m!)(1/;/!)w-f+'V"af;;ag,'a,(x’,o; 0,w), ¥ e R, w==I1, and
;. em, x bounded between the spaces
e, k(43 D) : HE 2R — O 2R,

If condition ($yy) holds, then a;.,, ,(x'; w) = a;.,, ,(x') does not depend on w.
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Proof. The Taylor formula, applied at x, =0, and at |€n|71§r:0’ gives that
aj(x/, r; €,€,) is equal to

Klm

DS @) 0: I, '€ sen )11 + a4 (53 6)

m=0

K—1 mK 1—-m (E)
= Z Z |$n U Ead (81;18’31)()6 0; 0, sgn én)"'a] rem, K(x é)

)
m=0 '\y\O )

where the remainder can be written as

K_( 2
a_/’;rem,K(X; §)=x a]( r)em k(X8 + Z Xy ](r)em m, K— m(‘c/; &),

(1)

where xXa! satisfies the assumptions of Lemma B.12 with m = K and k=0, and

n “jrem, K
xZ’al(zr)em m. K—m With m =m and k = K —m. Taking 1 = oo and x = oo, we obtain
the lemma. u

A standard Taylor expansion of the function (£,)" at &, = oo yields the follow-
ing expansion of the symbol a*, Eq. (B.55):

Lemma B.14. Let us consider the symbol a* defined in Eq. (B.55). For any integer
K €N, there holds the expansion

a¥(X1&) = Y A7) E 5 + apm k(X5 &) (B.59)

J<K—1

with a5’ (x') = ay(x,0; 0, +1), a7°(x") = ¢;a0(x, 0; 0, +1) with ¢; € R, and agg, g is a
bounded operator between the spaces

3?;11,1<(X/2 Dn) . H(oo,s),OO(Rn)N N H(oo,s-}—l(—v),oo([Rn)N.

B.VII. Proof of the Main Theorem of Part B

We are going to prove Theorem B.4. Let us start by reformulation of the con-
ditions of Eq. (B.14): we consider

¢ c H*“Ca)V  such that a(z; D,)¢ = g,
with g e HWS V< )N (B.60)

for arbitrary —oo < ¢ < oo. In Chkadua and Duduchava (2001, Theorem 1.12) it is
proved that the system (B.14) is Fredholm (or is uniquely solvable) if and only if the
system (B.60) is Fredholm (is uniquely solvable) and these equations have equal
dimensions of kernels and cokernels.
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Since the assertion is local, we can suppose that our domain is the half-space R’
and all functions and symbols are compactly supported in the variable x € RY. We
recall that x = (¥, x,,) and its dual variable is & = (£, £,).

Homogeneous symbols and the kernels of the corresponding WDO with negative
order have singularities at 0. Multiplying them by a function x” € #*(R), where
x’(&,) =0 for |&,] <1 and x(&,) =1 for |&,] > 2 we cut the singularity off. The
perturbation operator is smoothing: [I — x*(D,)]le € €°(R") for arbitrary
@ € H®M([R") (see Lemma B.10), and will be ignored. Although we do not
write the cutoff function, we suppose it is present and forget about singularities of
symbols at &, = 0.

Since %5°(R7)Y c HO MDY for any M e N, it is sufficient to
derive the asymptotics for a solution of Eq. (B.60). Relying on the expansion of
the classical symbol a(x; &):

M
— V—Jj rmpn n\Nx N
a= a + A 1, A € S (RE x RY) ,
Jj=0
v—M—1/mpn n\NxN
arem,M+1 € Scl ([RJr x R ) (B61)

we will apply induction on M, starting with the case M = 0.
For M =0, the Eq. (B.60) (with .# = R’,, as agreed) is written in the following
equivalent form

p+a~ (X D) =g, (B.62)
where a®(x'; £,) is defined in Eq. (B.55) and
£ =g — A1 (s D)¢ — [a9(x; D,) — a™(x; D,)]¢.

We observe

(1) The remainder
arem,l(X; Dx): H(DO,S),OO(R”)N _ H(oo,.H—l—v),OO([Rn)N

is bounded.
(i) Lemma B.13 for j =0, K =1 gives that

aO(X; E) = aO(x/s 0; O, sgn En) |§n|v + aO;rem,l(xa %_)

with ag,rem 1 (x; D) : HD2(R)Y — HOH709RMN bounded.
(i) Lemma B.14 for j =0, K =1 gives that

aOO(X; %-n) = aO(x/a 0; 05 +1) |§n|v + al?f?m,l(xa Sn)

with a1 (x; D,)) : H®9 (RN — HE 179 2(R"Y bounded.

Condition ($p4) yields that ag(x’,0; 0,sgn &,) = ag(x’,0; 0, +1).
Therefore ag —a™ = ag.;em.| — arem,- Finally, we deduce from the regularity
¢ € HOD (RN, that

goo c H(oo,erlfv),OO(Rn)N‘ (B.63)
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Invoking Lemma B.11 we derive the expansion (B.23) for K = 1:
¢ = by + Prem.1>
with
Po(x'.x,) = d' ()P d € G R,
brem1 € HOEHD RN, (B.64)

Now let M > 1 and suppose we have proved

M—1
¢ = Z ¢k + ¢rem,M’
k=0
with
S x,) = d W d e R,
Brem, a € HOOTHD2 RN, (B.65)

It can be prove that ¢, € ITI(OO’W()’W(R’L)N , because v/2 — s > —(1/2), see Chkadua
and Duduchava, (2001, Eq. (2.30)). Then the right hand side g of Eq. (B.62) can be
represented as follows

M M-—j M—1
= iem,MJrl_ +ai\Xs Uy )Qp — +lao\As L) — /7 n Pk
g =g pa;(x; D)o pilag(x; D) —a™(x"s D)l
=1 k=0 k=0

(B.66)

where

M
1
grem,M—H =8 _p+arem,M+l(X; Dx)¢ - Zp+aj(X; Dx)¢rem,M—j+l
j=1

—1)+[30(X; Dx) - aoo(x/; Dn)]¢rem,M'
It is clear from the arguments used for the step M = 0 that glem’ v+ belongs to the
space H(OO,‘Y7U+M+1),OO(R1)N.
We now use the expansion (B.58) with K =M +1—j—k for the term

a;(x; D)y, and the expansion (B.59) with K =M +1—k for the term
a®(x’; D,)¢,. Taking into account that condition ($p,4) holds, we obtain

M—1
2
8 = Grem a1 — Y > by (xi D) ¢y (B.67)
k=0 Jm.y
O<j+m—+|y |<M—k

where gr, 1741 belongs to HO S HMHD-0RA N apnd

bj; m, y’(X; %‘) = XZZ (E/)y bj; m, y’(x/) E;j_ly | |En| v’
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with l;j; m,y (X)) defined for x" € R"" as follows

a V’('x,) if m+1y'| #0,

ij; O,O(X/) - 5100()6/) if m=0, y’ =0.

B/; m, y’(x/) = {

Now we use formula (B.57), Lemma B.11 to invert the operator a*(x’; D,,), and from
Eq. (B.62) p,a*™(x’; D,)¢ = g with the expansion (B.67) of g*°, we find

M-1
=D, +) " p D, =)D D b (DG,
k=0

jom.y
0<j+m+|y|<M—k

/ 71
+ [P @¥ (s D] ghm v (B.68)

where ay(x') = a,,(x,0; 0, 1). Recalling Lemma B.6 (i), and using a Taylor expansion
at &, = oo, we find the following, cf (B.65), for ¢, (', x,,):

F sl = F g [0 e ]
= (&, + i) Pk e(rr/z)(v/2+k+1)fr<§ th+1) dk(x/)

M

=D d)E, +i0) P
q=0

+ (& )P GE (). (B.69)

and the last summand is ignored in the sequel because it contributes into the
smooth remainder term. From Egs. (B.68) and (B.69), we see that modulo a
remainder @y yr4; in the space HO M- )Y ¢ is a finite sum of terms ¢
which have the generic form

¢ =D, +i) "y (B.70)
with

¥ =p.(D, — i) g (<) h(x) (B.71)
with

h= X7 @B & 6] x F e [d]E + 07 B72)

for m, €, ge Ny, ¥ e N"!, and b e °R"HMV, d € 4°(R""). Let us study
h(x) first:

=3B [0 d) ) x F, {6 100 g g

=dy () F o [ + 077 0,6)]), (B.73)
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with d,(x) := (—i)"b(x') [(id,)" d](x') € €°(R"")", and where we have used the
formula, cf Lemma B.7,

111 = 6,(1) (1 + i0)° with 6,(1) = x.() + e ™ x_(2). (B.74)

We note that although we have taken derivatives 9 |€,|”, the é-functions do not
appear due to cutoff functions (see the beginning of the proof).
Inserting expression (B.73) of & into Eq. (B.71) we find that

V) = poF e |6 = 7P 8 ) F g [ 3]
Using Eq. (B.73), we find that y(x) is equal to
PeF e o6 — 076+ i) o6 o) (B.75)

with dy(x') = cay ' (X)d,(x') € €°(R"")". By expanding the function (¢, — i)™/ as
a Taylor series in (&, — i0)""/?7, ¢f (B.69), and applying the equality

(&, — i0) Do (E,) = (5, +i0) P, p=0,1,...

(see Eq. (B.74)), we get

M
W) =Y Fe o (G + 100" N () + W, a1 (), (B.76)
=0

with dy , € G°(R"™) and Yo 44y € HETODTMED ()N

The restriction operator p, in front in Eq. (B.75) was eliminated since the
Fourier transform of the analytic function is supported on R,.

From Egs. (B.68)—~(B.76) we find

M—1
(v ke , , -1
o)=Y (D, + )7 6+ 07y o)+ [p,a™ (5 D] it
k=0
= 2 k -13
= g&‘”—m,l {(‘i:n + i)i(v/ )(En + 10)7 ! }d3,k(x,) + [p+ao<3(x/; Dn)] grem, M+1-
k=0

By transforming (&, + iO)_k_l into (&, + i)_k_l as above, and using the asymptotics of
[P, a™(x'; D! g;}em, w+1 from Lemma B.11, we finally obtain the desired expansion

M—1
PO = Y X dEW) 4 e a1 (), (B.77)
k=0

With @ a4 € HOVHD2@RON - and d* € #°(R"™")". The theorem is
proved. |
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Asymptotics Without Logarithmic Terms 903
B.VIII. Symbols Satisfying the Generalized Continuity Property

From our investigation of scalar problems in dimension 1, we can conclude that
(Hp4) is not the most general condition ensuring the absence of logarithms in the
asymptotics (B.19). In this section, we prove that the result of Theorem B.4 together
with its proof remains valid if we replace condition ($p4) the following generalized
continuity property, inspired from our 1D scalar condition (Hgs): IA € C\{0}

vi'e &, VjieN, Vod eNi™', meN,, Sue)
I (2,0, 0, —1) = (= 1) A 8 a;(2',0; 0, +1). Bo
Condition ($ye) also implies conditions (Hp,) and (Hp3). The corresponding result
about asymptotics follows.

Theorem B.15. Let a(z; &) be an elliptic classical symbol (B.13) of order v > —2
satisfying the generalized continuity property (9pe) on the boundary &. Let § € R be
such that ezi”i: A and let s be a Sobolev exponent such that Eq. (B.30) holds. Any
solution ¢ € B (M) of the equation a(x; D,)¢ = g where the right hand side g is
G>(M)", has the following asymptotic expansion for any integer K > 0

K-1
¢ =3 O d ) + bk A € CF@E). b e BT,
k=0
(B.78)

Remark B.16. Since a, is homogeneous elliptic of order v, the symbol ¢ :=a;'a
is an elliptic symbol of order 0. It is easy to see that the condition ($gs) on a is
equivalent to the transmission condition on g—compare with (B.32)—(B.33). |

The proof of Theorem B.15 follows the same lines as the proof of Theorem B.4
with a few obvious modifications. For example the vector version of Proposition B.9
comes in replacement of Lemma B.11. Besides, everywhere the functions

(& +10)27 (5, —i0)27° and (& + )T (E, — )"

replace |&,|” and (,)", respectively.

B.IX. Spatial Asymptotics of Solutions to BYP

We have already performed the first two steps of the analysis of asymptotics of
the solution of the boundary value problem (A.1) by the Wiener—Hopf method: (i)
the reduction to a WDE (A.2) on the boundary, (ii) the asymptotics of the solution of
this WDE. There remains to derive the spatial asymptotics of the solution # to BVP
(A.1), represented by the formula (B.5),

u= Nf+Z[ul — v [Tu],
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904 Costabel, Dauge, and Duduchava

if we know the asymptotics of the densities [u] or [Tu]. Note, that since f €
% (R™1), the summand Nf only contributes to the regular part of a.

Therefore, we only need to apply either the single layer potential #~, or the
double layer potential & to a function ¢ defined on .#, the asymptotic expansion
of which being of the form (B.23).

Thus, let us by denote by o7 either the single layer potential ¥~, or the double
layer potential &, see (B.6), associated with an homogeneous elliptic second order
N x N system L(D,) in R""! with constant real coefficients.? Let ¢ be the order of .o/
(q=-1if o/ =7 and ¢ =1 if &/ = 9). We consider u defined on Q by

u(x) = .o/ ¢(x), supp¢ C .4, xeQ. (B.79)

For any 2’ € &, let 7;(2'),...,1,(2") be all different roots of the polynomial
equation

det L(#,(2/)(0,1,7)) =0, Imt < 0. (B.80)

We recall that (0, 1,7) represents the value of the dual variable & = (£,&,,&,.1)

and that .#_(2) is the Jacobian of the local coordinate diffeomorphism «, cf
Definition A.1.
We assume that it is possible to enumerate 7,(2’), ..., 7,(2") so that

(D7)

The multiplicities ny, ...,n, of 1,(2'),..., (2"
are constant on &.

Therefore the 1, are €°°(&).
Since L is a N x N elliptic system of order 2, there holds

n1+"'+n[:N

and since its coefficients are real, the roots of Eq. (B.80) with Imt > 0 are the
conjugate of the t,(2'). Let for 2’ € & and m=1,...,£ the angular functions
Y.+ be defined as

V. _1(2,0) := cos 6 + 1,,(2") sin 0,

B.81
V. +1(2',0) 1= cos 0 + T,,(2") sin 6. ( )

Theorem B.17. Let ¢ be a N-vector function on M with the following infinite asymp-
totics without logarithms: Iu € R, VK > 0

K—1
¢ =3 "y (d @) + bremk-
k=0

9Here we restrict consideration to the potential operators related to a second order systen.
For more general results we quote Chkadua and Duduchava (2001).
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with
d“ e 62)",  $rmx e BN

We assume that u is not an integer and that the N x N second order system L satisfies
hypothesis (9g7). Let of denote either the single or the double layer potential associated
with L and q its order, and let u be defined on Q2 by o/ ¢.

Then for arbitrary K € N, the potential-type function u has in local cylindrical
coordinates (2, r,0) the following asymptotic expansion free of logarithms as well

n,—1
u= Z > X(r)[ D0y (@ 0) ) o)

m=1 w==%1
K+q—1 p(m, k)

+ 3 > YT Ry Sin® Gcos® Ody T | + themg  (B.82)
k=1 j=0 |a|<N(m,k)

where ey, x € HIETS(R™YY and the coefficients dj, , and d’,* are €(&).

The proof is a direct adaptation of proofs in Chkadua and Duduchava (2000,
2001).
As a straightforward corollary of Theorems B.5 and B.17 combined with

o formulas (B.9) and (B.11) for Neumann conditions,
e formulas (B.10) and (B.12) for Dirichlet conditions,

we obtain:

Theorem B.18. Let the N x N second order system L satisfy hypotheses (Ha1)s (Daz)s
and (Hg;). Then any solution u of BVP (A.1) with f € €5°(R™) has the following
asymptotic expansion in local cylindrical coordinates (2, r,6)

n,—1
u= Z > x(r)[ > sind 09 (@ 0) (1)

m=1 w=%1
K—1 p(m,k) ) ]
+ Z Z Z PRy ST (o 9) sin® Ocos™ Odb | + e (B.83)

k=1 j=0 |a|<N(m.k)

where Uy x € HE (RN and the coefficients dJ, ., and d’mkw"‘ are €°°(6).

For the particular case of isotropic elasticity we have to deal with the Lamé
equation

L(D)u = uAu—+ (A + p)graddivu = f, (B.84)

with a right hand side f € 45°(R®). Equation (B.80) has one triple root 7, = —i
and for the singular functions (B.81) we get

Y1 1(0) =€’ and ¥y ,(0) ="
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906 Costabel, Dauge, and Duduchava

The asymptotics of the displacement u(x) has the form

2
u(2',r,0) = Z |: Z /% sin/ 0™ V/277 i (4

w==%1| j=0

K—-1 pk
+ Z Z Z p1 /24K i1 /21300 Giner g o5 @ dﬁ,’v”"‘(@“)]
X

=1 j=0 |e|<N;
+ trem (27,7, 0). (B.85)

The stress T'(x, D, )u(x) has a similar asymptotics as the displacement, starting with
the exponent r~/? instead of r'/%.

PART C. THE MELLIN APPROACH
C.I. General Edge Asymptotics

In our second approach, we consider the boundary value problem (A.1) as a
special case of boundary value problems on domains with edges. For such problems,
the method of Mellin transformation is a well-developed technique that allows
precise descriptions of the solutions in the neighborhood of the edge.

The general description of solutions of problems like (A.1) on a wedge originates
from Kontratiev’s work (1967) and was developed in the subsequent works (Maz’ya
and Plamenevskii, 1980; Maz’ya and Rossmann, 1988; Nazarov and Plamenevskii,
1994) and (Costabel and Dauge, 1993a; Dauge, 1988), among other contributions.
As a preparation for our proof on the absence of logarithm, we are going to explain
the general edge structure in the framework of the above papers.

We keep the local cylindrical coordinates (2/,r,6) around the edge &, see
Definition A.1. As this will be of constant use, we introduce the notation y for the
two normal cartesian coordinates (4, #,,,.1), which will be also alternatively denoted
by (y1,¥2). Let us consider as domain for the boundary value problem the wedge
W, =& x T', where T, is the plane sector {y ~ (r,0) | 0 € (—w, w)} of opening 2w.
Let 3,.T", be the two sides of I',. They correspond to the two sides o W, of W,,. The
situation which is the aim of our investigation corresponds to taking w = .

But for a while, let us consider the more general case of an elliptic N x N system
L = (L) of order 2d complemented by two sets B, of m := dN boundary condi-
tions on 9, W,,. The general framework of edge asymptotics demands a supplemen-
tary condition of ellipticity along the edge, see Maz’ya and Plamenevskii (1980),
Maz’ya and Rossmann (1988). A natural way to satisfy this condition is to suppose
that (L, B_, B,) is associated with a coercive form b on HY, see Dauge (1988),
as stated in Part A (but now with order 2d and more general boundary conditions).

Thus, let us consider u solution in H‘{(Ww)N of the following boundary value
problem with a right hand side f € (W ,)"

Lu=f in W,
{ yeBiu=0 on d.W,. (€D
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The solution # has an infinite edge asymptotics, mainly determined by the expansion
of the problem (L, B_, B,) in “homogeneous components” (I/, B/, B’),j >0, with
respect to the variables y normal to the edge &.

In the coordinates (2’,y) € & x I',,, the system L has variable coefficients, in
general. We write it with the notation

L= L(%'/a Vs 8.7’3 8_\/')'

For any 2’ € &, let L°[#'] be the principal part of the operator L(z’,0;0, d,).
We denote similarly the boundary operators in local coordinates by B, (2',r; 9, 0,)
and their principal parts in y = 0 by B[«].

For each #’ fixed in &, the singular exponents associated with 2’ are the complex
numbers A such that there exists nonzero solutions ¥ = ¥(0) to the problem

L[Z1(ry) = 0 in T,

C.2
yeBL2'1" ) =0 on 8.T,,. ©2

Due to the dependency on # of the coefficients of (L, BY), the set A[#'] of such
A varies in general with 2" € &, see Maz’ya and Rossmann (1988), Costabel and
Dauge (1993a).

The Ansatz for solutions in the form r*y(6) has a close relation with the Mellin
transform which allows a diagonalization of (L°, B%)[#'] for each #’. Let us recall the
Mellin transform A+~ 9( f)(A) of a function f defined on R, :

00 dr
monem = [ <

We have the formula 9(rd.f)(1) = A /)(A) which is the foundation of the Mellin
symbolic calculus. Thus the Mellin symbol A — A°[2](1) of problem (C.2) is defined
after writing L° and BY. in cylindrical coordinates as

=2 20121(6; 19, 3y)
and
PP B 2')(0; 18y, 8p),  piy =deg By, (h=1,...,m),
by A’[+'(1):
H*(—w, )" — L} (—o, w)Y x C"
= (L1, 8.y B2l (1, 3p)p).
For each 2’ € &, A+ A'[2'](%)~" is meromorphic in C and the set of its poles is A[2'].

It is possible to classify the singularities occurring in the asymptotics of a
solution u of problem (C.1) in

(i) Leading singularities,
(i) Shadow singularities.
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(i) The leading singularities. They are denoted s° and are directly obtained from
the Mellin transform A — IR(f)[2'](x) of £, via the Mellin symbol A°[+'] of problem
(C.2) by the inverse Mellin formula

/ 1 / - /
@) =5 / L] ML 0,00 Nw) dp (C.3)
Y

where the 0 in (f,0,0) stand for the zero boundary conditions and »° is a suitable
contour surrounding the poles A € A[#'] in the right half plane Re A > d — 1.7

(ii) The shadow singularities. They require for their definition the Taylor
expansion of the coefficients of L and B, with respect to y: Let

L= ) Moo
Ji|+1k|<2d

and

Biy= Yy MA@ E

li|+1k|<ps n
be the expressions of L and B.. Then for j € N we define
o ks s oV
D= )" > aPe (%,O)E & o
lil<2d  |k|—|pl=2d—j
and
j / Brik / yﬁ i
Bl ,[2]:= Z Z dy b:{:,h(%’o)ﬁ ., Bf
[i1<psn |KlI=|Bl=ps n—J ’
Let [2'] denote the triple (Z/[+'], B[']). Then the shadow singularities s, ..., s”

are recursively defined as

(&, y) = — o AL (w)] T MOEC ST, g7 N() i, (C.4)

2in )y
with  (f7,g5) = s ... 450,

Here B is the collection of degrees (2d,...,2d,pL1,...,p+ ) and #(f.g.)is a
condensed notation for

2d ¢ -1 P Pt 1 P.m
(I’ f,l’ - 15571 g—,m’r+ g+,1,---’r+ g+,m)-

“Defined by MM(f)[2'1(2,0) = [;° r'f(«',y)(dr/r) as a natural extension of the formula on R, .

"More precisely, for any K € N we obtain the contribution modulo ¢(*) to the infinite
asymptotic series by using a contour which surrounds the (finite set of) poles A € A[#'JUN
contained in the strip d — 1 < ReA < K.
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(iii) The complete asymptotics. The sum s’ +s' +.--+s” +... gives the
asymptotics of u as r — 0.

In the most general case, the structure of the s” is quite difficult to describe
because of the possible change of multiplicities in the singular exponents A[z’], see
Costabel and Dauge (1993a, 1994). If hypotheses are made to avoid any change of
multiplicity, see Maz’ya and Rossmann (1988), each s” can be decomposed into
elementary terms of the form c(2') *)*” log? r ¢(2’, ). Thus we obtain the follow-
ing expansion in local cylindrical coordinates: For any K € N

P P Tog! r @ (' 60) + e k- (C.5)

J

q(h,p) j(A,p,q)
u =

Reitp<K ¢=0 j=1

The exponents A(z’) belong to A[2/]UN and their real part is > d — 1. The coeffi-
cients c}’p "4 are ¥ functions on & and depend onf. The remainder u,y, x satisfies
Pt x = o(* P2 as - 0 for any multi-index g e Ni*'. The (p}\””q are
angular N-component vector functions in €*°([—w, w] x &) and depend only on
the domain © and the operators (L, B).

The log r terms come either from nontrivial Jordan chains in QIO[%/]_I, or from
resonances between A’[#']”! and the Mellin transforms im(rzdf ,0,0)[«], see
Eq. (C.3), or M(FA's”™" + ... )[2'], see Eq. (C.4).

C.II. Crack Asymptotics, First Results

From now on, we concentrate on the situation of a crack, i.e., when the opening
w is 7, and when the same boundary conditions are applied on both sides of the crack,
i.e., By = B. Thus the boundary conditions are denoted by B = (By, ..., B,,) and the
order of By is py, h = 1,...,m. The boundary problem takes then the form

Lu=f in W,
{ y.Bu=0 on o, W_, (C.6)
where we assume that f € 45°(R").
In this situation there holds
/ I k
Vo' e &, Alz] = {E;keZ}. (C.7)

This has been known for a long time for the Laplace operator, see Grisvard (1985).
It is proved for elasticity systems in Duduchava and Wendland (1995), for general
second order Petrovskii-elliptic systems (such as thermoelasticity or electroelasticity
for example) in Chkadua and Duduchava (2000, 2001), for general scalar elliptic
Dirichlet problems of order 2m in Kozlov (1990), and finally in the general frame-
work of Agmon—Douglis—Nirenberg elliptic systems in Costabel and Dauge (2002).

Therefore the assumptions on the constant multiplicity of the singular exponents
are satisfied and expansion (C.5) holds with A(2’) = k/2. This clear separation of the
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spectrum allows a decomposition of leading singularity s° in (quasi-)homogeneous
elementary parts @) for A of the form A = k/2 according to:

1
D2l = =

/ WL MG, 0, 0)[2 () dpe, (C.8)
217’[ y(X)

where y(A) is the circle with center A and radius 1/4.

Definition C.1. If ®° is defined by a residue formula like (C.8) on the circle y(1),
we call sequence of shadows associated with ®°, the infinite sequence @, p > 1,
defined by

1
O] = — “ A2
G /}: r 7 (1

2i7T (M)+p
X M(P W pego (AP 4o 4 WD) [2') (1) dpe. (C.9)

Here y(A) + p is the contour around A + p translated from y(1) and 1,y jj is the
characteristic function in r of the interval [0, 1]. |

By linearity, we obtain that a decomposition of s’ in a sum of ®) provides the
corresponding decomposition of the shadow s” in a sum @), where (CIDP),, is the
sequence of shadows associated with ®J. Therefore, from now on we only consider
elementary leading singularities of the form (C.8) and their sequence of shadows.

The result of Costabel and Dauge (2002, Thms. 5.2 and 5.3) gives moreover:

(1) In the leading singularities the noninteger exponents k + 1/2 have no logr
terms and the corresponding basis of singular functions (rk“/ 2 (pf+1/ 2)j has
the dimension m.

(i) Let ppax := max{p;,...,p,}. For any integer A > p,.., the functions
r’\(pﬁ(e) are polynomials in the variables (y;, y,). Moreover, the shadows
of polynomials are polynomials.

Therefore:

(i) For an exponent A = 1/2 + k, the elementary leading singularities have
the form

Q1= @) oM 0), ¢ e 67(6).
Jj=1

(i) For a positive integer A > ppax, @ is a finite sum of terms of the form
c(2")¥(y) with smooth ¢ and polynomial ¥ (homogeneous of degree A).
Moreover, the sequence of shadows @} associated with @Y have a similar
structure with homogeneous polynomials of degree A + p.

As a consequence, we have obtained the statement of Proposition A.2 (i).
But, when A = 1/2+ k, since A + p = 1/2 + k + p is a singular exponent, i.e., a
pole of A°[2']~!, we should expect resonances inside the integrand of the shadows @7,
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between &DE(V”QIICDIH + - ~)[31‘/] and A°[2']7", i.e., poles of order >1, which would
yield log r factors. We are going to prove that, in fact, there are no resonances.

C.II1. “Cayley” Representation Formulae

Our method is a direct continuation of Costabel and Dauge, (1993b) where
“Cayley representation formulae™ are introduced to describe the angular behavior
(in 0) of the singular functions. It is shown there that any singularity can be expressed
by combination of two fundamental types of functions which, using the complex
writing ¢ of the cartesian variables y = (y1, y»)

¢=yi+iyy=re”,

can be written as, for any A € C, { € C with { € R™, and « € C with |o| < 1:
(@c+2" and (¢ +al)".

The above functions have to be interpreted in the following way:

(oeHZ)*:Z*(Ha%Y and (¢+a0) = (1+a

I3

g)k, (C.10)

which means in polar coordinates r > 0, 6 € (—mn, 7):
(¢ +0 =rre™(1+ aem)'\ and (¢ + Q) =re™(1+ aefz"@)k. (C.11)

The action of a partial differential operator Q(d;,d,) on («¢ +2)* and (¢ + )"
exhibits its Cayley symbols Q™ («) and O («) as follows:

Of(@)=0(a+1,il@—1)) and QO (o) :=0(l +a,i(l —a))

and there holds, if Q is homogeneous of degree ¢

0(3y) (@ + )" = P,(W)(e¢ + )" 10" ()
0(3,) (¢ + a)" = P,(W)(& + D) 0™ (),

where P,(%) is the polynomial A(A —1)--- (A — ¢+ 1), of degree q.

Let us fix 2" € &. Let L*[#'](«) be the two Cayley symbols of L°[#'] and B*[+’]
those of B°[2/]. We have the following formulas, valid for any & € C, which are the
matrix version of the above ones: let ¢ € C" be a vector, there holds

{ L210,) {(@¢ + 0 q) = POt + > LT )(e)q (C.12)

L213,) {(¢ + a2)*q} = Poy(A)(& + ) L7[2')(e)g.

These Cayley symbols allow to describe for any 2’ and A the space 3[2](A) of the
homogeneous functions v of degree A, solutions of the equation without boundary
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conditions
L[]y = 0.

Due to the ellipticity of the operator L°[#'], the equations
det L*[2')(@) = 0

have m roots inside the unit disc |a| < 1, counting multiplicity, and no roots on the
unit circle |a| = 1. Let us denote

ail7], . (21, oo (2] (C.13)

the distinct roots of det L™[+'] and det L*[2'] inside the unit disc.

For a while let us assume that these roots are simple (i.e., my = m). Thus,
let q[i[;z’] € C" be nonzero elements of ker L*(a7), and for any (noninteger) A € C
let us define the N-component functions

w2100 = @ [+ D g [#] and
w210 = @+ e [T g7 [0.

Formulas (C.12) give immediately that these functions solve the equation
L°[#']v = 0, thus belong to 3['](A).

As proved in Costabel and Dauge (1993b, Th. 2.1), these 2m functions form a
basis of the space 3[#'](1) and, moreover, we obtain “stable” expressions of wF[2](1)
with respect to the parameter #” without the assumptions that the roots o [2] are
simple, by using contour integrals in « around the disc Dy of radius with § < 1 such
that D; contains all roots of [#']: There exists N-component polynomials of degree
d —1 in o depending smoothly on 2/, denoted ¢i[2'|(@) for £ =1,...,m, which
define a basis {wi'[2']} of 3[2'](M):

W0 = [ (@642 L) a1 ) do
=2 (C.14)

wel21(0) = /I . (¢ +ad) L[ )@ g7 [ (@) der.

This basis allows the construction of a 2m x 2m matrix .4 [2'](A) whose inverse has
the same poles as the inverse of the Mellin symbol 2A[#'J(A)~": For this let us intro-
duce W[2'](1) the N x 2m matrix the 2m columns of which are

W21, « w2100, w2100, - . w2 10).

Let us recall that B°[2’] is the m x N matrix of the principal parts of the bound-
ary operators B(a2’,0;0, d,). Let g, be the trace operators (acting on
homogeneous functions)®

g_v= v|r=l and 0=—mn and 94V = V‘r:l and f=rx"

€The degree of homogeneity and the trace on r = 1 completely determine an homogeneous
function: If v is homogeneous of degree u and V := v]":l, then v(r, 0) = V' (0).
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Asymptotics Without Logarithmic Terms 913

The characteristic matrix of the problem is then the 2m x 2m scalar matrix given by

0 p /
N0 = (ggo{j}) W1,
Pl

The formula describing [QIO[,@”/]([,L)]_I involves a right inverse to the operator L on
homogeneous functions of degree A (i.e., without boundary conditions) and the
inverse of the matrix .4"[2'](A) allows the correction of boundary conditions.

Let $* be the space of N-component vector functions homogeneous of degree A
on the plane sector I',. And let f—v = R[2'](A)f be a solution operator of the
problem L°[#/lv = f, acting from $*7>¢ into $*. According to Costabel and
Dauge (1993b), it is possible to construct such an operator with ¥°° regularity in
2’ and analytic dependency in A.

Our first representation theorem for the inverse symbol A°[2']™" is the following,
see Costabel and Dauge (1993b, Th. 4.4)—We write it directly for the Mellin inte-
grand #[A°[+'](1)]”" in view of application in formulas (C.8) and (C.9):

Theorem C.2. Let R[2'|(A) be a right inverse to L[], acting from 7> into $*.
We have for any 2’ € &, any u € C and any (F,Gy) € L*(—m, m)" x C" x C™:

P RE0] (FLG) = R0 (7 F) + Wl 10 AT )™
x (Gi — 9. B[] iR[ﬂ/](u)(r“_ZdF)). (C.15)

Formula (C.15) will be applied recursively to special subsets of triples (F,G.)
which have the property to be the traces (in » = 1) of homogeneous functions repre-
sentable by Cayley integrals like (C.14):

Definition C.3. For any A € C, let us denote by ${ the subspace of homogeneous
N-component functions f € $* which admit a representation as:

f={ @+oq@dat / €+ 0D ¢ (o) dat (C.16)

|er|=5 =

with N-component vectors ¢© meromorphic in « (and without pole in the annulus
8 < |a| < 1). Such a representation is made unigue if we assume that the ¢= are
holomorphic outside the unit disc and tend to 0 as |¢| — oo.

We can define a special solution operator Ry[2](A) acting on the subspace 55{)\_2[1
into $4: For f € 55372“’ represented by (C.16) with the uniqueness constraint, we
define Ry[2'](1) f by

Ro[#'10) f = Poa(W)™! - (@¢ + 0" LY M) ¢ (@) der

+ Py (¢ +ad) L[ 'q () de. (C.17)
lor|=5
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914 Costabel, Dauge, and Duduchava

The vector function obviously belongs to $j and if P,,(1) # 0, formulae (C.12) give
immediately that L°[2'] Ro[#'|(L)f =f.

C.IV. Representation of Singularities

We start from the expression (C.8) of the leading singularity ®°. The function

(', ) = MEF, 0, 0) "))

is €°°(&) in 2’ and analytic in p in the disc 8, encircled by the contour y(1). Using the
representation (C.15) with analytic F and zero G, we find that the only pole of
P[] MG, 0, 0)[2')(w) inside 8, is u = A and that there holds

@[] = S / ( )QB[%"](M) NN ™l () dpe (C.18)
y(A

2im

with a 2m-component vector function (', 1) — ¥°[#'](1) which is > in 2’ and
analytic in u. Since the pole of A" (u)~' is of order 1, see Costabel and Dauge
(2002), and since by construction, the columns of M[2'](1) belong to the special
space $) of homogeneous functions, we have obtained

Lemma C.4. The leading singular function 2’ ®°[2'] is (&) with values in 3,
which means that there exists N-component vectors qoi[zl’](oz) meromorphic in o and €
in 2" such that

o[+ = /I » (¢ + 0 qi [2' () do + / (¢ + a2) gy [2')(@) de. (C.19)

|| =8

The first shadow singularity ®' is given by

O === [ P AWW] ML g (FA SO it (€.20)
2im y()+1

The following lemmas give that the structure of ' ®° is compatible with representa-
tions of the type (C.16).

Lemma C.5. Let A € C. For any j € N, the operator I/ acts from $™(&, ) into
(500(5 534-./—%1).

Proof. The operator I/ is a linear combination with $°°(&) coefficients of terms of
the form 8’ 8_(3, with |8] — || = 2d —j. The derivative . acts only on the coeffi-
cients depending on 2" and do not change the angular structure, so we may discard it.
We are left with »* ai, which we can write as a linear combination of terms

ch E’Sza‘sl 8522 with &, 4+6, — B — B, =2d —j.



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™
©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Asymptotics Without Logarithmic Terms 915

It is clear that it suffices to prove that for any §;, &, B; and B, with
8 +8 — By —By=2d —j, and for any function g(o) meromorphic in «, there
exists ¢'(a) also meromorphic in o such that

i

=8

(o + D gle)dor = / (@ + D ¢ (@) da.

=8

We have

& f l_a(a:+z)k q(er) da = / (¢ + 0 g(a) da.

|a|=6

With the equality 7 = (a¢ + ) — aZ, we transform ¢” 77 into a linear combination
of terms of the form ¢ (a¢ + ¢)”. Thus we are left with integrals of the form

/| L+ DM g o) dan

As &t + 0" = ¢ "(af + P29 we integrate by parts » times in the above
integral and obtain the result. |

In the same way, we obtain the corresponding result for the trace operators:

Lemma C.6. Let A € C. For any j € Ny the operator B’ acts from €°(&, H¢) into
G(8, 95777, where 937" is the space of m-component functions homogeneous of
degree (. — py,..., A — p,) with Cayley representation like (C.16).

Let us return to Eq. (C.20). Let (F',G.)[#'] be the traces on r=1 of
A'[+']0°[+']. We have

M(1ego, (A @) [ () = (F', GL].

pm—@*+1)

By Lemma C.5, »"'72/F'[2/](6) belongs to #™(&, Hu+'7>"): There exists ¢*[+’]
such that

r)»+172dF1[%/] :/ (Olé"l‘ é.))»Jrl —2d +[ ](Ol) dao
|| =8
+[ ket e d
la|=8
We define for u € C the following element fo[ ) € 90 2,

fii = [ et g e das [ e e de

oe|=5

Of course, f[2/1(x + 1) = 72 F'[+']. Let us denote

1wy = 2 F 2] = £l 1)



ﬂ MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016
™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

916 Costabel, Dauge, and Duduchava

It is clear that in the representation formula (C.15), we may take as right inverse
of I 2F !

Rol# 100 (ol W) + R W) (f ' 1211),

instead of R[«')(1e) (" >*F"). Therefore we have the following decomposition in four
parts of the integrand of Eq. (C.20):

P[] (1 ego, 1 (A D)) (1)

1 )
=i ] )

1
=D (U1 + U+ Us + U4)(;L). (C.21)

where

Ui(w) = R w) £ 11 (w),
Us(w) = Rol2'I(w) £ 512 1(1),

Us() = W 160 A 1100 (=8B 1 1 R 100 £ 11w

Us() = W10 A 110~ (Gl = 0, BT 1Rl 00 £317 1))

Coming back to Eq. (C.20), we have to compute the contour integral

1 du
o4 =—— U+U,+U; + U _.
[#7] 2 V(A)H( 1 2 3 D) -0+ 1)

Let us compute the residue in . = A 4+ 1 of each of the four terms.

(i) As f'[#'](x + 1) = 0, the residue of (x — (A 4+ 1)) ' U, (w) is 0.
(i) The residue of (u — (A + 1))~ U,(w) is equal to U,(A + 1), which coincides
with Ro[2I(x + 1) f[2/1(x + 1), so it belongs to Hj".
(i) Asf'[2'J(x 4+ 1) = 0, the pole of (1 — (A + 1)) "' Us(w) is of order 1, and the

residue is a linear combination of the wE[2']( + 1), therefore belongs to
A1
O .

(iv) Finally, the pole of (1 — (A + 1)) ' Us(i) in A + 1 is, a priori, of order 2:

I AT
—_— %J' B —
20y VN G

x (G = g, B R 1 £l 1) di (C.22)
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Asymptotics Without Logarithmic Terms 917

The term (C.22) is itself the sum of an element of Sjé“, cf. (iii), and of

1 e AT

— M SN

2l7T y(O)+1 [] ](M) M — ()\. + l)
x (G; — 4. B[ R[]0 + 1) (r““”Fl)) du. (C.23)

By construction G is the couple of traces g jEBI[,‘%"]CI)O[,T/]. Therefore
GL — g B[Rl 10+ D(™2F) = g, W'[4],

where
W'[2'] == B'[«/10°[2] — B[] Ro[2'10- + D)(L'[2"10°[2"]).

The m-component function ¥'[2] belongs to ¢*°(&, SjSH_” ) by virtue of Lemmas
C.5 and C.6. Gathering the results for ®', we have obtained

Lemma C.7. The first shadow singularity ®'[4] is the sum of d>(1)[;f’] which belongs to
E(&, 95" and of @i

. N ()
= MW« e
P 71 B O hrrery

(92 9'1e1) dn (C.24)

where W'[2'] belongs 10 6(&, %" ).

C.V. The Relation of Compatibility
Our aim is to show that, in the Laurent expansion of
(= G+ D) AN (09,
the coeflicient in front of the term (u — (A + 1))_2 is zero. Since N~ [&*/](M)_1 has a pole
of order 1 in A + 1, the necessary and sufficient condition for this coefficient to be
zero is that
g V'] € rg /20 + 1), (C.25)

which is the “relation of compatibility.”

Lemma C.8. Let A be of the form 12+ k with k € Z. Let 2’ € &. Then the range of
N2'1(A) is the subspace of the

(b, ... bbb

which satisfy b" = —bi forh=1,...,m.
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918 Costabel, Dauge, and Duduchava

Proof. Let us fix #’ and let us drop it in the notations. In the case when the roots o
are distinct, according to Costabel and Dauge (2002, §3), 4"(u) has the general
structure, by m x m blocks:

E(n) 0 Bt BT\ (Fr(u) 0
0 Ew/\—e ™8 B 0 F(w
where E(u) is a diagonal matrix everywhere invertible except on a finite number of
integers, F*(u1) are everywhere invertible and the two matrices B= are invertible, due
to the ellipticity of the boundary value problem, see Costabel and Dauge (2002, §4).

The statement of the lemma for u = A is straightforward in this case. The general
case where the o are not supposed distinct is obtained by perturbation. |

Lemma C.9. Let A be of the form 1/2+ k with k € Z. Let V belong to 553_". Then
g_V=—g, W

Proof. Let W, denote the components of W, for 7 =1,...,m. The component ¥,
belongs to Sjé_p”, which means that there exists functions pif meromorphic in «
and such that

b= [ @@ das [ oD i@ da,
|a|=6

|| =6
It remains to compute the traces g, of ¥,. We use the formulae

(a;+2)“:2"(1+a%)“ and (c+aE)“=;“(1+a5;)”.

There holds (since || < 1)
é.pt _ reiu@’ EH« — re—iu@’
(1 +a§)" — (1 + a®)", (1 +a§)” — (1 4+ e 20y,
¢ ¢
Whence
g ¥, = e+i(?~*p/,)ﬂ/ (1+ a))‘fp"p;(o[) da + e*i()»*ﬂh)”/ 1+ a)lfphp}?(a) da
| =8 oe|=8
9+‘I’h — e_i()‘_p/x)ﬂ/ 1+ ot))‘_'o”p,':(a) do + e+i(k—p/,)ﬂ/ 1+ ot))‘_p”p;(ot) da
lot|=8 oe|=8
As A =1/2 + k, we have obtained the lemma. |
The consequence of Lemmas C.8 and C.9 for ®'[#'] is now clear: Eq. (C.25)
holds. Therefore the function Wi[#'] defined in Eq. (C.24) also belongs to
E>(8, 553“). Which means that, finally, the first shadow singularity ®'[#'] belongs

to €°°(&, 553“), i.e., satisfies at its degree of homogeneity exactly the same property
as ®°[#'], see Lemma C.4.
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Asymptotics Without Logarithmic Terms 919
The proof of this property can be immediately generalized to the following:

Proposition C.10. Let A € C of the form 1/2 + k with integer k. Let F[2'](r,0) belong
to (8, Sbé_m) and GL[2'|(r) be the traces on 0 = £ of a m-component vector
function W[2'] € €(&, 9y *). Then the N-component function [z’ defined as

1 _
O[] =5 [ [0 MW o, (P F, G [10)
2im e

belongs to €°(&, Hi).

Therefore, with the help of Lemmas C.5 and C.6, we see that the procedure for
the analysis of the successive shadows ®7,...,®" is recursive. Therefore for
all p € Ny, @ belong to €*°(&, 553“ ) and, thus, do not contain any logarithmic term.

C.VI. Absence of Logarithms, General Results

Examining the arguments of the proofs of Lemmas C.4 to C.6 and Proposition
C.10, we can see that, in fact, the result we have proved does not use any ellipticity in
the edge variable 2" € &, only the smooth dependency. In the next statement, we
select the hypotheses which are sufficient to obtain our result on the absence of
logarithms in shadow singularities:

Hypothesis C.11. Let 2+ (L%, B)[2'] be %*(&) with values in the space
Oplzflll’” (R?) of (N x N) elliptic systems homogeneous of order 2d with constant coef-
ficients in [R?, with complementing boundary conditions homogeneous of degree
p=(p1,....p,) with constant coefficients. The Mellin symbol of (L’,y. B")[2’] is
denoted by A°[#'] with y_ and y, the traces on {(»,2) | y1 < 0} from below and
from above, respectively. o ‘

For any j € N, let 2"+ (L', B/)[2'] be a matrix-function with coefficients Lj_,[2']
and th, [#'], €°(&) with values in the space of operators

Op2d_j([R2) fOr L]/'c’[ and Opp/z_j(R2) fOr Bil,f’

where for p € Z, Op”(IR?) is defined as the space of finite linear combinations with
¢>(&) coefficients of partial differential operators of the form Vo, Bjsv with
|8| — || = p. We denote the triple (I/, y,.B/)[2'] by W[z']. [

The proofs of Lemmas C.4 to C.6 and Proposition C.10 then yield

Theorem C.12. Let (I, B’ )i=0 be a sequence of operators satisfying Hypothesis C.11.
Let » = 1/2 4+ k with k € Z and let y()) be the circle with center A and radius 1/4. With
the function (2, u)— (F,G)[2'[(n) supposed to be €°(&) in a' and analytic in u,
with values in L*(—7, ) x C" x C", we define the following leading singularity, which
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920 Costabel, Dauge, and Duduchava

is a generalization of Eq. (C.8):
1 ,
2] = 5~ f P W] (F Gl 1) dis,
y(2)

and its vequence of shadows (®'[2"]), according to Definition C.1. Then, for any integer
p >0, ®[2] belongs to €°(&, 553 . In parllcular ®P[2'](r,0) can be written in the
form r“”l//(l 0) with W € (& x [—m,7]) ® CV.

In fact this statement extends to the wider class of Agmon—Douglis—Nirenberg
systems with covering boundary conditions:

Hypothesis C.13. Let N € N, 6 = (01,...,0x5), T=(T1,.-.,Ty),
1
m=§(01 —T+toy—1y)

dnd p=(p1.....pn). Let 2/ (L% B[] be (&) with values in the space
OpSE2(R?) of (NxN) Agmon-Douglis— Nlrenberg elliptic systems homogeneous
of order o, — 7, with constant coefficients in R*, with complementing boundary
conditions homogeneous of degree p;, — 7, with constant coeflicients.
For any j e N, let « H(LJ B/)[2'] =: W[2'] be a matrix-valued function with

coefficients Lﬁ( ([#'] and B% ('], € (&) with values in the space of operators
Op* ™ 7(R* for ILj, and Op” “7(R® for B,
with Op”(R?) as in Hypothesis C.11. [ |

The Mellin transform and the Cayley representation can be used with the same
success in the framework of Agmon—Douglis—Nirenberg systems, see Costabel and
Dauge (1993b, 2002), which allows to obtain:

Theorem C.14. Let (I, B’) =0 be a sequence of operators satisfying Hypothesis C.13.
Let A=1/24+k, y()), and (F,G)[2'(n) be as in Theorem C.12. We define the
following leading singularity:

O,/ _L L—1 0 o
W=y [P G0) G K d

and its sequence of shadows (®° [« ])p by an obvious modification of Definition C.1, with
B=(01,....0NP1s-- s PmsPls---»Pm) and p replaced with u — t as above.

Then CDP[ "1 is homogeneous of multi-degree A + p — 1, i.e., its j-th component <I>f
satisfies ®[2")(r,0) = "Iy (a’, 0) with ; € €°(& x [, 7). '

We obtain as a corollary (and a generalization of Theorem A.3) that the asymp-
totics along a crack edge of the solutions of Agmon-Douglis—Nirenberg systems
associated with coercive bilinear forms contain no logarithmic term:

Corollary C.15. Let (L, B) be an (N x N) Agmon—Douglis—Nirenberg elliptic system of
order o, —t, with smooth coefficients in R"™™, with complementing boundary
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Asymptotics Without Logarithmic Terms 921

conditions homogeneous of degree p, — t, with smooth coefficients. Let us assume
that (L, B) is associated with a coercive bilinear form. Let py., := max{pi,..., 0n}-
Any solution u of problem (C.6) (with a smooth right hand side f) which belongs
to H 7N (W) with s > pmax has the following asymptotic expansion as r — 0: For any
integer K > k

m K k)
u=y G0+ Y Y )P Y, 6)
j=1 k=ky+1 j=1
+ Ureg K + Urem K » (C26)

where k is the smallest integer such that 1/2 + ko > s — 1. The regular part ., x is in
(R, The remainder U x belongs to KW ) and is flat of order K — 1t
near &.

C.VIIL. Angular Description of Singular Functions

For simplicity, let us go back to the situation where Hypothesis C.11 is satisfied
and let us consider ®°[#] like in Theorem C.12, as well as its sequence of shadows
(®”[4']),. Theorem C.12 tells us that ®’[2] belongs to €™(8,9,""), which means
that there exist meromorphic « > ¢=[2'](a) (with €*(&) dependence on #”) such that

¥ = /| H(“{ + 0" [0 (o) der + / (& + o) g7 [2')() de.

Jor|=8

But, in fact, the vector-functions ¢*[z'] are not arbitrary meromorphic
functions in the unit disc: their poles belong to the set of the roots {oF[2]},
cf Eq. (C.13).

As a consequence, as we are going to show, it is possible to give a modular
representation of the ®’[«'], if we assume

..... my s

The multiplicities #; of «f[#'] are constant on &. Hc1)
Let «[2'] denote the set {(aF[2], nF)} of the roots with their multiplicities.

Definition C.16. Under hypothesis ($¢), for any u € C and p € N, let us denote by
(8, DY ») the subspace of homogeneous functions f [2'] € " which admit a
representation as:

W= [ @t preii@dat [ et e do (c27)

la|=8 |or|=8
where the functions ¢"[2'] and ¢ [#'] are meromorphic in o, 6™ in 2’, with poles only
in the roots a;[2] of order < pn/ and «; [#'] of order < pn; , respectively. Let us
denote by (¢, 9y, ,) the space €°°(6, 9. ,) ® cV. [ |
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922 Costabel, Dauge, and Duduchava
With these definitions, we have the following properties.

(i) By Eq. (C.14), the kernel elements wi(u) belong to €°(&, Do)
(i) The definition (C.17) of R, gives us that for any u € C and any p e N,
R, acts:

Ro : 628,947 — 678, 9 .-
(iii) The proof of Lemma C.5 yields that for any u € C and any p € N, ; acts:
W 68, 9y ) — (6.9, 7)) x 626,947

Revisiting the proofs of Lemma C.4 and Proposition C.10 we obtain

Theorem C.17. Under the assumptions of Theorem C.12 and under hypothesis (Hc;),

for any p € Ny the edge singular functions ®° belong to €°°(&, Sjif;ﬂl).

Since there holds for any u € C, for any « and oy € C
(et +0)" = (@or + 0/ + 3 ¢ ple = o) ¢ (et + )"
(¢ +aD)" = (¢ +and) 4 3 il = o) T (¢ + ad)

any function ® in €°°(&, 9 ») has a representation as

my Imz m_ pn[ —1

® = Z Z o [71e +0)" e 2] +Z Z (¢ + ar [T e o],

=0

with €°°(&) coefficients c,ﬁe. As a corollary of Theorem C.17 we obtain

Corollary C.18. Under the assumptions of Theorem C.12 and under hypothesis (Hc;),
for any p € N the edge singular functions ®” have representations as

m, (p+Dnf—1

o= " > M+ e e

=1 k=0
m_ (p+Dn, —1 . i

+Y > T+ ) (C.28)
=1 k=0

with coefficients c,fgt € 6%°(6).
Let us denote by ¥, , for w = £1 the fundamental functions
W (2, r,0) =/ [710+ T and W, _(2',r,0) = ¢ + a7 [2]2.

The comparison with the fundamental angular functions introduced in Eq. (B.81)
is quite simple: Since, if L is real,

il = 1) i(1—ap)

= and T, =
af +1 g o +1°
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Asymptotics Without Logarithmic Terms 923
there holds

\Ill,w(rae):(az—‘rl)”w@,w(g)’ L= 1,...,7’120, w = :tly

and conditions ($Hpe) and (H¢;) are two formulations of the same assumption.
Coming back to the expansion (C.28), we note that the N-component vector

functions
(p+l)n2r—l ( N N
" . k +1)n, — +
df (@ y)i= o W e 1]
k=0

(p+n, —1

N . —k +Dny —1—k LT
dl ()= Y TG e )
k=0

are polynomial in y, therefore ¥°°(R"""), and there holds

o=y Zqﬂ NG pydl (). (C.29)

w==%1 {=

If condition ($,3) holds (i.e., if nF=1, ¢=1,...,m) Eq. (C.29) takes the
simpler form

i 1(1)

O 1= " Y W ()l (). (C.30)

w==%x1 (=1

which means that the singular factors \D@w do not depend on p.
As a final consequence of formulas (C.29) and (C.30), we obtain “modular
representations” of the solutions of elliptic BVP in the domain Q = R\ #:

Theorem C.19. Let the hypotheses (Day1), (Dan), and (H¢cy) be satisfied.

(1) Any solution u of the boundary value problem (A.1) with smooth right hand side f
has the following asymptotic expansion as r — 0. For any integer K > 0

1/2—(K+1 1 ’ ’
u= Z Z\y /2K )( 'sy) dgﬁ)(% :y) + ureg,K + urem,Ka (C31)
w=%1 {=

where the vector-coefficients d[ ] are €°(R"™YY and the regular parts Upeo k aNd Uper, k
are as in Proposition A.2.

(i) If the multiplicities ny are all equal to 1, c¢f hypothesis (Das), then u admits the
global decomposition

u=y Z\Ww PG ) + g oo (C.32)

w==%x1 {=

where all vector-coefficients dg-,, and u,q, o, are EP(R™).
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Remark C.20. The multiplicities #{ are in fact the order of the poles of the inverse of
the Cayley symbol L“()~" in &f. They can be smaller than the total multiplicity of
of. An example for this is the case of isotropic elasticity in [R* where L¥(a)”! have 0
as only pole, but the multiplicity is 2 (and not 3). The fundamental functions ¥, ,
are simply

Y, =¢=(y —iy) and V_=¢=(y +in),
and expansion (C.31) takes the form, compare with Chkadua and Duduchava (2000)

—1/2—(K+1)

u= é‘ dgl_(](?,/, y) + ;1/2_(K+1) d[—K](T/a J’) + ”reg,[( + Urem K > (C33)

with (R coefficients d'f. [ |
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