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Abstract. In the investigation of a boundary value problem (BVP) for an elliptic partial
differential equation in a domain  C R"™ by the potential method, the solution is repre-
sented by means of potential operators, and the problem is reduced to finding the density of
these potentials on the basis of the corresponding boundary integral equation (BIE) on the
boundary & = 992 or on its part S C 0. If the BVP under consideration is of crack type or
mixed, then the manifold S can have a boundary, S = I'. After proving the unique solvabil-
ity of the BIE, one can apply the Wiener—Hopf method provided that the manifold S and
its boundary I' are smooth, and find a complete asymptotic expansion of the solution on S
near the boundary I" (see the previous paper by the authors [CD1] and Section 1 below). It is
quite natural that the next step is to find the complete asymptotics of the solution to BVP
in © in a neighborhood of I". To this end, we must find the asymptotics of a potential-type
function provided that the asymptotics of the density on S is known, and this problem is
solved in the present paper in a rather explicit form.

INTRODUCTION

The main goal of the present paper is to study the asymptotics for a solution of an elliptic
boundary value problem (BVP) represented by surface potentials (within the potential method).
We continue the investigations of [CD1] that extend results of [Esl, Bel, CS1, DW1, DSW1]; these
investigations led to the asymptotics of the elliptic pseudodifferential equation (PsDE)

a(t, Dy)o(t) = g(t),  t€So,

on a smooth manifold with smooth boundary S, (the Wiener—Hopf method), and the correspon-
ding results are described in Section 1 of the present paper. To obtain the asymptotics of a solution
of the BVP, one needs to investigate the asymptotics of functions represented by potentials whose
densities have prescribed asymptotic expansions on the surface.

For example, consider the crack problem for an anisotropic elastic body

A(Dg)u(x) =0, reR3\ Sy, (0.1)
wt(t) = fx(t),  t€ S, (0.2)

with a given vector field u* of displacements on both sides of the crack surface Sy, where

3
A(D,) = || Z ikt OkOm || 335 ikim € R, Qjkim = Qimjk = Akjim,
k,m=1
3 3
2 .
> Gjpm&iném = Co Y, & for arbitrary & €R,  &p =&y
J.k,l,m=1 j,k=1
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16 0. CHKADUA AND R. DUDUCHAVA

A solution to an elliptic equation of the form (0.1) can be represented as
u(z) = Ws, fo(z) — Vsp(z),  z€R", (0.3)

where Wg, and Vg, are the double layer potential and the single layer potential for (0.1), respec-
tively, while the densities

folt) = fo(t) = f-(8),  @(t) = {T(De,n(t))u} " (t) — {T (D, n(t))u} ()

represent the jumps of the displacement field and of the stress field across the crack surface Sy.
Thus, we must find ¢(t) by solving a boundary PsDE of the form

V_1plt) = Wolo(t) = 51740 + 7 (1), (04)

where V_; and Wy, are the direct values of the potentials Vs, and Wg, on Sp; they are pseudo-
differential operators of orders —1 and 0, respectively (see [CS1, DNS1, DNS2]).

Let t = (s,p) € Col? := 9S8y x ]0,¢[ be the so-called local “plain collar” coordinate system,
where p = p(t) := dist(t, 0Sp) stands for the distance and s € 98, for the abscissa on the arc.

The function ¢ is a solution of the elliptic PsDE (0.4), and hence ¢ belongs to C*°(Sy) provided
that Sp is infinitely smooth. Moreover, if the data are smooth, i.e., if fr € C°(Sp), then the
complete asymptotic expansion of ¢(t) in a neighborhood of the boundary 98y is

Mk
0(p,s) =co(s) p 2+ D> erj(s) P12 log™ p+ oarsa(p, ), (0.5)
k=1 m=0
(p,s) € Colg ) €05€1,05- - -, Cvam € C(080), o1 € CM(Sy),

for arbitrary M = 1,2, ....

Our next important step is to establish an asymptotics of u(z) in (0.3) by using the asymptotics
of the density in (0.5). This is performed in a rather general setting in Section 2 (see Theorem 2.2
of the present paper). Similar results for the canonical half-space case and for particular potentials
can be found in [Esl, §13].

To state the main result of the present paper for the BVP of the form (0.1)—(0.2), we assume
that S is a smooth closed manifold (without boundary) that contains Sy and introduce a local
“thin collar” coordinate system in a neighborhood of S, C R?,

z=(s,p,r) € Col® := 88y x |—¢,¢[ x|—¢,¢[, Col>NS, = Col.

Here p = dist(z, Sy) stands for the distance between 9Sy and the projection € S of a point
r € R3\ S along the outward pointing normal to S, and thus takes negative values for & € S\ S,
while r = dist(z, Sp) takes positive (negative) values if z is inside (outside, respectively) of S.

The function u is a solution of problem (0.1)—(0.2) and hence u € C*°(R3\ Sy) provided that Sy
is infinitely smooth. Moreover, if the data are smooth, fi € C*°(Sy), then the complete asymptotic
expansion of u(x) in a neighborhood of the boundary 9Sj is

u(s, P T) - Z Re{ Z [dmj(sa +1) T]Ziq/,%:lj - dmj(S, —l)r]z;/?:l]]
m=1 j=0
M+1 M+2—1

- k
£ S A B (s o) |+ uara(s.pn).

0==+1k,1=0 j+p=1
k+i4j+p#1

up41 € CMTL (Colg’) , (s,p,r) € Colg’ ) dmj(-, £1) € C*(0Sy) ,
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 17

Here 2y, +1 1= p £ 77 41, —7 < Argz,, +1 < 7, and {Tm’il}fnzl stand for the different roots of
the polynomial det A(7,! (s,0)-(0,+1, 7)) (whose multiplicities are denoted by n,,, m = 1,2,...,¢)
in the complex lower half-plane Re7 < 0; A(£), £ € R3, is the symbol of the elliptic differential
operator A(D,) in (0.1), the matrix J,! (s, p) is transposed to the Jacobian matrix of the coordinate
diffeomorphism @ from R? to the surface Sy (see Subsection 1.3 below), and By (s, A) is a
polynomial of order v, = k 4+ p + j — 1 with respect to A with vector coefficients depending on
the abscissa s on the arc.

The roots 7y, +1(s) depend on the parameter s € 9Sy smoothly, 7, +1 € C>(9S,), where
m=1,.../0.

Moreover, explicit relations between the coefficients of expansions (0.5) and (0.6) are found.
In particular, the leading coefficients d,,,; (s, £1) and cy(s) of these expansions are related as follows:

o (5, %1) = %m’)mr(j ~1/2) G, OOV (5,0,0, £1)ce(s).

where Gx(s,0) is the Gram determinant of the coordinate diffeomorphism & and

i+ dnm—1-7

(m) _ _ Noyn, T . -1
Vi1(s,0,0,£1) = j!(nm—l—j)!dfnmflff“ T, 1) (A(Te (5,0) - (0,£1,7)))

T=Tm,+1

In the isotropic case, the Lamé operator is A(9,) = pA + (A + p) grad div, which gives ¢ = 1,

T1,41 = —1i, ng = 3, and dj2(s, £1) = 0; the asymptotic expansion of the corresponding solution
can be simplified as follows:
u(s, p,r) = dy(s) Im zi/f + Re dg(s)r(z;il/2 — zi/f) (0.7)
MA41 M+2—1

+ Re Z Z Z plrj2;1/2+p+kBllkjp (87 logze) + UM+1(37 P, T)u
0=+1k,1=0 j+p=1
k+l+j+p#1
(s,p,r) €ColZ,  zy1:=pFir,
where
1 A4+3p A+ 3u

d1(s) = diag {;, ST ) T T 2 } Gee (s, 0)co(s)

and the coefficient do(s) = dy1(s, £1) can be evaluated in a similar way.

The explicit relationships between the coefficients of expansions (0.5), (0.6), and (0.7) can be
used in crack mechanics to develop fracture criteria. This problem will be discussed in a forthcoming
paper.

For functions represented by potentials, the asymptotic expansion is found in Section 2 in the
general case. Namely, we consider the representation

u(z) = VoBgpo(z), supppyCSy, z€R", (0.8)

where B, is a classical pseudodifferential operator of order ¢ € R on the manifold Sp; we assume
that an asymptotic expansion of the density o = (¢o1, - - -, pon) is known. We write out a complete
asymptotic expansion for the function u(z) in (0.8) (see Theorems 2.2 and 2.3).

The reason to introduce the pseudodifferential operator B, is that such operators arise in some
problems in mechanics, in particular, in crack problems of mixed type [Ch2, Ch3] and in problems
of cracks on an interface for an anisotropic elastic body [DSW1]. In our forthcoming paper, the
asymptotics obtained here will be applied to certain problems in elasticity.

The asymptotics of solutions of boundary value problems in domains with nonsmooth boundaries
(e.g., with cones, edges, etc.) is intensively studied by using the apparatus suggested by Kondrat’ev
in [Kol]. Some results of these investigations can be found in [Dal, Grl, MP1, NP1, RS1, Scl].

We use here another approach, which is based on the Wiener—Hopf method; this approach was
suggested by G. Eskin and exploited in [Bel, CD1, CS1, DW1, DSW1], but, to our knowledge, only
the research [Esl, §13] is devoted to the asymptotics of functions represented by potentials in the
case of the canonical half-space and for special potentials.
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18 0. CHKADUA AND R. DUDUCHAVA

1. ASYMPTOTICS OF SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS

For convenience, in this section we briefly recall results on pseudodifferential equations in Bessel
potential spaces that are obtained in [CD1] (see also [Bel, DW1, DS1, Es1, Sh2, Sh3]).

1.1. Spaces

Let S(R™) be the Schwartz space of all rapidly decreasing functions and let S'(R™) be the dual
space of tempered distributions. Since both the Fourier transform and its inverse, which are defined
by the formulas

Fo(€) —/eigmcp(a;)da: and Fly(z) =

RTL

(271r)n /emg‘p(f)df’ z,E€R™, (L)
Rn

are bounded operators in the spaces S(R™) and S'(R"), it follows that the convolution operator
a(D)p =Wl := F raFp with acSR"), ¢cSR"), (1.2)

is a bounded transformation from S(R"™) into S'(R™) [Dul, DS1].
The Bessel potential space Hj (R") is defined as a subspace of §'(R") endowed with the following
norm [Trl, Tr2]:

[ (R[] 2= [[A°(D)ul Ly (R™)]|, - where  X*(€) := (1+[¢]*)*/2 = (¢)*. (1.3)

For the Hilbert space H5(R™), the index 2 is usually dropped, and the notation is reduced to
H*(R™) (cf. [Esl1]).

For any o in ]0, oo, denote by C?(R"™) the Holder space of continuous functions equipped with
the norm

|| C™(R™)|| = Z sup{|0%p(z)| : x € R"} for o =m € Ny,
lal<m
lelC?(R™)|| = plC™R™)[+ Y sup {|h] ][ An0%p|C(R™)[| : h € R™\ {0}}
|a|=m

for c=m+v, meNy, 0<v<l1,

where N stands for the set of positive integers and Ny := NU {0}.

The space ﬁ;(Ri) is defined as the subspace of H3(R™) consisting of functions ¢ € H? (R") with
support in the positive half-space, supp C R’. Let H7(R’) be the quotient space H3(R") =
H2 (R™) /H (R™ \ R’} ), which can be identified with the space of distributions ¢ on R”} that admit
an extension £y € Hj(R"). Therefore, rrq Hp (R") = Hj (RY}).

Now let us define weighted anisotropic Bessel potential spaces similar to those in [Esl, Sects. 23
and 26].

For p,s € R, m € Np, and 1 < p < oo, by Hé“’s)’m(R") we denote the space of functions (or of
distributions if 4 < 0 or u+ s < 0 ) endowed with the norm

[u|HY D™ (R = IA(D)AHF(D)abul LR, == (2 2,) €ER,
k=0
A(E) == (1+[€]D)*?, €=(€,6), £ eR™, & €eR. (1.4)
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 19

The operator
)\II(D/))\T(D) . H}gu,s),m(Rn) N HISN*%S*T)ym(RTL)
is an isometric isomorphism and its inverse is A™(D")A~"(D) (where v, € R).

We write HI(,“’S)(R") instead of HI(,“’S)’O(R”) and Hp™(R") instead of HI(,O’S)’m(R”); note that
HI(,O’S)(R”) = H(R™). The definitions of the spaces ﬁll(,“’s)’m(Ri) and Hé“’s)’m(Ri) are similar to
those of ﬁ;(R’fﬁ) and H (R’ ), respectively.

__If the boundary OM of a manifold M is nonempty, then M can be extended to a manifold
M D M without boundary and with the same smoothness.

If {Y;}_, is a sufficiently fine covering of M, then the spaces H3 (M), C7 (M), }ﬁlf,(./\/l), C7 (M),
Hg,“’s)’m(./\/l), and ﬁl()u,S),m(M) can be defined with the help of a partition of unity {¢;}}_, (sub-
ordinated to the covering {Y]}ézl) and of local coordinate diffeomorphisms

EE]‘ZX]‘—>Y}, XjCRi. (15)

The space ﬁl()u,S),m(M) can also be defined as a subspace of Hé“’s)’m(.//\\/i) consisting of functions
Y € Hé“’s)’m(.//\/lv) for which suppy C M, and the space Hé“’s)’m(./\/l) can be realized as the
quotient space Hé“’s)’m(./\/l) = Hé”’s)’m(ﬂ)/ﬁé”’s)’m(ﬂ \ M). The latter space can be identified
with the space of distributions ¢ on M that admit an extension fp € H}j"s)’m(ﬂ). Therefore,
rH DT (M) = BT (M),
[TrIlf} ‘B* denotes the dual space to the space B and if OM # @, then the following relations hold
() =H M), ()" = Hy (M), (1.6)
provided that s,r € R, r > 1/p, 1 < p < o0, and p' = p/(p—1). If ™ C R™ is an m-dimensional
C*°-smooth submanifold, where m < n, then the trace operator

yom: Hy (R™) — By *~™)/P(8™) (1.7)
is well defined and bounded for

n—m
1<p<oo,

Here B, (S™) stands for the Besov space [Tr1].

1.2. PsDOs on R"
If the convolution operator defined in (1.2) has a bounded extension
Wy Ly(R") — Lp(R™),

then we write a € M,(R™), and a(§) is called a Fourier L,-multiplier or simply L,-multiplier. For
v € R, we write

MR o= {(1+ [€)/2a(€) : a € My(R™) }.
By using the isomorphism (1.3) and the obvious property
Wo Wy, =wy

ai1az?

aj € M (R,), j=1,2 (1.8)

we see that the operator W2: H3(R") — H5~¥(R") is bounded if and only if a € MISV) (R™).

The following result is known as the Mikhlin—-Hoérmander—Lizorkin multiplier theorem. The
proofs can be found in [Sr2] and [Hrl, Theorem 7.9.5].
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20 0. CHKADUA AND R. DUDUCHAVA

Theorem 1.1. If
sup {I6°0%a(6)| € € R, 5 NG, 16 <
then a € () pcoo Mp(R™).

n+1
2 )

0<ﬁ<1}<M<OO,

Let a € MISV) (R™). Then the operator
W, :=rya(D) : Hi(R?) — H3 ™" (R%) (1.9)
is bounded, where r := TR™ is the restriction operator.

In general, the composition rule (1.8) fails for half-space operators (1.9). However, if there is an
analytic continuation a(¢',&, —i\) (or as(&, &, +iN)) for &, € R and A € R* that belongs to
S'(R*! x C7) (to S'(R™~! x CT), respectively), where C* = R x R*, then

W Wa, = Waia,- (1.10)

If the symbol a(z, ) depends on the variable z, then the corresponding convolution operator (see
(1.2))

a(, D)p(x) = Wi, p(@) i= (Ft @, ) Fyeply) ) (@) (1.11)

with the symbol a € C(R™, S'(R™)) is said to be a general pseudodifferential operator (PsDO) acting
on ¢ € S(R™). Here C(2, B) stands for the set of all continuous functions a:  — B.

Let MISV) (R™ x R™) be the class of symbols a(z,&) for which the operator in (1.11) can be
extended to a bounded mapping

a(z, D): Hy(R") — H; " (R™) forall seR.

Theorem 1.2 [Sh2, Theorem 5.3]. Let @ C R™, n € N, and v € R. If, for a function a(z,§),
x € Q, £ € R”, there exist constants M, g such that

/ 10200 a(z, €)| dz < Mo p(€) 1P (1.12)
Q

forall a,f=(F.6.) €NG, |¥<|5]+1, §<1,
and for all B, € {0,1,...} and £ € R™, then a € MISV)(R" x R™) for all 1 < p < oo.

Definition. Let S¢(2,R") be the class of functions a(x,§) satisfying condition (1.12) and
admitting an asymptotic expansion of the form

a(ﬂ?,f)2(1()(33,&)4‘(11(33,5)‘1‘"' ) (113)
where
(i) ag(z, &) is positive homogeneous of order v — k with respect to &,

ap(x, A6) = N Fay(z,€) forall A>0, £€R", z€Q,
and

/ 1020 ar(x, §)|dz < Ma,pl¢|" 7171 6] > 1, for all a, 3= (8, B,) €NG, k€ Nog.  (1.14)
Q

(ii) For any N € Ny, the difference
5N+1(‘T7 é.) = (l(ﬂ?, f) - a()(ﬂf, é.) - aN(xa é.)

satisfies the inequality

/\aggafaNH(a;,g)\da; < My plé|"~PIZN=1 forall ¢ €R", «a,B€NJ. (1.15)
Q

The function ag(x,&) = ape(z,§) in (1.13) is said to be the homogeneous principal symbol of
a(z, D).
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 21

Theorem 1.3 [CD1, Theorem 1.6]. Let m € Ny and 1 < p < co. If é)?na(a;,f) € MISV)(R”,R")
for allk =0,1,...,m, then the operator

a(z, D): H»*™(R™) — H{»*—)™(R") (1.16)

is bounded for any p, s € R. In particular, if a € SS(R™,R™), then a(x, D) in (1.16) is bounded for
any m € Ng and any u, s € R.

Lemma 1.4 [DW1, Lemma 1.7]. Let a,b € MISV)(R" x R™) and v € R. Suppose that the
conditions of Theorem 1.3 hold for a and b. Let there exist analytic extensions a(x, &', &, + i\)
and b(x, £ &, — i) in the upper and lower half-planes, respectively (x € R™, ¢ € R &, € R,
A € RY) whose growth at infinity is polynomial, i.e., let |a| and |b| be majorized by (|€'| +[&n| + AN
for some N and for all x € R™ (uniformly). Then the operators

a(z, D): Hw*™(RY) — HYws—)m(RY),

(1.17)
rib(, D)lo: HY-»m(RY) — HY =) (R
are bounded and =
rya(z, D)y = a(x, D), pe Hz()N’S)’m(Ri)’ (1.18)

ryb(z, D)l = rib(x, D)y, o € HY»™(RY).
Here Ly, {1, and Ly are some extensions of p € H (R ) with £;¢0 € H3(R™), j =0,1,2.

1.3. PsDOs on a Manifold

Let M be an (n — 1)-dimensional!, C*°-smooth compact manifold with smooth boundary I' :=
OM+# Fandlet 1 <p< oo and s, v €R.

We can readily see that the symbols of class SS(M, R""1) are invariant with respect to the
diffeomorphisms (z, &) — (go(z,€), g1(z, €)) with positively homogeneous g, € C°°(M, S"2) of
order k with respect to & (k = 0, 1; cf. [Sb1, Lemma 1.2]). Therefore, the class of symbols S (7* M)
is well defined on the cotangent manifold 7*M (see [Sbl, Subsection 1.3]).

Moreover, the definition of the principal symbol ap,(z, &) is invariant and does not depend on
the chosen chart.

Definition (see [DS1, Hrl, Sbl], etc.). An operator
A: Hé“’s)’m(./\/l) — Hé“’sf”)’m(./\/l) (1.19)
is called a pseudodifferential operator with symbol a € S¢(T*M) if

(i) the mappings x1Axz2/: Hé“’s)’m(./\/l) — (M) are continuous for all pairs xi,x2 €
C*>° (M) with disjoint supports supp x1 (| supp x2 = &, i.e., x1AxaI is of order —oo,
(ii) the transformed operators

aej,*Aae;iu:a(j)(a:,D)u, ue CR R, ji=1,...1,
(cf. (1.5)), where

e u(z) = { P(w)u(z)(z))  for z€ Xy,

) 0 for x # X,
b (e (1)) for tey, (1.20)

—1 L i (t)o(ee; or g

EEj,*(P(t) = { 0 J o 1oy

and  ¢9(x) = ¢; (a;(x)), € X, are pseudodifferential operators on R’ with the

symbols a) (e(x), &) = 1/1?(3;)(1 (ej(x), {)1/1?(3;) )

IDue to our needs (see applications in Section 2), from now on we prefer to consider (n — 1)-dimensional manifolds
rather than n-dimensional ones.
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22 0. CHKADUA AND R. DUDUCHAVA

The homogeneous principal symbol is responsible for the Fredholm properties and for the index of
the corresponding pseudodifferential equation Au = f with f € Hf,*'"(./\/l). Moreover, it determines

the leading term of the asymptotic expansion of the solution u € }ﬁlf, (M) in a neighborhood of the

boundary I'. Lower order terms of the asymptotic expansion of the solution are influenced by the
complete symbol a(z, &) (see [Esl, Sect. 26], [Bel, CD1], and Theorem 1.7 below).

As is well known, purely homogeneous symbols can cause problems related to the boundedness
of the corresponding operators. For example, recall the operator |0|™" with the symbol |£|7" for
v > 0, which is unbounded as a mapping H(R"~') — H™(R"" '), and even in L,(R""!) (see
[St1, Sect. VI]). However, if a(x, §) satisfies (1.12) for || > 1 and is homogeneous of order v < —n,
then the truncated symbol

a(z,€) = [1 — xo(6)]a(z, &) (1.21)

(where xo € C5°(R™71) is a cut-off function with xo (&) = 0 for [£] = 1, xo(§) =1 for [¢] < 1/2)
belongs to the class SS(M, R"~1) because it satisfies both formula (1.12) and the relation

/‘858?[(1(3}, é.) - é(ﬂ?, 5)” dx < Ma,,@,N‘f‘yi‘miN
Q

for arbitrary N € N, £ e R" ! o, € Ngil, and z € M. The advantages of the truncated symbol
are obvious; in particular, the difference

a(z, D) — a(x, D): Hi(M) — C®(M)

is a smoothing operator and does not influence in the singular asymptotics of solutions. For the

same reason, the operators a(x, D) and g\(a:,D) have the same Fredholm properties and equal
indices provided that M is compact.

A similar property concerning asymptotic behavior holds under stronger perturbations. Namely,
let conditions of Theorem 1.3 hold for |{| > 1 and let a cut-off function depend only on the last

variable, X(()O)(fn,l) =0 for |§,—1| > 1, X(()O)(fn,l) =1 for |{,-1] < 1/2, and X(()O) € C§°(R); then
the operator with truncated symbol

v m(c0,s),m 00,8—V),m
a’(2, D) = [1 = x¢” (Dn-1)lala, D) : HE*™ (M) — HP=* ™)™ (M)
is bounded, and the difference
a(z, D) — a°(x, D): HE>9™ (M) — C=(M) (1.22)

is a smoothing operator. However, a0 is not a compact perturbation of a(z, D) for n — 1 > 2, and

it essentially influences in the Fredholm properties and in the index.

1.4. Example

Let M C R? be a smooth surface with smooth boundary I' = OM and let
N
M= UY}, x; :(Eﬁjl,%jg,%jg)Tin —>Y}, Xj CRi:RXRJF, (123)
j=1

be a C*°-smooth atlas of the surface M; let the functions

E%ji)?jﬁi;vj, )?jCRi, ECR?), i;vjﬂMZij, (124)
)?j:(—ff,E)XXj, E%j ‘Xj: §ej(0,x):aej(x), I:(Il,xg), j:1,2,...,N, '
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 23
be extensions of the diffeomorphisms in (1.23). For # = (1, 23) € X; and 7 = (¢, 21, 22) € X,
by Jw,(x) = ||Okzji(z)|l2x3 and Tz () = ||0k;1(Z)|l3x3 we denote the corresponding Jacobi

J
matrices, respectively, and e’ (x) coincides with éve;(O, x) for z € X after deleting the first column,
i.e., after removing the entries dy2;;(0, z), | = 1, 2, 3; therefore, 7~ (0,2)(0,y) = &/ (z)y for x € X;
& J

and y € R2. It is clear that

T3, (0,2) = (eq (225()) , e1 (2(2)) , €2 (5 (2))) , (1.25)

where the vector columns ey(t), e1(t), and es(t) on the boundary ¢ = 2;(2") € I' can be chosen to

be orthogonal to each other, ey(y’) = 7i(y’) ", while e; and ey are tangent to M, e; is tangent to
', and ey is cotangent to I'. The fields e; (¢) and e5(¢) of unit vectors on M are not orthogonal in
general, in contrast to the pairs eg, e; and eg, es.

As a consequence, the Jacobi matrix j;(%) becomes orthogonal on the boundary T,
J

[(0,21,0)]" = (75,0, 21, 0)]~' forall (z1,0)€ X;NORY. (1.26)
Let —oo < v < —1 and let
a(§) = Fk(&) ~ay(&) +ap1(§) + -+ app(&) +---,
a’l/*k()\é.) = )‘Vikaufk(f)a f € R?), A>0

be a classical N x N matrix symbol a € S¢(R?).
If v # —1, then the trace

anm(t, D)e(t) = yma(D)(e x dr)(t)

= [ k=)o xSy = [ K- rp(d M, te M o
R3 M
where (o X Saq, %) 1= {0, YA , ¥ € S(R?), by definition, is a pseudodifferential operator
apm(t,D): }ﬁll(,“’s)’m(./\/l) — Hé“’s*”*l)’m(./\/l).
This operator has the classical symbol
m(t,€) = ;aM,wlk(t, &) amusk €S W(TM), € €R?, (128)

5 (=)@ bg (2) 03 G, ()
27Tdetj;j (0, z)7!

k
apmu1-k(25(2), &) = Z

m=0|B|+|v|—|a|=k—m

2a<p
x (=€) / 06y —im (Jg(o,xﬂ(g’, A)) dx |
where .
gaej = (det”(a%gj, aéﬁpjg)||3><3)l/2 with 8%jk = (81%jk, ag%jk) (1.29)

stands for the square root of the Gram determinant of the vector function a; = (a1, &jo, EEjg)T

for j = 1,2,...,N, by g(x) = 1, and the coefficients b, g(x) for |a] > 0 can be found from the
following relation:

«

1 - (—1)‘5‘“ s ) = £ (m)
o Z T@ ej(z)r’| = Z ba,lg(a:)Tﬁ—i— Z 9o 5 (z)7P, aeN",
" LIsI=2 ' |81=2|a| |B|=m+3
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In particular, the homogeneous principal symbol is

N G, [ o (s ,
A pr(25(), &) 1= appr1(e(x), &) = W%x) / a, (j;jl(o,x)T(g ,A)) d\, ze€X;.
- (1.30)
For v = —1, we cannot write (1.27). In this case, the formula
apm(t, D)p(t) = yma(D) (e x Gp)(t) = co(t)p(t) + /ko(t, t=7)p(1)dr M (1.31)
M

defines a pseudodifferential operator of order zero, an(t, D): }ﬁll(,“’s)’m(./\/l) — Hg,“’s)’m(./\/l), ie.,
it is a singular integral operator; the integral in (1.31) is regarded as the Cauchy principal value.
Moreover (see [Esl, (3.26)]),

1

2
lw|=1

a./\/l,pr(tu w)dwsu k()(ta T) - fil [a/\/l,pr(t7 é.) - CO(t)] ) ta TC M . (132)

I

C()(t)

1.5. Fredholm Property

Although many general results on the asymptotics and Fredholm properties of PsDEs can be
found in [Bel, CD1, DS1, DW1, Esl], here we collect some information needed below.

Let us consider an N x N system of pseudodifferential equations on a compact smooth manifold
with smooth boundary 0.M of the form

ay(z, D)po(z) = v(z), reM, (1.33)
with symbol ayy € S&(M,R" 1) and principal symbol ap(,&). Let us seek a solution ¢y €

ﬁl()u,S),m(M) for a given v € Hé“’siy)’m(./\/l), where m € N, p,s,v € R, and 1 < p < 0.
Let the symbol ap(x,§) in (1.31) be elliptic, i.e.,

inf{det ap(z,£): z € M, € € S" %} >0, (1.34)

and let A (z), ..., Ay(2’) be the eigenvalues of the matrix function
aSy(2') = [ape(2',0,...,0,+1)] tap,(2',0,...,0,—1) (1.35)
on the boundary z’ € M with algebraic multiplicities my, ..., my, respectively (i.e., to any

eigenvalue \;j(z’), m; linearly independent associated vectors correspond, and mj + --- + my =

N). Since the geometric and algebraic multiplicities are different, it follows that the eigenvalues

A1(2’), ..., A(2") need not be all different. Further, let
_log Aj(2") 1

5]((13,) W, ];—1<S—R65](f13,)—

!

< for j=1,...,¢. (1.36)

[VIIAN

Lemma 1.5 (see [Lal, Theorem 2.10.2] and [DSW1, Lemma A.6]). The matriz a%(z') in (1.33)
is normal (i.e., commutes with its conjugate matriz), (a?M(a:’))* aq(2') = aly(2)) (a?M(a:’))*, if
and only if it has no generalized associated eigenvectors, £ = N, and a?w (2') is unitary equivalent
to the diagonal matriz A(z') := diag {\(2'),..., An(2')}, that is,

aSy(z) = K(2)A (@)K (2)  with detK(z') #0, K '(z')=K*(2'), KeC®0OM). (1.37)

In particular, if two matrices agr(a:’, +1) are positive definite, then (1.37) holds, and the numbers

§;(x') in (1.36) are all purely imaginary?, i.e.,

Red;(z')=0 for j=1,...,N. (1.38)

2We stress the relationship v;(z’) = id;(z’) between §;(z’) defined in (1.36) and v;(z’) defined in [DSW1, (A.32)].
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Theorem 1.6 (see [DW1, Theorem 2.7] and [DS1]). Let the symbol ap(z, ) in (1.33) be elliptic
(see (1.34)) and let it be strongly elliptic on the boundary

Re (ap, (2, &)n,m) = M|E[Yn|)?  for all 2’ € OM, ¢e€R™' and neCV (1.39)

with some constant M > 0.
Then the system of equations (1.33) is Fredholm if and only if

Reéj(aﬁ')#s—%— forall j=1,....0, 2/ €OM. (1.40)

[VIIAN

If, for each interior point x € M, there exists an o, € (0,27] such that the numerical range of
the matriz symbol ap(z,§), i.e., the set

Ra(a) == {(ap:(z,0)n,n) : 0 e R* neCV, |0 =|n| =1} (1.41)

is disjoint with the ray {z € C: argz = «a, }, then the index of (1.33) is zero, Ind ay(z, D) = 0.
If, in addition, the homogeneous equation an(z, D)o = 0 has only the trivial solution ¢y = 0

in one of the spaces }ﬁll(,“’s)’m(./\/l), where s and p satisfy conditions (1.36), then (1.33) has a unique
solution in each of these spaces.

If conditions (1.40) hold, then (1.33) has the same kernel in all spaces qul(,“’s)’m(./\/l), m € N,
w € R. In particular,

Yo € ﬁéw,S),w(M) = ﬂ }ﬁl}()ﬂ,S),m(M) pmm’ded that v € HI()OO’S)’OO(M) )
,m

Note that neither the Fredholm properties nor the index and the kernel Ker ax (x, D) of (1.33)
depend on the parameters m € Ny and p € R.

1.6. Asymptotics of a Solution

In the present subsection we formulate results on the asymptotics for a solution () of system
(1.33). For our purposes, for M = Sy we take an (n — 1)-dimensional smooth surface (with C'°-
smooth boundary 0Sp) in R™.

Let us introduce a special local coordinate system (s.l.c.s.) (2", z,—1,4) € 8 := 9S8y % [0, ] on
Sp in a neighborhood of 08y, where z” € 0Sy, x,-1,+ measures the distance from the boundary
08y, and ¢ is sufficiently small.

Let Ai(z”),..., A¢(2"”) be the eigenvalues of a3 (") (see (1.35)) and let my,...,m be their
algebraic multiplicities (i.e., the lengths of the corresponding chains of associated vectors). Then

¢
> mj = N, and a% (z'") has the following representation in the normal (Jordan) form
j=1

ag, (z'") = lC(a:”)jagolel(a:"), det £(2") #0, 2" € 0S8y (1.42)

(cf. (1.37)), where Jno := diag{A1(z")B™ (1),..., A¢(2”)B™ (1)} and B™i(t) are the Jordan
0
blocks defined as follows:

I /(=) <k,

B"(t) = bk (D) lmxm, — bjr(t) :==q 1, i=k, (1.43)
0, i>k.
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26 0. CHKADUA AND R. DUDUCHAVA

These matrices are upper triangular (truncated Toeplitz matrices),

t2 tmf2 tmfl
1 ¢t — ...
2! (m—=2) (m-1)!
tmf?; tmf2
mH=10 1 ¢
B™(1) m—3) (m—2)
0 0 O 1 t
0 0 O 0 1
Let
BY (t) :=diag {B™(t),...,B™(t)}. (1.44)

Apr

Note that ngr (t) = I is the identity matrix, and K € C*°(9Sy) if all chains are trivial, m; =

- = my = 1. For instance, this is the case if the matrix ag (2) is normal (see Lemma 1.5)

or if the matrices ap, (2", £1) (the specific values of the symbol a,(z”,§)) are positive definite
(cf. Lemma 1.5).

Theorem 1.7 ([CD1, Theorem 2.1]). Let p € R and m, M € Ny, and let, for some s € R

(0073)7m

and 1 < p < oo, equation (1.33) have a unique solution ¢y € ﬁp (So) for any given v €
Héoo’sfy)’m(sg). Then 1/p—1<s—v/2—Red;(z") <1/p forallj=1,...,L. Let K € C*(9Sy).

If Re[v/240;(z")] > =1 forall j =1,...,0, v € HI(,OO’#VJFMH)’OO(SO), then the solution g
has the asymptotic expansion

17 1 _
wo(z", 2po1 1) = K(2") a:z/ffff(m )ngr (—% log a:n17+> K= (") eo(2”)

M
+ Z lC(a:”)a:Z/ffff(m " Be(2 log @ 14) + ari1 (@ 2 _14)  (1.45)
k=1

(with orr41 € ]ﬁll(,oo’erMH)’oo(Sj)) for all sufficiently small x,,_1 4 > 0. Here the N vector func-
tions By (2", t) belong to C*(0Sy), and

1 )
Bi(a",t) = B, (——t) >ty
j:

where the N wvector functions cy; belong to C*°(0.5y).
The components of the vector A := (81,...,8,) " are defined in (1.36), and

AN T 0+01 0+6,
r, 74 =diag { Ty Vs Tty s OER,

where it is assumed that any component d; is repeated m; times in the vector A, according to its
multiplicity mj, and therefore A is an N vector.

Furthermore, for any ¢ =0,1,..., M, the a priori estimates

Co Y. llerlCU0S0)ll + Collpar 1| H =M+ (Sp) |
0<j<hk<M (1.46)
< [lepo HS )™ (So) || < Ca [JofHE =M (Sp) |
hold with some constants Cy and Cy that do not depend on v (Y41 coincides with pg outside
of 8F).
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Let the matriz ag (x") be normal for all " € dSy (see Lemma 1.5). Therefore, £ = N and the
leading term of the asymptotics in (1.45) contains no logarithms logx,_1 4 and becomes simpler,

M k
A 1" _ .
poa”, wnr4) = K@ a5 20K @) [eo(@”) + 3 ah s o> eni(@”) og waoy
k=1 7=0
+Q0M+1(33N,33n71,+) . (147)

2. ASYMPTOTICS OF POTENTIAL-TYPE FUNCTIONS
2.1. Statement of the Results

Let Q be a domain in the Euclidean space R™, n > 2, which is not necessarily compact and has a
compact boundary 92 = S that is sufficiently smooth. We consider a homogeneous N x N system
of differential equations

A(Dy)u=0 in Q, (2.1)
of order 2r, r € N,
o« . .0

A(D,) == ;::% ao DS with D, :=id,, = o (2.2)
with constant matrix coefficients a, = ||a?*|yxn. We suppose that the homogeneous principal

symbol of A(D,) given by
Ape(€) = A(9) = Y aa” (2.3)

|a|=2r

(which coincides with the symbol in this case) is elliptic, i.e., det Ay, (€) # 0 for all £, |£] = 1. The
fundamental matrix function (see [Hrl]) for (2.1) can be written as follows:

1

Ha(r) = Folo |45 /ﬁ (A, 7)) Lemimondr | | (2.4)
+

w »

where the signs and “4” refer to the cases x,, > 0 and z,, < 0, respectively, x = (2, x,),
= (x1,...,20-1), & = (&1,...,&r—1), and the contours Ly are located in the complex half-
planes C* := R @ iR*, are oriented counterclockwise, and surround all the roots of the polynomial
det A(¢', ) with respect to 7 that belong to the corresponding half-planes 7 € C* (see [Chl]).
The fundamental solution H 4 has the following properties:
1. Hy € C=(R™\ {0}) (see, e.g., [Chl] and [Hrl, Theorem 7.1.22]).
2. H, is an even matrix function, i.e., Ha(—z) = Ha(z).
3. For n > 2r, the matrix function H 4 is positively homogeneous of order 2r — n, i.e., for any
A >0 and any z € R™\ {0} we have Ha(\z) = A" " H 4(x).
4. For n < 2r we have Hy(z) = P(x)In|z| + Q(x), where P(z) and Q(z) are positively
homogeneous of order 2r — n (exact formulas for P(x) and Q(x) can be found in [Esl,
formulas (2.90)—(2.92)] and [Hrl, Theorem 7.1.20]).

For the simple layer potential

V(z) = /S Ha(o - 9)g(n)dyS, v ¢, (2.5)

the following theorem holds.
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Theorem 2.1 (see [DNS1, NCS1, Shl]). Let s e R, 1 <p < o0, 1 Sw < 00, and r € N. Then
V' can be extended to continuous operators

s+2r71+% s+2r—1+1

\E Bz,w(s) - IB3p,w,loc (Q)7 \& B;,p(s) - H:DJOC ’ (Q) ’

where BY | 1,.(€2) and By (S) stand for the Besov spaces (cf. [Trl, Tr2]) and the subscript . can
be omitted zf Q is compact.

We introduce the notation

Viagla) = [ Hat—o@)d,S, 2. (2.6)
S

for the direct value of Vg(z) on the surface S.

Let Sy be an infinitely differentiable submanifold of & = 02 of the same dimension n — 1 and
with C*°-smooth boundary 08.

Let B, be a pseudodifferential operator of order ¢ € R on the manifold Sy with classical symbol
By € SHT*Sp) and let

ZB (2,6) + By i1 (2, €) (2.7)

be its representation, for arbitrary M € Ny, with symbols B _(z, &) that are homogeneous of orders
q—Fk (k=0,1,..., M) and with remainder B, p;_; € Sq v—1(T*Sp) (cf. (1.13) and (1.14)).
Let us investigate the asymptotics of the following potential-type function:

u(z) = VoByypo(z), suppyoCSo, z€Q, (2.8)
in a neighborhood of 08y under the assumption that the known asymptotics of the density ¢g =
(¢o1, - .-, pon) is given in an s.1.c.s. by formula (1.45). To this end, we extend the s.l.c.s. (2, z,,—1 )

to (', x,) = (2", xp_1,x,) € R™
We introduce the notation

1 .
B (t) =diag {B}",...,B7“(t)}, where BT(t)=B™ (iﬂ@) (F(t+ 1)e”<t+1>/2).
pr T

Let A\; = —N; + u; and —1 < Repu; < 0, where N; is a positive integer and the coefficients

d;}i(M)()\i) are defined by the recurrence relations
mZ(M) del(M (A ml(l)()\i +M-—1),
(2.9)
|
a4 M- 1) = (- 1)q42; i=1,...,0, MEeEN.

I (N + M)a—t+17
Now we define the matrix

D™ (Ai) = 105, A lmiscm,

i (LN 3 i .

0 for j > p.
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Let us introduce the upper triangular matrix function

BY (t) = diag{B™ (t),..., B™ (1)} (2.10)
by the formulas (cf. (1.43))

By = { BUCD o F L2
TV MR (Ol for A= —1,-2,...

by ::—%—51-(3:")—27’4—(]4—]', i=1,...,0,

( 1 p—k+1 1 p—k—s
m; — 5 ¢ s()‘ )ts for p = k,
By (1) :=q (p— k)! ; ( > Cp—k+1,

211
0 for p<k,
( —k+1
.Aip { 1 | 1 gmi(Ny) m;
? Z (=)' = D)}(2mi) dpfk,lfl()‘i)b()l (0)
=1
for s=0
le A _ )
R VT
(2 ﬁ@”) d —k,l— 1 (A)bY(0)
l=s ’
for se{1,2,...,p—k+1}, N;=0,1,2,...,
1 P* 1)p+k dr—k .
- _ T(t=+1 im(t+1)/2 f k<
bkpz(t) = 2 p k)' dtp k( ( + )6 or 7
for k>p,

the coefficients dmi(O) are given by d;}i(o)(—l) =0p,1=0,..

p (6p is the Kronecker delta), and
the coeflicients dml(N )()\i), N; € N, are defined by (2.9).

Theorem 2.2. Let the conditions of Theorem 1.7 hold and let po(x”, x,—1,+) be as in (1.45).
Suppose that ¢ € R and M € Ny and

n—1

-1
M>max{n7—s, 2r — 3 —ql, —min{[s—q],O},r—l}.

Then the potential-type function u(z) in (2.8) has the following asymptotic expansion:

Z(N) nsfl
. A " 1y a ~ 1
u(a:”,xn—laxn) — Z { Z ) [dsj(ﬂfﬂ,-i-l)'z:,/f;r (z"")+2r—1—¢q ]ngr (% 10g237+1>
s=1 7=0

1" 1y a ~ 1 .
-4dﬂ=WfP“””1“F’G—m% ﬂwmm

Ger \ 27
M+3—2r+[q] M42—1

+ Z Z Z l Ll dsl]p(x” 0) 1//2+A(m”)+p+k {q}

0=+1 k,1=0 j+p=2r—[q]—1
k+l+j+p#2r—[q]—1

X Bggjp (", 10g 25 9) } +up1(z” 1, ) for T, >0, (2.11)
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with coefficients dg; (-, £1), ¢, and dgp (-, £1) belonging to C§°(R"2) and with remainder upr41
in Co" (R, where

00 n—2
Zs41 = —Tp—1 — TpTs 41, Rs,—1 = Tp—1 — TpTs,—1, Ts+1 € C() (R )7

and {Ts7i1}£(:]\i) is the set of different roots of the polynomial det A(J,! (z"',0)- (0, %1, 7)) of multi-
plicitiesng, s =1,...,¢(N), that belong to the lower complex half-plane, [q] € Z is the integral part
of a number q, and {q} € [0,1) is the fractional part of the number q, ¢ = [q] + {q}.

The polynomial Byyjp(z”,t) is of order vy, = v +p+j— (2r—1—[q]) if
Amo #—1,=2,... (vp = k(2mo—1) +mo — 1, mg = max{my,...,my})

with respect to the variable t with vector coefficients depending on the variable x", and Byyjp(z” 1)
is a polynomial of order vy, + 1 for A\py = —1,=2,... (Apy = —1/2 = o () — 2r + ¢+ j).

Note that the matrix Egpr(t), for \j = —v/2 — §(2") —2r + ¢+ j = —1,-2,..., depends on j
(see 2.10).

Theorem 2.3. For the leading (first) coefficients co(x") and dgj(x",41), c9)(2") of the as-
ymptotic expansions (1.45) and (2.11), respectively, we have the following relations:

1 s -
duj (", 1) = 5—Gula”", 0) V%, (2",0,0,—1)BY(z", 0,0, —1)K(z")e™,

1 s
duj (2", +1) = 5—Gula”, 0)V, %, ;(2",0,0,+1)BY(z", 0,0, +1)K(z"),
14

No=—3 —A@E"), s=1,..UN),

where G (x",0) is the square root of the Gram determinant (see (1.29)), B stands for the principal
symbol of the pseudodifferential operator By, and

Vi, (2",0,0,+£1)
GI+1 dns—1-J

= Ty T Te)™ (A(J («",0) - (0,£1,7)))

-1

T=Ts,+1

The coefficient c9)(z") in (2.10) is given by cV)(z") = a;j(z")By (% + A(a;”))lel(a:”)co(a;”),

Apr
where

aj(z") = diag{a™ (\1),...,a™(\o)}, (2.12)
)\l:—g—él(a;")—%’—l—q-i-j, ’L.Zl,...,e,

B (i) for ReX; > —1,
a™ ()\1) = BTZ (/Ll) . sz()\l) for Red; <=1, N ¢ Z
1 for \i=-1,-2,....

We postpone the proofs of Theorems 2.2 and 2.3 to Subsection 2.3.

2.2. Auziliary Propositions
To prove Theorems 2.2 and 2.3, we need some auxiliary propositions.
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Lemma 2.4. Let ¢ € }ﬁll(,oo’s)’oo(SO) and M > (n —1)/p—min{[s —q], 0}, where s is defined in
Theorem 1.7 and q € R. Then the potential-type function (2.6) has the following expansion in the
s.l.c.s.:

2M—k

u=VoB,py= Z Z A (2, zy, )oBg,m(aﬁ',D')cpg+R2M+1(a:',a;n,D')cp0, (2.13)
k=2r—1 m=0

where A_i (2, xp,, D') is a pseudodifferential operator, depending on the parameter x,,, that has a
homogeneous symbol of the order —k for x,, =0, the operator B)_,, (z', D) is defined in (2.7), and

Ron41(2, 2, D)y € CMTH(RT).

Proof. For any j, we introduce a local coordinate system at each point z; € Sp so that the
part of the surface Sp lying within some ball B(z], d) centered at z; and having a radius d admits

a representation ) = Vi(@(5)s Ty = (335]), o (]) 1), where (cf. [KGBBI1, Definition 1.6.9])
. 0v,(0 07, (0
% €CT(Qy),  75(0)= ]((j)) == ](5)) = 0.
Oxy Ox, 4

Let X be the projection of the set Y; := B(zj,d) NS to the tangent plane to the surface S at z;.
Denote this tangent plane by Rg‘*l.

Let {Y;}_y be a covering of Q,
!
QclJy;, nYo=2, 0QNY;#£0 for j=1,...,1,
=0

and let l“ be a partition of unity subordinated to the covering {Y For each j, we can
J ] 1

find an inﬁnltely smooth function ¢; that is equal to 1 in a nelghborhood of suppy; NS and
vanishes outside of a larger neighborhood contained in Y;. Then the simple-layer potential can be
represented as

l l l
Vg=>Y ¢;Vg=> 1;Voig+ Y V(1 —¢;)g+1Vyg.

§=0 j=1 j=1
Obviously, 1; V(1 —¢;)g,1%oVg € C>(S), and it suffices to study the asymptotics of the potential

b Visg( / U@ Hax — 9)(09)0)dyS,  zeQ,

forj=1,...,1.

Let Bt (z], d) be a half-ball (in the (j)th local coordinate system) of radius d centered at the
origin, i.e., B¥(zj,d) := {2\ = (z(; ),a:%])) gy € Rg‘fl, P > 0, |z1)| < d}. We define the
mapping

X4 BJr(Zj,d) - B(Zj,d)ﬂQ (214)
by the formulas e;(z ;) = (ﬂf(j),’}’j(ﬂfl(j)) - 331(@])) for 2 > 0. For the Jacobi matrix Jw,; of the
mapping a&; we obtain

1 0 0 0

0 1 0 0

TeT6) = | ogylaly) 0wl uGl)
ox 9 ) aazgj ) 83:5321

nxn
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32 0. CHKADUA AND R. DUDUCHAVA

Applying the Taylor formula in vector form, we see that

w0j (V) — a0 (y\V)) = T, (2(;)) (29 = yD) + P (), y(5)s (2.15)
where

Pij)( %) y(y) <0= 0, Pm %) vi)) -
20) = (), 27)), Y = (y,),0) and af;) = (2,2 ),y = @, udy).

Denote by H; and g; the matrix function ¢, H4 and the vector function ¢;g, respectively, written
in the local coordinates, and let v; = g;(=;).

We can readily see that the square root of the Gram determinant of the mapping (2.12) (cf. (1.29))

becomes
2 2
) 7;(Y(5) 7;(Y(5)
gaej(y(j)) = (i + -+ T]g” +1 (2.16)
n—1

(see [KGBB1, Proposition 4.7.3] and [Sl1, §3.6]), and we can represent the simple-layer potential
VI in a new local coordinate system. Let us substitute a; into this system,

(ijcpjg)(w(j))—/ Hj(a(z') = 2(y")) Gao, ()0 (y )y .

J

The Taylor formula and relation (2.15) yield

A A 1 , A A ., O\
H; (aej(a:(])) - Bej(y(]))) = Z E(agHj)(jwj (33(]‘))(33(]) - y(]))) (P(j)(x(j)’y(j))>
lul<k
1

1 ’ 1 i ! !
/(1 —t)E (01 H) (Jaej (@) (@) =y D)+ 1Py (x(;), y(j))> dt

0

+ 2

|p|=k+1

(Pejy (@50 yny))H-
I\ () (])(2'17)

For convenience, in what follows, we omit the index j denoting the local coordinate system.
Taking into account (2.15) and the Taylor expansions

1 (67 «
Gu(t) = Gu(a) + D —0°Gu(a)(y' — ) + Ry (2 1)),
1<l <2M
) (2.18)
« « 2
Pa(ay) = Y0 0@ — o)+ Ry (@),
2€lal<2M

where jo\z,ﬂ(a;’,y’) =O0(lz'—y'M™), a=(a1,...,an 1), = (2',2,),and y = (v/,0), k = 1,2,

we obtain the following representation of the simple-layer potential:

YVipg = Z A (2, 2n, D)o+ Ropr11v, vE }ﬁll(,"o’sf‘”"’o (X), (2.19)
k=2r—1
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where

Ao (2,2, D) = / G (") H (Tw(2") (2" — o', 20))v(y)dy’
Rnfl

A (2 z,, D) = Z aap(®)Aup(2', 2, D) for k=2r2r+1,...,2M,
1B]—la|-1=—k
Aupla' sz Do = [ (& =) O Tula) &' = o/ sn))ole) iy
Rnfl

and a,g € CS°(R™1) are defined by the Taylor coefficients in (2.18) (o = (aq,...,a,_1) and
B=(Br,...,0n))
Since M > (n — 1)/p—min{[s—g|, 0} in (2.20), it follows that Rops41v € Co' T (R%). Indeed, let

s—q=>0.Then v e quf,*q(X) C L,(X), where X = X; C R"™!; therefore, the kernel ropri1(z,y’)

of the integral operator Rapsi1 admits the estimate |0%rons11(x,y)] < Colz — ¢/ [PMH2-n~lol)

\Eg\ <M+ 1(.) Ap}illying the Holder inequality, we obtain |02 Ropr+1v(z)| < CL, < oo, || < M + 1.
or s — q < 0 we have

v = Z 0%Ua, Uq € Lp(X), m=—[s—(]

lal<m

(see [Esl]), and recalling the definition of the derivative of a distribution, we see that

|08 Roprav(z)| = ) /537’2M+1(3?ay')ua(y')dy'.

\a\ng

The desired inclusion follows as in the previous case.
Since

(2 =y (07 H)(Tula) (@' = ¢ )
Ty (= g [ 00 {(=i6) (AT @) )]} (i) e iTenar),
L_

where ' = (B1,...,8n_1), AT stands for the transposed matrix to A, and the operator of the form
A, 5(x', xy,, D) can be represented as a parameter-dependent z,, > 0 pseudodifferential operator
(or a potential operator)

Aap(a,wn, D' = Fgl i [Aap (@, 2, €) Fy—er[o(y))]
(cf (1.11)) with the symbol

Aap(@' 20, &) = —% / (—i0g )" {(—z’f’)ﬁ' [A(jg(g;’)(g,T))rl} (—ir)Pre= i dr

L_

depending on the parameter x,, > 0.
Relations (2.7) and (2.19) prove the desired expansion (2.13). O

We introduce the following classes of symbols.
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34 0. CHKADUA AND R. DUDUCHAVA

Definition 2.5. For k € R by R(j,lﬂ)o, denote by R(z',zp,&’) the class of (matrix) functions
that vanish for sufficiently large |(2/, z,,)| (|(z, z,)| > Co) and admit the following estimates:

OROL R, 0, €)| < Cupl) o 1Pleomle!

for some 7o > 0, for any multi-indices o € N and 5 € Ngil, and for all ,, > 0 and /,& € R 1.

Definition 2.6. For » > 0 and m > 0,k € R, denote by Rflmﬁkﬁoo the class of (matrix)

distributions R(z/, x,, ') of class S’(R™~!) with respect to the variable £’ that vanish for sufficiently
large |(2, )| (|(2', 2,)| > Cp) and admit the following estimates:

€111 e
|09R(2, x, €| < C, > LI emvoznld]
‘fnfl‘m
for some g > 0, for any multi-indices a € N§, and for all ,, > 0, 2’ € R*"! and £, 1 € R\ {0}.
Let us prove the following assertion.

Lemma 2.7. Let go(z”,2,—1,.4) be as in (1.45) (or as in (1.47)), let o € ]ﬁll(,oo’s)’m(SO) and
M > (n—1)/p —s, and let the conditions of Theorem 1.7 hold.

Then R(z', x,,, D)oo € CMFL(RY) for any pseudodifferential operator R(x', z,,, D') whose sym-
bol R(x', xy,, &) belongs to the class R(f@

—2,—00"
Proof. We have
OOR(2/, 2, D)oy = / RO (!, €)e 1@ D€ de, (2.20)
Rnfl
RO 0, &) 1= Y carp 0000 R(2', 2, &) (=i )P~
a’' B’

(Where ‘/B‘ < M + 17 /8 = (/8,7/811)7 /8, = (/817 .- '7/81171)7 and o = (ala .- .,Cknfl)).
The symbol RP) (', z,, &) is infinitely differentiable with respect to the variable &', and

RO (2! 2, &) < C(1+[€]) e r0mnlE] forall z, >0 and some ~y>0.

Now, taking into account the asymptotic expansion (1.45) for the function ¢y,

M
Yo = Z(P()k +Ymt1,

k=0
1" 1
poo(a” wn 1 4) = K(a") 232 BY (—ﬁ log a:+> KL ") co(a")
Az")+k
oor(z”, Tn_14) = lC(a;")a:Z/flJ’Zr @)+ By (2", logxp—1,4), k=1,...,M,

Re <g+5j(g;”)> >—1 forall j=1,...,¢

and using the Fourier transform formulas

P

tlogPt =Y b5 (NF (0 +i0)" " logk (o +10)), (2.21)
k=0
_ Wy (=D)Fpl ark im(A+1)/2
ReA>—1,  bl)(A):= T T(A+1)e
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(see [Esl, Example 2.3]), we readily obtain the estimates

I L+ [e")—N .
(1= 6 DR 20, €)B0r(€)| < © (ligfﬂ‘gwﬂe Tozalé'

for some 9 >0, forall N >0, |[f|<M+1, =z,>0, ¢>0, k=0,...,M,

where x1 € C§°(R) is a cut-off function with x1(§,—1) = 0 for |£,—1| > 1 and x1(&,—1) = 1 for
‘fnfl‘ < 1/27 and

Fel [Xl(fn—l)R(ﬁ)(ﬂfl n, € )Pon (&)

fo e Do) Gy +00) 2R TR MogP (6 4 i0) By (2, 2, G )];

(with v, = k(2mo —1) +mg — 1 and mo = max{my, ..., me}). Here
Pt/ s En 1) = Feit o [RO(@ 2, )egn(€)], o€ < CA+ )™ YN >0

and @, (2, Ty, En—1) is a C-function with respect to the variables 2/ € R"! and z,, € @i for
all £,_; € R.

Therefore, we can readily see that the integrals on the right-hand side of (2.20) exist and that
R(a', 2, D')por, € CMTHRY) (k=0,...,M).

It remains to show that R (z/, z,,, D")ppr11 € CMHH(RY).

Indeed, if x,, > 0, then R (', 2,,, D")opr41 € CF(RY).

Here as usual, C§°(R™ 1) stands for the class of all compactly supported infinitely differentiable
functions, and xo(¢') € C5°(R™1) is a cut-off function with xo(¢') =1 for |€/| < 1.

If z, =0 for M > (n—1)/p— s, then we obtain the representation

1 APYADN
RO (2,0, DY paran () = T / RO (o, 0, &) Z o ‘2 G (6)de!
R™

_ / Z J RO (@,0,6)e™ ) (Djpnria) (€)de’

Rn—1
n—1 1
1 — m/ ’ —
= Z (2m)n—1 Béj)(a;',{')e @8 (Djprrs1)(€)dE
Jj=1 Rn—1

n—1
1 —i(z’ ¢’ W
=3 G [ B i€
J

=1 Rt (2.22)
where B} (¢/,€') = (1 — x0(€)) =R (2,0,¢) and B (+/,€') = xo(€)$=RO(2',0,€), j =
1,...,n— 1. The second sum in (2.21) is a C*°-smoothing operator.

Since Bélj) € 8%, it follows that | D, B(l)( LN <O+ |¢))~2Iul for all p and
1 1 1
Fal aDEBG) (0, €] = () Fo L 1By (o, €] = () K (o, #).
Therefore, \K(l)(aﬁ’,z’)\ < O~ for all |u| > n — 3, and it becomes obvious that the kernel
Ky (1) (2',2") has a weak singularity at the point 2z’ = 0. Therefore, setting |u| = n — 2, we see that

277 (2m)n1 / B (2", €)e™ ) (Dyparia) (€)de' = /K(l) o' =y )(Djenrs1) (y)dy'
-1
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where

K (2! o' —y)| < Cla! —y/| =, =1,...,n—1

J
The resulting representation shows that the first integral in (2.22) exists and defines a continuous
mapping. Therefore, R (2, z,,, D")prri1 € C(RT) and R(2/, 2, D')po € CMHL(RY). O

Lemma 2.8. Suppose o(z”,x,—1,.4) is as in (1.45) (or in (1.47)), ¢o € H?I](;’O’S)’m(so), M >
(n—1)/p—s, and let conditions of Theorem 1.7 hold.
Then aﬁi/'[j%[k] R (2/,2,, D) pg € CMTYRY)  for a pseudodifferential operator R(z', ., D')

whose symbol R(x', x,,, ") belongs to the class R(j,l where [k] < M + 2.

Proof. We have
xM+2f[k] o N
xi{t2i[k]R(‘rlv L, D,)(‘OO B (;;Eﬁ / et )R(xlv Ty 5,)900(5,) dfl
Rn—1
1 —i(z’ €’ . — —[k A

= o n-1 / e it )(—Z)M+2 [k]aé\fjrf ¢ [R(ﬂflaﬂfmfl)(ﬂo(f,) dg’

(2m)
Rnfl
= X [ SO0 R O €10
P1,P2 En1 ) VN En1 0 )
p1+p2=M+2—[k] Rn—1
where the symbols 8?;1}?(3:’, Zn, &) belong to the class R(j,lfplﬁoo.

Now, taking into account the asymptotic expansion (1.45) of the function ¢y and the Fourier
transform formulas (2.20), we complete the proof as in Lemma 2.7. O

Lemma 2.9. Let po(z”,zp—1,4) be as in (1.45), let ¢y € }ﬁll(,oo’s)’m(SO), let M >(n—1)/p—s,
and let the conditions of Theorem 1.7 hold.
Then R(z', 2, D)o € CMTYRTY) for a pseudodifferential operator R(z', z,,, D') whose symbol

R(2', xp, &) belongs to the class Rgz) , where v >0 and [k] < M + 2.

\—M—2+[k],—k,—o00

Proof. Consider two cut-off functions xo(¢’) € C§°(R"™1) as in Lemma 2.7. Let x1(£,_1) €
C$°(R), and R(z', 2,,, D')po = RW (2, 2., D)oo + RP) (', 2,,, D)oo + R (2, ., D)o , where

R(l)(xla Tn, D,)SOO - (27_‘_)% / (1 — X1 (é.nfl))(l - XU(&I))R(xlu Tn, é.,)eii(m/é/)gé\()({,) d£,7
Rn—1
R (2!, 2,,, D' )iy = (2% [ 0= 0@ RE 2 e OG0 e
)

Rnfl
RO (2!, 2, D)oo = Firb o 31 (1) R(@, 2, €) 0 (€1)].

The kernel of the operator R() (2, x,,, D) is infinitely differentiable, and we obviously have the
relation R® (2, z,,, D")pg € C*°(RY).
As in the proof of Lemma 2.7, we obtain R (2/, z,,, D")pg € CMF1(R™). Moreover,

RO (2!, 2, D)oo = Forb o (X0 (Enm1)R(2', 20, €)00(€) = F oo, (x0(Enm1)@(', 2, €n1)),

where ®(2', 2y, {p—1) 1= fg,im,, (R(wl,wn,fl)(;é\o(f,)>, and @ (2, zp,&n—1) is a C-function with

respect to the variables 2/ € R""! and z, € R for all §, 1 € R\ {0}, and this proves that
R® (', 2, D)o € C*°(RY) and R(2’, 2, D')pp € CMTL(RT). O
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2.3. Proof of Theorems 2.2 and 2.3

Consider the composition

Afk(xla Tn, D,) o Bgfm(‘r: D,)QOO - fg];)m/ (Ckm(‘rla Tn, 5,)$0(€,)> + R]E;];q)q,fgo(xlu Tn, D,)@Ou

where R£277w(x’, Ty, D)o € C=(RTY),
M+2+[q]—(k+m) 1
Ckm(‘rlaxmf,) = Z E@éﬁA,k(w',xn,f')aﬁBg,m(a:',f') + ka’M+3,{q}(fE,,(En,§,),

|n|=0

and the symbol Ry, ar43—{q} (7, Tn, ') belongs to the class R(fl()MJrSf{q}),foo

sion, see [Esl, Theorem 18.3] and [Sb1l, Theorem 3.4]). Therefore,

(for a similar expan-

A (2’ 2n, D) 0By, (', D)o
M+2+[q]—(k+m) 1 A
- > Fl (Eag, Ak(2, 20, )04 By (2, f’)cpo(f’))

|ul=0 '

+ ka,MJrSf{q}(x,a T, D,)(PO + R]Ej];’))’]/77()o(x,7 T, D,)()OU'

By Lemma 2.7, we obtain Ry, ar43—{4}(2, Zn, D)o € CMT1(RT). Consider the function

Ckmu (xla T, é.,) - i'ag/Afk(xla Tn, é.,)agl;’B([l)fm(x,a é.,) - / Akmp,(x,a 5,7 T)eiiTmndT )
! / (2.23)

At (0, 6,7) = (O (AT @€ T OL BY (0.6,

1 1
A, €7 im =5 3 —aag(@)(~i)™
|| =|B14+1=k "
X O (i) TALT () (€ 7)) 08 B (0, €)

for k =2r,2r+1,...,2M, 3 € N, and p, « € N*~! and the symbol C,, (', €', 7) is homogeneous
of order ¢ — (m + k + |u|) = —r with respect to the variable £’. Moreover,

Aij (T (2)(¢, 7)) H
A(TL (@€ 7) Nlvenw
where A(J] (z') (&', 7)) = det [|A(T (") (&', 7)) || nxnvs and Ay (T (2') (€, 7)) is the cofactor of the

corresponding element.
Applying the Taylor formula for x,,_; at the point (z”,0, z,, &), we see that

AL @ = |

M+1—[k]
1
Ckmu(x,axmfl) - IX: E(ainflckmu)(xﬂvvanvfl) 'xffhl
=0
+ a2 R @, €) + RO, (@0 )]

1
Rl(ﬁ'rzm,n(x,v T, 5,) = (1 - XO({I))kau,n(xla T, 5,)7
Rl(jrzm,n(x,v T, 5,) = XO({I)kau,n(xla T, 5,) .
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Obviously, z %~ [x] Rl(fn)w (@ 20, D)oo € C(RT).
We have R,(;)w . € R(flh),”foo fork=2r—1-—gq,...,M+2— {q}, and by Lemma 2.8 we obtain
M+2 [H] R]Eiq)@u /Q(‘T 7(1;1’1,7 D,)QOO e CM+1(M)

Slnce the symbol Ay, (2, ¢, 7) is homogeneous of order —x — 1 with respect to (¢, 7), it follows
that (cf. (2.23))

/!
. — 1Ty T|En—
1‘,51gn§n,1,7>e nTl&n—1l g7

/ / — / {
Ckmu(x 7(1;1’1,7{ ) - ‘{nfl‘ " Akmu (33 5
E/ |En—

Introducing the notation

1

"
Ckmu (aj’, Tn, —‘ff —‘ s fn71> = / Akmu (g;’7 ‘{{—‘7 signfnfl, T> e*”nﬂﬁnfﬂ dr
n—1 n—1
L_

and applying the Taylor formula again, we proceed as follows:

M+1—[k]
Z ﬁ(ain—lckmﬂ)(xﬂu 07 Tn, é.,) . xflfl
=0 '
M+1—[k] ,
- Z (856” 1Ckmu)<a}”,0,xm ‘f ‘ slgnfn 1>‘€n 1 Hﬂflnfl

=0
Ml—ls] M=[sl -+l B
- Z Z l ' Z ” 8g”8l Ckmﬂ)(‘r”707‘rn7Ovsignfnfl)
=0 p=0

lv|=p

X ‘fnfl‘iﬂiw‘ﬂfqul + ﬁkmu(‘rla T, 5,)7

where the symbol ﬁkmu(a:’, Zn, &) belongs to the class R My —oo» Where My = M +2 — [&].
Lemma 2.8 implies the relation Ry, (2, z,, D')¢o € C’M“(R" ).
We have

i 1 —iTx
ﬁW(f ) (8g//8 Ckmu)(fl? 0 xn;o Slgnfn 1) ‘STL 1‘/ kmu ’7slgn€n7177)e n‘gnfl‘dT

(cf. (2.23)), and (I)vaw( " signé, 1, 7) = (Uy[) ") (8,0L, | Akmu)(2”,0,0,signé, 1, 7). Let
all roots of the polynomial A(JZL (x”,0)(0,sign&, 1, 7)) belonging to the lower complex half-plane
be 7, = 75(z”, signé,—1), s =1,...,4(N), and let their multiplicities be ng, s = 1,...,(N).

Since A(&) is real, homogeneous, and elliptic (det A(§) = 0 if and only if £ = 0), it follows
that the polynomial det A(J,! (z”,0) - (0, +1,7)) has real C5°(R™"2)-smooth coefficients, and the
leading coefficient (at 72"") is nonzero for any " € R"~2. Therefore, all the roots must be purely
imaginary, and 7541 € Cg°(R"™2) for s =1,...,¢(N) (see [Lel]).

Let (I)wa( " signé&,_1,7) have at a point 75 a pole of order ps (s = 1,...,4(N)). Note that
x, > 0, apply the residue formula

/ (I)zmp,( ,,7 Sign é‘n*l 9 T)eiiTmn‘gnfl‘dT
L_

- Z lim 7,1{(7— )ps\IlZ;'lmp,( ”7SignfnflaT)eiiTmn‘gnil‘}7
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yls (

where W/ u

" signé,_1,7) = %(T Ts)P @Zmu( x” signé&,_1,7), and obtain

/ (I)Zf’nu( ”7 Signfnfl, T)eiTm”‘gnfl‘dT

EN)ps—1  yio o ps—1—j .
— Z Z M lim {digjzfiu(x",signfn177)((_1'3;”)‘5”1‘)3617%5711}

- - ' T—Ts 371
= = it = 1)) drps—1-]
¢(N) p,—1
— Z Z deiM( ,sign &y 1) (wn|€n_r|)i e T mnlEn -l
s=1 j=0
with -
) gpe—i-
dzfj@u](aﬁ”’Signfnﬂ) ( ) ( ) fls (ﬂfﬂ,signfn—l,Ts).

j'(ps_l_j)'d»rpsfl J kmp

Therefore,

1 ~
fg/im (Eag/Afk(xlaxn7€,)8£/Bgfm(x,75,)@0(6,)>
M—[x]+1 M~[r]+1—1 £(N) ps—1

Z Z Z Z fflﬂm (d’k);f’iu]( ”7Sign€n71)

|v|=0 s=1 j=0

X (€ g6 PR 1B (€)) + (Rar 1) (o),

where Rari100 € Co' TH(RL) and & = —q + (m + k + |u).
For simplicity, we introduce the following notation:

d(z" sign&,_1) = d)ls (¢" sign&, 1),  do(a”,sign&,_1) = dos,,;(¢”, sign&, 1),
Ts,+1 = Ts(x 7+1)7 Zs,4+1 = _(xnfl +xn7—s,+1)a
Ts,—1 = Ts(xﬂa _1)7 Zs,—1 = Tpn—-1 — TnTs,—1,
17 é.nfl > 07
19 . pu—
+(€n 1) { 07 é.nfl < 0.

Taking into account the asymptotic expansion of the function ¢q (see (1.45)), we see that
Folow (d(x"ﬂignfnl)(f")'y\fn1\j'Y” Ty, e el 1<Po(§')>

My .
=D Fola (d@:", sign &, 1)[Gnoa [P 2l ad elTs“&l(Dz//m)(s’))
k=0
+ R(JZ,, fljn, D,)(D’my//(p]\/_[0+1),
2+-A (2 1 _
e 2004) = K@ A2 B, (g togana s ) K7 ao(a”),
o (@, 1 1) o= K@)l By (2 Nog @ 1,4),
k=1,..., My, M0:M+3—27’+[Q];
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here By (z",t) is a polynomial in ¢ of order v, = k(2mg — 1) + mo — 1 with vector coefficients
depending on the variable x”.

Let R(z’, x,, D) be a pseudodifferential operator with symbol
R(a' @y, &) = d(a", sign&, 1)|&n a1 2l o - emiTemnlEnl)

and let co(x”) be the leading coefficient in asymptotics (1.45).
Since
lv|+k=2r—1—gq,...,M+2—{q},

it follows that, taking into account pas,+1 € H(OO s+Mo-+1),00 PR (M > (n—1)/p—s) and using
the method of proving the smoothness of a pseudodlfferentlal operator acting on the remainder
term that was used in Lemmas 2.7 and 2.9, we readily see that

R(a:', Tn, D,)Dz//(pM0+1 € CMJrl(Ri)
Since
51%1,\717 é.n*l > 07

. (2.24)
elWA‘é.nfl‘Aa é.nfl < 07

(&n—1 —H’O))\ = {
we proceed as follows:
Pt (T i lea P 2y D@
=ty AV FG o (Fel D (GG (BT ) )
00"~V (P D)l (5 )|
=ty el { gl 0T (Fern e 60 (BT 000 )
o, 0T (Fey o G D))}

1 ] —
%d(‘rﬂv +1)f£n71‘>zs,+1 (fil’yﬂr ﬂfmnflﬂﬁnfl(D;gy“(p()k)(xﬂv xn1,+)>

1 ~ ] —
+ %d(‘rﬂv _1)‘?‘57171%23,71 (fil’y,Jr ﬂfmnfl"*gnfl (D;cy”(pOk)(xllv xn1,+)> }

Obviously,

1 ~
ff’im (E ﬁg,Ak(a:',a;n,f')ag,Bgm(a;',{')cm({')) (2.25)
=>_ { > h [%dO(ﬂf"a S 2 SN (< NN (N CLOE )
s=1 % j=0

1 ~ -
+ %do(fﬂ”, _1)‘?‘57171*)23,71 ( £7T7+fmn,1*>7£n,1 (()000((1;”7 xnflv‘i')) >:|

M—[k]+1 M—[k]4+1—1 M, ps—1 A
+ 2 Z S Y g )

Y=+1 1=0 lv|=0 k=0 j=0
I+|y[+k#0

X fgnflﬂzs,ﬁ (é.i]?:#»ﬂfmnl*)ngl (Dz,,(pok)(flf”, xnl,‘i’)) } + R(‘T”7 xn*:l? x”)?
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where all R(z"”, 2,1, 2,) belong to the class CM+T1(R").
Furthermore, for Re p > —1, the following relations hold:

Fio(th logPt e ™) = Z b(l) (o +i1)"* ogh (o +i7), (2.26)

where
ar—k

(1) (=1)kp! in(ut1)/2 .
bor (1) = K (p— k) dur—F Lp+1)e™ ’

for ReA < —1 weset A= —m + pu, —1 < Rep < 0, and \ ¢ Z, where m > 0 is an integer, which
gives

Fio(t) loglt e ™) = Z cpe(N) (0 +i7) "2 ogh (0 + i), (2.27)

or(A) 1= i “Zd(m) b4 (1 (2.28)

Here bﬁ) (u) is defined by relation (2.26), and the coefficients dz()y)()‘) are given by means of the
recurrence relations

(M) (-1 () . gD _ (1) 1y 1y L 1
o ( Zd V) A+ M =1, dyf A+ M= 1) = ()" 5 e

where M e N. If A\=—m—1=-1,-2,..., m € Ny, then

p+1
Fro(t logP tye™™) = (Z Eprin(N) logh (o + z'T)) (o +ir) 1, (2.29)

where
p+1

m bt
Zdz(ol)l 0 7 (0) for k=0,
Cpr1,k(A) = (2.30)

p+1 (1)(0)
ngqz)l bu (0) for ke{l,2,...,p+1},

the coefficients d(m)()\), m € N, are defined as above, and the coefficients d;()(l)) are given by
d;()(l))(_ ) =0p1, L =0,...,p (0 is the Kronecker delta).
Indeed, relation (2.25) follows from the formula (see [Esl, (2.36)])

Fioo(the ™) = T(u+ 1)e™ W2 (g 4 jr)y=r=1 Rep> -1,

after differentiating p times with respect to the parameter pu.

For Re A < —1, the function tﬁ‘r logP t, is not integrable on R; however, it can be expressed
as a linear combination of derivatives of functions for which Re A > —1, ie., if A = —m + p,
—1 <Rep <0, and A ¢ Z, where m > 0 is an integer, then

t*logPt = Z d(m) (—) (t*log" t).
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IfA=-m—-1=-1,-2,..., m € Ny, then

P d(m) A m~+1
t*logP t = o (V) ( d> (logF ™1 ¢).

S k1 \dt

Applying the Fourier transform, we obtain relations (2.26), (2.27), and (2.29).

(
Thus, substituting relations (2.26), (2.27), (2.29), and (2.24) into (2.25) and taking into account
the formula

v +r+{¢gt=2r—1-[q],..., M +2—1, 1=0,...,M+3—2r+|q,
we obtain the asymptotic expansion (2.11).
This completes the proof of Theorem 2.2. [

Now let us prove Theorem 2.3.

First we shall find out how the leading coefficients of the expansions (2.11) and (1.45) are related.
To this end, we perform a detailed calculation of the leading term of the asymptotic expansion
(2.11). By (2.24), we can readily see that

1 :

duj (", +1) = 7 Gaula", 0)V, ", ;(2”,0,0,+1)BY(z", 0,0, +1)K(z"),

Aoy (2", ~1) = 5 Gala OV, (20,0, ~1) BY(a", 0,0, ~C(a")e ™,
7T 2

)\OZ_g_A(x”)a 3217"'7€(N)7 jZO""’ns_l’

where G (2", 0) is the square root of the Gram determinant and
Vl(i)Zr,j(xﬂa 0,0,=+1)
s dre—17J n -1
= i T a7 )™ (AT (27,0) - (0,£1,7)))

Note that, if /(N) =1 and j = 0, then

T=Ts,+1

Vi o(a”,0,0,£1) = V{1, o (2”,0,0, £1) = Vi_o, (2", 0,0, +1),

where V] _o.(2/,&’) is the principal symbol of the pseudodifferential operator Vi_o,.

Now let us calculate the coefficient ¢U)(z”), on the right-hand side, of the leading term of
asymptotic expansion (2.10). We start from the relation

1
Fn—1—€n1 (xlrtl,Jngpr <_% 10g33n1,+>>

= (a1 +0)#1BY (% log(&n—1 + m)) By, (n),  (2.31)

where Repy; > —1 foralli=1,...,¢, and
e TR [ PO 17 N 17) R > = diag{B™ ,...,B™ )
p= (g o [hes - - -5 i) () g{ B (1) (o)}

m1—times my—times

1 .
mg — pmi [ _ im(t+1)/2
B™i(t) =B ( 2m'8t> (r(t+1)e )

B (i) == [logy (i) llmixm, - P =0,.0smi =1,

1 \P7F (=1)p+k gr—k .
, - " (1 im(t+1)/2 k<
by (i) = (27”') (p—k)! dtp’“( (4 Le - a (2:32)
0, k> p,
i=1,....0
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Indeed, since Reu; > —1 for all i = 1,..., ¢, by using relation (2.25), as well as the relation

Oy (i) = by (),

l—r,p—r
we obtain
1 P
<—% 10g37n1,+>
Hi
Fap1—€n_1 Tn—1,+ (p—7)!
k
(% log(fn 1 + ZO))
i—1
(fn 1+10 —Ha Zbkprul L

1 l—r
o log(&n—1 + ZO))
(=)

(fn 1+ZO e 1Zbl rp— TM1)<

l=r

l—r
(i log(&n—1 + 10))
= (§amy +i0) 77 Z a—n) by, (i)

This implies the formula
Hi my 1
Foni—tnos ( Tnly e B —5 - logTn_1,+
g1 o [ 1 . .
= (fn,1 + ’LO) i 1B ¢ (% log(fnfl + ’LO)) Bil(/,él)

(see (2.32)). In turn, this proves relation (2.31).

Since Re(v/2 + §;(z")) > —1 for all : = 1,...,¢, it follows that relation (2.29) holds whenever
p=v/2+ Ax"), ie

2 A 17 1
For 1t a (a:z/ltr (z )ngr <_ﬁ 10ga:n1,+>>

(6 - i0) 2 AE 1B (2 log (&, 1+zo)>B (5+26"). (233)

For \; = —g —6;(z")=2r+q+j (i=1,...,£), we can use relations (2.26), (2.27) and (2.29),

as well as the relation

(for the definition of ¢j/(A;), see (2.28)), and similarly obtain the formula

A 1 o
Fep 1=z (5211,+B ’ (ﬁ 10g§n1,+>> = 23,31 tpm <_%logzs,9> B (i)

for Re \; > —1.
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 7 No. 1 2000



44 0. CHKADUA AND R. DUDUCHAVA

IfReN; < =1, N\, ¢7Z, \; = —N; + p;, 1 <Rep; <0, and N; > 0 is an integer, then

A (1 -
Fen 1200 (5211&3 ' <% 10g§n1,+>> = Zs,é\l B (‘ﬁlogzs,9> a™ (Ai),
a™ (i) := By (1) - D™ (Xs), D™ (i) = (| D35 (Ai) Iy xms

Ni—p@ j' 1 P dm'(N') A
) NG~ i (Vi . i < p,
Dip(A) =19 "l (2m'> v ) ISP

0, Jj>p

and dz;(Ni)()\i) are defined by (2.9) and (2.28).

Indeed, proceeding as above, we transform the matrix a™i();) to the form

Cor ()T R e, k<

m; — my; m; . - o - — Cop (A ) X M

a™ (Ai) = llagy A lmixcms s apy (Ai) == (2m> pl Pk P
0, k> p.

Further, taking into account the expression ¢/}?(\;) (see (2.28)), we see that

pk
1\?7" K
k UINSW
0 () o

1 di—Fk

STERY i (t+1)/2
- — ) Y (Pt 4 1)t
j:k<2m'> G-k i (D +1)e )

2mi

1N’ 1w,
. Ny — i J m;(Ni) i
t=pi ' ( > p! i ().

Then

mifl

g (Ni) = Z by (1) D3yt (Ai).
=0

Therefore, a™i(\;) = B (u;) - D™ (\;).
For \; = —1,—2,..., using relations (2.29) and (2.30), we obtain

, (1 i1 mm 1
fgnflﬂzs,e (6211’+Bm1 <% 10g2370>> — Zs’g‘z 1Bm7, (% 10g2379> ,

where B™i(t) is defined by (2.10).
This yields the relation

—v/2-A(a")—2 ; 1
Fep 1—za (fn”{7+ (z")=2r+q+j ngr<%log§n1,+>>

12 s~ 1
— Z;/7/192+A(m )+2r—1—q ]ngr (% 10g237ﬂ> aj(a;”), (2'34)

where

a;(a") = diag {a™ (\), ..., a™ (A} |

BZ” ()\1), Re \; > —1,
I, A =—1,-2,....
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Thus, it follows from (2.32) and (2.33) that
C(j)(g;”) _ aj(a:")B’ (g i A(a:"))lel(a:")c()(a:"),

Apr
where co(z”) is the leading coefficient of the asymptotic expansion (1.45). O

Remark 2.10. If, in Theorem 2.2, the density ¢o has the expansion (1.47), i.e., if ngr =1is

the identity matrix, then the asymptotic expansion (2.11) becomes simpler for \; = —g —6;(2") —
2r+q—+j # —1,-2,..., namely,
L(N) ,ns,—1
u(a:",a:n,l,a:n) _ Z Z { Z Ox{;bdsj(a;", 0)227/92+A(m")+2r71*Q*jc(j)(xu)
f=+1 s=1 * j=0
M+3—2r+[q] M42—1
S S SRSt

k=0 j+p=2r—[q]-1
k+l+j+p#2r—[q]—1

X Bskjp (xu, log Zs,@) } + UMJrl(x”a Tn—1, xn)

for z, > 0 and up41 € C’é\/‘[ﬂ(m), where Bgpjp(2”,t) is a polynomial in ¢ of degree vy, =
kE+p+j—2r+[q] +1 with vector coefficients depending on the variable z”. The coefficients
dsj(z”,+1) have the same form as in (2.10), and

D@y = aj(@bo(z" )K" Neo ("), §=0,...,ns— 1,

b[)(fl;”) = F(M + 1)67,TF(M+1)/2

)

p=v/2+A(z")

aj(z") := diag{agg (A1), - - Oty o1 (A1) aggt (Ne)s a1 (A0}
T(Ap 4 1)e™Aet1)/2 for Re A\p > —1,
m _ Nk
apt (M) = {5, - i +1)/2 1
R Mkl“(uk +1)€ Mk E[lm for Relp < -1, A ¢Z,
k=1,...,¢;

here Ay, = —Nj + pp, —1 < Repg < 0, and Ny > 0 is an integer.

In (1.47), co(z”) is obviously the leading coefficient.

For \; = —v/2—8;(2")—2r+q+j = —1,-2,... weobtain \; = —m;—1 =AU j=0,...,n,—1,
these values do not depend on i = 1,...,¢ (for some nonnegative integers m; = 0,1,...) and, in
the asymptotic expansion of the density ¢ (see (1.47)), the matrix ngr (t) is equal to I. Then the
asymptotic expansion (2.11) becomes

Z(N) nsfl
. A 17 el ey~ 1
w(@”, w1, ) = Y { > a) [dsj(ﬂf"a A 'Bg (ﬁ 1ngs,Jr1>
s=1 ¢ j=o

s—1 apr \ 27y

17 1y s~ 1
— dyy(a”, 1) 2R By (—bgzs,l)]c(x")

M+3—2r+[q] M42—1

l i v/24+A(")+p+k—{q} "
+y > Yo ahawhzl Buirjp (2", 10g 24.0)
0==+1 k,l=0 j+p:2r—[q]—1

k+l+j+p#2r—[q]—1

M+1
+ up1 (2", 21, ) for @, >0, upp1€Cy * (R%),
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where Byyjp(2”,t) is a polynomial in ¢ of degree vy, = k+p+j—2r+[q]+2 with vector coefficients
depending on the variable x”, and

- 1 o
ngr (% log zs,9> = (Cl()()\(])) +71(A9) longﬁ)I;

here (1) . (1)
" . L@ (=1)" " . L@ (—=1)™M
011()\(])) = ZA T, Cl()()‘(])) = ZA

3!

[iF'(l) . 5} .

mj!
The coefficients dg;(z”, £1) are as in (2.9), and c¢(z”) becomes c(z”) = bo(x”)K 1 (2" )co(z").

Remark 2.11. Theorems 2.2 and 2.3 hold in more general cases. Indeed, let Pj(z, D,) be a
differential operator of order [. Then, using the scheme of the proof of Theorems 2.2 and 2.3, we

can obtain a similar asymptotic expansion for the functions v = V® o B,y and u = AVAORS B, o,
where V) and V) are potential-type operators with kernels

VO (z,y) = P(x,Dy)Ha(x —y) and VO (z,y) = F(y, Dy)Halz —y),

respectively.
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