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Abstract. In the investigation of a boundary value problem (BVP) for an elliptic partial
differential equation in a domain Ω ⊂ R

n by the potential method, the solution is repre-
sented by means of potential operators, and the problem is reduced to finding the density of
these potentials on the basis of the corresponding boundary integral equation (BIE) on the
boundary S = ∂Ω or on its part S ⊂ ∂Ω. If the BVP under consideration is of crack type or
mixed, then the manifold S can have a boundary, ∂S = Γ. After proving the unique solvabil-
ity of the BIE, one can apply the Wiener–Hopf method provided that the manifold S and
its boundary Γ are smooth, and find a complete asymptotic expansion of the solution on S
near the boundary Γ (see the previous paper by the authors [CD1] and Section 1 below). It is
quite natural that the next step is to find the complete asymptotics of the solution to BVP
in Ω in a neighborhood of Γ. To this end, we must find the asymptotics of a potential-type
function provided that the asymptotics of the density on S is known, and this problem is
solved in the present paper in a rather explicit form.

INTRODUCTION

The main goal of the present paper is to study the asymptotics for a solution of an elliptic
boundary value problem (BVP) represented by surface potentials (within the potential method).
We continue the investigations of [CD1] that extend results of [Es1, Be1, CS1, DW1, DSW1]; these
investigations led to the asymptotics of the elliptic pseudodifferential equation (PsDE)

a(t, Dt)v(t) = g(t), t ∈ S0,

on a smooth manifold with smooth boundary ∂S0 (the Wiener–Hopf method), and the correspon-
ding results are described in Section 1 of the present paper. To obtain the asymptotics of a solution
of the BVP, one needs to investigate the asymptotics of functions represented by potentials whose
densities have prescribed asymptotic expansions on the surface.
For example, consider the crack problem for an anisotropic elastic body

A(Dx)u(x) = 0, x ∈ R3 \ S0 , (0.1)

u±(t) = f±(t), t ∈ S0, (0.2)

with a given vector field u± of displacements on both sides of the crack surface S0, where

A(Dx) := ‖
3∑

k,m=1

ajklm∂k∂m‖3×3, ajklm ∈ R, ajklm = almjk = akjlm,

3∑
j,k,l,m=1

ajklmξjkξlm � C0

3∑
j,k=1

ξ2
jk for arbitrary ξjk ∈ R , ξjk = ξkj .
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16 O. CHKADUA AND R. DUDUCHAVA

A solution to an elliptic equation of the form (0.1) can be represented as

u(x) = WS0f0(x)− VS0ϕ(x), x ∈ Rn, (0.3)

where WS0 and VS0 are the double layer potential and the single layer potential for (0.1), respec-
tively, while the densities

f0(t) := f+(t)− f−(t), ϕ(t) := {T (Dt, n(t))u}+(t)− {T (Dt, n(t))u}−(t)

represent the jumps of the displacement field and of the stress field across the crack surface S0.
Thus, we must find ϕ(t) by solving a boundary PsDE of the form

V−1ϕ(t) = W0f0(t)−
1
2
[f+(t) + f−(t)] , (0.4)

where V−1 and W0 are the direct values of the potentials VS0 and WS0 on S0; they are pseudo-
differential operators of orders −1 and 0, respectively (see [CS1, DNS1, DNS2]).
Let t = (s, ρ) ∈ Col2ε := ∂S0 × ]0, ε[ be the so-called local “plain collar” coordinate system,

where ρ = ρ(t) := dist(t, ∂S0) stands for the distance and s ∈ ∂S0 for the abscissa on the arc.
The function ϕ is a solution of the elliptic PsDE (0.4), and hence ϕ belongs to C∞(S0) provided

that S0 is infinitely smooth. Moreover, if the data are smooth, i.e., if f± ∈ C∞(S0), then the
complete asymptotic expansion of ϕ(t) in a neighborhood of the boundary ∂S0 is

ϕ(ρ, s) = c0(s) ρ−1/2 +
M∑
k=1

k∑
m=0

ckj(s) ρk−1/2 logm ρ+ ϕM+1(ρ, s) , (0.5)

(ρ, s) ∈ Col2ε , c0, c1,0, . . . , cMM ∈ C∞(∂S0), ϕM+1 ∈ CM (S0) ,

for arbitraryM = 1, 2, . . . .
Our next important step is to establish an asymptotics of u(x) in (0.3) by using the asymptotics

of the density in (0.5). This is performed in a rather general setting in Section 2 (see Theorem 2.2
of the present paper). Similar results for the canonical half-space case and for particular potentials
can be found in [Es1, §13].
To state the main result of the present paper for the BVP of the form (0.1)–(0.2), we assume

that S is a smooth closed manifold (without boundary) that contains S0 and introduce a local
“thin collar” coordinate system in a neighborhood of ∂S0 ⊂ R3,

x = (s, ρ, r) ∈ Col3ε := ∂S0 × ]−ε, ε[× ]−ε, ε[ , Col3ε ∩ S0 = Col2ε .

Here ρ = dist(x̃, ∂S0) stands for the distance between ∂S0 and the projection x̃ ∈ S of a point
x ∈ R3 \ S along the outward pointing normal to S, and thus takes negative values for x̃ ∈ S \ S0,
while r = dist(x, S0) takes positive (negative) values if x is inside (outside, respectively) of S.
The function u is a solution of problem (0.1)–(0.2) and hence u ∈ C∞(R3 \S0) provided that S0

is infinitely smooth. Moreover, if the data are smooth, f± ∈ C∞(S0), then the complete asymptotic
expansion of u(x) in a neighborhood of the boundary ∂S0 is

u(s, ρ, r) =
�∑

m=1

Re
{ nm−1∑

j=0

[dmj(s,+1) rjz
1/2−j
m,+1 − dmj(s,−1)rjz1/2−j

m,−1 ]

+
∑
θ=±1

M+1∑
k,l=0

M+2−l∑
j+p=1

k+l+j+p �=1

ρlrjz
−1/2+p+k
m,θ Bmlkjp (s, log zm,θ)

}
+ uM+1(s, ρ, r) ,

(0.6)

uM+1 ∈ CM+1 (Col3ε) , (s, ρ, r) ∈ Col3ε , dmj(·,±1) ∈ C∞(∂S0) ,
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 17

Here zm,±1 := ρ ± rτm,±1, −π < Arg zm,±1 < π, and {τm,±1}�m=1 stand for the different roots of
the polynomial detA(J�

æ (s, 0) ·(0,±1, τ)) (whose multiplicities are denoted by nm, m = 1, 2, . . . , �)
in the complex lower half-plane Re τ < 0; A(ξ), ξ ∈ R3, is the symbol of the elliptic differential
operatorA(Dx) in (0.1), the matrix J�

æ (s, ρ) is transposed to the Jacobian matrix of the coordinate
diffeomorphism æ from R2 to the surface S0 (see Subsection 1.3 below), and Bmlkjp(s, λ) is a
polynomial of order νkjp = k + p + j − 1 with respect to λ with vector coefficients depending on
the abscissa s on the arc.
The roots τm,±1(s) depend on the parameter s ∈ ∂S0 smoothly, τm,±1 ∈ C∞(∂S0), where

m = 1, . . . , �.
Moreover, explicit relations between the coefficients of expansions (0.5) and (0.6) are found.

In particular, the leading coefficients dmj(s,±1) and c0(s) of these expansions are related as follows:

dmj(s,±1) =
1

2
√
π
(∓i)j+1Γ

(
j − 1/2

)
Gæ(s, 0)V

(m)
−1,j(s, 0, 0,±1)c0(s) ,

where Gæ(s, 0) is the Gram determinant of the coordinate diffeomorphism æ and

V
(m)
−1,j(s, 0, 0,±1) = − ij+1

j!(nm − 1− j)!
dnm−1−j

dτnm−1−j
(τ−τm,±1)nm

(
A(J�

æ (s, 0) · (0,±1, τ))
)−1
∣∣∣
τ=τm,±1

.

In the isotropic case, the Lamé operator is A(∂x) = µ∆+ (λ+ µ) grad div, which gives � = 1,
τ1,±1 = −i, n1 = 3, and d12(s,±1) = 0; the asymptotic expansion of the corresponding solution
can be simplified as follows:

u(s, ρ, r) = d1(s) Im z
1/2
+1 + Re d2(s)r(z

−1/2
+1 − z

1/2
−1 ) (0.7)

+ Re
∑
θ=±1

M+1∑
k,l=0

M+2−l∑
j+p=1

k+l+j+p �=1

ρlrjz
−1/2+p+k
θ B1lkjp (s, logzθ) + uM+1(s, ρ, r),

(s, ρ, r) ∈ Col3ε , z±1 := ρ∓ ir,

where

d1(s) = diag
{
1
µ
,

λ+ 3µ
2µ(λ+ 2µ)

,
λ+ 3µ

2µ(λ+ 2µ)

}
Gæ(s, 0)c0(s)

and the coefficient d2(s) = d11(s,±1) can be evaluated in a similar way.
The explicit relationships between the coefficients of expansions (0.5), (0.6), and (0.7) can be

used in crack mechanics to develop fracture criteria. This problem will be discussed in a forthcoming
paper.
For functions represented by potentials, the asymptotic expansion is found in Section 2 in the

general case. Namely, we consider the representation

u(x) = V ◦ Bqϕ0(x) , suppϕ0 ⊂ S0 , x ∈ Rn, (0.8)

where Bq is a classical pseudodifferential operator of order q ∈ R on the manifold S0; we assume
that an asymptotic expansion of the density ϕ0 = (ϕ01, . . . , ϕ0N) is known. We write out a complete
asymptotic expansion for the function u(x) in (0.8) (see Theorems 2.2 and 2.3).
The reason to introduce the pseudodifferential operator Bq is that such operators arise in some

problems in mechanics, in particular, in crack problems of mixed type [Ch2, Ch3] and in problems
of cracks on an interface for an anisotropic elastic body [DSW1]. In our forthcoming paper, the
asymptotics obtained here will be applied to certain problems in elasticity.
The asymptotics of solutions of boundary value problems in domains with nonsmooth boundaries

(e.g., with cones, edges, etc.) is intensively studied by using the apparatus suggested by Kondrat’ev
in [Ko1]. Some results of these investigations can be found in [Da1, Gr1, MP1, NP1, RS1, Sc1].
We use here another approach, which is based on the Wiener–Hopf method; this approach was

suggested by G. Eskin and exploited in [Be1, CD1, CS1, DW1, DSW1], but, to our knowledge, only
the research [Es1, §13] is devoted to the asymptotics of functions represented by potentials in the
case of the canonical half-space and for special potentials.
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18 O. CHKADUA AND R. DUDUCHAVA

1. ASYMPTOTICS OF SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS

For convenience, in this section we briefly recall results on pseudodifferential equations in Bessel
potential spaces that are obtained in [CD1] (see also [Be1, DW1, DS1, Es1, Sh2, Sh3]).

1.1. Spaces

Let S(Rn) be the Schwartz space of all rapidly decreasing functions and let S′(Rn) be the dual
space of tempered distributions. Since both the Fourier transform and its inverse, which are defined
by the formulas

Fϕ(ξ) =
∫

Rn

eiξxϕ(x)dx and F−1ψ(x) =
1

(2π)n

∫
Rn

e−ixξϕ(ξ)dξ, x, ξ ∈ Rn , (1.1)

are bounded operators in the spaces S(Rn) and S′(Rn), it follows that the convolution operator

a(D)ϕ =W 0
aϕ := F−1aFϕ with a ∈ S′(Rn), ϕ ∈ S(Rn), (1.2)

is a bounded transformation from S(Rn) into S′(Rn) [Du1, DS1].
The Bessel potential space Hs

p(R
n) is defined as a subspace of S′(Rn) endowed with the following

norm [Tr1, Tr2]:

‖u
∣∣Hs

p(R
n)‖ := ‖λs(D)u

∣∣Lp(Rn)‖, where λs(ξ) := (1 + |ξ|2)s/2 = 〈ξ〉s. (1.3)

For the Hilbert space Hs
2(R

n), the index 2 is usually dropped, and the notation is reduced to
Hs(Rn) (cf. [Es1]).
For any σ in ]0,∞[, denote by Cσ(Rn) the Hölder space of continuous functions equipped with

the norm

‖ϕ|Cm(Rn)‖ =
∑

|α|�m

sup{|∂αϕ(x)| : x ∈ Rn} for σ = m ∈ N0,

‖ϕ|Cσ(Rn)‖ = ‖ϕ|Cm(Rn)‖+
∑

|α|=m

sup
{
|h|−ν‖∆h∂

αϕ|C(Rn)‖ : h ∈ Rn \ {0}
}

for σ = m+ ν , m ∈ N0 , 0 < ν < 1 ,

where N stands for the set of positive integers and N0 := N ∪ {0}.
The space H̃s

p(Rn
+) is defined as the subspace of Hs

p(Rn) consisting of functions ϕ ∈ Hs
p(Rn) with

support in the positive half-space, suppϕ ⊂ Rn
+. Let Hs

p(R
n
+) be the quotient space Hs

p(R
n
+) =

Hs
p(Rn)/H̃s

p(Rn \ Rn
+), which can be identified with the space of distributions ϕ on Rn

+ that admit
an extension �ϕ ∈ Hs

p(Rn). Therefore, rR
n
+

Hs
p(Rn) = Hs

p(Rn
+).

Now let us define weighted anisotropic Bessel potential spaces similar to those in [Es1, Sects. 23
and 26].

For µ, s ∈ R, m ∈ N0, and 1 < p < ∞, by H
(µ,s),m
p (Rn) we denote the space of functions (or of

distributions if µ < 0 or µ+ s < 0 ) endowed with the norm

‖u
∣∣H(µ,s),m

p (Rn)‖ :=
m∑
k=0

‖λµ(D′)λs+k(D)xknu
∣∣Lp(Rn)‖, x = (x′, xn) ∈ Rn ,

λs(ξ) := (1 + |ξ|2)s/2 , ξ = (ξ′, ξn) , ξ′ ∈ Rn−1 , ξn ∈ R . (1.4)
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 19

The operator
λν(D′)λr(D) : H(µ,s),m

p (Rn)→ H(µ−ν,s−r),m
p (Rn)

is an isometric isomorphism and its inverse is λ−ν(D′)λ−r(D) (where ν, r ∈ R).

We write H
(µ,s)
p (Rn) instead of H

(µ,s),0
p (Rn) and Hs,m

p (Rn) instead of H
(0,s),m
p (Rn); note that

H
(0,s)
p (Rn) = Hs

p(R
n). The definitions of the spaces H̃

(µ,s),m
p (Rn

+) and H
(µ,s),m
p (Rn

+) are similar to
those of H̃s

p(R
n
+) and Hs

p(R
n
+), respectively.

If the boundary ∂M of a manifold M is nonempty, then M can be extended to a manifold
M̃ ⊃ M without boundary and with the same smoothness.
If {Yj}lj=1 is a sufficiently fine covering ofM, then the spaces Hs

p(M), Cσ(M), H̃s
p(M), C̃σ(M),

H
(µ,s),m
p (M), and H̃

(µ,s),m
p (M) can be defined with the help of a partition of unity {ψj}lj=1 (sub-

ordinated to the covering {Yj}lj=1) and of local coordinate diffeomorphisms

æj : Xj → Yj , Xj ⊂ Rn
+. (1.5)

The space H̃
(µ,s),m
p (M) can also be defined as a subspace of H

(µ,s),m
p (M̃) consisting of functions

ϕ ∈ H
(µ,s),m
p (M̃) for which suppϕ ⊂ M, and the space H

(µ,s),m
p (M) can be realized as the

quotient space H
(µ,s),m
p (M) = H

(µ,s),m
p (M̃)/H̃

(µ,s),m
p (M̃ \M). The latter space can be identified

with the space of distributions ϕ on M that admit an extension �ϕ ∈ H
(µ,s),m
p (M̃). Therefore,

rMH
(µ,s),m
p (M̃) = H

(µ,s),m
p (M).

If B∗ denotes the dual space to the space B and if ∂M �= ∅, then the following relations hold
[Tr1]: (

H̃s
p(M)

)∗
= H

−s
p′ (M),

(
Hr
p(M)

)∗
= H̃

−r
p′ (M), (1.6)

provided that s, r ∈ R, r � 1/p, 1 < p < ∞, and p′ = p/(p− 1). If Sm ⊂ Rn is an m-dimensional
C∞-smooth submanifold, where m < n, then the trace operator

γSm : Hs
p(R

n)→ Bs−(n−m)/p
p,p (Sm) (1.7)

is well defined and bounded for

1 < p < ∞ ,
n−m

p
< s .

Here Bs
p,q(Sm) stands for the Besov space [Tr1].

1.2. PsDOs on Rn

If the convolution operator defined in (1.2) has a bounded extension

W 0
a : Lp(Rn)→ Lp(Rn),

then we write a ∈ Mp(Rn), and a(ξ) is called a Fourier Lp-multiplier or simply Lp-multiplier. For
ν ∈ R, we write

M (ν)
p (Rn) :=

{
(1 + |ξ|2)ν/2a(ξ) : a ∈ Mp(Rn)

}
.

By using the isomorphism (1.3) and the obvious property

W 0
a1
W 0

a2
=W 0

a1a2
, aj ∈ M (νj)

p (Rn), j = 1, 2, (1.8)

we see that the operator W 0
a : Hs

p(Rn)→ Hs−ν
p (Rn) is bounded if and only if a ∈ M

(ν)
p (Rn).

The following result is known as the Mikhlin–Hörmander–Lizorkin multiplier theorem. The
proofs can be found in [Sr2] and [Hr1, Theorem 7.9.5].
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20 O. CHKADUA AND R. DUDUCHAVA

Theorem 1.1. If

sup
{
|ξβ∂βa(ξ)| : ξ ∈ Rn, β ∈ Nn

0 , |β| � n+ 1
2

, 0 � β � 1
}

� M < ∞,

then a ∈
⋂

1<p<∞ Mp(Rn).

Let a ∈ M
(ν)
p (Rn). Then the operator

Wa := r+a(D) : H̃s
p(R

n
+)→ Hs−r

p (Rn
+) (1.9)

is bounded, where r+ := rR
n
+
is the restriction operator.

In general, the composition rule (1.8) fails for half-space operators (1.9). However, if there is an
analytic continuation a1(ξ′, ξn − iλ) (or a2(ξ′, ξn + iλ)) for ξn ∈ R and λ ∈ R+ that belongs to
S′(Rn−1 × C−) (to S′(Rn−1 × C+), respectively), where C± = R × R±, then

Wa1Wa2 =Wa1a2. (1.10)
If the symbol a(x, ξ) depends on the variable x, then the corresponding convolution operator (see
(1.2))

a(x,D)ϕ(x) =W 0
a(x,·)ϕ(x) :=

(
F−1
ξ→xa(x, ξ)Fy→ξϕ(y)

)
(x) (1.11)

with the symbol a ∈ C(Rn, S′(Rn)) is said to be a general pseudodifferential operator (PsDO) acting
on ϕ ∈ S(Rn). Here C(Ω,B) stands for the set of all continuous functions a : Ω→ B.
Let M

(ν)
p (Rn × Rn) be the class of symbols a(x, ξ) for which the operator in (1.11) can be

extended to a bounded mapping
a(x,D) : Hs

p(R
n)→ Hs−ν

p (Rn) for all s ∈ R .

Theorem 1.2 [Sh2, Theorem 5.3]. Let Ω ⊂ Rn, n ∈ N, and ν ∈ R. If, for a function a(x, ξ),
x ∈ Ω, ξ ∈ Rn, there exist constants Mα,β such that∫

Ω

|∂αx ∂
β
ξ a(x, ξ)| dx � Mα,β〈ξ〉ν−|β| (1.12)

for all α, β = (β′, βn) ∈ Nn
0 , |β′| �

[n
2

]
+ 1 , β′ � 1,

and for all βn ∈ {0, 1, . . .} and ξ ∈ Rn, then a ∈ M
(ν)
p (Rn × Rn) for all 1 < p < ∞.

Definition. Let Scl
ν (Ω,R

n) be the class of functions a(x, ξ) satisfying condition (1.12) and
admitting an asymptotic expansion of the form

a(x, ξ) � a0(x, ξ) + a1(x, ξ) + · · · , (1.13)
where

(i) ak(x, ξ) is positive homogeneous of order ν − k with respect to ξ,

ak(x, λξ) = λν−kak(x, ξ) for all λ > 0, ξ ∈ Rn , x ∈ Ω,
and∫

Ω

|∂αx ∂
β
ξ ak(x, ξ)|dx � Mα,β|ξ|ν−k−|β|, |ξ| � 1, for all α, β = (β′, βn) ∈ Nn

0 , k ∈ N0 . (1.14)

(ii) For any N ∈ N0, the difference
ãN+1(x, ξ) := a(x, ξ)− a0(x, ξ)− · · · − aN(x, ξ)

satisfies the inequality∫
Ω

|∂αx ∂
β
ξ ãN+1(x, ξ)|dx � Mα,β|ξ|ν−|β|−N−1 for all ξ ∈ Rn, α, β ∈ Nn

0 . (1.15)

The function a0(x, ξ) = apr(x, ξ) in (1.13) is said to be the homogeneous principal symbol of
a(x,D).
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ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 21

Theorem 1.3 [CD1, Theorem 1.6]. Let m ∈ N0 and 1 < p < ∞. If ∂kξn
a(x, ξ) ∈ M

(ν)
p (Rn,Rn)

for all k = 0, 1, . . . , m, then the operator

a(x,D) : H(µ,s),m
p (Rn)→ H(µ,s−ν),m

p (Rn) (1.16)

is bounded for any µ, s ∈ R. In particular, if a ∈ Scl
ν (R

n,Rn), then a(x,D) in (1.16) is bounded for
any m ∈ N0 and any µ, s ∈ R.

Lemma 1.4 [DW1, Lemma 1.7]. Let a, b ∈ M
(ν)
p (Rn × Rn) and ν ∈ R. Suppose that the

conditions of Theorem 1.3 hold for a and b. Let there exist analytic extensions a(x, ξ′, ξn + iλ)
and b(x, ξ′, ξn − iλ) in the upper and lower half-planes, respectively (x ∈ Rn, ξ′ ∈ Rn−1, ξn ∈ R,
λ ∈ R+) whose growth at infinity is polynomial, i.e., let |a| and |b| be majorized by (|ξ′|+ |ξn|+λ)N
for some N and for all x ∈ Rn (uniformly). Then the operators

a(x,D) : H̃(µ,s),m
p (Rn

+)→ H̃(µ,s−ν),m
p (Rn

+),

r+b(x,D)�0 : H(µ,s),m
p (Rn

+)→ H(µ,s−ν),m
p (Rn

+)
(1.17)

are bounded and
r+a(x,D)ϕ = a(x,D)ϕ, ϕ ∈ H̃(µ,s),m

p (Rn
+),

r+b(x,D)�1ψ = r+b(x,D)�2ψ, ψ ∈ H(µ,s),m
p (Rn

+) .
(1.18)

Here �0, �1, and �2 are some extensions of ϕ ∈ Hs
p(Rn

+) with �jϕ ∈ Hs
p(Rn), j = 0, 1, 2.

1.3. PsDOs on a Manifold

Let M be an (n− 1)-dimensional1, C∞-smooth compact manifold with smooth boundary Γ :=
∂M �= ∅ and let 1 < p < ∞ and s, ν ∈ R.
We can readily see that the symbols of class Scl

ν (M,Rn−1) are invariant with respect to the
diffeomorphisms (x, ξ)  → (g0(x, ξ), g1(x, ξ)) with positively homogeneous gk ∈ C∞(M, Sn−2) of
order k with respect to ξ (k = 0, 1; cf. [Sb1, Lemma 1.2]). Therefore, the class of symbols Scl

ν (T ∗M)
is well defined on the cotangent manifold T ∗M (see [Sb1, Subsection 1.3]).
Moreover, the definition of the principal symbol apr(x, ξ) is invariant and does not depend on

the chosen chart.

Definition (see [DS1, Hr1, Sb1], etc.). An operator

A : H̃(µ,s),m
p (M)→ H(µ,s−ν),m

p (M) (1.19)

is called a pseudodifferential operator with symbol a ∈ Scl
ν (T ∗M) if

(i) the mappings χ1Aχ2I : H
(µ,s),m
p (M) → C∞(M) are continuous for all pairs χ1, χ2 ∈

C∞(M) with disjoint supports suppχ1

⋂
suppχ2 = ∅, i.e., χ1Aχ2I is of order −∞,

(ii) the transformed operators

æj,∗Aæ−1
j,∗u = a(j)(x,D)u, u ∈ C∞

0 (Rn−1
+ ), j = 1, . . . , l,

(cf. (1.5)), where

æj,∗u(x) :=

{
ψ0
j (x)u(æj(x)) for x ∈ Xj,

0 for x �= Xj,

æ−1
j,∗ϕ(t) :=

{
ψj(t)ϕ(æ−1

j (t)) for t ∈ Yj ,

0 for t �= Yj ,

(1.20)

and ψ0
j (x) := ψj (æj(x)), x ∈ Xj , are pseudodifferential operators on R

n−1
+ with the

symbols a(j) (æj(x), ξ) = ψ0
j (x)a (æj(x), ξ)ψ

0
j(x) .

1Due to our needs (see applications in Section 2), from now on we prefer to consider (n− 1)-dimensional manifolds

rather than n-dimensional ones.
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The homogeneous principal symbol is responsible for the Fredholm properties and for the index of
the corresponding pseudodifferential equation Au = f with f ∈ Hs−r

p (M). Moreover, it determines
the leading term of the asymptotic expansion of the solution u ∈ H̃s

p(M) in a neighborhood of the
boundary Γ. Lower order terms of the asymptotic expansion of the solution are influenced by the
complete symbol a(x, ξ) (see [Es1, Sect. 26], [Be1, CD1], and Theorem 1.7 below).
As is well known, purely homogeneous symbols can cause problems related to the boundedness

of the corresponding operators. For example, recall the operator |∂|−ν with the symbol |ξ|−ν for
ν > 0, which is unbounded as a mapping Hs

p(Rn−1) → Hs+ν
p (Rn−1), and even in Lp(Rn−1) (see

[St1, Sect. VI]). However, if a(x, ξ) satisfies (1.12) for |ξ| � 1 and is homogeneous of order ν � −n,
then the truncated symbol

∨
a(x, ξ) := [1− χ0(ξ)]a(x, ξ) (1.21)

(where χ0 ∈ C∞
0 (Rn−1) is a cut-off function with χ0(ξ) = 0 for |ξ| � 1, χ0(ξ) = 1 for |ξ| � 1/2)

belongs to the class Scl
ν (M,Rn−1) because it satisfies both formula (1.12) and the relation∫

Ω

|∂αx ∂
β
ξ [a(x, ξ)−

∨
a(x, ξ)]| dx� Mα,β,N |ξ|ν−|β|−N

for arbitrary N ∈ N, ξ ∈ Rn−1, α, β ∈ N
n−1
0 , and x ∈ M. The advantages of the truncated symbol

are obvious; in particular, the difference

a(x,D)− ∨
a(x,D) : H̃s

p(M)→ C∞(M)

is a smoothing operator and does not influence in the singular asymptotics of solutions. For the
same reason, the operators a(x,D) and

∨
a(x,D) have the same Fredholm properties and equal

indices provided that M is compact.
A similar property concerning asymptotic behavior holds under stronger perturbations. Namely,

let conditions of Theorem 1.3 hold for |ξ| � 1 and let a cut-off function depend only on the last
variable, χ(0)

0 (ξn−1) = 0 for |ξn−1| � 1, χ(0)
0 (ξn−1) = 1 for |ξn−1| � 1/2, and χ

(0)
0 ∈ C∞

0 (R); then
the operator with truncated symbol

∨
a0(x,D) := [1− χ

(0)
0 (Dn−1)]a(x,D) : H̃(∞,s),m

p (M)→ H(∞,s−ν),m
p (M)

is bounded, and the difference

a(x,D)− ∨
a0(x,D) : H̃(∞,s),m

p (M)→ C∞(M) (1.22)

is a smoothing operator. However,
∨
a0 is not a compact perturbation of a(x,D) for n− 1 � 2, and

it essentially influences in the Fredholm properties and in the index.

1.4. Example

Let M ⊂ R3 be a smooth surface with smooth boundary Γ = ∂M and let

M =
N⋃
j=1

Yj , æj = (æj1,æj2,æj3)� : Xj → Yj , Xj ⊂ R2
+ = R × R+, (1.23)

be a C∞-smooth atlas of the surface M; let the functions

æ̃j : X̃j → Ỹj , X̃j ⊂ R3
+, Ỹj ⊂ R3, Ỹj ∩M = Yj ,

X̃j = (−ε, ε)×Xj, æ̃j |Xj
= æ̃j(0, x) = æj(x), x = (x1, x2), j = 1, 2, . . . , N,

(1.24)
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be extensions of the diffeomorphisms in (1.23). For x = (x1, x2) ∈ Xj and x̃ = (x0, x1, x2) ∈ X̃j,
by Jæj (x) = ‖∂kæjl(x)‖2×3 and J

æ̃j
(x̃) = ‖∂kæ̃jl(x̃)‖3×3 we denote the corresponding Jacobi

matrices, respectively, and æ′
j(x) coincides with æ̃

′
j(0, x) for x ∈ Xj after deleting the first column,

i.e., after removing the entries ∂0æ̃jl(0, x), l = 1, 2, 3; therefore, J
æ̃j
(0, x)(0, y) = æ′

j(x)y for x ∈ Xj

and y ∈ R2. It is clear that

J
æ̃j
(0, x) = (e0 (æj(x)) , e1 (æj(x)) , e2 (æj(x))) , (1.25)

where the vector columns e0(t), e1(t), and e2(t) on the boundary t = æj(x′) ∈ Γ can be chosen to
be orthogonal to each other, e0(y′) = =n(y′)�, while e1 and e2 are tangent to M, e1 is tangent to
Γ, and e2 is cotangent to Γ. The fields e1(t) and e2(t) of unit vectors on M are not orthogonal in
general, in contrast to the pairs e0, e1 and e0, e2.
As a consequence, the Jacobi matrix J

æ̃j
(x̃) becomes orthogonal on the boundary Γ,

[æ̃′
j(0, x1, 0)]� = [J

æ̃j
(0, x1, 0)]−1 for all (x1, 0) ∈ Xj ∩ ∂R2

+ . (1.26)

Let −∞ < ν � −1 and let

a(ξ) = Fk(ξ) � aν(ξ) + aν−1(ξ) + · · ·+ aν−k(ξ) + · · · ,
aν−k(λξ) = λν−kaν−k(ξ), ξ ∈ R3, λ > 0

be a classical N ×N matrix symbol a ∈ Scl
ν (R

3).
If ν �= −1, then the trace

aM(t, D)ϕ(t) = γMa(D)(ϕ× δM)(t)

=
∫
R3

k(t− y)(ϕ× δM)(y)dy =
∫
M

k(t− τ)ϕ(τ)dτM , t ∈ M,
(1.27)

where (ϕ× δM, ψ) := 〈ϕ, γMψ〉 , ψ ∈ S(R3), by definition, is a pseudodifferential operator

aM(t, D) : H̃(µ,s),m
p (M)→ H(µ,s−ν−1),m

p (M).

This operator has the classical symbol

aM(t, ξ′) �
∞∑
k=0

aM,ν+1−k(t, ξ′) , aM,ν+1−k ∈ S∞,0
ν+1−k(T ∗M) , ξ′ ∈ R2 ,

(1.28)

aM,ν+1−k(æj(x), ξ′) =
k∑

m=0

∑
|β|+|γ|−|α|=k−m

2α�β

(−i)|α+β+γ|bα,β(x)∂γxGæj
(x)

2πdetJ
æ̃j
(0, x)γ!

× (−ξ′)α
∞∫

−∞

∂β+γ
ξ′ aν−m

(
J−1

æ̃j

(0, x)�(ξ′, λ)
)
dλ ,

where
Gæj := (det‖(∂æ�j, ∂æPj�)‖3×3)1/2 with ∂æjk := (∂1æjk, ∂2æjk)� (1.29)

stands for the square root of the Gram determinant of the vector function æj = (æj1,æj2,æj3)�
for j = 1, 2, . . . , N , b0,β(x) = 1, and the coefficients bα,β(x) for |α| > 0 can be found from the
following relation:

1
α!

 m∑
|δ|=2

(−1)|δ|+1

δ!
∂δæj(x)τ δ

α= m+2∑
|β|=2|α|

bα,β(x)τβ+
m|α|∑

|β|=m+3

g
(m)
α,β (x)τ

β , α∈Nn.
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In particular, the homogeneous principal symbol is

aM,pr(æj(x), ξ) := aM,ν+1(æj(x), ξ′) =
Gæj (x)

2πdetJ
æ̃j
(0, x)

∞∫
−∞

aν
(
J−1

æ̃j

(0, x)�(ξ′, λ)
)
dλ , x ∈ Xj .

(1.30)
For ν = −1, we cannot write (1.27). In this case, the formula

aM(t, D)ϕ(t) = γMa(D)(ϕ× δM)(t) = c0(t)ϕ(t) +
∫
M

k0(t, t− τ)ϕ(τ)dτM (1.31)

defines a pseudodifferential operator of order zero, aM(t, D) : H̃
(µ,s),m
p (M) → H

(µ,s),m
p (M), i.e.,

it is a singular integral operator; the integral in (1.31) is regarded as the Cauchy principal value.
Moreover (see [Es1, (3.26)]),

c0(t) =
1
2π

∫
|ω|=1

aM,pr(t, ω)dωS , k0(t, τ) = F−1
ξ→τ [aM,pr(t, ξ)− c0(t)] , t, τ ∈ M . (1.32)

1.5. Fredholm Property

Although many general results on the asymptotics and Fredholm properties of PsDEs can be
found in [Be1, CD1, DS1, DW1, Es1], here we collect some information needed below.
Let us consider an N ×N system of pseudodifferential equations on a compact smooth manifold

with smooth boundary ∂M of the form

aM(x,D)ϕ0(x) = v(x) , x ∈ M, (1.33)

with symbol aM ∈ Scl
ν (M,Rn−1) and principal symbol apr(x, ξ). Let us seek a solution ϕ0 ∈

H̃
(µ,s),m
p (M) for a given v ∈ H

(µ,s−ν),m
p (M), where m ∈ N, µ, s, ν ∈ R, and 1 < p < ∞.

Let the symbol aM(x, ξ) in (1.31) be elliptic, i.e.,

inf{det apr(x, ξ) : x ∈ M, ξ ∈ Sn−2} > 0, (1.34)

and let λ1(x′), . . . , λ�(x′) be the eigenvalues of the matrix function

a0
M(x′) = [apr(x′, 0, . . . , 0,+1)]−1apr(x′, 0, . . . , 0,−1) (1.35)

on the boundary x′ ∈ ∂M with algebraic multiplicities m1, . . . , m�, respectively (i.e., to any
eigenvalue λj(x′), mj linearly independent associated vectors correspond, and m1 + · · · + m� =
N ). Since the geometric and algebraic multiplicities are different, it follows that the eigenvalues
λ1(x′), . . . , λ�(x′) need not be all different. Further, let

δj(x′) =
logλj(x′)
2πi

,
1
p
− 1 < s− Re δj(x′)− ν

2
� 1

p
for j = 1, . . . , � . (1.36)

Lemma 1.5 (see [La1, Theorem 2.10.2] and [DSW1, Lemma A.6]). The matrix a0
M(x′) in (1.33)

is normal (i.e., commutes with its conjugate matrix),
(
a0
M(x′)

)∗
a0
M(x′) = a0

M(x′)
(
a0
M(x′)

)∗
, if

and only if it has no generalized associated eigenvectors, � = N , and a0
M(x′) is unitary equivalent

to the diagonal matrix Λ(x′) := diag {λ1(x′), . . . , λN(x′)}, that is,

a0
M(x′) = K(x′)Λ(x′)K∗(x′) with detK(x′) �= 0 , K−1(x′) = K∗(x′) , K ∈ C∞(∂M). (1.37)

In particular, if two matrices a0
pr(x

′,±1) are positive definite, then (1.37) holds, and the numbers
δj(x′) in (1.36) are all purely imaginary2, i.e.,

Re δj(x′) = 0 for j = 1, . . . , N . (1.38)

2We stress the relationship νj(x′) = iδj(x′) between δj(x′) defined in (1.36) and νj(x′) defined in [DSW1, (A.32)].
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Theorem 1.6 (see [DW1, Theorem 2.7] and [DS1]). Let the symbol aM(x, ξ) in (1.33) be elliptic
(see (1.34)) and let it be strongly elliptic on the boundary

Re (apr(x′, ξ)η, η)� M |ξ|ν|η|2 for all x′ ∈ ∂M, ξ ∈ Rn−1 and η ∈ CN (1.39)

with some constant M > 0.
Then the system of equations (1.33) is Fredholm if and only if

Re δj(x′) �= s− 1
p
− ν

2
for all j = 1, . . . , � , x′ ∈ ∂M . (1.40)

If, for each interior point x ∈ M, there exists an αx ∈ (0, 2π] such that the numerical range of
the matrix symbol apr(x, ξ), i.e., the set

Rx(a) :=
{
(apr(x, θ)η, η) : θ ∈ Rn−1, η ∈ CN , |θ| = |η| = 1

}
(1.41)

is disjoint with the ray {z ∈ C : argz = αx}, then the index of (1.33) is zero, Ind aM(x,D) = 0.
If, in addition, the homogeneous equation aM(x,D)ϕ0 = 0 has only the trivial solution ϕ0 = 0

in one of the spaces H̃
(µ,s),m
p (M), where s and p satisfy conditions (1.36), then (1.33) has a unique

solution in each of these spaces.

If conditions (1.40) hold, then (1.33) has the same kernel in all spaces H̃
(µ,s),m
p (M), m ∈ N0 ,

µ ∈ R. In particular,

ϕ0 ∈ H̃(∞,s),∞
p (M) :=

⋂
µ,m

H̃(µ,s),m
p (M) provided that v ∈ H(∞,s),∞

p (M) .

Note that neither the Fredholm properties nor the index and the kernel Ker aM(x,D) of (1.33)
depend on the parameters m ∈ N0 and µ ∈ R.

1.6. Asymptotics of a Solution

In the present subsection we formulate results on the asymptotics for a solution ϕ0(x) of system
(1.33). For our purposes, for M = S0 we take an (n− 1)-dimensional smooth surface (with C∞-
smooth boundary ∂S0) in Rn.
Let us introduce a special local coordinate system (s.l.c.s.) ( x′′, xn−1,+) ∈ S+

ε := ∂S0× [0, ε] on
S0 in a neighborhood of ∂S0, where x′′ ∈ ∂S0, xn−1,+ measures the distance from the boundary
∂S0, and ε is sufficiently small.
Let λ1(x′′), . . . , λ�(x′′) be the eigenvalues of a0

S0
(x′′) (see (1.35)) and let m1, . . . , m� be their

algebraic multiplicities (i.e., the lengths of the corresponding chains of associated vectors). Then
�∑

j=1

mj = N , and a0
S0
(x′′) has the following representation in the normal (Jordan) form

a0
S0
(x′′) = K(x′′)Ja0

S0
K−1(x′′), detK(x′′) �= 0, x′′ ∈ ∂S0 (1.42)

(cf. (1.37)), where Ja0
S0

:= diag{λ1(x′′)Bm1(1), . . . , λ�(x′′)Bm� (1)} and Bmj (t) are the Jordan
blocks defined as follows:

Bm(t) := ‖bjk(t)‖m×m, bjk(t) :=


tk−j/(k − j)!, j < k ,

1, j = k ,

0, j > k .

(1.43)
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These matrices are upper triangular (truncated Toeplitz matrices),

Bm(t) =


1 t

t2

2!
· · · tm−2

(m− 2)!
tm−1

(m− 1)!

0 1 t · · · tm−3

(m− 3)!
tm−2

(m− 2)!
· · · · · · · ·
0 0 0 · · · 1 t
0 0 0 · · · 0 1


.

Let
B0
apr
(t) := diag {Bm1(t), . . . , Bm�(t)} . (1.44)

Note that B0
apr
(t) = I is the identity matrix, and K ∈ C∞(∂S0) if all chains are trivial, m1 =

· · · = m� = 1. For instance, this is the case if the matrix a0
S0
(x′′) is normal (see Lemma 1.5)

or if the matrices apr(x′′,±1) (the specific values of the symbol apr(x′′, ξ)) are positive definite
(cf. Lemma 1.5).

Theorem 1.7 ([CD1, Theorem 2.1]). Let µ ∈ R and m,M ∈ N0, and let, for some s ∈ R

and 1 < p < ∞, equation (1.33) have a unique solution ϕ0 ∈ H̃
(∞,s),m
p (S0) for any given v ∈

H
(∞,s−ν),m
p (S0). Then 1/p− 1 < s− ν/2−Re δj(x′′) < 1/p for all j = 1, . . . , �. Let K ∈ C∞(∂S0).

If Re [ν/2 + δj(x′′)] > −1 for all j = 1, . . . , �, v ∈ H
(∞,s−ν+M+1),∞
p (S0), then the solution ϕ0

has the asymptotic expansion

ϕ0(x′′, xn−1,+) = K(x′′) xν/2+∆(x′′)
n−1,+ B0

apr

(
− 1
2πi

log xn−1,+

)
K−1(x′′)c0(x′′)

+
M∑
k=1

K(x′′)xν/2+∆(x′′)+k
n−1,+ Bk(x′′, logxn−1,+) + ϕM+1(x′′, xn−1,+) (1.45)

(with ϕM+1 ∈ H̃
(∞,s+M+1),∞
p (S+

ε )) for all sufficiently small xn−1,+ > 0. Here the N vector func-
tions Bk(x′′, t) belong to C∞(∂S0), and

Bk(x′′, t) = B0
apr

(
− 1
2πi

t

) k(2m0−1)∑
j=0

tjckj(x′′),

where the N vector functions ckj belong to C∞(∂S0).
The components of the vector ∆ := (δ1, . . . , δ�)� are defined in (1.36), and

xθ+∆
n−1,+ := diag

{
xθ+δ1
n−1,+, . . . , xθ+δ�

n−1,+

}
, θ ∈ R,

where it is assumed that any component δj is repeated mj times in the vector ∆, according to its
multiplicity mj, and therefore ∆ is an N vector.
Furthermore, for any q = 0, 1, . . . ,M , the a priori estimates

C0

∑
0�j�k�M

‖ck|Cq(∂S0)‖+C0‖ϕM+1|H̃(∞,s+M+1),m
p (S0)‖

� ‖ϕ0|H̃(∞,s),m
p (S0)‖ � C1‖v|H(∞,s−ν+M),m

p (S0)‖
(1.46)

hold with some constants C0 and C1 that do not depend on v (ϕM+1 coincides with ϕ0 outside
of S+

ε ).
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Let the matrix a0
S0
(x′′) be normal for all x′′ ∈ ∂S0 (see Lemma 1.5). Therefore, � = N and the

leading term of the asymptotics in (1.45) contains no logarithms logxn−1,+ and becomes simpler,

ϕ0(x′′, xn−1,+) = K(x′′)xν/2+∆(x′′)
n−1,+ K−1(x′′)

[
c0(x′′) +

M∑
k=1

xkn−1,+

k∑
j=0

ckj(x′′) logj xn−1,+

]
+ ϕM+1(x′′, xn−1,+) . (1.47)

2. ASYMPTOTICS OF POTENTIAL-TYPE FUNCTIONS

2.1. Statement of the Results

Let Ω be a domain in the Euclidean space Rn, n � 2, which is not necessarily compact and has a
compact boundary ∂Ω = S that is sufficiently smooth. We consider a homogeneous N ×N system
of differential equations

A(Dx)u = 0 in Ω, (2.1)

of order 2r, r ∈ N,

A(Dx) :=
∑

|α|=2r

aαD
α
x with Dxl

:= i∂xl
= i

∂

∂xl
, (2.2)

with constant matrix coefficients aα = ‖ajkα ‖N×N . We suppose that the homogeneous principal
symbol of A(Dx) given by

Apr(ξ) = A(ξ) :=
∑

|α|=2r

aαξ
α (2.3)

(which coincides with the symbol in this case) is elliptic, i.e., detApr(ξ) �= 0 for all ξ, |ξ| = 1. The
fundamental matrix function (see [Hr1]) for (2.1) can be written as follows:

HA(x) = F−1
ξ′→x′

[
± 1
2π

∫
L±

(
A(ξ′, τ)

)−1
e−iτxndτ

]
, (2.4)

where the signs “–” and “+” refer to the cases xn > 0 and xn < 0, respectively, x = (x′, xn),
x′ = (x1, . . . , xn−1), ξ′ = (ξ1, . . . , ξn−1), and the contours L± are located in the complex half-
planes C± := R⊕ iR±, are oriented counterclockwise, and surround all the roots of the polynomial
detA(ξ′, τ) with respect to τ that belong to the corresponding half-planes τ ∈ C± (see [Ch1]).
The fundamental solution HA has the following properties:
1. HA ∈ C∞(Rn \ {0}) (see, e.g., [Ch1] and [Hr1, Theorem 7.1.22]).
2. HA is an even matrix function, i.e., HA(−x) = HA(x).
3. For n > 2r, the matrix function HA is positively homogeneous of order 2r− n, i.e., for any

λ > 0 and any x ∈ Rn \ {0} we have HA(λx) = λ2r−nHA(x).
4. For n � 2r we have HA(x) = P (x) ln |x| + Q(x), where P (x) and Q(x) are positively
homogeneous of order 2r − n (exact formulas for P (x) and Q(x) can be found in [Es1,
formulas (2.90)–(2.92)] and [Hr1, Theorem 7.1.20]).

For the simple layer potential

Vg(x) =
∫
S
HA(x− y)g(y)dyS, x /∈ S, (2.5)

the following theorem holds.
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Theorem 2.1 (see [DNS1, NCS1, Sh1]). Let s ∈ R, 1 < p < ∞, 1 � ω � ∞, and r ∈ N. Then
V can be extended to continuous operators

V : Bs
p,ω(S)→ B

s+2r−1+ 1
p

p,ω,loc (Ω), V : Bs
p,p(S)→ H

s+2r−1+ 1
p

p,loc (Ω) ,

where Bν
p,ω,loc(Ω) and Bν

p,ω(S) stand for the Besov spaces (cf. [Tr1, Tr2]) and the subscript loc can
be omitted if Ω is compact.

We introduce the notation

V1−2rg(x) =
∫
S

HA(x− y)g(y)dyS, x ∈ S, (2.6)

for the direct value of Vg(x) on the surface S.
Let S0 be an infinitely differentiable submanifold of S = ∂Ω of the same dimension n− 1 and

with C∞-smooth boundary ∂S0.
Let Bq be a pseudodifferential operator of order q ∈ R on the manifold S0 with classical symbol

Bq ∈ Scl
q (T ∗S0) and let

Bq(x, ξ) �
M∑
k=0

B0
q−k(x, ξ) + B̃q−M−1(x, ξ) (2.7)

be its representation, for arbitraryM ∈ N0, with symbolsB0
q−k(x, ξ) that are homogeneous of orders

q − k (k = 0, 1, . . . ,M) and with remainder B̃q−M−1 ∈ Scl
q−M−1(T ∗S0) (cf. (1.13) and (1.14)).

Let us investigate the asymptotics of the following potential-type function:

u(x) = V ◦Bqϕ0(x) , suppϕ0 ⊂ S0 , x ∈ Ω, (2.8)

in a neighborhood of ∂S0 under the assumption that the known asymptotics of the density ϕ0 =
(ϕ01, . . . , ϕ0N) is given in an s.l.c.s. by formula (1.45). To this end, we extend the s.l.c.s. (x′′, xn−1,+)
to (x′, xn) = (x′′, xn−1, xn) ∈ Rn.
We introduce the notation

B±
apr
(t) = diag

{
Bm1

± , . . . , Bm�
± (t)

}
, where Bm

± (t) = Bm

(
± 1
2πi

∂t

)(
Γ(t+ 1)eiπ(t+1)/2

)
.

Let λi = −Ni + µi and −1 < Reµi � 0, where Ni is a positive integer and the coefficients
d
mi(M)
pl (λi) are defined by the recurrence relations

d
mi(M)
pl (λi) =

p∑
q=l

dmi(M−1)
pq (λi)d

mi(1)
ql (λi +M − 1) ,

d
mi(1)
ql (λi +M − 1) = (−1)q−l q!

l!
1

(λi +M)q−l+1
, i = 1, . . . , �, M ∈ N.

(2.9)

Now we define the matrix

Dmi(λi) = ‖Dmi
jp (λi)‖mi×mi

,

Dmi
jp (λi) =

 iλi−µi

(
1
2πi

)p−j
j!
p!
d
mi(Ni)
pj (λi) for j � p,

0 for j > p.
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Let us introduce the upper triangular matrix function

B̃0
apr
(t) = diag{B̃m1 (t), . . . , B̃m� (t)} (2.10)

by the formulas (cf. (1.43))

B̃mi(t) =

{
Bmi (−t) for λi �= −1,−2, . . . ,
‖hmi

kp (t)‖mi×mi
for λi = −1,−2, . . . ,

λi := −ν

2
− δi(x′′)− 2r+ q + j , i = 1, . . . , �,

hmi

kp (t) :=


1

(p− k)!

p−k+1∑
s=0

(
1
2πi

)p−k−s

c̃ mi

p−k+1,s(λi)t
s for p � k ,

0 for p < k ,

c̃ mi

p−k+1,s(λi) :=



iλi

p−k+1∑
l=1

(−1)l(l− 1)!(2πi)ldmi(Ni)
p−k,l−1(λi)b

mi

0l (0)

for s = 0 ,

iλi

p−k+1∑
l=s

(−1)l(l− 1)!
s!

(2πi)l−sd
mi(Ni)
p−k,l−1(λi)b

mi

sl (0)

for s ∈ {1, 2, . . . , p− k + 1}, Ni = 0, 1, 2, . . . ,

bmi

kp (t) :=


(
1
2πi

)p−k (−1)p+k

(p− k)!
dp−k

dtp−k

(
Γ(t+ 1)eiπ(t+1)/2

)
for k � p ,

0 for k > p ,

p = 0, . . . , mi − 1, i = 1, . . . , � , Bmi
− (t) = ‖bmi

kp (t)‖mi×mi
,

the coefficients dmi(0)
pl are given by d

mi(0)
pl (−1) = δpl, l = 0, . . . , p (δpl is the Kronecker delta), and

the coefficients dmi(Ni)
pl (λi), Ni ∈ N, are defined by (2.9).

Theorem 2.2. Let the conditions of Theorem 1.7 hold and let ϕ0(x′′, xn−1,+) be as in (1.45).
Suppose that q ∈ R and M ∈ N0 and

M > max
{
n− 1
p

− s, 2r − 3− [q],
n− 1
p

−min{[s− q], 0}, r − 1
}
.

Then the potential-type function u(x) in (2.8) has the following asymptotic expansion:

u(x′′, xn−1, xn) =
�(N)∑
s=1

{ ns−1∑
j=0

xjn

[
dsj(x′′,+1)zν/2+∆(x′′)+2r−1−q−j

s,+1 B̃0
apr

(
1
2πi

log zs,+1

)

− dsj(x′′,−1)zν/2+∆(x′′)+2r−1−q−j
s,−1 B̃0

apr

(
1
2πi

log zs,−1

)]
c(j)(x′′)

+
∑
θ=±1

M+3−2r+[q]∑
k,l=0

M+2−l∑
j+p=2r−[q]−1

k+l+j+p �=2r−[q]−1

xln−1x
j
ndsljp(x

′′, θ)zν/2+∆(x′′)+p+k−{q}
s,θ

×Bskjp (x′′, log zs,θ)
}
+ uM+1(x′′, xn−1, xn) for xn > 0, (2.11)
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with coefficients dsj(·,±1), c(j), and dsljp(·,±1) belonging to C∞
0 (Rn−2) and with remainder uM+1

in CM+1
0 (Rn

+), where

zs,+1 = −xn−1 − xnτs,+1, zs,−1 = xn−1 − xnτs,−1, τs,±1 ∈ C∞
0 (Rn−2),

and {τs,±1}�(N)
s=1 is the set of different roots of the polynomial detA(J�

æ (x′′, 0) · (0,±1, τ)) of multi-
plicities ns, s = 1, . . . , �(N ), that belong to the lower complex half-plane, [q] ∈ Z is the integral part
of a number q, and {q} ∈ [0, 1) is the fractional part of the number q, q = [q] + {q}.
The polynomial Bskjp(x′′, t) is of order νkjp = νk + p+ j − (2r− 1− [q]) if

λm0 �= −1,−2, . . . (νk = k(2m0 − 1) +m0 − 1, m0 = max{m1, . . . , m�})

with respect to the variable t with vector coefficients depending on the variable x′′, and Bskjp(x′′, t)
is a polynomial of order νkjp + 1 for λm0 = −1,−2, . . . (λm0 = −ν/2− δm0(x

′′)− 2r + q + j).

Note that the matrix B̃0
apr
(t), for λi = −ν/2 − δ(x′′) − 2r + q + j = −1,−2, . . . , depends on j

(see 2.10).

Theorem 2.3. For the leading (first) coefficients c0(x′′) and dsj(x′′,±1), c(j)(x′′) of the as-
ymptotic expansions (1.45) and (2.11), respectively, we have the following relations :

dsj(x′′,−1) = 1
2π

Gæ(x′′, 0)V (s)
1−2r,j(x

′′, 0, 0,−1)B0
q(x

′′, 0, 0,−1)K(x′′)eiπλ0 ,

dsj(x′′,+1) =
1
2π

Gæ(x′′, 0)V (s)
1−2r,j(x

′′, 0, 0,+1)B0
q(x

′′, 0, 0,+1)K(x′′),

λ0 = −ν

2
−∆(x′′), s = 1, . . . , �(N ) ,

where Gæ(x′′, 0) is the square root of the Gram determinant (see (1.29)), B0
q stands for the principal

symbol of the pseudodifferential operator Bq , and

V
(s)
1−2r,j(x

′′, 0, 0,±1)

= − ij+1

j!(ns − 1− j)!
dns−1−j

dτns−1−j
(τ − τs,±1)ns

(
A(J�

æ (x
′′, 0) · (0,±1, τ))

)−1
∣∣∣
τ=τs,±1

.

The coefficient c(j)(x′′) in (2.10) is given by c(j)(x′′) = aj(x′′)B−
apr

(
ν
2
+ ∆(x′′)

)
K−1(x′′)c0(x′′),

where

aj(x′′) = diag{am1(λ1), . . . , am�(λ�)} , (2.12)

λi = −ν

2
− δi(x′′)− 2r + q + j, i = 1, . . . , � ,

ami(λi) =


Bmi

+ (λi) for Reλi > −1,
Bmi

+ (µi) ·Dmi(λi) for Reλi < −1, λi /∈ Z ,

I for λi = −1,−2, . . . .

We postpone the proofs of Theorems 2.2 and 2.3 to Subsection 2.3.

2.2. Auxiliary Propositions

To prove Theorems 2.2 and 2.3, we need some auxiliary propositions.
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Lemma 2.4. Let ϕ0 ∈ H̃
(∞,s),∞
p (S0) and M > (n− 1)/p−min{[s− q], 0}, where s is defined in

Theorem 1.7 and q ∈ R. Then the potential-type function (2.6) has the following expansion in the
s.l.c.s.:

u = V ◦ Bqϕ0 =
2M∑

k=2r−1

2M−k∑
m=0

A−k(x′, xn, D
′) ◦B0

q−m(x
′, D′)ϕ0 +R2M+1(x′, xn, D

′)ϕ0 , (2.13)

where A−k(x′, xn, D
′) is a pseudodifferential operator, depending on the parameter xn, that has a

homogeneous symbol of the order −k for xn = 0, the operator B0
q−m(x

′, D′) is defined in (2.7), and
R2M+1(x′, xn, D′)ϕ0 ∈ CM+1(Rn

+).

Proof. For any j, we introduce a local coordinate system at each point zj ∈ S0 so that the
part of the surface S0 lying within some ball B(zj , d) centered at zj and having a radius d admits
a representation x

(j)
n = γj(x′

(j)), x
′
(j) = (x(j)

1 , . . . , x(j)
n−1), where (cf. [KGBB1, Definition 1.6.9])

γj ∈ C∞(Ωj), γj(0) =
∂γj(0)

∂x
(j)
1

= · · · = ∂γj(0)

∂x
(j)
n−1

= 0.

Let Xj be the projection of the set Yj := B(zj , d) ∩ S to the tangent plane to the surface S at zj .
Denote this tangent plane by Rn−1

j .

Let {Yj}lj=0 be a covering of Ω,

Ω ⊂
l⋃

j=0

Yj , ∂Ω∩ Y0 = ∅ , ∂Ω∩ Yj �= 0 for j = 1, . . . , l,

and let {ψj}l+1
j=1 be a partition of unity subordinated to the covering {Yj}lj=1. For each j, we can

find an infinitely smooth function ϕj that is equal to 1 in a neighborhood of suppψj ∩ S and
vanishes outside of a larger neighborhood contained in Yj . Then the simple-layer potential can be
represented as

Vg =
l∑

j=0

ψjVg =
l∑

j=1

ψjVϕjg +
l∑

j=1

ψjV(1− ϕj)g + ψ0Vg .

Obviously, ψjV(1−ϕj)g, ψ0Vg ∈ C∞(S), and it suffices to study the asymptotics of the potential

ψjVϕjg(x) =
∫
Yj

ψj(x)HA(x− y)(ϕjg)(y)dyS , x ∈ Ω,

for j = 1, . . . , l.
Let B+(zj , d) be a half-ball (in the (j)th local coordinate system) of radius d centered at the

origin, i.e., B+(zj , d) := {x(j) = (x′
(j), x

(j)
n ) : x′

(j) ∈ R
n−1
j , x

(j)
n > 0, |x(j)| < d}. We define the

mapping
æj : B+(zj , d)→ B(zj , d) ∩Ω (2.14)

by the formulas æj(x(j)) = (x(j), γj(x′
(j)) − x

(j)
n ) for x

(j)
n > 0. For the Jacobi matrix Jæj

of the
mapping æj we obtain

Jæj
(x′

(j)) =


1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·

∂γj(x′
(j))

∂x
(j)
1

∂γj(x′
(j))

∂x
(j)
2

· · ·
∂γj(x′

(j))

∂x
(j)
n−1

−1


n×n

.
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Applying the Taylor formula in vector form, we see that

æj(x(j))− æj(y(j)) = Jæj
(x′

(j))(x
(j) − y(j)) + P(j)(x′

(j), y
′
(j)), (2.15)

where

P(j)(x′
(j), y

′
(j)) =

(
0, . . . , 0, Pjn(x′

(j), y
′
(j))
)
,

Pjn(x′
(j), y

′
(j)) = O (|x′

(j) − y′(j)|2) and Pjn ∈ C∞(Xj ×Xj) ,

x(j) = (x′
(j), x

(j)
n ), y(j) = (y′(j), 0) and x′

(j) = (x(j)
1 , . . . , x(j)

n−1), y
′
(j) = (y(j)

1 , . . . , y(j)
n−1).

Denote byHj and gj the matrix function ψjHA and the vector function ϕjg, respectively, written
in the local coordinates, and let vj = gj(æj).
We can readily see that the square root of the Gram determinant of the mapping (2.12) (cf. (1.29))

becomes

Gæj (y
′
(j)) =

√√√√(∂γj(y′(j))

∂y
(j)
1

)2

+ · · ·+
(
∂γj(y′(j))

∂y
(j)
n−1

)2

+ 1 (2.16)

(see [KGBB1, Proposition 4.7.3] and [Sl1, §3.6]), and we can represent the simple-layer potential
ψVϕI in a new local coordinate system. Let us substitute æj into this system,

(ψjVϕjg)(x(j)) =
∫
Xj

Hj

(
æj(x(j))− æj(y(j))

)
Gæj (y

(j))vj(y(j))dy(j) .

The Taylor formula and relation (2.15) yield

Hj

(
æj(x(j))− æj(y(j))

)
=
∑
|µ|�k

1
µ!
(∂µxHj)(Jæj

(x′
(j))(x

(j) − y(j)))
(
P(j)(x′

(j), y
′
(j))
)µ

+
∑

|µ|=k+1

[
k + 1
µ!

1∫
0

(1− t)k(∂µxHj)
(
Jæj (x

′
(j))(x

(j)−y(j))+ tP(j)(x′
(j), y

′
(j))
)
dt

]
(P(j)(x′

(j), y
′
(j)))

µ.
(2.17)

For convenience, in what follows, we omit the index j denoting the local coordinate system.
Taking into account (2.15) and the Taylor expansions

Gæ(y′) = Gæ(x′) +
∑

1�|α|�2M

1
α!

∂αGæ(x′)(y′ − x′)α + R
(1)
2M+1(x

′, y′),

Pn(x′, y′) =
∑

2�|α|�2M

1
α!

∂αγ(x′)(x′ − y′)α +R
(2)
2M+1(x

′, y′),
(2.18)

where R(k)
2M+1(x

′, y′) = O (|x′− y′|M+1), α = (α1, . . . , αn−1), x = (x′, xn), and y = (y′, 0), k = 1, 2,
we obtain the following representation of the simple-layer potential:

ψVϕg =
2M∑

k=2r−1

A−k(x′, xn, D
′)v +R2M+1v, v ∈ H̃(∞,s−q),∞

p (X) , (2.19)
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where

A1−2r(x′, xn, D
′)v =

∫
Rn−1

Gæ(x′)H(Jæ(x′)(x′ − y′, xn))v(y′)dy′ ,

A−k(x′, xn, D
′) =

∑
|β|−|α|−1=−k

aαβ(x′)Aαβ(x′, xn, D
′) for k = 2r, 2r+ 1, . . . , 2M ,

Aαβ(x′, xn, D
′)v =

∫
Rn−1

(x′ − y′)α(∂βxH)(Jæ(x′)(x′ − y′, xn))v(y′)dy′ ,

and aαβ ∈ C∞
0 (Rn−1) are defined by the Taylor coefficients in (2.18) (α = (α1, . . . , αn−1) and

β = (β1, . . . , βn)).
SinceM > (n− 1)/p−min{[s−q], 0} in (2.20), it follows thatR2M+1v ∈ CM+1

0 (Rn
+). Indeed, let

s− q � 0. Then v ∈ H̃s−q
p (X) ⊂ Lp(X), where X = Xj ⊂ Rn−1 ; therefore, the kernel r2M+1(x, y′)

of the integral operator R2M+1 admits the estimate |∂αx r2M+1(x, y′)| � Cα|x − y′|2M+2−n−|α|,
|α| � M + 1. Applying the Hölder inequality, we obtain |∂αxR2M+1v(x)| � C′

α < ∞, |α| � M + 1.
For s− q < 0 we have

v =
∑

|α|�m

∂αuα, uα ∈ Lp(X), m = −[s− q]

(see [Es1]), and recalling the definition of the derivative of a distribution, we see that

|∂αxR2M+1v(x)| =
∑

|α|�m

∫
X

∂αx r2M+1(x, y′)uα(y′)dy′ .

The desired inclusion follows as in the previous case.
Since

(x′ − y′)α(∂βxH)(Jæ(x′)(x′ − y′, xn))

= F−1
ξ′→x′−y′

(
− 1
2π

∫
L−

(−i∂ξ′)
α
{
(−iξ′)β

′ [
A(J�

æ (x
′)(ξ′, τ))

]−1
}
(−iτ)βne−iτxndτ

)
,

where β′ = (β1, . . . , βn−1), A� stands for the transposed matrix to A, and the operator of the form
Aαβ(x′, xn, D′) can be represented as a parameter-dependent xn > 0 pseudodifferential operator
(or a potential operator)

Aαβ(x′, xn, D
′)v = F−1

ξ′→x′ [Aαβ(x′, xn, ξ
′)Fy′→ξ′ [v(y′)]]

(cf (1.11)) with the symbol

Aαβ(x′, xn, ξ
′) = − 1

2π

∫
L−

(−i∂ξ′)
α
{
(−iξ′)β

′ [
A(J�

æ (x
′)(ξ′, τ))

]−1
}
(−iτ)βne−iτxndτ

depending on the parameter xn > 0.
Relations (2.7) and (2.19) prove the desired expansion (2.13). �

We introduce the following classes of symbols.
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Definition 2.5. For k ∈ R by R(1)
−k,−∞, denote by R(x′, xn, ξ′) the class of (matrix) functions

that vanish for sufficiently large |(x′, xn)| (|(x′, xn)| > C0) and admit the following estimates:∣∣∣∂αx ∂βξ′R(x′, xn, ξ
′)
∣∣∣ � Cα,β〈ξ′〉−k+αn−|β|e−γ0xn|ξ′|

for some γ0 > 0, for any multi-indices α ∈ Nn
0 and β ∈ N

n−1
0 , and for all xn > 0 and x′, ξ′ ∈ Rn−1.

Definition 2.6. For r > 0 and m > 0, k ∈ R, denote by R(2)
r,−m,−k,−∞ the class of (matrix)

distributionsR(x′, xn, ξ′) of class S′(Rn−1) with respect to the variable ξ′ that vanish for sufficiently
large |(x′, xn)| (|(x′, xn)| > C0) and admit the following estimates:

|∂αxR(x′, xn, ξ
′)| � Cα

|ξ′′|r|ξ′|αn−k

|ξn−1|m
e−γ0xn|ξ′|

for some γ0 > 0, for any multi-indices α ∈ Nn
0 , and for all xn > 0, x′ ∈ Rn−1, and ξn−1 ∈ R \ {0}.

Let us prove the following assertion.

Lemma 2.7. Let ϕ0(x′′, xn−1,+) be as in (1.45) (or as in (1.47)), let ϕ0 ∈ H̃
(∞,s),m
p (S0) and

M > (n− 1)/p− s, and let the conditions of Theorem 1.7 hold.
Then R(x′, xn, D

′)ϕ0 ∈ CM+1(Rn
+) for any pseudodifferential operator R(x′, xn, D

′) whose sym-
bol R(x′, xn, ξ

′) belongs to the class R(1)
−M−2,−∞.

Proof. We have

∂βxR(x′, xn, D
′)ϕ0 =

∫
Rn−1

R(β)(x′, xn, ξ
′)e−i(x′,ξ′) ∧

ϕ0(ξ′) dξ′, (2.20)

R(β)(x′, xn, ξ
′) : =

∑
α′�β′

cα′,β′∂α
′

x′ ∂βn
xn

R(x′, xn, ξ
′)(−iξ′)β

′−α′

(where |β| � M + 1, β = (β′, βn), β′ = (β1, . . . , βn−1), and α′ = (α1, . . . , αn−1)).
The symbol R(β)(x′, xn, ξ′) is infinitely differentiable with respect to the variable ξ′, and∣∣∣R(β)(x′, xn, ξ

′)
∣∣∣ � C(1 + |ξ′|)−1e−γ0xn|ξ′| for all xn > 0 and some γ0 > 0 .

Now, taking into account the asymptotic expansion (1.45) for the function ϕ0,

ϕ0 =
M∑
k=0

ϕ0k + ϕM+1 ,

ϕ00(x′′, xn−1,+) = K(x′′) xν/2+∆(x′′)
n−1,+ B0

apr

(
− 1
2πi

log xn−1,+

)
K−1(x′′)c0(x′′)

ϕ0k(x′′, xn−1,+) = K(x′′)xν/2+∆(x′′)+k
n−1,+ Bk(x′′, logxn−1,+), k = 1, . . . ,M ,

Re
(ν
2
+ δj(x′′)

)
> −1 for all j = 1, . . . , �

and using the Fourier transform formulas

tλ+ log
p t+ =

p∑
k=0

b
(1)
pk (λ)F

−1((σ + i0)−1−λ logk(σ + i0)) , (2.21)

Re λ > −1, b
(1)
pk (λ) :=

(−1)kp!
k!(p− k)!

dp−k

dλp−k

(
Γ(λ+ 1)eiπ(λ+1)/2

)
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(see [Es1, Example 2.3]), we readily obtain the estimates∣∣∣(1− χ1(ξn−1))R(β)(x′, xn, ξ
′)ϕ̂0k(ξ′)

∣∣∣ � C
(1 + |ξ′′|)−N

(1 + |ξn−1|)1+k+ε
e−γ0xn|ξ′|

for some γ0 > 0, for all N > 0, |β| � M + 1, xn > 0, ε > 0, k = 0, . . . ,M,

where χ1 ∈ C∞
0 (R) is a cut-off function with χ1(ξn−1) = 0 for |ξn−1| � 1 and χ1(ξn−1) = 1 for

|ξn−1| � 1/2, and

F−1
ξ′→x′

[
χ1(ξn−1)R(β)(x′, xn, ξ

′)ϕ̂0k(ξ′)
]

=
νk∑
p=0

F−1
ξn−1→xn−1

[χ1(ξn−1)(ξn−1 + i0)−ν/2−∆(x′′)−1−k logp(ξn−1 + i0)Φpk(x′, xn, ξn−1)];

(with νk = k(2m0 − 1) +m0 − 1 and m0 = max{m1, . . . , m�}). Here

Φpk(x′, xn, ξn−1) = F−1
ξ′′→x′′ [R(β)(x′, xn, ξ

′)cpk(ξ′′)], |cpk(ξ′′)| � C(1 + |ξ′′|)−N ∀N > 0

and Φpk(x′, xn, ξn−1) is a C∞-function with respect to the variables x′ ∈ Rn−1 and xn ∈ R
n

+ for
all ξn−1 ∈ R.
Therefore, we can readily see that the integrals on the right-hand side of (2.20) exist and that

R(x′, xn, D′)ϕ0k ∈ CM+1(Rn
+) (k = 0, . . . ,M).

It remains to show that R(β)(x′, xn, D′)ϕM+1 ∈ CM+1(Rn
+).

Indeed, if xn > 0, then R(β)(x′, xn, D
′)ϕM+1 ∈ C∞(Rn

+).
Here as usual, C∞

0 (Rn−1) stands for the class of all compactly supported infinitely differentiable
functions, and χ0(ξ′) ∈ C∞

0 (Rn−1) is a cut-off function with χ0(ξ′) = 1 for |ξ′| � 1.
If xn = 0 for M > (n− 1)/p− s, then we obtain the representation

R(β)(x′, 0, D′)ϕM+1(x) =
1

(2π)n−1

∫
Rn−1

R(β)(x′, 0, ξ′)
n−1∑
j=1

ξ2
j

|ξ′|2 e
i(x′,ξ′)ϕ̂M+1(ξ′)dξ′

=
1

(2π)n−1

∫
Rn−1

n−1∑
j=1

ξj
|ξ′|2R

(β)(x′, 0, ξ′)e−i(x′,ξ′)( ̂DjϕM+1)(ξ′)dξ′

=
n−1∑
j=1

1
(2π)n−1

∫
Rn−1

B
(1)
βj (x

′, ξ′)e−i(x′,ξ′)( ̂DjϕM+1)(ξ′)dξ′

+
n−1∑
j=1

1
(2π)n−1

∫
Rn−1

B
(2)
βj (x

′, ξ′)e−i(x′,ξ′)( ̂DjϕM+1)(ξ′)dξ′ ,
(2.22)

where B
(1)
βj (x

′, ξ′) = (1 − χ0(ξ′))
ξj

|ξ′|2R
(β)(x′, 0, ξ′) and B

(2)
βj (x

′, ξ′) = χ0(ξ′)
ξj

|ξ′|2R
(β)(x′, 0, ξ′), j =

1, . . . , n− 1. The second sum in (2.21) is a C∞-smoothing operator.

Since B(1)
βj ∈ S∞

−2, it follows that |D
µ
ξ′B

(1)
βj (x

′, ξ′)| � C(1 + |ξ′|)−2−|µ| for all µ and

F−1
ξ′→z′ [D

µ
ξ′B

(1)
βj (x

′, ξ′)] = (z′)µF−1
ξ′→z′ [B

(1)
βj (x

′, ξ′)] = (z′)µK(1)
βj (x

′, z′).

Therefore, |K(1)
βj (x

′, z′)| � C|z′|−|µ| for all |µ| > n − 3, and it becomes obvious that the kernel

K
(1)
βj (x

′, z′) has a weak singularity at the point z′ = 0. Therefore, setting |µ| = n− 2, we see that

1
(2π)n−1

∫
Rn−1

B
(1)
βj (x

′, ξ′)e−i(x′,ξ′)( ̂DjϕM+1)(ξ′)dξ′ =
∫
X

K
(1)
βj (x

′, x′ − y′)(DjϕM+1)(y′)dy′ ,
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where
|K(1)

βj (x
′, x′ − y′)| � C|x′ − y′|−(n−2) , j = 1, . . . , n− 1.

The resulting representation shows that the first integral in (2.22) exists and defines a continuous
mapping. Therefore, R(β)(x′, xn, D

′)ϕM+1∈C(Rn
+) and R(x′, xn, D

′)ϕ0∈CM+1(Rn
+). �

Lemma 2.8. Suppose ϕ0(x′′, xn−1,+) is as in (1.45) (or in (1.47)), ϕ0 ∈ H̃
(∞,s),m
p (S0), M >

(n− 1)/p− s, and let conditions of Theorem 1.7 hold.

Then x
M+2−[k]
n−1 R (x′, xn, D

′)ϕ0 ∈ CM+1(Rn
+) for a pseudodifferential operator R(x′, xn, D

′)
whose symbol R(x′, xn, ξ

′) belongs to the class R(1)
−k,−∞, where [k] < M + 2.

Proof. We have

x
M+2−[k]
n−1 R(x′, xn, D

′)ϕ0 =
x
M+2−[k]
n−1

(2π)n−1

∫
Rn−1

e−i(x′,ξ′)R(x′, xn, ξ
′)

∧
ϕ0(ξ′) dξ′

=
1

(2π)n−1

∫
Rn−1

e−i(x′,ξ′)(−i)M+2−[k]∂
M+2−[k]
ξn−1

[
R(x′, xn, ξ

′)
∧
ϕ0(ξ′)

]
dξ′

=
∑

p1+p2=M+2−[k]

cp1,p2

∫
Rn−1

e−i(x′,ξ′)∂p1
ξn−1

R(x′, xn, ξ
′)∂p2

ξn−1

∧
ϕ0(ξ′)dξ′ ,

where the symbols ∂p1
ξn−1

R(x′, xn, ξ′) belong to the class R(1)
−k−p1,−∞.

Now, taking into account the asymptotic expansion (1.45) of the function ϕ0 and the Fourier
transform formulas (2.20), we complete the proof as in Lemma 2.7. �

Lemma 2.9. Let ϕ0(x′′, xn−1,+) be as in (1.45), let ϕ0 ∈ H̃
(∞,s),m
p (S0), let M > (n− 1)/p− s,

and let the conditions of Theorem 1.7 hold.
Then R(x′, xn, D′)ϕ0 ∈ CM+1(Rn

+) for a pseudodifferential operator R(x′, xn, D′) whose symbol
R(x′, xn, ξ′) belongs to the class R(2)

r,−M−2+[k],−k,−∞, where r � 0 and [k] � M + 2.

Proof. Consider two cut-off functions χ0(ξ′) ∈ C∞
0 (Rn−1) as in Lemma 2.7. Let χ1(ξn−1) ∈

C∞
0 (R), and R(x′, xn, D

′)ϕ0 = R(1)(x′, xn, D
′)ϕ0 +R(2)(x′, xn, D

′)ϕ0 +R(3)(x′, xn, D
′)ϕ0 , where

R(1)(x′, xn, D
′)ϕ0 =

1
(2π)n−1

∫
Rn−1

(1− χ1(ξn−1))(1− χ0(ξ′))R(x′, xn, ξ
′)e−i(x′,ξ′) ∧

ϕ0(ξ′) dξ′,

R(2)(x′, xn, D
′)ϕ0 =

1
(2π)n−1

∫
Rn−1

(1− χ1(ξn−1))χ0(ξ′)R(x′, xn, ξ
′)e−i(x′,ξ′) ∧

ϕ0(ξ′) dξ′,

R(3)(x′, xn, D
′)ϕ0 = F−1

ξ′→x′ [χ1(ξn−1)R(x′, xn, ξ
′)

∧
ϕ0(ξ′)].

The kernel of the operator R(2)(x′, xn, D′) is infinitely differentiable, and we obviously have the
relation R(2)(x′, xn, D

′)ϕ0 ∈ C∞(Rn
+).

As in the proof of Lemma 2.7, we obtain R(1)(x′, xn, D
′)ϕ0 ∈ CM+1(Rn

+). Moreover,

R(3)(x′, xn, D
′)ϕ0 = F−1

ξ′→x′(χ0(ξn−1)R(x′, xn, ξ
′)

∧
ϕ0(ξ′)) = F−1

ξn−1→xn−1
(χ0(ξn−1)Φ(x′, xn, ξn−1)),

where Φ(x′, xn, ξn−1) := F−1
ξ′′→x′′

(
R(x′, xn, ξ

′)
∧
ϕ0(ξ′)

)
, and Φ(x′, xn, ξn−1) is a C∞-function with

respect to the variables x′ ∈ Rn−1 and xn ∈ R+ for all ξn−1 ∈ R \ {0}, and this proves that
R(3)(x′, xn, D

′)ϕ0 ∈ C∞(Rn
+) and R(x′, xn, D

′)ϕ0 ∈ CM+1(Rn
+). �
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2.3. Proof of Theorems 2.2 and 2.3

Consider the composition

A−k(x′, xn, D
′) ◦ B0

q−m(x
′, D′)ϕ0 = F−1

ξ′→x′

(
Ckm(x′, xn, ξ

′)
∧
ϕ0(ξ′)

)
+R(1)

km,−∞(x
′, xn, D

′)ϕ0,

where R(1)
km,−∞(x

′, xn, D′)ϕ0 ∈ C∞(Rn
+),

Ckm(x′, xn, ξ
′) =

M+2+[q]−(k+m)∑
|µ|=0

1
µ!
∂µξ′A−k(x′, xn, ξ

′)∂µx′B
0
q−m(x

′, ξ′) + Rkm,M+3−{q}(x′, xn, ξ
′),

and the symbol Rkm,M+3−{q}(x′, xn, ξ′) belongs to the class R(1)
−(M+3−{q}),−∞ (for a similar expan-

sion, see [Es1, Theorem 18.3] and [Sb1, Theorem 3.4]). Therefore,

A−k(x′, xn, D
′) ◦B0

q−m(x
′, D′)ϕ0

=
M+2+[q]−(k+m)∑

|µ|=0

F−1
ξ′→x′

(
1
µ!
∂µξ′A−k(x′, xn, ξ

′)∂µx′B
0
q−m(x

′, ξ′)
∧
ϕ0(ξ′)

)

+Rkm,M+3−{q}(x′, xn, D
′)ϕ0 +R(1)

km,−∞(x
′, xn, D

′)ϕ0.

By Lemma 2.7, we obtain Rkm,M+3−{q}(x′, xn, D′)ϕ0 ∈ CM+1(Rn
+). Consider the function

Ckmµ(x′, xn, ξ
′) =

1
µ!
∂µξ′A−k(x′, xn, ξ

′)∂µx′B
0
q−m(x

′, ξ′) =
∫
L−

Akmµ(x′, ξ′, τ)e−iτxndτ ,
(2.23)

A2r−1,mµ(x′, ξ′, τ) := − 1
2πµ!

Gæ(x′)∂µξ′ [A(J�
æ (x

′)(ξ′, τ))]−1∂µx′B
0
q−m(x

′, ξ′),

Akmµ(x′, ξ′, τ) := − 1
2π

∑
|α|−|β|+1=k

1
µ!

aαβ(x′)(−iτ)βn

× ∂µ+α
ξ′

{
(−iξ′)β

′
[A(J�

æ (x
′)(ξ′, τ))]−1

}
∂µx′B

0
q−m(x

′, ξ′)

for k = 2r, 2r+1, . . . , 2M , β ∈ Nn
0 , and µ, α ∈ Nn−1 and the symbol Ckmµ(x′, ξ′, τ) is homogeneous

of order q − (m+ k + |µ|) = −κ with respect to the variable ξ′. Moreover,

[A(J�
æ (x

′)(ξ′, τ))]−1 =
∥∥∥∥∆ij(J�

æ (x
′)(ξ′, τ))

∆(J�
æ (x′)(ξ′, τ))

∥∥∥∥
N×N

,

where ∆(J�
æ (x′)(ξ′, τ)) = det ‖A(J�

æ (x′)(ξ′, τ))‖N×N , and ∆ij(J�
æ (x′)(ξ′, τ)) is the cofactor of the

corresponding element.
Applying the Taylor formula for xn−1 at the point (x′′, 0, xn, ξ′), we see that

Ckmµ(x′, xn, ξ
′) =

M+1−[κ]∑
l=0

1
l!
(∂lxn−1

Ckmµ)(x′′, 0, xn, ξ′) · xln−1

+ x
M+2−[κ]
n−1

[
R

(1)
kmµ,κ(x

′, xn, ξ
′) +R

(2)
kmµ,κ(x

′, xn, ξ
′)
]
,

R
(1)
kmµ,κ(x

′, xn, ξ
′) := (1− χ0(ξ′))Rkmµ,κ(x′, xn, ξ

′),

R
(2)
kmµ,κ(x

′, xn, ξ
′) := χ0(ξ′)Rkmµ,κ(x′, xn, ξ

′) .

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 7 No. 1 2000



38 O. CHKADUA AND R. DUDUCHAVA

Obviously, xM+2−[κ]
n−1 R(2)

kmµ,κ(x
′, xn, D′)ϕ0 ∈ C∞(Rn

+).

We have R(1)
kmµ,κ ∈ R(1)

−κ,−∞ for κ = 2r − 1− q, . . . ,M + 2 − {q}, and by Lemma 2.8 we obtain
x
M+2−[κ]
n−1 R

(1)
kmµ,κ(x

′, xn, D′)ϕ0 ∈ CM+1(Rn
+).

Since the symbol Akmµ(x′, ξ′, τ) is homogeneous of order −κ−1 with respect to (ξ′, τ), it follows
that (cf. (2.23))

Ckmµ(x′, xn, ξ
′) = |ξn−1|−κ

∫
L−

Akmµ

(
x′,

ξ′′

|ξn−1|
, signξn−1, τ

)
e−ixnτ |ξn−1| dτ.

Introducing the notation

C̃kmµ

(
x′, xn,

ξ′′

|ξn−1|
, ξn−1

)
=
∫
L−

Akmµ

(
x′,

ξ′′

|ξn−1|
, signξn−1, τ

)
e−ixnτ |ξn−1| dτ

and applying the Taylor formula again, we proceed as follows:
M+1−[κ]∑

l=0

1
l!
(∂lxn−1

Ckmµ)(x′′, 0, xn, ξ′) · xln−1

=
M+1−[κ]∑

l=0

1
l!
(∂lxn−1

C̃kmµ)
(
x′′, 0, xn,

ξ′′

|ξn−1|
, signξn−1

)
|ξn−1|−κxln−1

=
M+1−[κ]∑

l=0

M−[κ]−l+1∑
p=0

1
l!
1
p!

∑
|γ|=p

(ξ′′)γ(∂γξ′′∂
l
xn−1

C̃kmµ)(x′′, 0, xn, 0, signξn−1)

× |ξn−1|−κ−|γ|xln−1 + R̃kmµ(x′, xn, ξ
′),

where the symbol R̃kmµ(x′, xn, ξ
′) belongs to the class R(2)

M1,−M1,−κ,−∞, where M1 =M + 2− [κ].
Lemma 2.8 implies the relation R̃kmµ(x′, xn, D′)ϕ0 ∈ CM+1(Rn

+).
We have

1
l!
1
|γ|!(ξ

′′)γ(∂γξ′′∂
l
xn−1

Ckmµ)(x′′, 0, xn, 0, signξn−1) = |ξn−1|
∫
L−

Φγl
kmµ(x

′′, signξn−1, τ)e−iτxn|ξn−1|dτ

(cf. (2.23)), and Φγl
kmµ(x

′′, signξn−1, τ) = (l!|γ|!)−1(ξ′′)γ(∂γξ′′∂
l
xn−1

Akmµ)(x′′, 0, 0, signξn−1 , τ). Let
all roots of the polynomial ∆(J T

æ (x
′′, 0)(0, signξn−1, τ)) belonging to the lower complex half-plane

be τs = τs(x′′, signξn−1), s = 1, . . . , �(N ), and let their multiplicities be ns, s = 1, . . . , �(N ).
Since A(ξ) is real, homogeneous, and elliptic (detA(ξ) = 0 if and only if ξ = 0), it follows

that the polynomial detA(J�
æ (x

′′, 0) · (0,±1, τ)) has real C∞
0 (Rn−2)-smooth coefficients, and the

leading coefficient (at τ2rN) is nonzero for any x′′ ∈ Rn−2. Therefore, all the roots must be purely
imaginary, and τs,±1 ∈ C∞

0 (Rn−2) for s = 1, . . . , �(N ) (see [Le1]).

Let Φγl
kmµ(x

′′, signξn−1, τ) have at a point τs a pole of order ps (s = 1, . . . , �(N )). Note that
xn > 0, apply the residue formula∫

L−

Φγl
kmµ(x

′′, signξn−1 , τ)e−iτxn|ξn−1|dτ

=
�(N)∑
s=1

lim
τ→τs

dps−1

dτps−1
{(τ − τs)psΨγl

kmµ(x
′′, signξn−1, τ)e−iτxn|ξn−1|} ,
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where Ψγls
kmµ(x

′′, signξn−1, τ) = 2πi
(ps−1)!

(τ − τs)psΦγl
kmµ(x

′′, signξn−1, τ) , and obtain∫
L−

Φγl
kmµ(x

′′, signξn−1, τ)eiτxn|ξn−1|dτ

=
�(N)∑
s=1

ps−1∑
j=0

(−1)j(ps − 1)!
j!(ps − 1− j)!

lim
τ→τs

{
dps−1−j

dτps−1−j
Ψγls
kmµ(x

′′, signξn−1, τ)((−ixn)|ξn−1|)je−iτxn|ξn−1|
}

=
�(N)∑
s=1

ps−1∑
j=0

dγlskmµj(x
′′, signξn−1)(xn|ξn−1|)je−iτsxn|ξn−1|

with

dγlskmµj(x
′′, signξn−1) =

(i)j(ps − 1)!
j!(ps − 1− j)!

dps−1−j

dτps−1−j
Ψγls
kmµ(x

′′, signξn−1, τs).

Therefore,

F−1
ξ′→x′

( 1
µ!

∂µξ′A−k(x′, xn, ξ
′)∂µx′B

0
q−m(x

′, ξ′)ϕ̂0(ξ′)
)

=
M−[κ]+1∑

l=0

M−[κ]+1−l∑
|γ|=0

�(N)∑
s=1

ps−1∑
j=0

F−1
ξ′→x′

(
dγlskmµj(x

′′, signξn−1)

× (ξ′′)γxln−1x
j
n|ξn−1|j−|γ|−κe−iτsxn|ξn−1|ϕ̂0(ξ′)

)
+ (RM+1ϕ0)(x′),

where RM+1ϕ0 ∈ CM+1
0 (Rn

+) and κ = −q + (m+ k + |µ|).
For simplicity, we introduce the following notation:

d̃(x′′, signξn−1) = dγlskmµj(x
′′, sign ξn−1), d̃0(x′′, signξn−1) = d00s

kmµj(x
′′, signξn−1),

τs,+1 = τs(x′′,+1), zs,+1 = −(xn−1 + xnτs,+1),

τs,−1 = τs(x′′,−1), zs,−1 = xn−1 − xnτs,−1,

ϑ+(ξn−1) =
{
1, ξn−1 > 0,
0, ξn−1 < 0.

Taking into account the asymptotic expansion of the function ϕ0 (see (1.45)), we see that

F−1
ξ′→x′

(
d̃(x′′, signξn−1)(ξ′′)γ |ξn−1|j−|γ|−κ · xln−1 · xjn · e−iτsxn|ξn−1|ϕ̂0(ξ′)

)
=

M0∑
k=0

F−1
ξ′→x′

(
d̃(x′′, signξn−1)|ξn−1|j−|γ|−κ · xln−1 · xjn · e−iτsxn|ξn−1|(D̂γ

x′′ϕ0k)(ξ′)
)

+R(x′, xn, D
′)(Dγ

x′′ϕM0+1),

ϕ00(x′′, xn−1,+) := K(x′′)xν/2+∆(x′′)
n−1,+ B0

apr

(
− 1
2πi

logxn−1,+

)
K−1(x′′)c0(x′′),

ϕ0k(x′′, xn−1,+) := K(x′′)xν/2+∆(x′′)+k
n−1,+ Bk(x′′, logxn−1,+),

k = 1, . . . ,M0 , M0 =M + 3− 2r+ [q];
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here Bk(x′′, t) is a polynomial in t of order νk = k(2m0 − 1) + m0 − 1 with vector coefficients
depending on the variable x′′.
Let R(x′, xn, D′) be a pseudodifferential operator with symbol

R(x′, xn, ξ
′) = d̃(x′′, signξn−1)|ξn−1|j−|γ|−κ · xln−1 · xjn · e−iτsxn|ξn−1|,

and let c0(x′′) be the leading coefficient in asymptotics (1.45).
Since

|γ|+ κ = 2r − 1− q, . . . ,M + 2− {q},
it follows that, taking into account ϕM0+1 ∈ H̃

(∞,s+M0+1),∞
p (Rn−1

+ ) (M > (n− 1)/p− s) and using
the method of proving the smoothness of a pseudodifferential operator acting on the remainder
term that was used in Lemmas 2.7 and 2.9, we readily see that

R(x′, xn, D
′)Dγ

x′′ϕM0+1 ∈ CM+1(Rn
+).

Since

(ξn−1 + i0)λ =

{
ξλn−1, ξn−1 > 0,

eiπλ|ξn−1|λ, ξn−1 < 0,
(2.24)

we proceed as follows:

F−1
ξ′→x′

(
d̃(x′′, signξn−1)|ξn−1|j−|γ|−κ · xln−1 · xjn · e−τsxn|ξn−1|(D̂γ

x′′ϕ0k)(ξ′)
)

= xln−1 · xjn
{
d̃(x′′,+1)F−1

ξ′′→x′′

(
F−1
ξn−1→xn−1

ϑ+(ξn−1)|ξn−1|j−|γ|−κe−iτs,+1xn|ξn−1|(D̂γ
x′′ϕ0k)(ξ′)

)
+ d̃(x′′,−1)F−1

ξ′′→x′′

(
F−1
ξn−1→xn−1

ϑ+(−ξn−1)|ξn−1|j−|γ|−κe−iτs,−1xn|ξn−1|(D̂γ
x′′ϕ0k)(ξ′)

)}
= xln−1 · xjn

{
1
2π

d̃(x′′,+1)F−1
ξ′′→x′′

(
Fξn−1→zs,+1 ξ

j−|γ|−κ
n−1,+ (D̂γ

x′′ϕ0k)(ξ′)
)

+
1
2π

d̃(x′′,−1)F−1
ξ′′→x′′

(
Fξn−1→zs,−1ξ

j−|γ|−κ
n−1,+ (D̂γ

x′′ϕ0k)(ξ′)
)}

= xln−1 · xjn
{
1
2π

d̃(x′′,+1)Fξn−1→zs,+1

(
ξ
j−|γ|−κ
n−1,+ Fxn−1→ξn−1(D

γ
x′′ϕ0k)(x′′, xn−1,+)

)
+

1
2π

d̃(x′′,−1)Fξn−1→zs,−1

(
ξ
j−|γ|−κ
n−1,+ Fxn−1→−ξn−1(D

γ
x′′ϕ0k)(x′′, xn−1,+)

)}
.

Obviously,

F−1
ξ′→x′

(
1
µ!

∂µξ′A−k(x′, xn, ξ
′)∂µx′B

0
q−m(x

′, ξ′)ϕ̂0(ξ′)
)

(2.25)

=
�(N)∑
s=1

{ ns−1∑
j=0

xjn

[
1
2π

d̃0(x′′,+1)Fξn−1→zs,+1

(
ξj−κ
n−1,+Fxn−1→ξn−1(ϕ00(x′′, xn−1,+))

)

+
1
2π

d̃0(x′′,−1)Fξn−1→zs,−1

(
ξj−κ
n−1,+Fxn−1→−ξn−1 (ϕ00(x′′, xn−1,+))

)]

+
∑
ϑ=±1

M−[κ]+1∑
l=0

M−[κ]+1−l∑
|γ|=0

M0∑
k=0

l+|γ|+k �=0

ps−1∑
j=0

xln−1 · xjn · 1
2π

d̃(x′′, ϑ)

×Fξn−1→zs,ϑ

(
ξ
j−|γ|−κ
n−1,+ Fxn−1→θξn−1(D

γ
x′′ϕ0k)(x′′, xn−1,+)

)}
+R(x′′, xn−1, xn),
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where all R(x′′, xn−1, xn) belong to the class CM+1(Rn
+).

Furthermore, for Reµ > −1, the following relations hold:

Ft→σ(t
µ
+ log

p t+e
−τt) =

p∑
k=0

b
(1)
pk (µ)(σ + iτ)−µ−1 logk(σ + iτ), (2.26)

where

b
(1)
pk (µ) =

(−1)kp!
k!(p− k)!

dp−k

dµp−k

(
Γ(µ+ 1)eiπ(µ+1)/2

)
;

for Reλ � −1 we set λ = −m + µ, −1 < Reµ � 0, and λ /∈ Z, where m > 0 is an integer, which
gives

Ft→σ(tλ+ log
p t+e

−τt) =
p∑

k=0

cpk(λ)(σ + iτ)−λ−1 logk(σ + iτ), (2.27)

cpk(λ) := iλ−µ

p∑
j=k

d
(m)
pj (λ)b(1)jk (µ). (2.28)

Here b
(1)
jk (µ) is defined by relation (2.26), and the coefficients d

(M)
pj (λ) are given by means of the

recurrence relations

d
(M)
pj (λ) =

p∑
q=j

d(M−1)
pq (λ) · d(1)

qj (λ+M − 1), d
(1)
qj (λ+M − 1) = (−1)q−j q!

j!
1

(λ+M)q−j+1
,

where M ∈ N . If λ = −m− 1 = −1,−2, . . . , m ∈ N0, then

Ft→σ(tλ+ log
p t+e

−τt) =
( p+1∑
k=0

c̃p+1,k(λ) log
k(σ + iτ)

)
(σ + iτ)−λ−1, (2.29)

where

c̃p+1,k(λ) =


iλ

p+1∑
l=1

d
(m)
p,l−1(λ)

b
(1)
l0 (0)
l

for k = 0 ,

iλ
p+1∑
l=k

d
(m)
p,l−1(λ)

b
(1)
lk (0)
l

for k ∈ {1, 2, . . . , p+ 1},
(2.30)

the coefficients d
(m)
pl (λ), m ∈ N, are defined as above, and the coefficients d

(0)
pl are given by

d
(0)
pl (−1) = δpl, l = 0, . . . , p (δpl is the Kronecker delta).
Indeed, relation (2.25) follows from the formula (see [Es1, (2.36)])

Ft→σ(t
µ
+e

−τt) = Γ(µ+ 1)eiπ(µ+1)/2(σ + iτ)−µ−1 , Reµ > −1 ,

after differentiating p times with respect to the parameter µ.
For Reλ � −1, the function tλ+ log

p t+ is not integrable on R; however, it can be expressed
as a linear combination of derivatives of functions for which Reλ > −1, i.e., if λ = −m + µ,
−1 < Reµ � 0, and λ /∈ Z, where m > 0 is an integer, then

tλ logp t =
p∑

k=0

d
(m)
pk (λ)

(
d

dt

)m
(tµ logk t) .
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If λ = −m − 1 = −1,−2, . . . , m ∈ N0, then

tλ logp t =
p∑

k=0

d
(m)
pk (λ)
k + 1

(
d

dt

)m+1

(logk+1 t).

Applying the Fourier transform, we obtain relations (2.26), (2.27), and (2.29).
Thus, substituting relations (2.26), (2.27), (2.29), and (2.24) into (2.25) and taking into account

the formula

|γ|+ κ+ {q} = 2r− 1− [q], . . . ,M + 2− l, l = 0, . . . ,M + 3− 2r + [q],

we obtain the asymptotic expansion (2.11).
This completes the proof of Theorem 2.2. �
Now let us prove Theorem 2.3.
First we shall find out how the leading coefficients of the expansions (2.11) and (1.45) are related.

To this end, we perform a detailed calculation of the leading term of the asymptotic expansion
(2.11). By (2.24), we can readily see that

dsj(x′′,+1) =
1
2π

Gæ(x′′, 0)V (s)
1−2r,j(x

′′, 0, 0,+1)B0
q(x

′′, 0, 0,+1)K(x′′),

dsj(x′′,−1) = 1
2π

Gæ(x′′, 0)V (s)
1−2r,j(x

′′, 0, 0,−1)B0
q(x

′′, 0, 0,−1)K(x′′)eiπλ0 ,

λ0 = −ν

2
−∆(x′′), s = 1, . . . , �(N ) , j = 0, . . . , ns − 1,

where Gæ(x′′, 0) is the square root of the Gram determinant and

V
(s)
1−2r,j(x

′′, 0, 0,±1)

= − ij+1

j!(ns − 1− j)!
dns−1−j

dτns−1−j
(τ − τs,±1)ns

(
A(J�

æ (x
′′, 0) · (0,±1, τ))

)−1
∣∣∣
τ=τs,±1

.

Note that, if �(N ) = 1 and j = 0, then

V
(s)
1−2r,0(x

′′, 0, 0,±1) = V
(1)
1−2r,0(x

′′, 0, 0,±1) = V1−2r(x′′, 0, 0,+1) ,

where V1−2r(x′, ξ′) is the principal symbol of the pseudodifferential operator V1−2r.
Now let us calculate the coefficient c(j)(x′′), on the right-hand side, of the leading term of

asymptotic expansion (2.10). We start from the relation

Fxn−1→ξn−1

(
xµn−1,+B

0
apr

(
− 1
2πi

logxn−1,+

))
= (ξn−1 + i0)−µ−1B0

apr

(
1
2πi

log(ξn−1 + i0)
)
·B−

apr
(µ), (2.31)

where Reµi > −1 for all i = 1, . . . , �, and

µ = (µ1, . . . , µ1︸ ︷︷ ︸
m1−times

, . . . , µ�, . . . , µ�︸ ︷︷ ︸
m�−times

), B−
apr
(µ) = diag{Bm1

− (µ1), . . . , B
m�
− (µ�)},

Bmi
− (t) := Bmi

(
− 1
2πi

∂t

)(
Γ(t+ 1)eiπ(t+1)/2

)
,

Bmi
− (µi) := ‖bmi

kp (µi)‖mi×mi
, p = 0, . . . , mi − 1,

bmi

kp (µi) :=


(
1
2πi

)p−k (−1)p+k

(p− k)!
dp−k

dtp−k

(
Γ(t+ 1)eiπ(t+1)/2

)∣∣∣∣
t=µi

, k � p,

0, k > p,

(2.32)

i = 1, . . . , �.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 7 No. 1 2000



ASYMPTOTICS OF FUNCTIONS REPRESENTED BY POTENTIALS 43

Indeed, since Reµi > −1 for all i = 1, . . . , �, by using relation (2.25), as well as the relation

bmi

l−r,p−r(µi) = bmi

lp (µi),

we obtain

Fxn−1→ξn−1

xµi

n−1,+

(
− 1
2πi

log xn−1,+

)p−r

(p− r)!



= (ξn−1 + i0)−µi−1

p−r∑
k=0

bmi

k,p−r(µi)

(
1
2πi

log(ξn−1 + i0)
)k

k!

= (ξn−1 + i0)−µi−1

p∑
l=r

bmi

l−r,p−r(µi)

(
1
2πi

log(ξn−1 + i0)
)l−r

(l− r)!

= (ξn−1 + i0)−µi−1

p∑
l=r

(
1
2πi

log(ξn−1 + i0)
)l−r

(l − r)!
bmi

lp (µi).

This implies the formula

Fxn−1→ξn−1

(
xµi

n−1,+ Bmi

(
− 1
2πi

logxn−1,+

))
= (ξn−1 + i0)−µi−1Bmi

(
1
2πi

log(ξn−1 + i0)
)
Bmi

− (µi)

(see (2.32)). In turn, this proves relation (2.31).
Since Re(ν/2 + δi(x′′)) > −1 for all i = 1, . . . , �, it follows that relation (2.29) holds whenever

µ = ν/2 + ∆(x′′), i.e.,

Fxn−1→ξn−1

(
x
ν/2+∆(x′′)
n−1,+ B0

apr

(
− 1
2πi

logxn−1,+

))
= (ξn−1 + i0)−ν/2−∆(x′′)−1B0

apr

(
1
2πi

log(ξn−1 + i0)
)
B−
apr

(ν
2
+∆(x′′)

)
. (2.33)

For λi = −ν

2
− δi(x′′)− 2r + q + j (i = 1, . . . , �), we can use relations (2.26), (2.27) and (2.29),

as well as the relation

(−1)p−r (k − r)!
(p− r)!

cmi

p−r,k−r(λi) = (−1)p k!
p!

cmi

pk (λi)

(for the definition of cmi

kp (λi), see (2.28)), and similarly obtain the formula

Fξn−1→zs,θ

(
ξλi
n−1,+B

mi

(
1
2πi

log ξn−1,+

))
= z−λi−1

s,θ Bmi

(
− 1
2πi

log zs,θ

)
Bmi

+ (λi)

for Reλi > −1.
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If Reλi � −1, λi /∈ Z, λi = −Ni + µi, 1 < Re µi � 0, and Ni > 0 is an integer, then

Fξn−1→zs,θ

(
ξλi
n−1,+B

mi

(
1
2πi

log ξn−1,+

))
= z−λi−1

s,θ Bmi

(
− 1
2πi

log zs,θ

)
ami(λi),

ami(λi) := Bmi
+ (µi) ·Dmi(λi), Dmi(λi) = ‖Dmi

jp (λi)‖mi×mi
,

Dmi
jp (λi) :=

 iλi−µi
j!
p!

(
1
2πi

)p−j

d
mi(Ni)
pj (λi), j � p,

0, j > p

and d
m(Ni)
pj (λi) are defined by (2.9) and (2.28).

Indeed, proceeding as above, we transform the matrix ami(λi) to the form

ami(λi) = ‖ami

kp (λi)‖mi×mi
, ami

kp (λi) :=

 (−1)k
(
1
2πi

)p−k
k!
p!

cmi

pk (λi), k � p,

0, k > p.

Further, taking into account the expression cmi

pk (λi) (see (2.28)), we see that

(−1)k
(
1
2πi

)p−k
k!
p!

cmi

pk (λi)

=
p∑

j=k

(
1
2πi

)j−k 1
(j − k)!

dj−k

dtj−k

(
Γ(t+ 1)eiπ(t+1)/2

) ∣∣∣
t=µi

· iλi−µi

(
1
2πi

)p−j
j!
p!

d
mi(Ni)
pj (λi).

Then

ami
kp (λi) =

mi−1∑
j=0

bmi
kj (µi)D

mi
jp (λi).

Therefore, ami(λi) = Bmi
+ (µi) ·Dmi(λi).

For λi = −1,−2, . . . , using relations (2.29) and (2.30), we obtain

Fξn−1→zs,θ

(
ξλi
n−1,+B

mi

(
1
2πi

log zs,θ

))
= z−λi−1

s,θ B̃mi

(
1
2πi

log zs,θ

)
,

where B̃mi(t) is defined by (2.10).
This yields the relation

Fξn−1→zs,ϑ

(
ξ
−ν/2−∆(x′′)−2r+q+j
n−1,+ B0

apr

( 1
2πi

log ξn−1,+

))
= z

ν/2+∆(x′′)+2r−1−q−j
s,ϑ B̃0

apr

(
1
2πi

log zs,ϑ

)
aj(x′′), (2.34)

where

aj(x′′) = diag {am1(λ1), . . . , am�(λ�} ,

ami(λi) =


Bmi

+ (λi), Re λi > −1,
Bmi

+ (µi) ·Dmi(λi), Re λi < −1, λi /∈ Z ,

I, λi = −1,−2, . . . .
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Thus, it follows from (2.32) and (2.33) that

c(j)(x′′) = aj(x′′)B−
apr

(ν
2
+ ∆(x′′)

)
K−1(x′′)c0(x′′),

where c0(x′′) is the leading coefficient of the asymptotic expansion (1.45). �
Remark 2.10. If, in Theorem 2.2, the density ϕ0 has the expansion (1.47), i.e., if B0

apr
= I is

the identity matrix, then the asymptotic expansion (2.11) becomes simpler for λi = −ν

2
− δi(x′′)−

2r + q + j �= −1,−2, . . . , namely,

u(x′′, xn−1, xn) =
∑
θ=±1

�(N)∑
s=1

{ ns−1∑
j=0

θxjndsj(x
′′, θ)zν/2+∆(x′′)+2r−1−q−j

s,θ c(j)(x′′)

+
M+3−2r+[q]∑

k,l=0

M+2−l∑
j+p=2r−[q]−1

k+l+j+p �=2r−[q]−1

xln−1x
j
ndsljp(x

′′, θ)zν/2+∆(x′′)+p+k−{q}
s,θ

× Bskjp (x′′, logzs,θ)
}
+ uM+1(x′′, xn−1, xn)

for xn > 0 and uM+1 ∈ CM+1
0 (Rn

+), where Bskjp(x′′, t) is a polynomial in t of degree νkjp =
k + p + j − 2r + [q] + 1 with vector coefficients depending on the variable x′′. The coefficients
dsj(x′′,±1) have the same form as in (2.10), and

c(j)(x′′) = aj(x′′)b0(x′′)K−1(x′′)c0(x′′), j = 0, . . . , ns − 1,

b0(x′′) := Γ(µ+ 1)eiπ(µ+1)/2

∣∣∣∣
µ=ν/2+∆(x′′)

,

aj(x′′) := diag{am1
00 (λ1), . . . , am1

m1−1,m1−1(λ1), . . . , am�
00 (λ�), . . . , a

m�
m�−1,m�−1(λ�)},

amk
pp (λk) =


Γ(λk + 1)eiπ(λk+1)/2 for Re λk > −1,

iλk−µkΓ(µk + 1)eiπ(µk+1)/2
Nk∏
m=1

1
λk +m

for Re λk < −1, λk /∈ Z ,

k = 1, . . . , �;

here λk = −Nk + µk, −1 < Re µk � 0, and Nk > 0 is an integer.
In (1.47), c0(x′′) is obviously the leading coefficient.
For λi = −ν/2−δi(x′′)−2r+q+j = −1,−2, . . . we obtain λi = −mj−1 = λ(j), j = 0, . . . , ns−1,

these values do not depend on i = 1, . . . , � (for some nonnegative integers mj = 0, 1, . . .) and, in
the asymptotic expansion of the density ϕ0 (see (1.47)), the matrix B0

apr
(t) is equal to I . Then the

asymptotic expansion (2.11) becomes

u(x′′, xn−1, xn) =
�(N)∑
s=1

{ ns−1∑
j=0

xjn

[
dsj(x′′,+1)zν/2+∆(x′′)+2r−1−q−j

s,+1 B̃0
apr

(
1
2πi

log zs,+1

)

− dsj(x′′,−1)zν/2+∆(x′′)+2r−1−q−j
s,−1 B̃0

apr

(
1
2πi

log zs,−1

)]
c(x′′)

+
∑
θ=±1

M+3−2r+[q]∑
k,l=0

M+2−l∑
j+p=2r−[q]−1

k+l+j+p �=2r−[q]−1

xln−1x
j
nz

ν/2+∆(x′′)+p+k−{q}
s,θ Bslkjp (x′′, log zs,θ)

}

+ uM+1(x′′, xn−1, xn) for xn > 0, uM+1 ∈ CM+1
0 (Rn

+),
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where Bslkjp(x′′, t) is a polynomial in t of degree νkjp = k+p+j−2r+[q]+2 with vector coefficients
depending on the variable x′′, and

B̃0
apr

(
1
2πi

log zs,θ

)
=
(
c̃10(λ(j)) + c̃11(λ(j)) logzs,θ

)
I ;

here

c̃11(λ(j)) = iλ
(j) (−1)mj+1

mj !
, c̃10(λ(j)) = iλ

(j) (−1)mj

mj !

[
iΓ′(1)− π

2

]
.

The coefficients dsj(x′′,±1) are as in (2.9), and c(x′′) becomes c(x′′) = b0(x′′)K−1(x′′)c0(x′′).

Remark 2.11. Theorems 2.2 and 2.3 hold in more general cases. Indeed, let Pl(x,Dx) be a
differential operator of order l. Then, using the scheme of the proof of Theorems 2.2 and 2.3, we
can obtain a similar asymptotic expansion for the functions u = V(l) ◦Bqϕ0 and ũ = Ṽ(l) ◦Bqϕ0,
where V(l) and Ṽ(l) are potential-type operators with kernels

V (l)(x, y) = Pl(x,Dx)HA(x− y) and Ṽ (l)(x, y) = Pl(y, Dy)HA(x− y),

respectively.
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