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Abstract. The main purpose of the present paper is the investigation of systems of pseudod-
ifferential equations (PsDEs) with symbols from extended Hörmander classes on a manifold with
smooth boundary. Equations are treated in anisotropic Bessel potential spaces with weight (BP-
SwW). Theorem about factorization of symbols, proved earlier by E.Shamir, R.Duduchava and
E.Shargorodsky is revised and general criteria is obtained for PsDEs in BPSwW on manifolds with
smooth boundary to possess the Fredholm property. It is proved that the criteria is invariant with
respect to the weight exponents and the co–normal smoothness parameter, which participate in the
definition of the spaces. In the second part of the paper results of G.Eskin and J.Bennish on asymp-
totic of solutions to systems of PsDEs (L2–theory) are extended and complete asymptotic expansion
of a solution to near the boundary is obtained (Lp–theory). More precise description of exponents
and of logarithmic terms of the expansion is presented. Investigations are carried out in connection
with problems arising in elasticity (crack problems) and some other fields of mathematical physics
when the potential method is applied. In forthcoming papers asymptotic of a function represented by
a potential will be presented when asymptotic of a density on the boundary of the domain is known.
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Introduction

Investigation of a system of boundary integral (or, more precisely, pseudodifferential)
equations (BPsDEs) constitutes a crucial part of the potential method for studying
boundary value problems (BVPs) in general and BVPs of the elasticity in particu-
lar. If boundary of the domain where elliptic equation is treated is smooth, solutions
are smooth too provided the data of BVP are smooth. But dealing with crack–type,
screen–type and mixed problems of the mathematical physics we arrive to necessity of
investigating BPsDEs on manifolds (surfaces) with boundary. It is well–known that
solutions to such problems have singularities on the boundary and other sub manifolds
(points, curves) of geometrical and structural peculiarities of the manifold (e.g. at con-
ical points, edges etc.) regardless smoothness properties of given data. Both, mathe-
maticians (cf. V.Kondrat’ev [Ko1], V.Kozlov, V.Maz’ya, J.Rossmann [KMR1],
[MP1], M.Dauge [Da1], P.Grisvard [Gr1], S.Nazarov and B.Plamenevski [NP1],
B.W.Schulze [Sc3] etc.) and mechanist (cf. G.Cherepanov [Ch1], J.Lekhnitsky
[Le1], J.Rabotnov [Ra1], L.Malvern [Ma1], J.Rice [Ri1, Ri2] etc.) have analysed
local asymptotic expansions for the elliptic system of linear elasticity. The meth-
ods used were either Mellin transform, suggested by V.Kondrat’ev, or an appropriate
ansatz (M.Williams [Wi1], T.Ting [Ti1] etc.). With the help of the Mellin trans-
form a big number of interesting and important problems were investigated, including
asymptotic of solutions to boundary value problems near edges, conical points, cracks
etc. The ansatz was used mostly by mechanist to get formulae for exponents.

An alternative approach based on the Wiener–Hopf method seems to be much
less exploited, especially in applications. The method was originally designed for the
investigation of pseudodifferential equations (PsDE) on the half–line IR+. Later on
the method was applied to the investigation of Fredholm properties and solvability
of systems of PsDEs on manifolds with boundary (see G.Eskin and M.Vishik [Es1],
I.Simonenko [Si1] for L2–theory and R.Duduchava [Du1], E.Shargorodsky [Sh2]
for Lp–theory).
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The results found ample applications in BVPs of mathematical physics (see e.g.
[No1] for two–dimensional case and [BG2, Ch2, Ch3, CS1, DNS1, DSW1, DW1,
KGBB1, MPr] etc. for multidimensional case of elasticity and diffraction theory, aero
and hydrodynamics).

The method is based on the factorization of symbols and provides rather explicit
results concerning the Fredholm criteria and solvability of BPsDEs on manifolds
with smooth boundary.

The pioneering work in the application of factorization to boundary value problems
for elliptic differential systems was carried out by Y.Lopatinskij [Lo1, Lo2].

It turned out that the same Wiener–Hopf method can successfully be applied
to derive full asymptotic expansion of solutions to PsDEs. G.Eskin [Es1, § 7] had
applied the method to the investigation of the leading term of asymptotic of a scalar
pseudodifferential equation. M.Costabel & E.Stephan [CS1] applied the explicit
factorization of the symbol, while R.Duduchava & W.Wendland [DW1]–implicit
one to describe the leading term of asymptotic of the solution to a system of PsDEs
(see also [Es1, § 26]). In [CS1, DW1] the results were applied to the crack problem of
elasticity.

Further progress was a full asymptotic expansion of the solution to a system of
pseudodifferential equations on arbitrary but smooth manifold with smooth bound-
ary, obtained by G.Eskin in [Es1, Sec. 23]. This result was extended by J.Bennish
in [Be1] (L2–theory). In the present investigation the results are extended further:
equations are treated in the weighted anisotropic Bessel potential spaces, which
are well–adapted to the analysis of smoothness and asymptotic of solutions to Ps-
DEs on smooth manifolds with smooth boundary (Lp–theory). More transparent
asymptotic expansion formula is presented, which demonstrates clear dependences of
asymptotic (of exponents, of presence and disposition of logarithmic terms) on the
geometry of manifold and on the symbol of PsDE. The obtained dependences can be
applied, for example, to reveal connections between different elastic fields (the stress
tensor field, the traction and the displacement vector fields) on crack faces and on
the prolongation of the crack surface. The latter connections play a crucial role in
rupture criteria for elastic materials and will be treated in one of forthcoming pa-
pers. The results on asymptotic are already applied to different BVPs of elasticity
(see e.g. R.Duduchava, A.M.Sändig, W.L.Wendland [DSW1], R.Duduchava,
D.Natroshvili [DN1], O.Chkadua [Ch1]–[Ch4]).

The paper is organised as follows.
First we present classes of symbols which provide boundedness of corresponding

pseudodifferential operators (PsDOs) and are closed with respect to the factorization,
i.e. together with elliptic matrices they contain their factors. It is well–known, that
by factorization of C∞–function with respect to one variable, we might get factors
which fail to possess even one continuous derivative (moreover–factors can be un-
bounded). Therefore the most frequently used classes of symbols, e.g. the Hörmander
classes Sr

γ,δ(ω, IRn), are not suitable for the Wiener–Hopf method. This requires to
extend classes of symbols of PsDEs up to relevant ones with respect to the Wiener–
Hopf factorization. In our investigations we rely on the generalisation of Mikhlin–
Hörmander–Lizorkin multiplier theorem for PsDOs, given by E. Shargorodsky
[Sh1] (see Subsection 1.2).
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The factorization is important tool in obtaining the Fredholm properties and in-
vestigating the solvability of PsDEs. In most problems in applications solvability of
BPsDEs can be derived from the strong ellipticity or even positive definiteness of
the corresponding symbol, but this does not work in some cases. The Fredholm
property criteria of PsDEs on manifolds with boundary is presented in Subsection
1.5. Equations are studied in the anisotropic Bessel potential spaces with weight
H

(µ,s),m
p (M), introduced in [Es1] for the case p = 2 (cf. also [Be1]) . Main features

of this space can be described as follows: µ + s indicates the smoothness of a function
ϕ(t′, ρ) , ϕ ∈ H

(µ,s),m
p (M), with respect to the local variable t′ on the boundary of

the manifold ∂M, while s indicates the smoothness with respect to the variable ρ, im-
plementing the distance to the boundary ∂M; moreover, ρkϕ(t′, ρ) becomes smoother
and belongs to H

(µ,s),m+k
p (M) for arbitrary k ≤ m. Precise definition of the space

in § 1.3 is followed by the theorem on Fredholm properties and the index of Ps-
DEs. These properties and the index turn out to be invariant with respect to the
weight parameter m = 0, 1, · · · and with respect of the co-normal smoothness param-
eter µ ∈ IR. The weighted anisotropic Bessel potential spaces play a crucial role in
obtaining asymptotic of solutions to systems of BPsDEs (cf. § 2). Results of Section
1 are revising those from [Du1, Es1, Si1, Sh2, Sr2] and enrich them to comply with
the purposes of the present investigation.

In Section 2, continuing the investigations of G.Eskin and J.Bennish, complete
asymptotic expansions of solutions to pseudodifferential equations on manifolds with
boundaries are derived. The results demonstrate transparent dependence of exponents
and of coefficients of the expansion on the symbol of PsDE and on the geometry of
the underlying manifold M.

Compared with a similar asymptotic obtained earlier by the method of V.Kondrat’ev
(see [Ko1, KMR1, MP1, Da1, Gr1, NP1] etc.), the Wiener-Hopf method provides
more transparent formulae for the exponents and coefficients of the expansion. For
example, exponents are found as eigenvalues of the symbol matrix at certain points.
On the other hand by applying the obtained results we can get rigorous justification
of asymptotic for solutions to BPsDEs, encountered in elasticity and other problems
of mathematical physics (cf. [DSW1]), which were available before only by ansatz (cf.
[Wi1, Ti1]).

Investigations of asymptotic started in the present paper is continued in the paper
[CD1], where spatial asymptotic of a function represented by potentials will be derived
provided the asymptotic of a density on the surface is known. The topic is important
because after obtaining asymptotic of solutions v(x) to boundary PsDE one needs
asymptotic of the solution to the corresponding BVP, which is written as potential with
the density v(x). Applications to different BVPs and, especially, to crack problems of
anisotropic elasticity, is the main purpose.
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1. Fredholm criteria

We recall definitions and some important results on Pseudodifferential operators,
which are main tools in our investigations.

1.1. Spaces

We recall results mostly from [Tr1, Tr2] (see also [DW1], [Sr2, §1.1]).
S(IRn) denotes the Schwartz space of all fast decaying functions and S′(IRn) – the

dual space of tempered distributions. Since the Fourier transform and its inverse,
defined by

Fϕ(ξ) =
∫

IRn

eiξxϕ(x)dx and

F−1ψ(x) =
1

(2π)n

∫

IRn

e−ixξϕ(ξ)dξ, x, ξ ∈ IRn
(1.1)

are bounded operators in both spaces S(IRn) and S′(IRn), the convolution operator

a(D)ϕ = W 0
a ϕ := F−1aFϕ with a ∈ S′(IRn), ϕ ∈ S(IRn)(1.2)

is a bounded transformation from S(IRn) into S′(IRn) (see [Du1, DS1]).
The Bessel potential space IHIsp(IR

n) is defined as a subset of S′(IRn) endowed with
the norm (see [Tr1, Tr2])

||u∣∣IHIsp(IR
n)|| := ||〈D〉su∣∣Lp(IRn)||, where 〈ξ〉s := (1 + |ξ|2) s

2 .(1.3)

For the definitions of the Besov spaces BBs
p,q(IR

n) (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ∈ IR)
see [Sh1, Tr1]: the space BBs

p,p(IR
n) (1 < p < ∞, s > 0) coincides with the trace

space γIRnIHI
s+ 1

p
p (IRn+1

+ ) (IRn+1
+ := IRn × IR+) and is known also as the Sobolev–

Slobodečkii space W s
p (IRn).

The space BBs
∞,∞(IRn) coincides with the well–known Zygmund space ZZs(IRn):

||f |ZZs(IRn)|| = ||f |C [s]−(IRn)||+
∑

|α|=[s]−
sup

h∈IRn\{0}

{
|h|−{s}+ ||∆2

h∂αf |C(IRn)||
}

,

s = [s]− + {s}+ [s]− ∈ IN0, 0 < {s}+ ≤ 1,

where IN0 := IN∪{0}, IN denotes the set of positive integers, ∆hf(x) := f(x+h)−f(x),
∆2

h = ∆h∆h and

||f |Cm(IRn)|| =
∑

|α|≤m

sup{|∂αf(x)| : x ∈ IRn}.

For s ∈ IR+ \ IN the space BBs
∞,∞(IRn) (and ZZs(IRn)) coincide with the Hölder

space Cs(IRn)

||f |Cs(IRn)|| = ||f |C [s](IRn)||+
∑

|α|=[s]

sup
h∈IRn\{0}

{
|h|−{s}||∆h∂αf |C(IRn)||

}
,

s = [s] + {s}, [s] ∈ IN0, 0 < {s} < 1.
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The space ĨHI
s

p(IR
n
+) is defined as the subspace of IHIsp(IR

n) of those functions ϕ ∈
IHIsp(IR

n), which are supported in the half space suppϕ ⊂ IR
n

+ whereas IHIsp(IR
n
+) de-

notes the quotient space IHIsp(IR
n
+) = IHIsp(IR

n)/ĨHI
s

p(IR
n \ IRn

+) and can be identified
with the space of distributions ϕ on IRn

+ which admit an extension `ϕ ∈ IHIsp(IR
n).

Therefore rMIHIsp(IR
n) = IHIsp(IR

n
+).

The spaces B̃B
s

p,q(IR
n
+) and BBs

p,q(IR
n
+) are defined similarly [Tr1, Tr2].

1.2. Symbol classes

If the convolution operator in (1.2) has the bounded extension

W 0
a : Lp(IRn) −→ Lp(IRn),

then we write a ∈ Mp(IRn) and a(ξ) is called a (Fourier) Lp–multiplier. For ν ∈ IR
let

M (ν)
p (IRn) = {〈ξ〉νa(ξ) : a ∈ Mp(IRn)} .

By using the isomorphism (1.3) and the obvious property

W 0
a1

W 0
a2

= W 0
a1a2

, aj ∈ M (νj)
p (IRn), j = 1, 2,(1.4)

we get that the operator

W 0
a : IHIsp(IR

n) −→ IHIs−ν
p (IRn)

is bounded if and only if a ∈ M
(ν)
p (IRn).

Vice versa: if A : IHIsp(IR
n) −→ IHIs−ν

p (IRn) is a bounded operator for all s ∈ IR,
is translation invariant AVλ = VλA where Vλϕ(x) := ϕ(x − λ) for all λ > 0, then
obviously A : C∞0 (IRn) −→ C∞(IRn) is continuous and, due to [Hr1, Theorem 4.2.1],
this implies A = W 0

a with a ∈ M
(ν)
p (IRn).

The next theorem is a slight modification of the Mikhlin–Hörmander–Lizorkin
multiplier theorem. Proofs can be found in [Sr1] and in [Hr1, Theorem 7.9.5].

Theorem 1.1. If

|ξβ∂βa(ξ)| ≤ M〈ξ〉ν , ξ ∈ IRn ,(1.5)

for some M > 0 and all |β| ≤
[n

2

]
+ 1, β ≤ 1, then a ∈ ⋂

1<p<∞
M

(ν)
p (IRn).

Let a ∈ M
(ν)
p (IRn). Then the operators

Wa := r+a(D) : ĨHI
s

p(IR
n
+) −→ IHIs−ν

p (IRn
+),

: B̃B
s

p,q(IR
n
+) −→ BBs−ν

p,q (IRn
+),

are bounded, where r+ := rIRn
+

is the restriction operator and

D := i∂ := i(∂1, · · · , ∂n) ∂j :=
∂

∂xj
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is used as argument because it corresponds, by the above definition, to the symbol
ξ := (ξ1, · · · , ξn).

The composition rule (1.4) fails in general for half–space operators (1.6). But if
there exists an analytic continuation a1(ξ′, ξn− iλ) (or a2(ξ′, ξn + iλ)) for ξn ∈ IR and
λ ∈ IR+ which belongs to S′(IRn−1 × C−) (to S′(IRn−1 × C+), respectively), where
C± = IR⊕ iIR±, then

Wa1Wa2 = Wa1a2 .(1.6)

If the symbol a(x, ξ) depends on the variable x, then the corresponding convolution
operator (see (1.2))

a(x,D)ϕ(x) = W 0
a(x,·)ϕ(x) :=

(
F−1

ξ−→xa(x, ξ)Fy−→ξϕ(y)
)

(x)(1.7)

with the symbol a ∈ C(IRn, S′(IRn)) is called a general pseudodifferential operator
acting on ϕ ∈ S(IRn). Here C(ω,B) denotes the set of all continuous functions a :
ω −→ B. Let M

(s,s−ν)
p (IRn, IRn) denote the class of symbols a(x, ξ) for which the

operator in (1.7) extends to the bounded mapping

a(x, D) : IHIsp(IR
n) −→ IHIs−ν

p (IRn)(1.8)

and M
(ν)
p (IRn, IRn) :=

⋃
s∈IR

M
(s,s−ν)
p (IRn, IRn).

Lemma 1.2. [DW1, Lemma 1.7] Let a, b ∈ M
(s,s−ν)
p (IRn × IRn), s, ν ∈ IR. If there

exist analytic continuations a(x, ξ′, ξn + iλ) and b(x, ξ′, ξn− iλ) for all x ∈ IR, ξ′ ∈ IR,
ξn ∈ IR, λ ∈ IR+ with polynomial growth at ∞ (i. e. |a| and |b| are majorized by
(|ξ′|+ |ξn|+ λ)N for some N and all x ∈ IRn uniformly), then the operators

a(x,D) : ĨHI
s

p(IR
n
+) −→ ĨHI

s−ν

p (IRn
+) ,

r+b(x,D)` : IHIsp(IR
n
+) −→ IHIs−ν

p (IRn
+)

(1.9)

are bounded and

r+a(x,D)ϕ=a(x, D)ϕ , ϕ ∈ ĨHI
s

p(IR
n
+),

r+b(x, D)`r+ψ = r+b(x,D)ψ , ψ ∈ IHIsp(IR
n
+) .

(1.10)

Here ` is an arbitrary extension of ϕ ∈ IHIsp(IR
n
+) with `ϕ ∈ IHIsp(IR

n). The operator
in (1.9) is independent of the choice of `.

Theorem 1.3. Let IN0 := {0, 1, . . .}. If
∫

IRn

|ξβ∂α
x ∂β

ξ a(x, ξ)|dx ≤ Mα〈ξ〉ν , ξ ∈ IRn(1.11)

for some Mα > 0 and all α, β ∈ INn
0 , |β| ≤

[n

2

]
+ 1, β ≤ 1, then a ∈

⋂
1<p<∞

M
(ν)
p (IRn, IRn).
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Proof.. The claim follows from the general theorems on multipliers [Sh1, Theorems
4.1 and 5.1] and Theorem 1.1. 2

Definition 1.4. For any Ω ⊂ IRn, n ∈ IN := {1, 2, . . .}, ν ∈ IR by Rm
hom,ν(Ω, IRn),

m = 0, 1, ...,∞ we denote the class of symbols

a(x, ξ) = a∞(ξ) + a0(x, ξ),(1.12)

where:

1. both summands are homogeneous of order ν in ξ, that is a∞(λξ) = λνa∞(ξ) and
a0(x, λξ) = λνa0(x, ξ) for all λ > 0, ξ ∈ IRn;

2. there exist constants Mβ and Mα,β such that

|(ξ′)β′∂β
ξ a∞(ξ)| ≤ Mβ |ξ|ν−βn ,∫

Ω

|(ξ′)β′∂α
x ∂β

ξ a0(x, ξ)|dx ≤ Mα,β |ξ|ν−βn(1.13)

for all α, β = (β′, βn) ∈ INn
0 , |β′| ≤ m, βn = 0, 1, ... and all ξ ∈ IRn.

Definition 1.5. By Rm
ν (Ω, IRn) we denote the class of symbols a(x, ξ) = apr(x, ξ)+

a0(x, ξ) where apr ∈ Rm
hom,ν(Ω, IRn) is known as the homogeneous principal symbol

and a0(x, ξ) have the following estimates
∫

Ω

|(ξ′)β′∂α
x ∂β

ξ a0(x, ξ)|dx ≤ Mα,β |ξ|ν−βn−1(1.14)

for all α, β = (β′, βn) ∈ INn
0 , |β′| ≤ m , βn = 0, 1, ..., and all ξ ∈ IRn.

Definition 1.6. By Sm
hom,ν(Ω, IRn), m = 0, 1, ...,∞ we denote a subclass of

Rm
hom,ν(Ω, IRn), which consists of symbols (1.12) with stronger estimates than (1.13):

|∂β
ξ a∞(ξ)| ≤ Mβ |ξ|ν−|β|,

∫
Ω

|(∂α
x ∂β

ξ a0)(x, ξ)|dx ≤ Mα,β |ξ|ν−|β|,
(1.15)

for all α, β = (β′, βn) ∈ INn
0 , |β′| ≤ m, βn = 0, 1, ... and all ξ ∈ IRn.

Definition 1.7. By Sm
ν (Ω, IRn), m = 0, 1, ...,∞ we denote the class of symbols

a(x, ξ) = apr(x, ξ)+a0(x, ξ) where apr ∈ Sm
hom,ν(Ω, IRn) and a0(x, ξ) has the following

estimates (cf. (1.14))
∫

Ω

|∂α
x ∂β

ξ a0(x, ξ)|dx ≤ Mα,β |ξ|ν−|β|−1(1.16)

for all α, β = (β′, βn) ∈ INn
0 , |β′| ≤ m , βn = 0, 1, ..., and all ξ ∈ IRn.
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We will drop m = ∞ and use Rhom,ν(Ω, IRn), Rν(Ω, IRn) , Sν(Ω, IRn) , ... instead
ofR∞hom,ν(Ω, IRn), R∞ν (Ω, IRn) , S∞ν (Ω, IRn) , ... when this will not lead to a confusion.

Definition 1.8. We write a ∈ Sm
cl,ν(Ω, IRn) if a(x, ξ) has the following asymptotic

expansion
a(x, ξ) ' a0(x, ξ) + a1(x, ξ) + · · ·(1.17)

where ak is a homogeneous symbol of the class Sm
hom,ν−k(Ω, IRn), k = 0, 1, ..., N and

for any natural N ∈ IN0 the difference

ãN+1(x, ξ) := a(x, ξ)− a0(x, ξ)− · · · − aN (x, ξ)

has the estimate ∫

Ω

|∂α
x ∂β

ξ ãN+1(x, ξ)|dx ≤ Mα,β |ξ|ν−|β|−N−1(1.18)

for all ξ ∈ IRn , |ξ| ≥ 1 and all α, β ∈ INn
0 , |β′| ≤ m.

a0(x, ξ) = apr(x, ξ) in (1.17) is known as the homogeneous principal symbol of
a(x,D).

Finally, we use S∞cl,ν(Ω, IRn) :=
⋂
m
Sm

cl,ν(Ω, IRn).

It is obvious that

S∞hom,ν(Ω, IRn) ⊂ Scl,ν(Ω, IRn) ⊂ Sm
ν (Ω, IRn) ⊂ Rm

ν (Ω, IRn),

Shom,ν(Ω, IRn) ⊂ Rhom,ν(Ω, IRn) ⊂ Rν(Ω, IRn) .

Rm
hom,ν(Ω, IRn) ⊂ Rm

ν (Ω, IRn),

(1.19)

For a ∈ Rν(Ω, IRn) we can consider the modified symbol

◦
a (x, ξ) := a(x, 〈ξ′〉|ξ′|−1ξ′, ξn),(1.20)

(see [DW1] and [Es1, p.91]) and the truncated symbol

∨
a (x, ξ) := [1− χ0(ξ)]a(x, ξ),(1.21)

where χ0 ∈ C∞0 (IR), χ0(ξ) = 0 for |ξ| ≥ 1, χ0(ξ) = 1 for |ξ| ≤ 1
2
.

Lemma 1.9. Let a ∈ Sm
ν (Ω, IRn) and m ≥ [n

2

]
+ 2.

Then
◦
a,
∨
a∈ ⋂

1<p<∞
M

(ν)
p (Ω, IRn) and

a− ∨
a∈ ⋂

−∞<µ≤ν

Rm
µ (Ω, IRn)(1.22)

(1− χ1)(a− ◦
a) ∈ Rm

ν−1(Ω, IRn),(1.23)

where χ1(ξ) := χ0

(
1
2
ξ

)
.
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Proof. Inclusions in the multiplier classes (the first claim) follow from Theorems
1.1 and 1.3 since for both

◦
a and

∨
a inequalities (1.13) and (1.14) hold with |ξ| replaced

by 〈ξ〉.
(1.22) is obvious since a− ∨

a has a compact support.
In the proof of (1.23) we follow [Es1, page 91] and [DW1, Lemma 1.4]: by the mean

value theorem

a(x, ξ)− ◦
a (x, ξ) = a(x, ξ′, ξn)− a(x, ξ′ + ω, ξn) =

n−1∑

k=1

(∂ξk
a)(x, ξ′ + θω, ξn)ωk

with ω := ω(ξ′) = (< ξ′ > −|ξ′|)|ξ′|−1ξ′ =
1

< ξ′ > +|ξ′| |ξ
′|−1ξ′

for some 0 < θ < 1. Obviously,

|ω| ≤ 1, |(ξ′)α′∂α′
ξ′ ω(ξ′)| ≤ Mα′ < ∞, for all α′ ∈ INn−1

0

and

1
2
|ξ| ≤ |ξ′|+ |ξn| − 1 ≤ |ξ′ + θω|+ |ξn| ≤ |ξ′|+ |ξn|+ 1 ≤

√
2|ξ|+ 1

2
|ξ| ≤ 2|ξ|

provided |ξ| ≥ 2; therefore,

|(ξ′)β′∂α
x ∂β

ξ [a(x, ξ)− ◦
a (x, ξ)]| =

∣∣∣∣∣∣

1∫

0

(ξ′)β′∂α
x ∂β

ξ ∂τa(x, ξ′ + τω, ξn)dτ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n−1∑

k=1

∑

γ′≤β′
M0

α,k,γ′(ξ
′)β′ωk(ξ′)(∂β′−γ′

ξ′ ω)(ξ′)

1∫

0

(∂α
x ∂γ′

ξ′ ∂ξk
∂βn

ξn
a)(x, ξ′ + τω(ξ′), ξn)dτ

∣∣∣∣∣∣

≤
n−1∑

k=1

∑

γ′≤β′
M1

α,k,γ′ |(ξ′ + θα,k,γ′ω, ξn)|ν−βn−1 ≤ Mα,β |ξ|ν−βn−1 , 0 < θα,k,γ′ < 1

for |ξ| ≥ 2 and all α ∈ INn
0 , |β′| ≤ [

m
2

]
+ 1, βn = 0, 1, . . .. 2

If Xν(M, IRn) is a symbol class, by T X ν(M, IRn) we denote those symbols a ∈
Xν(M, IRn) for which a(x, ξ) = a0(x, tω, ξn) with ω = |ξ′|−1ξ′ ∈ Sn−2, t = |ξ′| ∈ IR+,
ξn ∈ IR, the derivatives ∂k

t a0(x, tω,±1) exist and

lim
t→0

∂k
t a0(x, tω,−1) = (−1)k lim

t→0
∂k

t a0(x, tω, 1),

for all x ∈M, ω ∈ Sn−2, k = 0, 1, . . . .
(1.24)

Let us note, that for homogeneous a ∈ Rm
hom,ν(M, IRn) derivatives in (1.24) exist

automatically because a0(x, tω,±1) = tνa0(x, ω,±t−1).
(1.24) is known as the transmission property (see [Es1, p.278], [GH1], [Hr1, Sec.18.2],

[RS1, Sec.1.1.2]).
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The next Lemma is a particular case of [DW1, Lemma 1.8], proved by E. Shargorod-
sky, and a generalisation of the well–known Lemma on composition of pseudodifferen-
tial operators.

Lemma 1.10. Let m ∈ IN0, ν1, ν2 ∈ IR and a
(m)
j ∈ Rm

νj
(IRn, IRn), where

a
(m)
j (x, ξ) := 〈x〉maj(x, ξ), j = 1, 2. Then

a1(x,D)a2(·, D) = (a1a2)(x,D) + g(x,D)

with g ∈ Rm
ν1+ν2−1(IR

n, IRn).
Note, that if aj(x, ξ) has a compact support in x–variable, then aj ∈ Rm

νj
(IRn, IRn)

implies a
(m)
j ∈ Rm

νj
(IRn, IRn).

1.3. Anisotropic Bessel potential spaces with weight

Next we define anisotropic Bessel potential spaces with weight, similar to [Es1, Sec-
tions 23 and 26].

Let µ, s ∈ IR, m ∈ IN0 and 1 < p < ∞; by IHI(µ,s),m
p (IRn) we denote the space of

functions (of distributions when µ < 0 or µ + s < 0 ) endowed with the norm

‖u‖(µ,s),m
p = ‖u

∣∣IHI(µ,s),m
p (IRn)‖ :=

m∑

k=0

‖〈D′〉µ〈D〉s+kxk
nu

∣∣Lp(IRn)‖ ,(1.25)

ξ′ = (ξ1, . . . , ξn−1) ∈ IRn−1, ξ = (ξ′, ξn) ∈ IRn .

We shall write IHI(µ,s)
p (IRn) for IHI(µ,s),0

p (IRn) and IHIs,m
p (IRn) for IHI(0,s),m

p (IRn), be-
cause IHI(0,s)

p (IRn) = IHIsp(IR
n).

The operator

〈D′〉ν〈D〉r : IHI(µ,s),m
p (IRn) −→ IHI(µ−ν,s−r),m

p (IRn)

arranges an isomorphism of spaces for arbitrary ν, r ∈ IR and the inverse operator
reads 〈D′〉−ν〈D〉−r

In fact, the last claim about invertibility follows easily from (1.6). To prove that
〈D′〉ν〈D〉r arranges an isomorphism we recall the following equality

xk
na(x,D)u(x) =

k∑

l=0

(−i)lk!
l!(k − l)!

(∂l
ξn

a)(x, D)
[
xk−l

n u(x)
]

(1.26)

∀u ∈ SS(IRn) ,

which is verified straightforwardly by applying integration by parts:

xk
na(x,D)u(x) =

xk
n

(2π)n

∫

IRn

e−ixξa(x, ξ)
∫

IRn

eiξyu(y) dy dξ
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=
1

(2π)n

∫

IRn

[
(i∂ξn

)ke−ixξ
]
a(x, ξ)

∫

IRn

eiξyu(y) dy dξ

=
1

(2π)n

∫

IRn

e−ixξ(−i∂ξn
)k


a(x, ξ)

∫

IRn

eiξyu(y) dy


 dξ

=
k∑

l=0

(−i)lk!
l!(k − l)!

(∂l
ξn

a)(x,D)xk−l
n u(x) .

Applying formula (1.26) we proceed as follows

‖〈D′〉ν〈D〉ru ∣∣ IHI(µ−ν,s−r),m
p (IRn)‖

=
m∑

k=0

‖〈D′〉µ−ν〈D〉s−rxk
n〈D′〉ν〈D〉ru

∣∣ILp(IRn)‖

=
m∑

k=0

‖〈D′〉µ〈D〉s−rxk
n〈D〉ru

∣∣ILp(IRn)‖

≤
m∑

k=0

k∑

l=0

k!
l!(k − l)!

‖gr,l
n (D)〈D′〉µ〈D〉s−rxk−l

n u
∣∣ILp(IRn)‖

≤ Mm

m∑

k=0

‖〈D′〉µ〈D〉rxk
nu |ILp(IRn) ‖ = Mm‖u

∣∣IHI(µ,s),m
p (IRn)‖

with gr,l
n (ξ) := ∂l

ξn
〈ξ〉r, since 〈ξ〉r−lgr,l

n (ξ) = 〈ξ〉r−l∂l
ξn
〈ξ〉r is an ILp-multiplier due to

Theorem 1.1.
The same is true for the inverse 〈D′〉−ν〈D〉−r and the claimed isomorphism is es-

tablished.

Lemma 1.11. Let ν, µ, s ∈ IR, m ∈ IN0, σ(ν, m) = max{0,m− ν} and

IHI(∞,s),m
p (IRn) :=

⋂

µ∈IR

IHI(µ,s),m
p (IRn)

be a Freschet space with a standard metric. The operator

〈Dn〉ν : IHI(µ,s),m
p (IRn) −→ IHI(µ−σ(ν,m),s−ν),m

p (IRn) ,

: IHI(∞,s),m
p (IRn) −→ IHI(∞,s−ν),m

p (IRn) ,(1.27)

is bounded for both pairs of spaces.

Proof. The boundedness for the second pair of (Freschet) spaces is an obvious conse-
quence of the first one. The boundedness result IHI(µ,s),0

p (IRn) → IHI(µ−σ(ν,0),s−ν),m
p (IRn)

(the case m = 0) follows from Theorem 1.1 because is equivalent that 〈ξn〉ν〈ξ′〉−σ(ν,m)〈ξ〉−ν

is an ILp-multiplier.
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Now let m = 1, 2, . . .. we apply (1.26) and proceed as follows:

‖〈Dn〉νu
∣∣ IHI(µ−σ(ν,m),s−ν),m

p (IRn)‖

=
m∑

k=0

‖xk
n〈Dn〉νu

∣∣IHI(µ−σ(ν,m),s−ν+k)
p (IRn)‖

≤
m∑

k=0

k∑

l=0

Mk,l(ν)‖hν,l
n (Dn)xk−l

n u
∣∣IHI(µ−σ(ν,m),s−ν+k)

p (IRn)‖

≤
m∑

k=0

k∑

l=0

Mk,l(ν)‖〈D′〉µ−σ(ν,m)〈D〉s−ν+khν,l
n (Dn)xk−l

n u
∣∣ILp(IRn)‖

≤
m∑

k=0

k∑

l=0

Mk,l(ν)‖〈D′〉−σ(ν,m)〈D〉l−νhν,l
n (Dn)

× [〈D〉s−l+kxk−l
n u

] ∣∣ILp(IRn)‖

≤ M0(ν)
m∑

k=0

k∑

l=0

‖〈D〉s−l+kxk−l
n u|ILp(IRn)‖ ≤ M(ν)‖u|IHI(µ,s),m

p (IRn)‖ ,

with hν,l
n (ξn) := ∂l

ξn
〈ξn〉ν , since

〈ξ′〉−σ(ν,m)〈ξ〉l−νhr,l
n (ξn) = 〈ξ′〉−σ(ν,m)〈ξ〉l−ν∂l

ξn
〈ξn〉ν

is an ILp-multiplier due to Theorem 1.1. 2

The boundedness property (1.27) is a clear advantages of the anisotropic spaces
IHI(µ,s),m

p (IRn), especially with µ = ∞. The next theorem generalises this property.

Theorem 1.12. Let m ∈ IN0 , 1 < p < ∞. If ∂k
ξn

a(x, ξ) ∈ M
(ν−k)
p (IRn, IRn) and

∂α
x ∂k

ξn
b(x, ξn) = 0(|ξ|(ν−k)) for all k = 0, 1, · · · ,m , α ∈ INn, x ∈ IRn) ξ ∈ IR, then the

operators

a(x,D) : IHI(µ,s),m
p (IRn) −→ IHI(µ,s−ν),m

p (IRn) ,

b(x,Dn) : IHI(µ,s),m
p (IRn) −→ IHI(µ−σ(ν,m),s−ν),m

p (IRn) ,

b(x,Dn) : IHI(∞,s),m
p (IRn) −→ IHI(∞,s−ν),m

p (IRn) ,

where σ(ν, m) = max{0,m − ν}, are bounded for arbitrary µ, s ∈ IR, m ∈ IN0 and
1 < p < ∞.

In particular, if a ∈ Rγ
ν(IRn, IRn) and γ ≥

[n

2

]
+ 1, then a(x,D) is bounded for all

m ∈ IN0 and µ, s ∈ IR.

Proof. Multipliers of the anisotropic Bessel potential spaces without a weight
IHI(µ,s)

p (IRn) coincide with Mp(IRn) since for arbitrary g ∈ M
(ν)
p (IRn) the equality

〈D′〉µ〈D〉sW 0
g = W 0

g 〈D′〉µ〈D〉s holds. Moreover, the boundedness for m = 0 can be
proved as for corresponding theorems [Sh1, Theorems 4.1, 5.1] if we invoke Theorem
1.1 (cf. Theorem 1.3).
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To prove the boundedness in the weighted spaces we apply (1.26) and proceed as
follows

||a(x, D)u
∣∣IHI(µ,s−ν),m

p (IRn)|| =
m∑

k=0

||xk
na(x, D)u

∣∣IHI(µ,s+k−ν)
p (IRn)||

≤
m∑

k=0

k∑

l=0

k!
l!(k − l)!

||(∂l
ξn

a)(x,D)xk−l
n u

∣∣IHI(µ,s+k−ν)
p (IRn)||

≤ M0

m∑

j=0

‖xj
nu

∣∣IHI(µ,s+j)
p (IRn)‖ ≤ M0||u

∣∣IHI(µ,s),m
p (IRn)|| .

As for b(x,Dn): we note that b0(x, ξn) = b(x, ξn)〈ξn〉−ν ∈ R∞0 (IRn, IR) and therefore

b(x, Dn) = b0(x,Dn)〈Dn〉ν : IHI(µ,s),m
p (IRn) −→ IHI(µ−σ(ν,m),s−ν),m

p (IRn) ,

IHI(∞,s),m
p (IRn) −→ IHI(∞,s−ν),m

p (IRn)

are bounded as it is clear from (1.27) and the proved part of the theorem. 2

The spaces ĨHI
(µ,s),m

p (IRn
+) and IHI(µ,s),m

p (IRn
+) are defined similarly to ĨHI

s

p(IR
n
+) and

to IHIsp(IR
n
+) (see Subsection 1.1).

Theorem 1.13. If a ∈ Rγ
ν(IRn

+, IRn), the operators

r+
◦
a(x,D), r+

∨
a(x,D) : ĨHI

(µ,s),m

p (IRn
+) −→ IHI(µ,s−ν),m

p (IRn
+)

are bounded for all γ ≥
[n

2

]
+ 1, µ, s ∈ IR, m ∈ IN0 and 1 < p < ∞.

In particular,

r+〈D′〉νλr
+(D) : ĨHI

(µ,s),m

p (IRn
+) −→ ĨHI

(µ−ν,s−r),m

p (IRn
+),

r+〈D′〉νλr
−(D)` : IHI(µ,s),m

p (IRn
+) −→ IHI(µ−ν,s−r),m

p (IRn
+),

λr
±(ξ) := (ξn ± i|ξ′| ± i)r, ξ = (ξ′, ξn) ∈ IRn

(cf. (1.9), (1.10)) arrange isomorphisms of the corresponding spaces.
If a ∈ T Rν(IRn

+, IRn), then the operators with modified and truncated symbols

r+
◦
a(x,D), r+

∨
a(x,D) : IHI(µ,s),m

p (IRn
+) −→ IHI(µ,s−ν),m

p (IRn
+)

(cf. ((1.20), (1.21)) are also bounded.

Proof. The first claim follows from Lemma 1.9 and Theorem 1.12.
The second claim follows form the first one and Lemma 1.2 (see [SD1], [Sh2, Theorem

1.12]).
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The third claim is proved as in [Es1, p.278], [GH1], [Hr1, Sec.18.2], [RS1, Sec.1.1.2].
2

Lemma 1.14. The multiplication operator by the Heaviside function

θ+I = `0r+ : IHI(µ,s),m
p (IRn) −→ IHI(µ,s),m

p (IRn) , θ+(ξ) :=
1
2
(1 + sgn ξn) ,

where `0 extends a function by 0 to IRn, is bounded provided

1
p
− 1 < s <

1
p

, 1 < p < ∞ , µ ∈ IR , m ∈ IN0 .

In particular, under the asserted conditions the spaces ĨHI
(µ,s),m

p (IRn
+) and

IHI(µ,s),m
p (IRn

+) can be identified: if ϕ ∈ IHI(µ,s),m
p (IRn

+) , then `0ϕ ∈ ĨHI
(µ,s),m

p (IRn
+).

Proof. The second claim of the lemma is an equivalent reformulation of the first
one.

For µ = m = 0 the proof of the first claim can be found in [Sr3, St1], [Tr2, §1.8.7]
and can be derived from [Du1, Theorem 1.12], because is equivalent to the invertibility
of the operator λs

−(D)λ−s
+ (D) = W 0

gs
with the symbol gs(ξ) := (ξn − i|ξ′| − i)s(ξn +

i|ξ′|+ i)−s in the Lebesgue space Lp(IRn) (cf. Theorem 1.13).
In the case µ 6= 0, m 6= 0 we proceed as follows:

‖θ+u|IHI(µ,s),m
p (IRn)‖ =

m∑

k=0

‖〈D′〉µxk
nθ+u|IHIs+k

p (IRn)‖

≤ M1

m∑

k=0

∑

|α|≤k

‖∂α
x xk

n〈D′〉µθ+u|IHIsp(IR
n)‖ ≤ M2

m∑

k=0

∑

|α|≤k

‖θ+∂α
x xk

n〈D′〉µu|IHIsp(IR
n)‖

≤ M2

m∑

k=0

∑

|α|≤k

‖∂α
x xk

n〈D′〉µu|IHIsp(IR
n)‖ ≤ M3‖u|IHI(µ,s),m(IRn)‖ .

2

1.4. Pseudodifferential operators on manifolds

Let M be a compact, closed, C∞–smooth n–dimensional manifold with a smooth
boundary Γ := ∂M 6= ∅. Then M can be embedded in some manifold M⊂ M̃ of the
same smoothness.

Let {Yj}`
j=1 be a sufficiently refined covering ofM. A special local coordinate system

(s.l.c.s.) x(j) is defined as in [Es1]: in any chart Yj which has a non–empty intersection
with the boundary Γ the variable x

(j)
n is the directed distance to the boundary (and is

taken positive for x ∈ M \ Γ), whereas the tangential variables x′(j) = (x(j)
1 , ..., x

(j)
n−1)

are a coordinate system on Γ.

The spaces IHIsp(M), ĨHI
s

p(M), BBs
p,q(M), B̃B

s

p,q(M), IHI(µ,s),m
p (M) and ĨHI

(µ,s),m

p (M)
can be defined by a partition of unity {ψj}`

j=1 subordinated to the covering {Yj}`
j=1

and local coordinate diffeomorphism

$j : Xj −→ Yj , Xj ⊂ IRn
+.(1.28)
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If B∗ denotes the dual space to the space B and ∂M 6= ∅, then the following relations
are valid (see [Tr1]):

(
ĨHI

s

p(M)
)∗

= IHI−s
p′ (M),

(
B̃B

s

p,q(M)
)∗

= BB−s
p′,q′(M),(1.29)

provided s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞, p′ =
p

p− 1
, q′ =

q

q − 1
and

(
IHIsp(M)

)∗ = ĨHI
−s

p′ (M),
(
BBs

p,q(M)
)∗ = B̃B

−s

p′,q′(M),(1.30)

provided s ≥ 1
p
, 1 < p < ∞, 1 ≤ q ≤ ∞.

If M is embedded in IRl, n < l, then the trace operators

γM : IHIsp(IR
l) −→ BB

s− l−n
p

p,p (M),

: BBs
p,q(IR

l) −→ BB
s− l−n

p
p,q (M)

(1.31)

are correctly defined and bounded, provided

1 < p < ∞, 1 ≤ q ≤ ∞,
l − n

p
< s .

The next lemma follows from (1.31), as noted in [Gr2, (3.20)] and in [Sh2].

Lemma 1.15. Let 0 ≤ dimM = n < l, ϕ ∈ BBs
p,p(M) (ϕ ∈ BBs

p,q(M)) and
1 < p < ∞ (1 ≤ q ≤ ∞), s < 0.

Then ϕ⊗ δM ∈ IHI
s− l−n

p′
p (IRl) (ϕ⊗ δM ∈ BB

s− l−n

p′
p,q (IRl)), where

〈ϕ⊗ δM, ψ〉 := 〈ϕ, γMψ〉 for ψ ∈ S(IRl).(1.32)

It is easy to prove that the symbols of the classRm
ν (M, IRl) are invariant with respect

to the diffeomorphism (x, ξ) → (g0(x, ξ), g1(x, ξ)), gk ∈ Rm
hom,k(M, IRl)(k = 0, 1) (cf.

[Sb2, Lemma 1.2]). Therefore the symbol class Rm
ν (T ∗M) on the cotangent manifold

T ∗M is defined correctly (see [Sb2, Subsection 4.3]).
Moreover, the principal symbol apr(x, ξ) is defined invariantly, is independent of the

chart (i.e. of j = 1, . . . , `) and apr ∈ Rm
hom,ν(T ∗M).

Definition 1.16. (see [Hr1, Sb2] etc.). An operator

A : ĨHI
(µ,s),m

p (M) −→ IHI(µ,s−ν),m
p (M)(1.33)

is called pseudodifferential with the symbol a ∈ Rm
ν (T ∗M), if:

(i) χ1Aχ2I : IHI(µ,s),m
p (M) −→ C∞(M) are continuous for all pairs χ1, χ2 ∈

C∞(M) with disjoint supports suppχ1

⋂
supp chi2 = ∅ (i.e. χ1Aχ2I has or-

der −∞);
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(ii) the transformed operators

$j,∗A$−1
j,∗u = a(j)(x,D)u, u ∈ C∞0 (IRn

+), j = 1, ..., ` ,

where

$j,∗u(x) : =

{
ψ0

j (x)u($j(x)), when x ∈ Xj ,

0, when x 6∈ Xj ,

$−1
j,∗ϕ(x) : =

{
ψj(t)ϕ($−1

j (t)), when t ∈ Yj ,

0, when t 6∈ Yj ,
(1.34)

ψ0
j (x) : = ψj($j(x)) , x ∈ Xj ⊂ IRn

+, t ∈M

and {ψj}`
j=1 is the partition of unity (see above), are pseudodifferential with the

symbols
a(j)($j(x), ξ) = ψ0

j (x)a($j(t), ξ)ψ0
j (x) .

The principal homogeneous symbol is responsible for the Fredholm properties and
the index of the corresponding operator. Moreover, it is responsible for the exponent of
the leading term in the asymptotic expansion of the solution to the pseudodifferential
equation a(x,D)u = f, f ∈ IHIs−r

p (M), u ∈ ĨHI
s

p(M) in the vicinity of the boundary
Γ. But to get further (lower) entries of the asymptotic expansion of the solution, we
should involve the full symbols a(t, ξ) (see [Es1, Section 26], [Be1] and Theorem 2.1
below).

If symbol a($j(x), ξ) of a pseudodifferential operator a(t,D) in (1.33) has the trans-
mission property (1.24) (j = 1, ..., `), the operator

a(t,D) : IHI(µ,s),m
p (M) −→ IHI(µ,s−ν),m

p (M)

is correctly defined and bounded.

Example 1.17. Let M ⊂ IR3 be a 2–dimensional, compact, C∞− smooth surface
in IR3 with a smooth boundary ∂M = Γ,

M =
⋃̀

j=1

Yj , $j = ($j0, $j1, $j2) : Xj −→ Yj , Xj ⊂ IR2
+ = IR× IR+(1.35)

be a smooth atlas on the surface M (cf. (1.28)) and µ, s ∈ IR, m ∈ IN0, 1 < p < ∞.
Let `j(x) = (`j1(x), `j2(x), `j3(x)), x ∈ IR3, j = 1, 2 be two vector fields on IR3

which coincide with linearly independent tangent vectors to the surfaceM. Restriction
of the differential operator

∂`(x) := (∂`1(x), ∂`2(x)) , ∂`j(x) :=
3∑

k=1

`jk(x)∂xk
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to the surface γM∂` is defined correctly. Then a matrix N × N differential operator
of order ν ∈ IN

a(t,D) :=
ν∑

|α|=0

cα(t)∂α
`(t)

with C∞(M)–coefficient is pseudodifferential

aM(t,D) := rMa(t,D) : ĨHI
(µ,s),m

p (M) −→ IHI(µ,s−ν),m
p (M)(1.36)

and the symbol reads

aM(t, ξ) := a(t,J−1
$j

($−1
j (t))>ξ), aM ∈ Scl,ν(T ∗M) ;

here t ∈ Yj and J$j
(x) = $′

j(x) = ||∂k$jl(x)||3×2, x = (x1, x2) ∈ Xj denotes the
Jacoby matrix of transformation (1.35) (with k–th row (∂1$jk, ∂2$jk), k = 0, 1, 2);
A> denotes the transposed matrix to A.

In fact, let

$̃j : X̃j −→ Ỹj , X̃j , Ỹj ⊂ IR3, Ỹj ∩M = Yj ,

X̃j := (−ε, ε)×Xj , Ỹj := {λ~n(t) : −ε < λ < ε , t ∈ Yj} ,

$̃j |Xj = $̃j(0, x) = $j(x), j = 1, 2, . . . , ` ,

(1.37)

where ~n(t) is the unit normal at t ∈ M, be extensions of the diffeomorphisms in
(1.35). By J

$̃j
(x̃) = $̃′

j(x̃) = ||∂k$̃jl(x̃)||3×3 for x̃ = (x0, x1, x2) ∈ X̃j we denote
the corresponding Jacoby matrix. J$j (x) coincides with J

$̃j
(0, x) for x ∈ Xj if

we delete the first column, i. e. the entries (∂0$̃jk)(0, x), k = 0, 1, 2; therefore
J

$̃j
(0, x)(0, y) = J$j (x)y for x ∈ Xj , y ∈ IR2. It is known, that

J
$̃j

(0, x) = (e0(x), e1(x), e2(x)) ,

ek = (∂k$̃j1, ∂k$̃j2, ∂k$̃j3)>, k = 0, 1, 2
(1.38)

where vector–columns e0(x), e1(x) and e2(x) can be chosen orthogonal on the bound-
ary x ∈ Xj ∩ IRn

+.
The unit vectors e1(x) and e2(x) are not usually orthogonal (in contrast to the pairs

e0, e1 and e0, e2).
As a consequence the Jacoby matrix J

$̃j
(x̃) becomes orthogonal on the boundary

detJ
$̃j

(0, x) = 1 ,J
$̃j

(0, x)> = [J
$̃j

(0, x)]−1 for all x ∈ Xj ∩ ∂IRn
+ .(1.39)

Since
$̃j,∗grad t$̃

−1
j,∗ = J−1

$̃j

(0, t)>grad x

J−1
$j

(t)>ξ := J−1

$̃j

(0, t)>(0, ξ) ,
(1.40)
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we find that the transformed operator $j,∗aM(t, D)$−1
j,∗ to (1.36) reads as

$j,∗aM(t,D)$−1
j,∗ = a(j)

M(x,D), a
(j)
M(x, ξ) := a(j)(x,J−1

$j
(x)>ξ) , x ∈ Xj ,

which means that aM ∈ Scl,ν(T ∗M), as claimed above.

Example 1.18.(see similar in [Ag1, DNS1, DNS2]). Let M be as in Example 1 (cf.
(1.35)) −∞ < ν ≤ −1 and

a(ξ) = Fk(ξ) ' aν(ξ) + aν−1(ξ) + · · ·+ aν−k(ξ) + · · · ,

aν−k(λξ) = λν−kaν−k(ξ) ξ ∈ IR3, λ > 0

be a classical N ×N matrix–symbol a ∈ Scl,ν(IR3).
If ν 6= −1 the trace

aM(t,D)ϕ(t) = γMa(D)(ϕ⊗ δM(t) =
∫

IR3

k(t− y)(ϕ⊗ δM)(y)dy

=
∫

M

k(t− τ)ϕ(τ)dτM , t ∈M
(1.41)

(see (1.32)) is a pseudodifferential operator

aM(t,D) : ĨHI
(µ,s),m

p (M) → IHI(µ,s−ν−1),m
p (M) .

This operator has a classical symbol

aM(t, ξ′)'
∞∑

k=0

aM,ν+1−k(t, ξ′) , aM,ν+1−k ∈ S∞hom,ν+1−k(T ∗M) , ξ′ ∈ IR2 ,

aM,ν+1−k ( $j(x), ξ′) =
k∑

m=0

∑

|β|+|γ|−|α|=k−m
2α≤β

(−i)|α+β+γ|bα,β(x)∂γ
xG$j (x)

2πdetJ
$̃j

(0, x)γ!

×(−ξ′)α

∞∫

−∞
∂β+γ

ξ′ aν−m

(
J−1

$̃j

(0, x)>(ξ′, λ)
)

dλ,(1.42)

where

G$j := (det‖(∂k$j , ∂l$j)‖2×2)
1
2 with ∂k$j := (∂k$j1, ∂k$j2, ∂k$j3)>

denotes the square root of the Gram determinant of the vector–function $j =
($j1, $j2, $j3)> for j = 1, 2, . . . , N , b0,β(x) = 1 and coefficients bα,β(x) for |α| > 0
are found from the following equality

1
α!




m∑

|δ|=2

(−1)|δ|+1

δ!
∂δ$j(x)τ δ




α

=
m+2∑

|β|=2|α|
bα,β(x)τβ +

m|α|∑

|β|=m+3

g
(m)
α,β (x)τβ , α ∈ INn .



20 Math. Nachr. (1998)

In particular, the homogeneous principal symbol reads

aM,pr($j(x), ξ) := aM,ν+1($j(x), ξ′)(1.43)

=
G$j (x)

2πdetJ
$̃j

(0, x)

∞∫

−∞
aν

(
J−1

$̃j

(0, x)>(ξ′, λ)
)

dλ , x ∈ Xj .

If ν = −1 we can not write (1.41) but

aM(t, D)ϕ(t) = γMa(D)(ϕ⊗ δM)(t) = c0(t)ϕ(t) +
∫

M

k0(t, t− τ)ϕ(τ)dτM .(1.44)

is a pseudodifferential operator of order zero aM(t,D) : ĨHI
(µ,s),m

p (M) → IHI(µ,s),m
p (M)

i.e. is a singular integral operator; the integral in (1.44) is understood in the Cauchy
principal value sense and (see [Es1, (3.26)])

c0(t) =
Γ

(
n−1

2

)

2π
n−1

2

∫

|ω|=1

aM,pr(t, ω)dωS , k0(t, τ) = F−1
ξ→τ [aM,pr(t, ξ)−c0(t)] , t, τ ∈M .

In fact, it is known that

∫

M

g(τ)dτM =
N∑

j=1

∫

IRn−1

ψ0
j (y)G$j (y)g($j(y))dy

(see [Sc2, §IV.10.38], [Sl1, §3.6]). Therefore

a(j)
M(x,D)ϕ(x) = $j,∗aM(t,D)$−1

j,∗ϕ(x) = c0($j(x))(ψ0
j (x))2ϕ(x)

+ψ0
j (x)

∫

IRn−1

ψ0
j (y)G$j (y)k($j(x)−$j(y))ϕ(y)dy

= c0($j(x))(ψ0
j (x))2ϕ(x) +

∞∑
m=0

ψ0
j (x)

∫

IRn−1

ψ0
j (y)G$j (y)kν−m($j(x)−$j(y))ϕ(y)dy ,

where

Fkν−m = aν−m , kν−m(λt) = λn−ν+mkν−m(t) , λ > 0, t ∈ IRn .

By the Taylor formula we get the asymptotic expansion

$j(x)−$j(y) = J$j (x)(x− y) +
∞∑

|δ|=2

(−1)|δ|+1

δ!
∂δ$j(x)(x− y)δ .(1.45)

Applying the Taylor formula again with the help of (1.45) we get

kν−m($j(x)−$j(y)) =
∞∑

|α|=0

1
α!

∂αkν−m(J$j (x)(x− y))
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×



∞∑

|δ|=2

(−1)|δ|+1

δ!
∂δ$j(x)(x− y)δ




α

=
∞∑

|α|=0

∞∑

|β|=2|α|
bα,β(x)∂αkν−m(J$j (x)(x− y))(x− y)β ,(1.46)

where b0,β = 1 and other coefficients bα,β(x), |α| > 0 are defined above.
Applying the Taylor formula once more we get

G$j (y) = G$j (x) +
∞∑

|γ|=1

(−1)|γ|

γ!
∂γG$j (x)(x− y)γ .(1.47)

Applying formulae (1.45)–(1.47) we proceed as follows

aM,ν+1−k($j(x), ξ′) =
k∑

m=0

∑

2α≤β|β|+|γ|−|α|=k−m

bα,β(x)(−∂x)γG$j
(x)

γ!

×Fz→ξ′
[
zβ+γ∂α

z kν−m

(J$j (x)z
)]

=
k∑

m=0

∑

|β|+|γ|−|α|=k−m
2α≤β

(−i)|α+β+γ|bα,β(x)(−∂x)γG$j (x)
2πdetJ

$̃j
(0, x)γ!

×(−ξ′)α

∞∫

−∞
∂β+γ

ξ′ aν−m

(
J−1

$̃j

(0, x)>(ξ′, λ)
)

dλ ,(1.48)

because

Fz→ξ′
[

zβ+γ∂α
z kν−m

(J$j (x)z
) ]

=
∫

IRn−1

eiξ′zzβ+γ∂α
z


 1

(2π)n

∫

IRn

e−iJ$j
(x)zηaν−m(η)dη




=
1

(2π)n

∫

IRn−1

zβ+γ
[
(−∂z)αeiξ′z

] ∫

IRn

e
−iJ

$̃j

(0,x)(0,z)η
aν−m(η)dη

=
1

(2π)ndetJ
$̃j

(0, x)
(−i∂ξ′)β+γ

∫

IRn−1

(−ξ′)αeiξ′z
∫

IRn

e−izηaν−m(J−1

$̃j

(0, x)>η)dη

=
(−i)|β+γ|

2πdetJ
$̃j

(0, x)
∂β+γ

ξ′ Fz→ξ′F−1
η′→z




∞∫

−∞
aν−m(J−1

$̃j

(0, x)>(η′, λ))dλ




=
(−i)|β+γ|

2πdetJ
$̃j

(0, x)
∂β+γ

ξ′

∞∫

−∞
aν−m(J−1

$̃j

(0, x)>(ξ′, λ))dλ .

aaa
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1.5. Solvability results

Let M be a smooth manifold with a smooth boundary and consider N ×N system of
pseudodifferential equations

rMa(x,D)u = v,(1.49)

a ∈ Rγ
ν(T ∗M) , u ∈ ĨHI

(µ,s),m

p (M), v ∈ IHI(µ,s−ν),m
p (M) ,

m, γ ∈ IN0 , γ ≥
[n

2

]
+ 2 , µ, s, ν ∈ IR, 1 < p < ∞ .

We suppose the homogeneous principal symbol apr(x, ξ) is elliptic

inf
x∈M
|w|=1

|detapr(x, ω)| > 0(1.50)

and consider the matrix

a0 = a0(x′) := [apr(x′, +1)]−1apr(x′,−1),(1.51)

apr(x′,±1) := apr(x′, 0, . . . , 0,±1), x′ ∈ ∂M.

Let λ1(x′), . . . , λ`(x′) be all eigenvalues of the matrix a0(x′) with the Riesz indices
m1(x′), · · · ,m`(x′), respectively (i.e. λj(x′) defines mj(x′) linearly independent asso-
ciated vectors for a0(x′); see [Ga1]) and

δj = δj(x′) :=
1

2πi
log λj(x′),

1
p
− 1 < s− Re δj − ν

2
≤ 1

p
, j = 1, . . . , `.(1.52)

Theorem 1.19. Let the homogeneous principal symbol apr ∈ Rγ
hom,ν(T ∗M) of

equation (1.49) be elliptic (see (1.50)). Then

apr(x′, ξ) = [a−pr(x
′, ξ)]−1Ξapr (x

′, ξ)a+
pr(x

′, ξ),

a±pr(x
′, ξ) = (ξn ± i|ξ′|)± ν

2 g±(x′, ξ),(1.53)

Ξapr (x
′, ξ) =

(
ξn − i|ξ′|
ξn + i|ξ′|

)−∆(x′)+σ(x′)

B0
apr

(
1

2πi
log

ξn − i|ξ′|
ξn + i|ξ′|

)
.

Here:

(i) the functions g±1
− (x′, ξ′, ξn−it) and g±1

+ (x′, ζ ′, ζn+it) have uniformly bounded an-
alytic continuation for t > 0, are homogeneous of order 0 g±(x′, λξ) = g±(x′, ξ)
(λ > 0) and the estimates

|∂k
ξn

g±1
+ (x′, ξ)| ≤ M |ξ|−k, |∂k

ξn
g±1
− (x′, ξ)| ≤ M |ξ|−k(1.54)

hold for all k = 0, 1, . . ., ξ ∈ IRn, and x ∈ ∂M;
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(ii) numbers δj are defined in (1.52), the vector ∆ := (δ1, . . . , δ`) has length N (each
δj occurs, according to its algebraic multiplicity, mj times), σ = (σ1, . . . , σN ) ∈
INN

0 are integers (known as the partial indices of apr(x, ξ)) and

h∆+σ := diag {hδ1+σ1 , . . . , hδ`+σN } for h ∈ C ;(1.55)

(iii) apr(x, 0,±1) are positive definite or a0(x′) is a normal matrix, commuting with
the transposed

a0(x′)[a0(x′)]> = [a0(x′)]>a0(x′) ,(1.56)

then Bapr (t) = I; the N×N matrix Bapr (t) = ‖bjk(t)‖N×N is polynomial, upper
triangular (bjk(t) = 0 for j > k) with identities on the main diagonal (bjj(t) ≡
1). Bapr (t) commutes with the diagonal matrix ζδ: B0

apr
(t)ζδ = ζδB0

apr
(t).

If equation (1.49) is Fredholm for some p ∈ (1,∞), µ, s ∈ IR and m ∈ IN0, then all
partial indices vanish σ1(x′) = · · · = σN (x′) = 0 for x′ ∈ ∂M and [a−pr]±1, [a+

pr]∓1 ∈
Rγ−1

hom,± ν
2
(T ∗M).

We postpone the proof of this theorem until Subsection 1.8. Here we formulate an
important corollary which will be proved also later in the same Subsection 1.9.

Lemma 1.20. If the matrix a0(x′) (see (1.51), (1.79)) is normal, then it is simple
` = N (i.e. each eigenvalue λj(x′) has algebraic multiplicity 1) and a0(x′) is unitarily
similar with the diagonal one

Bapr (ξ) ≡ I , a0(x′) = K(x′)diag {λ1(x′), . . . , λN (x′)}K∗(x′),(1.57)

K ∈ C∞(∂M), detK(x′) 6= 0, K−1(x′) = K∗(x′) .

If the principal symbol apr ∈ Rγ
hom,ν(T ∗M) is strongly elliptic on ∂M, that is

there exists a constant M > 0 such that the inequality

Re (apr(x′, ξ)η, η) ≥ M |ξ|ν |η|2(1.58)

holds for all x′ ∈ ∂M, ξ ∈ IRn and all η ∈ C n. Then it admits factorization (1.53)
with

σ1(x′) = · · · = σN (x′) ≡ 0 and [a−pr]
∓1, [a+

pr]
±1 ∈ Rγ−1,0

hom,± ν
2
(T ∗M) .(1.59)

Moreover, if apr ∈ Rγ
hom,ν(T ∗M) is positive definite on ∂M, that is

(apr(x′, ξ)η, η) ≥ M |ξ|ν |η|2 for all x′ ∈ ∂M, ξ ∈ IRn and η ∈ C n

Precise description of B0
apr

(t), connected with the Jordan normal form of a0, see in Subsection

1.7, (1.79)–(1.80).
The same assertion holds if we replace condition (1.58) by the following less restrictive one:

|(apr(x′, ξ)η, η)| ≥ M |ξ|ν |η|2

(noted by I.Nadiradze).
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with some constant M > 0, then a0(x′) in (1.51) is simple and

σ1(x′) = · · · = σN (x′) ≡ 0, Re δ1(x′) = · · · = Re δ`(x′) ≡ 0 .(1.60)

Now we can prove the following

Theorem 1.21. Equation (1.49) is Fredholm if and only if:

(i) The homogeneous principal symbol apr(x, ξ) is elliptic (cf. (1.50));

(ii) all partial indices of factorization (1.53) are trivial on ∂M:

σ′1(x) = · · ·σN (x′) = 0 for all x′ ∈ ∂M;

(iii) (1.52) holds with the strong inequality Re δj(x′) 6= s− 1
p
− ν

2
for all j = 1, . . . , `

and all x′ ∈ ∂M.

If equation (1.49) is Fredholm, it has one and the same kernel
Ker rMa(x,D) and the same index Ind rMa(x,D) in all spaces ĨHI(µ,s),m

p (M) →
IHI(µ,s−ν),m

p (M) which meet the conditions (i)–(ii) and are independent of m ∈ IN0.

Proof. First we replace a(x,D) by the operator
∨
apr(x,D) with the truncated symbol

(cf. (1.21)). Since the manifold M is compact and the difference is smoothing oper-
ator of order −∞ (cf Lemma 1.15), the difference is compact operator in the spaces
ĨHI(µ,s),m

p (M) → IHI(µ,s−ν),m
p (M) and has no influence on the Fredholm properties.

Now we apply the ”quasilocalization” technique (see [Si1]), which means ”freez-
ing coefficients” and transforming the operator from the manifold to IRn

+. For the
Bessel potential spaces this approach is described in details e.g. in [Du1, § 3.2◦] and
we suppose the reader is familiar with the quasiequivalence and local invertibility of
operators. We remind that quasiequivalent operators are locally invertible only simul-
taneously (see [Du1, § 3.2◦]) and if the operator a(x,D) in (1.49) is locally invertible
for all x ∈M, it is Fredholm (see [Du1, § 3.2 ◦] and [GK1]).

We find easily that operators

∨
a (x,D) : ĨHI(µ,s),m

p (M) → IHI(µ,s−ν),m
p (M)

and

∨
apr (x0, D) : IHI(µ,s),m

p (IRn) −→ IHI(µ,s),m
p (IRn) for x0 ∈M\∂M ,

r+
∨
apr (x′0, D) : ĨHI

(µ,s),m

p (IRn
+) −→ IHI(µ,s),m

p (IRn
+) for x′0 ∈ ∂M(1.61)

are quasi-equivalent. Therefore equation (1.49) is Fredholm if and only if the oper-
ators

∨
apr (x0, D) and r+

∨
apr (x′0, D) in (1.61) are locally invertible at the respective

points t0 = $j(x0) in the respective spaces.

Numbers δj in (1.52) and νj in [DSW1, (A.32)] are related as follows: δj = −iνj .
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A condition for local invertibility of the convolution operator W 0
∨
apr(x0,·)

=
∨
apr (x0, D)

is well–known and coincides with the ellipticity condition at an inner point x0 ∈
M\∂M (see e.g. [Du1, § 4]). We leave the details to the reader and proceed to the
case x0 ∈ ∂M which is more complicated.

If we apply the ”lifting” Bessel potential operators 〈D′〉µλ−s
+ (D) and

〈D′〉−µλs−ν
− (D) (see Theorem 1.13) and recall that

〈D′〉±µr+
∨
apr (x0, D) = r+

∨
apr (x0, D)〈D′〉±µ

for a fixed x0 ∈ ∂M and λ±µ(ξ′) independent of ξn, we get: the second operator in
(1.61) is locally invertible iff

r+ãpr(x0, D) := r+λs−ν
− (D)

∨
apr (x0, D)λ−s

+ (D)(1.62)

is locally invertible at 0 as an operator in the space IHI0,m
p (IRn

+) for all x0 ∈ ∂M. We
remind, that ĨHI0,m

p (IRn
+) = IHI0,m

p (IRn
+) (see Lemma 1.14).

The operators (1.62) and

r+ã∞pr(x0, D) : IHI0,m
p (IRn

+) −→ IHI0,m
p (IRn

+)(1.63)

are locally equivalent (see [DS1, § 3.1]); here

ã∞pr(x0, ξ) := lim
t→∞

ãpr(x0, tξ) =
(

ξn − i|ξ′|
ξn + i|ξ′|

)s

(ξn − i|ξ′|)−νapr(x0, ξ)(1.64)

is the radial limits of ãpr(x0, ξ) at ∞.
If we introduce an equivalent norm in IHI0,m

p (IRn
+) :

‖u|IHI0,m
p (IRn

+)‖ :=
m∑

k=0

∑

|α|=k

‖∂αxk
nu|Lp(IRn)‖

(cf. (1.25)) we find that the dilation operator

Vτu(x) := τ−
1
p u(τx), τ > 0, k ∈ IRn

+,

is an isomorphism in IHI0,m
p (IRn

+). Therefore we can apply [Du1, Lemma 3.6] and find
out that the local invertibility of operator (1.63) at 0 coincides with the (global) in-
vertibility, because Vτr+ã∞pr(x0, D) = r+ã∞pr(x0, D)Vτ due homogeneity of the symbol
ã∞pr(x0, τξ) = ã∞pr(x0, ξ) (τ > 0).

Further localisation with respect to ω ∈ Sn−1 (see e.g. [Du1, § 1.40], [DS1, Theorem
3.20], [Sh2, Lemma 1.20]) leads to the following result: ellipticity detapr(x0, ω) 6= 0,
ω ∈ Sn−1 is necessary condition for the invertibility of operator (1.63).

Since apr(x0, ξ) is elliptic, from (1.53)–(1.54) and (1.64) we find

ã∞pr(x0, ξ) = g−1
− (x0, ξ)

(
ξn − i|ξ′|
ξn + i|ξ′|

)s−∆(x0)−ν/2+σ(x0)

×B0
apr

(
1
2π

log
ξn − i|ξ′|
ξn + i|ξ′|

)
g+(x0, ξ),(1.65)
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where under the sum s−∆(x0)− ν

2
+σ(x0) of vectors ∆, σ (see (1.54)) and the scalar

s− ν

2
is meant (s− δ1 − ν

2
+ σ1, . . . , s− δ` − ν

2
+ σN ).

Due to estimates (1.54) g±1
− (x0, ·), g±1

+ (x0, ·) ∈ M
(0)
p (IRn) (see Theorem 1.1); there-

fore the convolution operators Wg−1
− (x0,·) = r+g−1

− (x0, D) and Wg+(x0,·) = r+g+(x0, D)

are invertible in IHI0,m
p (IRn

+) (see (1.6) and Lemma 1.2) with the inverses r+g−(x0, D)
and r+g−1

+ (x0, D), respectively.
The convolution operator r+[ζ(D)]s−∆− ν

2 +σBapr (D) with the symbols

ζ(ξ) :=
ξn − i|ξ′|
ξn + i|ξ′| , Bapr

(ξ) = B0
apr

(
1
2π

ξn − i|ξ′|
ξn + i|ξ′|

)
, ξ ∈ IRn

is bounded in the space IHI0,m
p (IRn

+) due to Theorems 1.1, 1.19.iii and to Lemma 1.14.
From (1.65) and (1.6) we find

r+ã∞pr(x0, D) = r+g−1
− (x0, D)r+[ζ(D)]s−∆− ν

2 +σBapr (D)r+g+(x0, D)(1.66)

and since r+g−1
− (x0, D), r+g+(x0, D) are invertible, invertibility of (1.66) in IHI0,m

p (IRn
+)

is equivalent with the invertibility of

r+[ζ(D)]s−∆− ν
2 +σBapr (D) : IHI0,m

p (IRn
+) −→ IHI0,m

p (IRn
+).(1.67)

The operator A := r+[ζ(D)]s−δ− ν
2 +σBapr (D) is upper triangular with scalar opera-

tors r+[ζ(D)]s−δj− ν
2 +σj , j = 1, . . . , N on the main diagonal (we remind that Bapr (D)

has identities on the main diagonal ). Invertibility of these scalar operators ensure
invertibility of A.

First let us suppose conditions (ii) of the theorem fulfilled. Due to (1.6) the operator

r+[ζ(D)]s−δj− ν
2 = r+(Dn − i|D′|)s−δj− ν

2 r+(Dn + i|D′|)−s+δj+
ν
2(1.68)

r+[ζ(D)]s−δj− ν
2 : IHI0,m

p (IRn
+) −→ IHI0,m

p (IRn
+)

is formally invertible and the operator

(r+[ζ(D)]s−δj− ν
2 )−1 := r+(Dn + i|D′|)s−δj− ν

2 χ+(Dn − i|D′|)−s+δj+
ν
2(1.69)

is the formal inverse to (1.68). It remains to prove that (1.69) is bounded in IHI0,m
p (IRn

+)
for j = 1, . . . , N .

Due to Theorem 1.13 invertibility is equivalent to the boundedness of the operators

θ+I : IHIs−δj− ν
2 ,m(IRn) −→ IHIs−δj− ν

2 ,m(IRn) for j = 1, . . . , N ,

which follow from Lemma 1.14 due to conditions (1.52) provided
1
p
6= s−Re δj(x′)− ν

2
(cf. condition (iii) of Theorem 1.21).

The explicit inverse to r+Bapr (D) see in Remark 1.28.



Chkadua & Duduchava , PsDOs on manifolds with boundary 27

By a standard arguments it can be proved that if the integer σj 6= 0 in (1.68),
then this operator would have either infinite dimensional kernel (provided σj < 0)
or infinite dimensional co–kernel (provided σj > 0), which is incompatible with the
Fredholm criteria we look for (see [Du1, § 4.4]).

The last step is to prove that the conditions s − Re δj(x′) − ν

2
6= 1

p
(j = 1, . . . , N)

are necessary.

For this we note, that if s−Re δj(x′)− ν

2
=

1
p

for at least one 1 ≤ j ≤ N , then the

operators A±ε := r+[ζ(D)]s−δj− ν
2±ε for sufficiently small ε > 0 is close (by norm) to

A0 := r+[ζ(D)]s−δj− ν
2 and has different partial indices: 0 for A−ε and +1 for A+ε.

If we assume A0 is Fredholm, the same holds for A±ε, which is a contradiction,
because A−ε is Fredholm as proved above, whereas A+ε is not.

The last claim about the kernel and the index follows from [DNS2, Lemma 19] since
a(x, D) has one and the same regulariser in all spaces where it is Fredholm. 2

1.6. Hölder spaces

Let 0 < ν ≤ 1 and Hν(IR) denote the space of Hölder continuous functions on IR
endowed with the norm

‖ϕ
∣∣Hν(IR)‖ := sup

t∈IR
|ϕ(t)|+ sup

t1,t2∈IR
t1 6=t2

|ϕ(t2)− ϕ(t1)|∣∣∣∣
t2

t2 + i
− t1

t1 + i

∣∣∣∣
ν .

Norm can also be represented in two following forms:

‖ϕ
∣∣Hν(IR)‖ = sup

t∈IR
|ϕ(t)|+ sup

t1,t2∈IR
t1 6=t2

|ϕ(t2)− ϕ(t1)|∣∣∣∣
1

t2 + i
− 1

t1 + i

∣∣∣∣
ν

= sup
t∈IR

|ϕ(t)|+ 2 sup
t1,t2∈IR
t1 6=t2

|ϕ(t2)− ϕ(t1)|∣∣∣∣
t2 − i

t2 + i
− t1 − i

t1 + i

∣∣∣∣
ν .(1.70)

The space Hν(IR) differs from Cν(IR) (see § 1.1) since IR is not compact; for a
compact curve Γ the spaces Hν(Γ) and Cν(Γ) are isomorphic.

The spaces Hν(IR) and Hν(Γ0) = Cν(Γ0), where Γ0 = {z ∈ C : |z| = 1} is the unit
circle, are isomorphic:

$∗ : Hν(IR) −→ Hν(Γ0) , $∗ϕ(z) := ϕ

(
i
1 + z

1− z

)
, z ∈ Γ0 .(1.71)

The inverse isomorphism reads

$−1
∗ ψ(t) := ψ

(
t− i

t + i

)
, t ∈ IR .
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In fact,

‖$∗ϕ
∣∣Hν(Γ0)‖

= sup
z∈Γ0

∣∣∣∣ϕ
(

i
1 + z

1− z

)∣∣∣∣ + sup
z1,z2∈Γ0

z1 6=z2

∣∣∣∣ϕ
(

i
1 + z2

1− z2

)
− ϕ

(
i
1 + z1

1− z1

)∣∣∣∣
|z2 − z1|ν

= sup
t∈IR

|ϕ(t)|+ sup
t1,t2∈IR
t1 6=t2

|ϕ(t2)− ϕ(t1)|∣∣∣∣
t2 − i

t2 + i
− t1 − i

t1 + i

∣∣∣∣
ν

and, due to (1.70),

‖ϕ
∣∣Hν(IR)‖ ≤ ‖$∗ϕ

∣∣Hν(Γ0)‖ ≤ 2‖ϕ
∣∣Hν(IR)‖ .

Lemma 1.22. The Hilbert transform

HIRϕ(t) :=
1
πi

∞∫

−∞

ϕ(τ)dτ

τ − t
(1.72)

is bounded in Hν(IR) and in Hν
0(IR) := {ϕ ∈ Hν(IR) : ϕ(∞) = 0} provided 0 < ν < 1.

Proof. The Cauchy singular integral operator

SΓ0ψ(z) :=
1
πi

∫

Γ0

ψ(ζ)dζ

ζ − z

is bounded in Hν(Γ0) for 0 < ν < 1 by the Privalov’s theorem (see [GK1, MP1,
Mu1]). Under the isomorphism (1.71)) the transformed operator $−1

∗ SΓ0$∗ acquires
the form

$−1
∗ SΓ0$∗ϕ(t) =

1
πi

∞∫

−∞

ϕ(τ)
τ − i

τ + i
− t− i

t + i

2idτ

(τ + i)2
=

1
πi

∞∫

−∞

t + i

τ + i

ϕ(τ)dτ

τ − t

= HIRϕ(t)−K1ϕ , K1ϕ :=
1
πi

∞∫

−∞

ϕ(τ)dτ

τ + i
.

Since one–dimensional operator K1 is bounded in Hν(IR) → C ⊂ Hν(IR), the operator
HIR is bounded in Hν(IR).

Boundedness in the space Hν
0(IR) is a consequence of the equalities:

Hν(IR) = {const}+̇Hν
0(IR) , HIRc = 0 for c = const . 2

For a positive µ > 0, µ = m + ν, m ∈ IN, 0 < ν ≤ 1 we consider the following
Banach algebra

Hµ(IR) := {ϕ ∈ Cm(IR) : (t + i)k∂k
t ϕ ∈ Hν(IR), k = 0, 1, . . . , m} ,
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endowed with the norm

‖ϕ∣∣Hµ(IR)‖ :=
m∑

k=0

‖(t + i)k∂k
t ϕ

∣∣Hν(IR)‖ .

If ϕ ∈ Hµ(IR) by sending in (1.70) t1 → 0 and setting t2 = t ∈ IR we get

∂k
t [ϕ(t)− ϕ(∞)] = O (|t + i|−ν−k

)
, k = 0, 1, . . . , [µ] = m.(1.73)

The next lemma states a certain inverse estimates to (1.73).

Lemma 1.23. Let 0 < ν ≤ 1, ϕ ∈ Cm(IR) and

Ck,ν := sup
t

∣∣|t + i|k+ν∂k
t [ϕ(t)− ϕ(∞)]

∣∣ < ∞ for k = 0, 1, ...,m .

Then ϕ ∈ Hm−1+ν(IR) and ‖ϕ∣∣Hm−1+ν(IR)‖ ≤ M
m∑

k=0

Ck,ν , where M =const is inde-

pendent of ϕ.
If ϕ ∈ Hm+ν

0 (IR) and

∂k
t b(t) = O (|t + i|−k

)
for k = 0, 1, ...m ,

then bϕ ∈ Hm+ν
0 (IR).

Proof. To prove the first part of the lemma by the definition of Hm−1+ν(IR) we
need to check that ϕk(t) := (t + i)k∂k

t ϕ(t) belong to Hν(IR) for k = 0, . . . ,m− 1 and
the norms can be estimated with constants C0, . . . , Cm.

For the proof we need the following inequalities from [Mu1, § 5])

(x + y)σ ≤ (xσ + yσ) ≤ 21−σ(x + y)σ , 0 < σ ≤ 1 ,

|xσ − yσ| ≤ |x− y|σ , x 6= y , x, y ∈ [0,∞) ,(1.74)

which are easy to check directly.
Let t1, t2 ∈ [0,∞); applying (1.74), we proceed as follows

|ϕk(t2)− ϕk(t1)| =
∣∣∣∣∣∣

t2∫

t1

∂τϕk(τ)dτ

∣∣∣∣∣∣
≤

t2∫

t1

∣∣∣k(τ + i)k−1∂k
τ ϕ(τ)

+(τ + i)k∂k+1
τ ϕ(τ)

∣∣∣dτ ≤ (kCk,ν + Ck+1,ν)

t2∫

t1

|τ + i|−1−νdτ

≤ (kCk,ν + Ck+1,ν)

t2∫

t1

(τ2 + 1)−
1+ν
2 dτ ≤ 2−

ν+1
2 (kCk,ν + Ck+1,ν)

t2∫

t1

(τ + 1)−1−νdτ

As an example of the function b(t) can be taken (t + i)iµ, µ ∈ IR. A similar assertion is proved
in [Mu1, Chapt.1, § 6] for the functions on a smooth curve when m = 1.



30 Math. Nachr. (1998)

≤ C ′k,ν

∣∣(t2 + 1)−ν − (t1 + 1)−ν
∣∣ = C ′k,ν

[(t2 + 1)ν − (t1 + 1)ν ]

[(t22 + 1)(t21 + 1)]
ν
2

≤ C ′k,ν

|t2 − t1|ν
[|t2 + i||t1 + i|]ν = C ′k,ν

∣∣∣∣
t2

t2 + i
− t1

t1 + i

∣∣∣∣
ν

,

where

C ′k,ν :=
2−

ν+1
2 (kCk,ν + Ck+1,ν)

ν
.

Similar inequality holds if t1, t2 ∈ (−∞, 0].
Next we have to consider the cases when t1 and t2 have different signs. Without loss

of generality we can assume t2 > 0 and t1 < 0; since ϕ(t) is continuous at t = 0 and
at t = ∞ (which means lim

t→−∞
ϕ(t) = lim

t→+∞
ϕ(t) = ϕ(∞)), applying (1.74), we find:

|ϕk(t2)− ϕk(t1)| = |ϕk(t2)− ϕk(t0)|+ |ϕk(t0)− ϕk(t1)|

≤ C ′k,ν

∣∣∣∣
t2

t2 + i
− t′0

∣∣∣∣
ν

+ C ′k,ν

∣∣∣∣t′0 −
t1

t1 + i

∣∣∣∣
ν

≤ 21−νC ′k,ν

(∣∣∣∣
t2

t2 + i
− t′0

∣∣∣∣ +
∣∣∣∣t′0 −

t1
t1 + i

∣∣∣∣
)ν

,

where

t′0 := lim
t→t0

t

t + i
=

{
0 for t0 = 0 ,

1 for t0 = ∞ ,
t0 :=

{
0 for t2 − t1 ≤ 2 ,

∞ for t2 − t1 > 2 .

Let t2 − t1 ≤ 2, then t′0 = 0 and

|ϕk(t2)− ϕk(t1)| ≤ 21−νC ′k,ν

(
t2

|t2 + i| −
t1

|t1 + i|
)ν

≤ 21−νC ′k,ν

(
t2(t21 + 1)

1
2 − t1(t22 + 1)

1
2

|t2 + i||t1 + i|

)ν

≤ 21−νC ′k,ν

(
t2(−t1 + 1)− t1(t2 + 1)

|t2 + i||t1 + i|
)ν

≤ 21−νC ′k,ν

(
t2 − t1 − 2t2t1
|t2 + i||t1 + i|

)ν

≤ 21−νC ′k,ν

(
t2 − t1 + (t2 − t1)2

|t2 + i||t1 + i|
)ν

≤ 21−νC ′k,ν

(
3(t2 − t1)

|t2 + i||t1 + i|
)ν

≤ 21−ν3νC ′k,ν

∣∣∣∣
t2

t2 + i
− t1

t1 + i

∣∣∣∣
ν

.

If 2 < t2 − t1 then t′0 = 1 and

|ϕk(t2)− ϕk(t1)| ≤ C ′k,ν

(|t2 + i|− ν
2 + |t1 + i|− ν

2
)

≤ C ′k,ν

(
(t21 + 1)

ν
2 + (t22 + 1)

ν
2

|t2 + i|ν |t1 + i|ν
)
≤ C ′k,ν

(
(t2 + 1)ν + (−t1 + 1)ν

|t2 + i|ν |t1 + i|ν
)

≤ 21−νC ′k,ν

(
t2 − t1 + 2
|t2 + i||t1 + i|

)ν

≤ 21−νC ′k,ν

(
2(t2 − t1)

|t2 + i||t1 + i|
)ν

≤ 2C ′k,ν

∣∣∣∣
t2

t2 + i
− t1

t1 + i

∣∣∣∣
ν

.
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The proved inequalities can be summarised as follows

|ϕk(t2)− ϕk(t1)| ≤ 12
ν

(kCk,ν + Ck+1,ν)
∣∣∣∣

t2
t2 + i

− t1
t1 + i

∣∣∣∣
ν

.(1.75)

Thus, ϕ ∈ Hm−1+ν(IR) and ‖ϕ
∣∣Hm−1+ν(IR)‖ ≤ M

m∑
k=0

Ck,ν .

Let us prove the second assertion. We have to prove that

ψk ∈ Hν(IR), ψk(t) := (t + i)k∂k[b(t)ϕ(t)] for k = 0, 1, . . . ,m .

Since

ψk(t) =
k∑

j=0

bj(t)ϕk−j(t) , bj(t) := (t + i)j∂jb(t) , ϕj(t) := (t + i)j∂jϕ(t) ,

the claim has to be proved only for m = 1: ϕk−j ∈ Hν
0(IR) and ∂l

tbj(t) = 0
(|t + i|−l

)
for l = 0, 1 imply bjϕk−j ∈ Hν

0(IR) and, finally ψk ∈ Hν
0(IR).

Due to isomorphism (1.71) it suffices to prove ae∗(bϕ) = ae∗bae∗ϕ ∈ Hν
0(Γ0). Since

ae∗ϕ ∈ Hν
0(Γ0) , ae∗ϕ(1) = ϕ(∞) = 0 , ae∗b(ζ) = O(1) as ζ → 1 ,

∂ζae∗b(ζ) = ∂ζb

(
i
1 + ζ

1− ζ

)
= (∂tb)

(
i
1 + ζ

1− ζ

)[
i

1
1− ζ

+ i
1 + ζ

(1− ζ)2

]

= O
(∣∣∣∣i

1 + ζ

1− ζ
+ i

∣∣∣∣
−1 ∣∣∣∣

2i

(1− ζ)2

∣∣∣∣
)

= O (|1− ζ|−1
)

as ζ → 1 ,

conditions of the assertion in [Mu1, § 6.10] are fulfilled and the inclusion ae∗(bϕ) =
ae∗bae∗ϕ ∈ Hν

0(IR) follows. 2

Corollary 1.24. If 0 < µ1 ≤ µ2, the embedding Hµ2(IR) ⊂ Hµ1(IR) is continuous.

Proof. The claim follows from the foregoing Lemma 1.23 and inequality (1.82). 2

Rational functions

r`(t) =
∑

|k|≤`

ck

(
t− i

t + i

)k

, t ∈ IR , ck ∈ C(1.76)

belong to allHµ(IR) (see Lemma 1.23) and let
◦
Hµ(IR) denote the sub-algebra ofHµ(IR)

obtained by closing the algebra of rational functions (1.83). The algebra
◦
Hµ(IR) is

rationally dense by the definition in [BG1] (see also [CG1]).

In [Ta1, § 1.3.4] the sub-algebra
◦
Hµ(IR) is characterised for 0 < µ < 1 (the same

holds for all non–integer µ ∈ IR+ \ IN0) as follows: ϕ ∈ ◦
Hµ(IR) iff

lim
ε→0

sup
|t′−t|<ε

t′ 6=t

|ϕ(t′)− ϕ(t)|∣∣∣∣
t′

t′ + i
− t

t + i

∣∣∣∣
ν = 0
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uniformly for all t ∈ IR ∪ {∞}.

Lemma 1.25. If 0 < µ = m + ν < µ′ = m′ + ν′, m,m′ ∈ IN0, 0 < ν, ν′ < 1, then
the embedding Hµ′(IR) ⊂ ◦

Hµ(IR) is continuous and dense.

If ϕ ∈ ◦
Hµ

0 (IR) and

∂k
t b(t) = O (|t + i|−k

)
for k = 0, 1, ...m ,

then bϕ ∈ ◦
Hµ

0 (IR).

Proof. It is known that Cν′(Γ0) ⊂
◦

C ν(Γ0) provided 0 < ν < ν′, where
◦

C ν(Γ0) is
obtained by closing rational functions

∑

|k|≤`

ckζk in Cν(Γ0) (see [Mu1], [Ta1, § 1.3.4].

The claimed inclusion Hν′(IR) ⊂ ◦
Hν(IR) (for the case m = m′ = 0) follows automati-

cally if isomorphism (1.71) is applied, because the rational functions on the axes r`(t)
(see (1.76)) and on the unit circle are related via the isomorphism:

(ae∗r`)(ζ) =
∑

|k|≤`

ckζk .

Now let m = 1, 2, . . ., ϕ ∈ Hµ′(IR) and ϕm(t) = (t + i)m∂m
t ϕ(t). By the definition

of the space ϕm ∈ Hν′(IR) and as we already noted for arbitrary ε > 0 there exists a
rational function

rm,ε(t) =
∑

|j|≤N

cm,j,ε

(
t− i

t + i

)j

(cf. (1.76)) such that
‖ϕm − rm,ε

∣∣Hν(IR)‖ < ε .(1.77)

We can assume that rm,ε(∞) = ϕm(∞) since otherwise we can take r̃m,ε(t) :=
ϕm(∞)− [rm,ε(t)− rm,ε(∞)] and find

r̃m,ε(∞) = ϕ(∞) ,

‖ϕm − r̃m,ε

∣∣Hν(IR)‖ ≤ ‖ϕm − rm,ε

∣∣Hν(IR)‖+ |ϕm(∞)− rm,ε(∞)| < 2ε .

Since µ > 1 due to Corollary 1.24 ϕ ∈ H1(IR), ϕ(∞) exists and is finite; then

rε(t) = rm,ε(∞) +

t∫

−∞
dτm−1

τm−1∫

−∞
· · ·

τ2∫

−∞
dτ1

τ1∫

−∞

r0
m,ε(τ)dτ

(τ + i)m

= rm,ε(∞) +

t∫

−∞
dτm−1

τm−1∫

−∞
· · ·

τ2∫

−∞

r0
m,ε(τ)dτ

(τ + i)m

τ2∫

τ

dτ1

= rm,ε(∞) +

t∫

−∞
dτm−1

τm−1∫

−∞
· · ·

τ2∫

−∞
(τ2 − τ)

r0
m,ε(τ)dτ

(τ + i)m
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= · · · = rm,ε(∞) +

t∫

−∞

(τ − t)m−1

(m− 1)!
r0
m,ε(τ)dτ

(τ + i)m
,

where
r0
m,ε(t) := rm,ε(t)− rm,ε(∞) .

Easy to verify that rε is a rational function of the form (1.76).
Similarly,

ϕ(t) = ϕ(∞) +

t∫

−∞
dτm−1

τm−1∫

−∞
· · ·

τ2∫

−∞
dτ1

τ1∫

−∞

ϕ0(τ)dτ

(τ + i)m

= ϕ(∞) +

t∫

−∞

(τ − t)m−1

(m− 1)!
ϕ0(τ)dτ

(τ + i)m
, ϕ0(t) := ϕ(t)− ϕ(∞) .

Since ϕ(∞) = rm,ε(∞) we proceed as follows:

∣∣(t + i)k+ν∂k
t [ϕ(t)− rε(t)]

∣∣ =

∣∣∣∣∣∣
(t + i)k+ν

t∫

−∞
dτm−k−1 · · ·

τ1∫

−∞

ϕ0(τ)− r0
m,ε(τ)

(τ + i)m
dτ

∣∣∣∣∣∣

≤ |t + i|k+ν sup
τ

∣∣ϕ0(τ)− r0
m,ε(τ)

∣∣δ
t∫

−∞
dτm−k−1 · · ·

τ1∫

−∞

∣∣ϕ0(τ)− r0
m,ε(τ)

∣∣1−δ

(τ + i)m
dτ

≤ M1|t + i|k+ν sup
τ
|ϕ(τ)− rm,ε(τ)|δ

t∫

−∞
dτm−k−1 · · ·

τ1∫

−∞
|τ + i|(δ−1)ν′−mdτ

≤ M2ε
δ|t + i|k+ν

t∫

−∞
dτm−k−1 · · ·

τ1∫

−∞
|τ + i|−ν−mdτ ≤ M2ε

δ(1.78)

for k = 0, 1, . . . , m− 1, where

0 < δ := 1− ν

ν′
< 1 and (1− δ)ν′ = ν .

Recalling the norm estimate from Lemma 1.23 and applying inequalities (1.77) and
(1.78) we find

‖ϕ− rε

∣∣Hµ(IR)‖ ≤ M

m−1∑

k=0

sup
t
||t + i|k+ν∂k[vf(t)− rε(t)]|+ M‖ϕm − rm,ε

∣∣Hν(IR)‖

≤ M [mM2ε
δ + ε]

and the convergence rε → ϕ in Hµ(IR) as δ → 0 is proved.
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The second claim follows from the proved one and the second claim of Lemma 1.23.
2

Lemma 1.26. If µ ∈ IR+ \ IN0 (µ = m + ν, m ∈ IN0, 0 < ν < 1), then Hµ(IR) and
◦
Hµ(IR) are decomposable Banach algebras, i.e. the Hilbert transform HIR is bounded
in these algebras.

Proof. Boundedness in
◦
Hµ(IR) is a consequence of boundedness in

◦
Hµ′(IR) with

0 < µ < µ′ (see Lemma 1.25). Applying integration by parts we get the following

(t + i)k∂k
t HIRϕ = HIR(t + i)k∂k

t ϕ .

Applying Lemma 1.22 we proceed as follows:

‖HIRϕ
∣∣Hµ(IR)‖ =

m∑

k=1

‖(t + i)k∂k
t HIRϕ

∣∣Hν(IR)‖

=
m∑

k=1

‖HIR(t + i)k∂k
t ϕ

∣∣Hν(IR)‖ ≤ ‖HIR‖
m∑

k=1

‖(t + i)k∂k
t ϕ

∣∣Hν(IR)‖

= ‖HIR‖‖ϕ
∣∣Hµ(IR)‖ . 2

It is possible to define the algebra Hµ(IR) with the help of the Zygmund spaces
ZZµ(IR)

ZZµ(IR) := {ϕ ∈ C m(IR) : (t + i)k∂k
t ϕ ∈ ZZν(IR), k = 0, 1, . . . ,m} , µ = m + ν ,

and endow it with the norm

‖ϕ
∣∣ZZµ(IR)‖ :=

m∑

k=0

‖(t + i)k∂k
t ϕ

∣∣ZZν(IR)‖ .

Then spaces ZZµ(IR) and Hµ(IR) are the same for non integer µ ∈ IR+ \ IN0 and
boundedness of the Hilbert transform HIR in ZZµ(IR) holds even for an integer µ =
1, 2, . . ., which is not the case for Hm(IR).

1.7. Factorization of symbols

Let M, apr(x′, ξ), a0 = a0(x′) be as in Subsection 1.5, λ1(x′), . . . , λ`(x′) be the
eigenvalues of a0(x′) (see (1.51)) and m1, . . . , m` be their algebraic multiplicities, i.e.

the lengths of the corresponding chains of associated vectors
∑̀
j=1

mj = N . Then a0(x′)

has the following decomposition

a0(x′) = K0(x′)Japr (x
′)K−1

0 (x′) = K(x′)ΛaprB
0
apr

(1)K−1(x′) ,

detK0(x′) 6= 0, detK(x′) 6= 0, x′ ∈ ∂M(1.79)
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(see (1.57)), where the matrices B0
apr

and Japr
(x′) are quasi–diagonal

Ja0(x
′) := Λapr

(x′) + Hapr
= diag {λ1(x′)Im1 + Hm1 , . . . , λ`(x′)Im`

+ Hm`
}

B0
apr

(t) := diag {Bm1(t), . . . , Bm`
(t)} , t ∈ C ,

Bm(z) := exp(zHm), z ∈ C ,

Λapr
(x′) := diag {λ1(x′)Im1 , . . . , λ`(x′)Im`

} ,

Hapr
:= diag {Hm1 , . . . ,Hm`

} ;

Im is the identity and Hm is the nilpotent matrix Hm
m = 0:

Im :=




1 0 0 · · · 0 0
0 1 0 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1




m×m

, Hm :=




0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0




m×m

.

The first representation in (1.79) is known as the normal Jordan form and λIm +Hm

is the Jordan cell of the dimension m

λIm + Hm =




λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · λ 1
0 0 0 · · · 0 λ




m×m

Since Bm(z) = exp(zHm), z ∈ C and Hm is nilpotent, the exponent has a finite
expansion

Bm(z) := exp(zHm) := I +
m−1∑

k=1

z

k
Hk

m

=




1
z

1!
z2

2!
· · · zm−2

(m− 2)!
zm−1

(m− 1)!

0 1
z

1!
· · · zm−3

(m− 3)!
zm−2

(m− 2)!
· · · · · · · ·
0 0 0 · · · 1

z

1!
0 0 0 · · · 0 1




m×m

, z ∈ C .

The sets
{

B0
apr

(z)
}

z∈C
and {Bm(z)}z∈C are one parameter groups (see [Ar1, §§ 14–

23]) of matrix–operators and have the following properties:

B0
apr

(z1 + z2) = B0
apr

(z1)B0
apr

(z2) ,

B0
apr

(0) = IN , B0
apr

(−z) = {B0
apr

(z)}−1 ,(1.80)

{B0
apr

(z)}γ := exp(zγHapr ) = B0
apr

(γz) , z, γ ∈ C .
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According to the definition e.g. in [Ga1, § V.1]

b(x′) =
1

2πi
log a0(x′) :=

1
(2π)2

∫

Γ

[a0(x′)− zI]−1 log z dz,

where I is the identity matrix, Γ is a closed contour, circumventing all eigenvalues
λ1(x′), . . . , λ`(x′) of a0(x′) and leaving outside the negative real half–axes Re z ≤ 0.
We assume log z := log |z|+ iArgz, −π < Argz < π.

Here is the ”pure algebraic” definition of the above defined logarithm:

b(x′) :=
1

2πi
log a0(x′) :=

∞∑

k=0

(−1)k

k!
ak
0(x′) =

1
2πi

K(x′) log
[
Λapr

B0
apr

(1)
]
K−1(x′)

= K(x′)
{

∆(x′) +
1

2πi
Hapr

}
K−1(x′) , δj(x′) :=

1
2πi

log λj(x′) ,(1.81)

∆(x′) :=
1

2πi
log Λapr(x′) = diag

{
δ1(x′), . . . , δ1(x′)︸ ︷︷ ︸

m1 –times

, . . . , δ`(x′), . . . , δ`(x′)︸ ︷︷ ︸
m`–times

}
.

Introducing the notation

B±(t) := B0
apr

(
1

2πi
log(t± i)

)
,(1.82)

where the branch of the logarithm is fixed in the complex plane cut along the ray
{z ∈ C : arg z = γ0}, we find (cf. (1.80))

B0
apr

(
1

2πi
log

t− i

t + i

)
= B−(t)B−1

+ (t)

=
{

[B0
apr

(1)]−1 +O (|t− i|−1
)

if t → −∞ ,

IN +O (|t + i|−1
)

if t → +∞ .
(1.83)

1.8. Proof of Theorem 1.18

Since

apr(x′, ξ) = |ξ|νapr(x′, |ξ|−1ξ) = (ξn − i|ξ′|) ν
2 (ξn + i|ξ′|) ν

2 a0
pr(x

′, ξ) ,

a0
pr(x

′, ξ) := apr(x′, |ξ|−1ξ) , a0
pr(x

′, λξ) = a0
pr(x

′, ξ) , λ > 0(1.84)

we can suppose that ν = 0 and apr(x′, λξ) = apr(x′, ξ) itself is homogeneous of order
0.

Let

a∗(ω, t) = (t− i)∆B−(t)a1(ω, t)B−1
+ (t)(t + i)−∆,(1.85)

ω = |ξ′|−1ξ′ ∈ Sn−1 := {ω ∈ IRn−1 : |ω| = 1}, t = |ξ′|−1ξn ∈ IR,

a1(ω, t) = K−1a−1
pr (0, +1)apr(ω, t)K
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(we have dropped the variable x′ ∈ ∂M for simplicity). Next we prove that

ωα′∂α′
ω ∂k

t [a∗(ω, t)− IN ]jq = O[|t + i|Re [δj−δq ]+ε−k−1) = O[|t + i|δ0+ε−k−1)(1.86)

for all k ∈ IN0, α′ ∈ INn−1
0 , |α′| ≤ γ − 1, small ε > 0 and δ0 defined by the relations

(see (1.52))
δ0 := max

j,q=1,...,N
{Re (δj − δq)} < δ0 + 3ε < 1 .(1.87)

First let us prove that

ωα′∂k
t ∂α′

ω [a1(ω, t)− a1(0,±1)] = O(|t + i|−k−1) ,(1.88)

for |α′| ≤ γ − 1 , k ∈ IN0, where

a1(0,−1) = lim
ξn→−∞

a1(ξ′, ξn) = K−1a−1
pr (0,+1)apr(0,−1)K = ΛprB

0
pr(1)

a1(0, +1) = lim
ξn→+∞

a1(ξ′, ξn) = IN(1.89)

(see (1.51), (1.79), (1.85)).
a1(ω, t) is homogeneous of order 0, and a1(·,±1) ∈ Cγ(Sn−2); Taylor expansion

at t = ±∞ provides

a1(ω, t)− a1(0,±1) = a1(|t|−1ω,±1)− a1(0,±1)

=
n−1∑

j=1

ωj(∂ωj a1)(0,±1)|t|−1 +O(|t|−2) as t → ±∞.

For 0 < |α′| ≤ γ − 1 estimate (1.88) follows if we differentiate the foregoing identity.
The function a∗(ω, t) from (1.85) can be rewritten as follows (cf. (1.89))

a∗(ω, t) = a±2 (ω, t) + a±3 (ω, t) ,(1.90)
a±2 (ω, t) = (t− i)∆B−(t)[a1(ω, t)− a1(0,±1)]B−1

+ (t)(t + i)−∆ ,

a+
3 (ω, t) = (t− i)∆B−(t)B−1

+ (t)(t + i)−∆

=
(

t− i

t + i

)∆

B0
apr

(
1

2πi
log

t− i

t + i

)
,

a−3 (ω, t) = (t− i)∆B−(t)ΛaprB
0
apr

(1)B−1
+ (t)(t + i)−∆ .

If we apply (1.88), we get estimates for a±2 (ω, t)

ωα′∂α′
ω ∂k

t [a±2 (ω, t)]j,q = O(|t + i|Re (δj−δq)+ε−k−1)(1.91)
= O(|t + i|δ0+ε−k−1), k + |α′| ≤ γ , as |t| → ∞ ,

where ε > 0 and δ0 are defined in (1.87).
To prove a similar estimate for a±3 (ω, t) we note that according to the definition of

function (t± i)±∆ (see (1.52), (1.55))

(t− i)±∆(t + i)∓∆ =
(

t− i

t + i

)±∆

=
{

IN +O(|t + i|−1) as t → +∞,
Λ∓1

apr
+O(|t + i|−1) as t → −∞.

(1.92)
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Applying (1.83), (1.88), (1.89), (1.90), (1.92) we proceed as follows

ωα′∂α′
ω ∂k

t

[
a+
3 (ω, t)− IN

]
= ωα′∂α′

ω ∂k
t

[
(t− i)∆B−(t)B−1

+ (t)(t + i)−∆ − IN

]

= ωα′∂α′
ω ∂k

t

[(
t− i

t + i

)∆

B0
apr

(
1

2πi
log

t− i

t + i

)
− IN

]

= O(|t + i|−k−1) as t → +∞(1.93)

ωα′∂α′
ω ∂k

t

[
a−3 (ω, t)− IN

]

= ωα′∂α′
ω ∂k

t

[
(t− i)∆B−(t)Λapr

B0
apr

(1)B−1
+ (t)(t + i)−∆ − IN

]

= ωα′∂α′
ω ∂k

t

[
Λapr

B0
apr

(1)
(

t− i

t + i

)∆

B0
apr

(
1

2πi
log

t− i

t + i

)
− IN

]

= ωα′∂α′
ω ∂k

t

[
Λapr

B0
apr

(1)Λ−1
apr

B0
apr

(−1)− IN

]
+O(|t + i|−k−1)

= O(|t + i|−k−1) as t → −∞ ,(1.94)

because the diagonal matrices Λapr , (t± i)±∆ commute with the block–diagonal ma-
trices B±(t), B0

apr
(1) (the diagonal matrices are constant inside the blocks of the

block–diagonal ones) and B0
apr

(z1), B0
apr

(z2) commute as well (see (1.80)).
From (1.90), (1.91), (1.93), (1.94) we get (1.86) and, by virtue of Lemma 1.23,

a∗ ∈ Hm−δ0−ε(IR) ⊂ ◦
Hm−δ0−2ε(IR) for all m = 1, 2, ....

The elliptic matrix–function a∗ in the decomposable and rationally dense algebra
◦
Hm−δ0−2ε(IR) (see § 2) admits a factorization

a∗(t) = [a∗−(t)]−1

(
t− i

t + i

)σ

a∗+(t),(1.95)

σ = (σ1, . . . , σN ) ∈ ZZN , ZZ = {0,±1, . . .}

with factors [a∗−(t)]±1, [a∗+(t)]±1 which belong to
◦
Hm−δ0−2ε(IR) and have uniformly

bounded analytic continuations into the half–planes Im t < 0 and Im t > 0, respectively
(see [BG1, CG1]).

Since the limits a∗±(∞) and a∗(∞) = IN exist (see (1.73), from (1.95) and (1.86) we
find

[a∗−(∞)]−1a∗+(∞) = a∗(∞) = IN

and, without loss of generality, we can suppose a∗±(∞) = IN ; then (see (1.73))

∂k
t [a∗±(t)− IN ] = O (|t + i|δ0+2ε−k−1

)
as t →∞ .(1.96)

From (1.85) and (1.95), inserting ω = |ξ′|−1ξ′ and t = |ξ′|−1ξn we find the com-
ponents of the factorization (1.53) (we remind that ν = 0 and, therefore, g±(x′, ξ) =
a±pr(x′, ξ) in (1.53)):

a±pr(x
′, ξ) = a0

±(x′, |ξ′|−1ξ′, |ξ′|−1ξn),

a0
±(x′, ω, t) = (t± i)−∆B−1

± (x′, t)a∗±(x′, ω, t)B±(x′, t)(t± i)∆ã±(x′)
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= ã±(x′) + (t± i)−∆B−1
± (x′, t)[a∗±(x′, ω, t)− IN ]B±(x′, t)(t± i)∆ã±(x′) ,(1.97)

ã+(x′) := K−1(x′) , ã−(x′) := K−1(x′)a−1
pr (x′, +1) ,

Bapr
(ξ) := B0

apr

(
1

2πi
log

ξn − i|ξ′|
ξn + i|ξ′|

)
.

The theorem will be proved if we can prove the estimates

ωβ′∂β′
ω ∂k

t

(
[a0

+(ω, t)]±1
j,q − [ã+]±1

j,q

)
= O(|t + i|θ−k−1) ,

ωβ′∂β′
ω ∂k

t

(
[a0
−(ω, t)]±1

j,q − [ã−]±1
j,q

)
= O(|t + i|θ−k−1)(1.98)

for all j, q = 1, ..., N , k = 0, 1, ... and some 0 < θ < 1; concerning β′: |β′| = 0 if a(x, D)
is not Fredholm, |β′| ≤ γ − 1 if a(x,D) is Fredholm.

In fact, from (1.97) we find

ξj∂ξj ∂
βn

ξn
a+(ξ) = −

∑
k≤n−1

k 6=j

(∂ωk
∂βn

t a0
+)(|ξ′|−1ξ′, |ξ′|−1ξn)

ξ2
j ξk

|ξ′|βn+3

+(∂ωj ∂
βn

t a0
+)(|ξ′|−1ξ′, |ξ′|−1ξn)

ξj

|ξ′|βn+1
− (∂βn+1

t a0
+)(|ξ′|−1ξ′, |ξ′|−1ξn)

ξ2
j ξn

|ξ′|βn+3

and, due to (1.98),

|ξj∂ξj ∂
βn

ξn
a+(ξ)| ≤ M1

(∣∣i + |ξ′|−1ξn

∣∣−βn

|ξ′|βn
+

∣∣i + |ξ′|−1ξn

∣∣−βn−1|ξn|
|ξ′|βn+1

)
2M1|ξ|−βn .

By similar estimates
∣∣∣(ξ′)β′∂β

ξ a+(ξ)
∣∣∣ ≤ M2ξ|−βn , βn = 0, 1, ..., |β′| ≤ γ − 1,(1.99)

where again |β′| = 0 if a(x,D) is not Fredholm, |β′| ≤ γ−1 if a(x,D) is Fredholm.
From (1.99) we get estimates (1.54) (if a(x,D) is not Fredholm) and the inclusions

[a−pr]
±1, [a+

pr]
∓1 ∈ Rγ−1

hom,0(T ∗M) (if a(x, D) is Fredholm; we remind that we are
treating the case ν = 0).

First we will prove estimates (1.98) for β′ = 0, i.e. when a(x, D) is not Fredholm.
Consider, for definiteness, a0

+(t) = a0
+(ω, t). Other estimates are similar.

A typical entry of the matrix a0
+ is

(a0
+)jq(ω, t)− ã+ = (t + i)δq−δj

∑

l≤q

cjql

[
(a∗+)jl(ω, t)− δjl

]
[ln(t + i)]mlq ,(1.100)

where mqq = 0, δl = δj , δjl is the Kroneker’s symbol.
Invoking (1.73) we find

∂k
t

(
[a0

+(ω, t)]jq − [ã+]jq

)
= ∂k

t

(
(t + i)δq−δj

∑

l≤q

cjql(ω)[(a∗+)jl(ω, t)− δjl][ln(t + i)]mlq
)

=

{
O

(
(t + i)Re (δq−δj)+δ0+3ε−k−1

)
if Re δq > Re δj ,

O (
(t + i)δ0+3ε−k−1

)
if Re δq ≤ Re δj .
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From (1.95) we have

a∗+ − a∗− =
[
IN −

(
t− i

t + i

)σ]
a∗+ + [a∗− − IN ][a∗ − IN ] + a∗ − IN(1.101)

and applying (1.86), (1.96) we obtain

∂k
t [a∗+ − a∗−]jl(t) = O(|t + i|−k−1) + ∂k

t

N∑
r=1

{[a∗−]jr − δjr}[a∗ − IN ]rl

+O
(
|t + i|Re (δj−δl)+ε−k−1

)
=

N∑
r=1

O
(
|t + i|Re (δr−δl)+ε−1−k

)

= O
(
|t + i|δ+

l
+ε−1−k

)
, k = 0, 1, . . . ,

where δ+
j := max

q
{Re [δq − δj ]} = Re [δj∗ − δj ] for a certain 1 ≤ j ≤ n (note, that we

have inserted ∂l
t{[a∗−]jr(ω, t) − δjl} = O(|t + i|δ0+2ε−l−1) = O(|t + i|−l); cf. (1.96)).

Invoking Lemma 1.23 we conclude [a∗+ − a∗−]jl∈
◦
Hm−δ+

l
−2ε(IR) for all m = 1, 2, . . ..

The projections P±IR =
1
2
(I ± HIR) eliminate functions, analytic in the half planes

∓Im t < 0 (see [CG1, GK1, LS1]); hence

(a∗±)jl = ±P±IR[a∗+ − a∗−]jl ∈
◦
Hm−δ+

l
−2ε(IR)

and therefore (see (1.73) and cf. (1.96))

∂k
t

[
(a∗±)jl(ω, t)− IN

]
jl

= O
(
|t + i|δ+

l
+2ε−k−1

)
, k = 0, 1, . . . .

Inserting the obtained asymptotic for
[
(a∗−)jl(ω, t)− IN

]
jl

into (1.101) and again
invoking (1.95) we get more precise asymptotic

∂k
t [a∗+ − a∗−]jl(t) = O (|t + i|−k−1

)

+
N∑

r=1

O
(
|t + i|δ+

r +2ε−1+Re (δr−δl)+ε−k−1
)

+O
(
|t + i|Re (δj−δl)+ε−k−1

)

=
N∑

r=1

O
(
|t + i|Re (δr∗−δl)+3ε−k−2

)
+O

(
|t + i|Re (δj−δl)+ε−k−1

)

= O
(
|t + i|Re (δj−δl)+ε−k−1

)
, k = 0, 1, . . . ,

where δr∗ := δr + δ+
r .

Thus, [a∗+ − a∗−]jl ∈
◦
Hm−Re (δj−δl)−2ε(IR) for all m = 1, 2, . . . and we conclude, as

above, (a∗±)jl = ±P±IR[a∗+ − a∗−]jl∈
◦
Hm−Re (δj−δl)−2ε(IR). The latter yields (cf. (1.96))

∂k
t

[
(a∗±)jl(ω, t)− IN

]
jl

= O
(
|t + i|Re (δj−δl)+2ε−k−1

)
, k = 0, 1, . . . .
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By virtue of (1.100)

∂k
t [a0

+]jq(t) = O
(
|t + i|Re (δq−δj)+Re (δj−δl)+3ε−k−1

)
= O(|t + i|θ−k−1)

for all k = 0, 1, . . . since δl = δj (see (1.97)) and Re (δq − δj) + 3ε = θ < 1 (see (1.87)).
Now we will prove estimates (1.98) for β′ 6= 0, i.e. when a(x, D) is Fredholm.
If equation (1.49) is Fredholm for some p, µ, s and m; then the partial indices of

factorization (1.95) vanish

σ1(x′) = ... = σN (x′) = 0 for all x′ ∈ ∂M(1.102)

and components a∗±(x′, ω, t) of the factorization (1.95) depend on x′ ∈ ∂M and on
ω ∈ Sn−2. Conditions (1.102) ensure that [a±(x′, ω, t)]±1 satisfy the same condition
with respect to the variables x′ ∈ ∂M and ω ∈ Sn−2 as a∗(x′, ω, t), i.e. as [apr(x′, ω, t)
(see [Sb1]) and the inclusions [a−pr]

∓1, [a+
pr]

±1 ∈ Rγ−1
hom,0(T ∗M) follow.

1.9. Proof of Lemma 1.18

For the first claim of the Lemma we quote [La1, Theorem 2.10.2].
The pseudodifferential equation (1.49) with the strongly elliptic symbol a∗pr(x, ξ) is

Fredholm (see e.g. [DS1, Theorem 3.26], [DW1, Theorem 1.7] etc. for the case
µ = m = 0; the case µ 6= 0, m 6= 0 is similar). Therefore the partial indices vanish
(see (1.102) and (1.60)) and imply the inclusions [a−pr]

±1, [a+
pr]

∓1 ∈ Rγ−1,0
± ν

2
(T ∗M) as

in the foregoing theorem.
The remaining assertions are proved in [DSW1, Lemma A.6] as follows.
Since the matrices apr(ω,±1) are positive definite, there exist the square roots

[apr(ω, +1)]±
1
2 and the matrix

a1
pr(ω) := [apr(ω, +1)]

1
2 a0

pr(ω) [apr(ω, +1)]−
1
2

= [apr(ω, +1)]−
1
2 apr(ω,−1) [apr(ω, +1)]−

1
2 ,

due to similarity, has the common eigenvalues, the common eigenvectors and the
common Jordan chains of associated vectors with a0

pr(ω). On the other hand a1
pr(ω)

is self adjoint, i.e. is normal and. has no associated vectors as noted above; moreover,
K ∈ C∞(∂M). Let η(ω), . . . , ηN (ω) ∈ C N be eigenvectors corresponding to the
eigenvalues λ1(ω), . . . , λN (ω); then

a0
pr(ω)ηj(ω) = λjηj(ω), j = 1, . . . , N

and we get

λj(ω) =

(
a0

pr(y
′, 0, +1)ηj(ω), ηj(ω)

)
(
a0

pr(y′, 0,−1)ηj(ω), ηj(ω)
) > 0

because of the positive definiteness of apr(ω,±1). This implies (1.60). 2
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Remark 1.27. Let an elliptic symbol apr(x, ξ) have restricted smoothness apr ∈
R$,γ,m

hom,ν (T ∗M), which reads: apr(x, ξ) is positive homogeneous of order ν in ξ and

|(ξ′)β′∂α
x ∂β

ξ a0(x, ξ)| ≤ Mα,β |ξ|ν−βn , ξ ∈ IRn ,(1.103)

for all |α| ≤ $ |β′| ≤ γ , γ ≥ 1 , k = 1, . . . , m , m ≥ 2 .

Then for the components of factorization (1.53)–(1.54) we get the inclusions [a−pr]
∓1,

[a+
pr]±1 ∈ R$,γ−1,m−2

hom,± ν
2

(T ∗M).

Remark 1.28. The convolution operator r+Bapr
(D) (see (1.54)) (1.66)) is bounded

in both spaces H̃
(µ,s),m
p (IRn

+) and H
(µ,s),m
p (IRn

+) for all µ, s ∈ IR, 1 < p < ∞ and
m = 0, 1, ... due to Theorems 1.3, 1.19.iii and to Lemma 1.14, because

Bapr (ξ) := B0
apr

(
1

2πi
log

ξn − i|ξ′|
ξn + i|ξ′|

)
= B0

apr

(
− 1

2πi
log

ξn + i|ξ′|
ξn − i|ξ′|

)
= B−1

apr
(ξ′,−ξn)

(cf. (1.97)) has analytic extensions in both complex half–spaces (see Lemma 1.2).
The inverse to this operator can be written explicitly based on the factorization

Bapr (ξ) = B−1
− (ξ)B+(ξ) , B±(ξ) := B0

apr

(
− 1

2πi
log(ξn ± i|ξ′|)

)

(see (1.83)), on the properties (1.80) and on (1.6); namely

[
r+Bapr (D)

]−1 = B−1
+ (D)B−(D).(1.104)

In fact, the only property which needs to be verified is the boundedness of the in-
verse operator

[
r+Bapr (D)

]−1 in the spaces H̃
(µ,s),m
p (IRn

+) and H
(µ,s),m
p (IRn)+), which

follows since it is a formal inverse (see (1.6)) and r+Bapr
(D) is invertible, as proved

in Theorem 1.21 (we remind that Bapr (D) is upper triangular with identities on the
main diagonal).

Theorem 1.29. Let M+ := ∂M× IR+, a, b ∈ C∞(M) and

a∞(x′, ξn) = a(x′)〈ξn〉ν
(

ξn − i

ξn + i

)−∆

B0
apr

(
1

2πi
log

ξn − i

ξn + i

)
b(x′)

(see (1.79)–(1.80) for B0
apr

).
Then the corresponding pseudodifferential operator

a∞(x′, Dn) : ĨHI(∞,s),m
p (M+) −→ IHI(∞,s−ν),m

p (M+)(1.105)

with the symbol a∞(x′, ξn) is bounded.
The equation

a∞(x′, Dn)u = v, v ∈ IHI(∞,s−ν),m
p (M+)(1.106)



Chkadua & Duduchava , PsDOs on manifolds with boundary 43

has a unique solution u ∈ ĨHI(∞,s),m
p (M+) for all m ∈ IN0 provided a, b are elliptic

(non–degenerate) matrices and the conditions

1
p
− 1 < s− Re δj − ν

2
<

1
p

, j = 1, · · · , `

hold. The solution reads

u = b−1(x′)(Dn + i)−∆− ν
2 B+(Dn)θ+(Dn − i)∆−

ν
2 B−1

− (Dn)a−1(x′)v .

Proof. The proof follows word in word the proof of Theorem 1.21, but we will expose
a simpler version of the proof.

The variable x′ ∈ ∂M can be localised and the localised operator

a∞(x′0, Dn) : ĨHIs,m
p (IR+) −→ IHIs−ν,m

p (IR+)(1.107)

is a one–dimensional PsDO (a∞(x′, Dn) in (1.105) is invertible iff a∞(x′0, Dn) in
(1.107) are invertible for all x′0 ∈ ∂M; (see [Du1, Sec. 3.2]).

Further we apply the lifting (see [DS1, Sec. 3.1] and Theorem 1.13 above): a∞(x′0, Dn)
in (1.107) is invertible iff the lifted convolution operator

Wa∞ν,s(x′0,·) = a∞ν,s(x
′
0, Dn) : IHI0,m

p (IR+) −→ IHI0,m
p (IR+)

with the symbol

a∞ν,s(x
′
0, ξn) := (ξn − i)s−νa∞(x′0, ξn)(ξn + i)−s

= a(x′)
(

ξn − i

ξn + i

)s−∆− ν
2

B0
apr

(
1

2πi
log

ξn − i

ξn + i

)
b(x′)

is invertible.
Invertibility conditions of the convolution operator Wa∞ν,s(x′0,·) in the space Lp(IR+) =

IHI0,0
p (IR+) are known (see [Du2]) and coincide with the conditions of the theorem. As

for the spaces IHI0,m
p (IR+) with m 6= 0, the invertibility condition is independent of

m = 0, 1, 2, · · · since the inverse in Lp(IR+) is bounded in all spaces IHI0,m
p (IR+) and

therefore represents the inverse there. 2
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2. Asymptotic

Throughout this Section we assume

a ∈ Sγ
cl,ν(T ∗M) and γ ∈ IN0 γ ≥

[n

2

]
+ 2 . ν ∈ IR .

Further we suppose that a(x, ξ) has an elliptic homogeneous principal part, which
reads

det apr(x; ξ) 6= 0, x ∈M, ξ ∈ IRn \ {0}
(cf. (1.50)). The notations a0(x′), K(x′), Ja0(x′), λ1(x′), Λapr

(x′), δj(x′), ∆(x′),
Bapr

, Bm, B±(t), Hapr
, Hm, from Subsections 1.5 and 1.7 (cf. (1.50)–(1.52),

(1.55), (1.79)–(1.81)) will be used without further references.

2.1. Formulation of results

Let M be a compact n–dimensional C∞–smooth manifold with the C∞–smooth
boundary ∂M and consider a N ×N system of pseudodifferential equations

a(x; D)u = v, u ∈ ĨHI(∞,s),$
p (M) ,(2.1)

v ∈ IHI(∞,s−ν),$
p (M) , s ∈ IR , 1 < p < ∞ , $ = 0, 1, . . . .

Let us introduce a special local coordinate system (s.l.c.s.) ( x′, xn,+) ∈ M+ :=
∂M× IR+ on M in the neighbourhood of ∂M, where x′ ∈ ∂M, while xn,+ measures
the distance to the boundary ∂M.

The main purpose of the present section is to prove the following.

Theorem 2.1. Let equation (2.1) have a unique solution u ∈ ĨHI
(∞,s),$

p (M) for
each given v ∈ IHI(∞,s−ν),$

p (M). Then

1
p
− 1 < s− ν

2
− Re δj(x′) <

1
p

for all j = 1, · · · , ` .

Let further
ν

2
+ Re δj(x′) > −1, M ∈ IN0, M ≤ $, γ ≥

[n

2

]
+ M + 4,

K, δ1, . . . , δ` ∈ C∞(∂M) and v ∈ IHI(∞,s−ν+M+1),$
p (M). Then the solution has

the following asymptotic expansion

u(x′, xn,+) = K(x′) x
ν
2 +∆(x′)
n,+ B0

apr

(− 1
2πi log xn,+

)K−1(x′)
[
c0(x′)

+
M∑

k=1

xk
n,+

(2m0−1)k∑
j=0

ckj(x′) logj xn,+

]
χ0(xn,+) + ũM+1(x′, xn,+)

(2.2)

The inclusions K, δ1, . . . , δ` ∈ C∞(∂M) can be guaranteed if either K, δ1 ∈ C∞(∂M) or
δ1, . . . , δ` ∈ C∞(∂M) and dimensions of Jordan blocks in the block–diagonal matrix B0

apr
(1) are

stable mj = const , j = 1, . . . , `.
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with ũM+1 ∈ ĨHI(∞,s+M+1),$
p (M) and a suitable cut–off function χ0 ∈ C∞0 (IR+),

χ0(xn,+) = 1 for small xn,+ > 0 (cf. (1.55), (1.81) for notations ). Here B0
apr

(t)
is the block–diagonal matrix defined in (1.81) by the homogeneous principal symbol
of equation (2.1) and m0 = max{m1, . . . , m`} denotes the size of its maximal block.
N–vectors c00 := c0 and ckj belong to C∞(∂M), c0 is defined by the homogeneous
principal symbol, while others c01, c10, . . . are influenced by the full symbol of equation
(2.1).

Furthermore, for arbitrary µ,m, k ∈ IN0 the a priori estimates

C0

M∑
k=0

k∑
j=0

‖ckj |CM (∂M)‖+ C0‖ũM+1|ĨHI(∞,s+M+1),$
p M‖

≤ ‖u|ĨHI(∞,s),$
p (M)‖ ≤ C1‖v|IHI(∞,s−ν+M+1),$

p (M)‖ ,

‖v|IHI(∞,s−ν),$
p (M)‖ ≤ C2‖u|ĨHI(∞,s),$

p (M)‖

(2.3)

hold with some constants C0, C1, C2 which are independent of v.
If chains of associated vectors are trivial B0

apr
= I (e.g. if apr(x′, 0,±1) are positive

definite or the matrix a0(x′) in (1.51) is normal; see (1.56)) for all x′ ∈ ∂M, then
m0 = 1, logarithmic terms vanish from the leading term of the asymptotic expansion
and it acquires the form

u(x′, xn,+) = K(x′)x
ν
2 +∆(x′)
n,+ K−1(x′)

×
[
c0(x′) +

M∑

k=1

xk
n,+

k∑

j=0

ckj(x′) logj xn,+

]
χ0(xn,+) + ũM+1(x′, xn,+) .

If λ1 = . . . = λ` = λ are all equal, expansion takes simplest form

u(x′, xn,+) =
M∑

k=0

k∑

j=0

ckj(x′)x
ν
2 +∆(x′)+k
n,+ logjxn,+ χ0(xn,+) + ũM+1(x′, xn,+) .(2.4)

As we noted in the Introduction asymptotic (2.2) was derived in [Es1] and [Be1] for
p = 2; but even for the case p = 2 asymptotic (2.2) is more precise.

Remark 2.2.. The obtained estimate for the exponents of logarithmic terms (2m0−
1)k in (2.2) is rough. In the model case of the half–space we have estimate m0k (see
[DW1] and cf. Lemma 2.6 below).

As it was noted in [Be1] and as it is clear from the proof of Theorem 2.1 in § 2.3
(the case M = 0) even if K 6∈ C∞(∂M) the leading part of asymptotic (2.2) is the
same:

u(x′, xn,+) = K(x′) x
ν
2 +∆(x′)
n,+ B0

apr

(
− 1

2πi
log xn,+

)
K−1(x′)c0(x′)χ0(xn,+)

+K(x′)x
ν
2 +∆(x′)+1
n,+ ũ1(x′, xn,+)(2.5)

with “almost bounded” |xε
n,+ũ1(x′, xn,+)| ≤ C < ∞ for arbitrary ε > 0 but we can

not claim any more that the “stress intensity factor” is smooth c0 6∈ C∞(∂M).
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2.2. Auxiliary propositions

Let us remind that we use the notation from Subsections 1.5, 1.7.

Lemma 2.3. (cf. [Be1, (1.32)]). Let a ∈ Sγ
cl,ν(T ∗M) and

a∞(x′, ξn) := 〈ξn〉ν apr(x′,+1)b−1
− (x′, ξn)b+(x′, ξn) ,

b±(x′, ξn) := (ξn ± i)b(x′), b(x′) :=
1

2πi
log a0(x′) .

(2.6)

(cf. (1.81)). Then

lim
ξn→±∞

〈ξn〉−νa∞(x′; ξn) = apr(x′;±1) ,(2.7)

∂α′
x′ ∂

βn

ξn
[apr(x′; 0, ξn)− a∞(x′; ξn)] = O (|ξn|ν−βn−1

)
as |ξn| → ∞(2.8)

for all α′ ∈ INn−1
0 , βn ∈ IN0 (we remind, that apr(x′;±1) := apr(x′; 0,±1)).

Proof. The equalities
(

t + i

t− i

)µ

=
{

1 +O(〈t〉−1) as t → +∞,
exp(2πµi) +O(|t|−1) as t → −∞

(cf. (1.92)) and (1.51), (2.6), yield:

a∞(x′; ξn) = 〈ξn〉νapr(x′; +1)
(

ξn + i

ξn − i

) 1
2πi log a0(x

′)

= 〈ξn〉νapr(x′; +1)a0(x′) +O (〈ξn〉ν−1
)

= 〈ξn〉νapr(x′;−1) +O (〈ξn〉ν−1
)

as ξn → −∞ ,

a∞(x′; t) = 〈ξn〉νapr(x′; +1) +O (〈ξn〉ν−1
)

as ξn → +∞
and (2.7) is proved.

To prove (2.8) we apply the Taylor expansion to a∞(x′; ξn) at ξn → ±∞ separately:

a∞(x′; ξn) := apr(x′; +1)|ξn|ν〈ξ−1
n 〉ν

(
1 + iξ−1

n

1− iξ−1
n

) 1
2πi log a0(x

′)

=
M∑

j=0

a∞j (x′; sgn ξn)ξν−j
n + ã∞M+1(x

′; ξn) ,(2.9)

where

a∞j (x′;±1) =
1
j!

apr(x′; +1) lim
t→±0

∂j
t

[
〈t〉ν

(
1 + it

1− it

) 1
2πi log a0(x

′)

0

]

and the function gσ(t) :=
(

1 + it

1− it

)σ

0

is continuous on IR \ {0} except t = 0 but

including infinity gσ(−∞) = gσ(+∞); the branch of the analytic function gσ(z) on

Estimates (2.8) for α′ = 0, β = 0 are obtained in [Es1, (26.7)] (cf. also [Be1, (1.32)]). As proved
in [Sr1, Sect. 4] derivatives ∂α

x b(x, ξ) up to order |α| ≤ n must be estimated to get boundedness of
the corresponding operator b(x, D).
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the complex plane C \ [−i, i] cut along the interval [−i, i] on the imaginary axis, are
fixed as follows

gσ(±∞) = eπσi , gσ(−0) = 1 , gσ(+0) = e2πσi .

Obviously,
a∞0 (x′;±1) = apr(x′;±1)

(see (2.7)) and, therefore, a∞0 (x′; ξn) = apr(x′; 0, ξn). (2.8) is a consequence of (2.9) if
we take M = 0. 2

Lemma 2.4. Let M ∈ IN0, s ∈ IR+, ϕ ∈ IHI(∞,s+M+1),$
p (IRn) and

1
p
− 1 < s <

1
p

, θ+ :=
1
2
(1 + sgn xn), xn,+ := θ+xn.(2.10)

Then

θ+ϕ(x) =
M∑

k=0

(−i)k

k!
xk

n,+e−xn,+((Dn + i)kϕ(x′, 0) + ϕ̃M+1(x) ,

ϕ̃M+1(x) := (Dn + i)−M−1θ+(Dn + i)M+1ϕ(x)

(2.11)

and ϕ̃M+1 ∈ ĨHI(∞,s+M+1),$
p (IRn

+).

Proof. Let ϕ ∈ C∞0 (IRn) and
∨
ϕn (x′, tn) = (F−1

xn→tn
ϕ)(x′, tn). Then

1
2
(I − SIR)

∨
ϕn (x′, tn) =

1
2


 ∨

ϕn (x′, tn)− 1
πi

∞∫

−∞

∨
ϕn (x′, τn)dτn

τn − tn




=
M∑

k=0

1
2πi

∞∫

−∞

(τn − i)k

(tn − i)k+1

∨
ϕn (x′, τn)dτn

+
1
2


 ∨

ϕn (x′, tn)− (tn − i)−M−1

πi

∞∫

−∞

(τn − i)M+1 ∨
ϕn (x′, τn)dτn

τn − tn




=
M∑

k=0

1
2πi

∞∫

−∞

(τn − i)k

(tn − i)k+1

∨
ϕ (t′, τn)dτn

+
1
2
(tn − i)−M−1(I − SIR)(τn − i)M+1 ∨

ϕn (x′, tn);

if we apply Fn := Ftn→xn , we obtain (2.11). In fact,

Fn
1
2
(I − SIR)F−1

n ϕ = θ+ϕ

Fn(tn − i)±kF−1
n ϕ = (−1)kF−1

n (tn + i)±kFnϕ = (−1)k(Dn + i)±kϕ,
∞∫

−∞
(τn − i)k ∨

ϕn (x′, τn)dτn = (−1)k((Dn + i)kϕ)(x′, 0),
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Fn(tn − i)−k−1 =

∞∫

−∞

eixntndtn
(tn − i)k+1

=
1
k!

(ixn)k

∞∫

−∞

eixntndtn
tn − i

= 2πi
ik

k!
xk

n,+e−xn,+ .

For ϕ ∈ IHI(∞,s+M+1),$
p (IRn) we get the following inclusions successively: (Dn +

i)M+1ϕ ∈ IHI(∞,s),$
p (IRn) (see (1.27)) =⇒ ψ0 = θ+(Dn + i)M+1ϕ ∈ IHI(∞,s),$

p (IRn
+)=

ĨHI(∞,s),$
p (IRn

+) (see Lemma 1.14), =⇒ (Dn + i)−M−1ψ0∈ ĨHI(∞,s+m+1),$(IRn
+) (see

Theorem 1.13).
For ϕ ∈ IHI(∞,s+M+1)

p (IRn) the claim (2.11) follows since C∞0 (IRn) is dense in
IHI(∞,s+M+1)

p (IRn). 2

Remark 2.5. Let us note that if conditions of Lemma 2.4 holds, then

θ−ϕ(x) =
M∑

k=0

(−i)k

k!
xk

n,−exn,−((Dn − i)kϕ)(x′, 0) + ϕ̃M+1(x)

ϕ̃M+1 := (Dn − i)−M−1θ−(Dn − i)M+1ϕ ∈ ĨHI(∞,s+M+1),$
p (IRn

+).

Note that if we change Dn+i (Dn−i) in (2.11) (in the previous identity) by Dn−i (by
Dn + i, respectively), we can not claim any more ϕ̃M+1 ∈ ĨHI(∞,s+M+1,$)

p (IRn
+), since

from ψ0 ∈ ĨHI(∞,s),$
p (IRn

±) does not follow (Dn ± i)−M−1ψ0 ∈ ĨHI(∞,s+M+1),$
p (IRn

±).

Lemma 2.6. Let M+ = ∂M×IR+, s, ν ∈ IR, $ ∈ IN0, 1 < p < ∞, a ∈ Sγ
cl,ν(T ∗M)

and conditions of Theorem 1.21 be fulfilled.
If a∞(x′, ξn) is defined by (2.6) the equation

r+a∞(x′, Dn)u = f, f ∈ IHI(∞,s−ν),$
p (M+)(2.12)

has a unique solution in IHI(∞,s−ν)),$
p (M+), represented by the formulae

u = K(x′)a−1
+ (Dn)θ+a−(Dn)a0f,

a0(x′) := K−1(x′)[apr(x′,+1)]−1,

a−1
+ (Dn) := B−1

+ (Dn)(Dn + i)−
ν
2−∆(x′),

a−(Dn) := B−(Dn)(Dn − i)−
ν
2 +∆(x′).

(2.13)

where B±(ξn) are defined in (1.82).
For arbitrary M ∈ IN0, M ≤ $, f ∈ IHI(∞,s−ν+M+1)),$

p (M+) this solution has the
following asymptotic expansion

u(x′, xn,+) =
M∑

k=0

K(x′)x
ν
2 +∆(x′)+k
n,+ e−xn,+B0

apr

(
− 1

2πi
log xn,+

)
K−1(x′)ck(x′)

+ũM+1(x′, xn.+) , ũM+1 ∈ ĨHI(∞,s+M+1),$
p,comp (IRn

+)(2.14)

with

ck(x′) := K(x′)B0
apr

(
1

2πi
∂µ

)
e

πµ
2 i

Γ(−µ)
((Dn + i)ka−(Dn)a0(x′)f)(x′, 0),

µ := −ν

2
−∆(x′)− k − 1, ck ∈ C∞(∂M), k = 1, . . . , M
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and g(µ) := diag {g(µ1), · · · , g(µN )}.
Proof. From (1.92) we find

(
λ + i

λ− i

) 1
2πi log a0(x

′)

= e−
1

2πi log λ−i
λ+i log a0(x

′) = K(x′)
(

λ− i

λ + i

)−∆(x′)

e−
1

2πi log λ−i
λ+i HaprK−1(x′)

= K(x′)
(

λ− i

λ + i

)−∆(x′)

B0
apr

(
− 1

2πi
log

λ− i

λ + i

)
K−1(x′) .

Now the first assertions about solvability of equation (2.12) and solution formulae
(2.13) follow from Theorem 1.21 (cf. also Theorem 1.29).

Let us prove (2.14).
Applying (2.11) to (2.13) we proceed as follows:

u(x′, xn,+) =
M∑

k=0

K(x′)a−1
+ (x′, Dn)vk(xn,+)c1

k(x′) + ũM+1(x′, xn,+),(2.15)

vk(xn,+) := xk
n,+e−xn,+ , c1

k(x′) =
(−i)k

k!
(Dn + i)ka−(x′, Dn)a0(x′)f(x′, 0),

ũM+1 = (Dn + i)−M−1[a∞(x′, Dn)]−1(Dn + i)M+1f.

Since (Dn + i)M+1f ∈ IHI(∞,s−ν),$
p (M+) and due to Theorems 1.12, 1.13 and (1.27)

the operators

[a∞(x′, Dn)]−1 : IHI(∞,s−ν),$
p (M+) → ĨHI(∞,s),$

p (M+)

(Dn + i)−M−1 : ĨHI(∞,s),$
p (M+) → ĨHI(∞,s+M+1),$

p (M+)

are bounded, we get ũM+1 ∈ ĨHI(∞,s+M+1),$
p (M+).

Due to conditions (iii) of Theorem 1.21 from the Sobolev embedding theorem there
follows

c1
k =

(−i)k

k!
(Dn + i)k(Dn − i)−

ν
2−∆B−1

− (Dn)a0f ,(2.16)

c1
k ∈ IHI(∞,s+M+1−k− ν

2−∆),$
p (M+) ⊂ CM−k(IR+, C∞(∂M)) , k = 0, 1, . . . ,M ,

because s − ν

2
− Re∆ + 1 >

1
p
. Under the space IHI(∞,µ),$

p (M+) with a vector

µ = (µ1, · · · , µN ) is meant the vector space.
We proceed as follows

u(x′, xn,+) :=
M∑

k=0

K(x′)a−1
+ (x′, Dn)vk(xn,+)c1

k(x′) + ũM+1(x′, xn,+)

=
M∑

k=0

K(x′)(Dn + i)−
ν
2−∆B0

apr

(
1

2πi
log(Dn + i)

)
xk

n,+e−xn,+c1
k(x′)
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+ũM+1(x′, xn,+) =
M∑

k=0

K(x′)F−1
ξn→xn

[
(ξn + i)−

ν
2−∆B0

apr

(
1

2πi
log(ξn + i)

)

×Fxn→ξn
(xk

n,+e−xn,+)
]
c1
k(x′) + ũM+1(x′, xn,+)

=
M∑

k=0

K(x′)F−1
ξn→xn

[
(ξn + i)−

ν
2−∆−k−1B0

apr

(
1

2πi
log(ξn + i)

)]
c2
k(x′)

+ũM+1(x′, xn,+) , c2
k(x′) := ik+1k! c1

k(x′) ∈ C∞(∂M)(2.17)

because
Fxn→ξn

(xk
n,+e−xn,+) = ik+1k!(ξn + i)−k−1 .

By differentiating the formula

F−1
λ→t[(λ + iτ)µ] =

e
πµ
2 i

Γ(−µ)
t−µ−1
+ e−τt+ , τ > 0(2.18)

with Re µ < 0 (see [Es1, (2.36)]) in µ we find that

F−1
λ→t [(λ + iτ)µ logm(λ + iτ)] = t−1

+ e−τt+∂m
µ t−µ

+

e
πµ
2 i

Γ(−µ)

= t−µ−1
+ e−τt+(− log t+ + ∂µ)m e

πµ
2 i

Γ(−µ)
.

(2.19)

Applying this formula to (2.17) we get the following

u(x′, xn,+) =
M∑

k=0

K(x′)x
ν
2 +∆+k
n,+ e−xn,+

× exp
[

1
2πi

(− log xn,+ + ∂µ) Hapr

]
e

πµ
2 i

Γ(−µ)
c2
k(x′) + ũM+1(x′, xn,+)

=
M∑

k=0

K(x′)x
ν
2 +∆+k
n,+ e−xn,+B0

apr

(
− 1

2πi
log xn,+

)
K−1(x′)ck(x′)

+ũM+1(x′, xn,+), µ := −ν

2
−∆− k − 1,

ck(x′) = K(x′)(−2πi)−µB0
apr

(
1

2πi
∂µ

)
e

πµ
2 i

Γ(−µ)
c1
k(x′) ,

because B0
apr

(t) = etHapr , t ∈ C (cf. (1.80)). 2

Remark 2.7. Inserting the expansion of e−xn,+ into (2.14) and rearranging the
sums, the formula acquires the form

u(x′, xn,+) =
M∑

k=0

K(x′)x
ν
2 +∆(x′)+k
n,+ B0

apr

(
− 1

2πi
log xn,+

)
K−1(x′)c̃k(x′)

+ũM+1(x′, xn.+) , c̃k(x′) :=
k∑

`=0

(−1)k−`

(k − `)!
c`(x′) ,(2.20)
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where ũM+1 ∈ ĨHI(∞,s+M+1),$
p,comp (IRn

+) and c`(x′) is the same as in (2.14).

Lemma 2.8. For a given constant γ ∈ C and given functions {ak(x′, sgn t)}m
0 ,

ak(·,±1) ∈ C∞(∂M)), k = 0, 1, . . . , m, t ∈ IR the following representation holds

m∑

k=0

ak(x, sgn t)|t|γ logk |t| =
m+σ(γ)∑

k=0

bk(x′)(t− i0)γ logk(t− i0)

+
m+σ(γ)∑

k=σ(γ)

ck(x′)(t + i0)γ logk(t + i0) ,(2.21)

x′ ∈ ∂M, t ∈ IR, σ(γ) :=

{
0, if γ 6∈ ZZ,

1, if γ ∈ ZZ
,

where bk, ck ∈ C∞(∂M), k = 0, . . . , m + σ(γ).
Representation (2.21) is unique.

Proof.(cf. similar assertions in [Es1, Remark 10.3] and [Be1, p.438]). Since

(t± i0)γ =
{ |t|γ , for t > 0,

e±πγi|t|γ , for t < 0,
(2.22)

assuming (2.21) we find that

m∑

k=0

ak(x′,+1)|t|γ logk |t| =
m+σ(γ)∑

k=0

bk(x′)|t|γ logk |t|+
m+σ(γ)∑

k=σ(γ)

ck(x′)|t|γ logk |t| ,

m∑

k=0

ak(x′,−1)|t|γ logk |t| =
m+σ(γ)∑

k=0

bk(x′)e−πγi|t|γ(log |t| − πi)k +

+
m+σ(γ)∑

k=σ(γ)

ck(x′)eπγi|t|γ(log |t| − πi)k

if t > 0 and if t < 0, respectively.
Equating coefficients of logk |t| we get





ak(x′,−1) =
m+σ(γ)∑

j=k

(
j
k

)
(−πi)j−ke−πγibj(x′)+

+
m+σ(γ)∑

j=k

(
j
k

)
(πi)j−keπγicj(x′),

ck(x′) = ak(x′,+1)− bk(x′) , k = 0, . . . , m + σ(γ) ,
am+1(x′,±1) = 0 , c0(x′) = 0 if γ ∈ ZZ .



52 Math. Nachr. (1998)

The system can be rewritten as follows:





m+σ(γ)∑

j=k

(
j
k

)
(πi)j−k[e−πγi(−1)j−k − eπγi]bj(x′) = ãk(x′),

ck(x′) = ak(x′,+1)− bk(x′) , k = 0, . . . , m + σ(γ) ,
am+1(x′,±1) = 0 , c0(x′) = 0 if γ ∈ ZZ ,

where

ã`(x′) = a`(x′,−1)−
m∑

j=`

(
j
`

)
(πi)j−`eπγia`(x′, +1), ` = 1, . . . , m,

ãm+1(x′) = 0

are known C∞–functions.
For γ 6∈ ZZ the matrix of the system is (m + 1) × (m + 1) upper triangular matrix

with the entries −2i sin πγ 6= 0 on the principal diagonal j = k; therefore the system
has a unique solution which is a vector–function with C∞–smooth entries.

For γ ∈ ZZ the matrix of the system is (m+2)×(m+2) upper triangular matrix, but
the principal diagonal j = k vanishes; therefore the principal becomes the diagonal
k = j + 1 which has the entries 2

[
e−πγi(−1)− eπγi

]
= −4 cos πγ = 4(−1)γ+1. Since

unknowns are exactly m+1 again, the system has a unique solution which is a vector–
function with C∞–smooth entries. 2

Lemma 2.9. Let b ∈ S∞ν (T ∗M) have a compact support in the variable ξn:

b(x, ξ′, ξn) = 0 if |ξn| ≥ M, for all x ∈M, ξ′ ∈ IRn−1.(2.23)

Then b(x,D) is a smoothing operator

b(x,D) : ĨHI(∞,s),$
p (M) → C∞(M) for all s ∈ IR.(2.24)

Proof. In a local coordinate system

∂α
x b(x,D)u =

∑

0≤γ≤α

cγb(γ)(x,D)∂α′−γ′
x u,

b(γ)(x, ξ) := (−iξn)αn−γn(∂γ
xb)(x, ξ)

and, obviously, b(γ) ∈ S∞ν (T ∗M). Therefore ∂α
x b(x,D)u ∈ IHI(∞,s−ν)),$(M) for all

α ∈ INn
0 and this means b(x,D)u ∈ C∞(M). 2

2.3. Proof of Theorem 2.1

Solvability conditions of equation (2.1) follow from Theorem 1.21 and we skip over to
the proof of (2.2)–(2.4).

We will apply iteration, starting with the case M = 0. Some formulae, which will
be used repeatedly, will be derived for general M .
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Since the assertion is local we can suppose M is the half–space, but functions are
compactly supported. Then equation (2.1) can be written in the following equivalent
form

r+a∞(x′, Dn)u = v1
0 ,(2.25)

where v1
0 := v − ã1(x,D)u− [a0(x,D)− a∞(x, D)]u and we applied the expansion

a =
M∑

j=0

aj + ãM+1, aj ∈ Sγ
hom,ν−j(T ∗M) , ãM+1 ∈ Sγ

ν−M−1(T ∗M)(2.26)

of the classical symbol for M = 0.
Homogeneous symbols and kernels of corresponding PsDOs with negative order have

singularities at 0 and multiplying them by a function χn
0 ∈ C∞IR), where χn

0 (ξn) = 0
for |ξn| < 1 and χn

0 (ξn) = 1 for |ξn| > 2 we cut-off the singularity. Due to Lemma
2.9 the perturbation operator is smoothing [I − χn

0 (Dn)]ψ ∈ C∞(M) for arbitrary
ψ ∈ IHI(∞,µ),$

p [IRn) and we can ignore it. Although we will not write cut–off function,
we suppose its presence and can forget about singularities of symbols at ξn = 0.

Applying the Taylor formula at xn,+ = 0 and at ξ′ = 0, invoking Lemma 2.3, we
find

a(x′, xn,+; ξ)− a∞(x′, xn,+; ξ) = [a0(x′, xn,+; ξ′, ξn)− a0(x′, 0; ξ′, ξn)]
+[a0(x′, 0; ξ′, ξn)− a0(x′, 0; 0, ξn)] + [a0(x′, 0; 0, ξn)− a∞(x′; ξn)]
+ãν−1

1 (x; ξ) = ãν−1
2 (x′; ξ) + ãν−1

3 (x′; ξn) ,(2.27)

ãν−1
1 (x; ξ) = xn,+(∂xna0)(x′, θ0xn,+; ξ) , ãν−1

2 (x′; ξ) =
n−1∑

j=1

ξj(∂ξj a0)(x′; θjξ) ,

ãν−1
3 (x′; ξn) = a0(x′; 0, ξn)− a∞(x′; ξn) ,

where 0 < θj < 1. The inclusion ã(ν−1)
1 (x;D)u ∈ IHI(∞,s−ν+1),$

p (M) follows since
∂xna0 ∈ Sγ−1

ν (T ∗M) and the factor xn,+ increases the smoothness of the product by
1 (see the definition of the weighted spaces IHI(∞,s−ν+1),$

p (M) in § 1.3). The inclu-

sion ã(ν−1)
2 (x′;D)u ∈ IHI(∞,s−ν+1),$

p (M) follows since ∂ξj a0 ∈ Sγ
ν−1(T ∗M) and the

operator Dj = i∂xj , which corresponds to the symbol ξj , is bounded in the space
IHI(∞,s−ν),$

p (M) (does not changes it) provided j = 1, . . . , n−1 (see § 1.3). The inclu-

sion ã(ν−1)
3 (x′; Dn)u ∈ IHI(∞,s−ν+1),$

p (M) follows due to Lemma 2.3 (see (2.8)) and
to Theorem 1.12.

Thus, v1
0 ∈ IHI(∞,s−ν+1),$

p (M) (see (2.25)).
By invoking Lemma 2.6 and Remark 2.7 we derive expansion (2.2) for M = 0:

u = u0 + ũ1, ũ1 ∈ ĨHI
(∞,s+1),$

p (M) ,(2.28)

u0(x′, xn,+) = K(x′)x
ν
2 +∆(x′)
n,+ B0

apr

(
− 1

2πi log xn,+

)
K−1(x′)c0(x′)χ0(xn) , c0 ∈ C∞(∂M).
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Now let M ≥ 1 and suppose we have proved

u =
M−1∑
k=0

uk + ũM , uk(x′, xn,+) := K(x′)x
ν
2 +∆(x′)+k
n,+ B0

apr

(− 1
2πi log xn,+

)

×K−1(x′)
σ(k)∑
j=0

logj xn,+ckj(x′)e−xn,+ , ckj ∈ C∞(∂M) , c00(x′) = c0(x′) ,

ũM ∈ ĨHI
(∞,s+M),$

p (M) .

(2.29)

Next we shall prove that uk ∈ ĨHI(∞,s+k),$
p (M+) for k = 0, 1, . . .. In fact, for this it

obviously suffices to prove that

vk ∈ ĨHIs+k
p (IR+) where vk(t) := e−tt

ν
2 +∆+k logm t, t ∈ IR+(2.30)

for k = 0, 1 . . .. Since

(Dn + i)s+k : H̃s+k
p (IR+) −→ Lp(IR+)

is an isomorphism, we have to prove the inclusion ṽ0 := (Dn + i)s+kvk ∈ Lp(IR+).
Let us recall the formulae

Ft→λ[tµ+ logm t+e−τt+ ] = (τ − iλ)−µ−1[− log(τ − iλ) + ∂µ]mΓ(µ + 1) ,(2.31)

which is the inverse formula to (2.19) and follows from the formula

Ft→λ[tµ+e−τt+ ] = Γ(µ + 1)(τ − iλ)−µ−1 , Re µ > −1 , τ > 0

(see [Es1, (2.36)] and cf. (2.18)) by differentiating in µ.
Invoking (2.31) and applying (2.19), we proceed as follows

v0(t) = (Dn + i)s+kvk(t) = Fλ→t

{
(λ + i)s+kFy→λ[vk(y)]

}

= Fλ→t

[
(λ + i)s− ν

2−∆(x′)−1
m∑

j=0

cj logj(λ + i)

]
= t

−s+ ν
2 +∆(x′)

+

m∑
j=0

dj logj(t+ + i)

and the inclusion v0 ∈ Lp(IR+) follows since −s +
ν

2
+ Re∆(x′) > −1

p
.

Locally equation (2.1) can be represented as follows

r+a∞(x′;Dn)u = v1
M+1 −

M−1∑

k=0

M−k∑

j=1

r+aj(x; D)uk

−
M−1∑

k=0

r+[a0(x;D)− a∞(x′;Dn)]uk ,(2.32)

where

v1
M+1 = v − r+ãM+1(x;D)u−

M−1∑

k=0

M−1∑

j=M−k+1

r+aj(x;D)uk

−r+[a0(x;D)− a∞(x′;Dn)]ũM .
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It is almost obvious that v1
M+1 ∈ IHI(∞,s−ν+M+1),$

p (M) because the operator in the
square brackets has order ν − 1 (cf. (2.27)).

The Taylor formula, applied at xn,+ = 0, and then at |ξn|−1ξ′ = 0, gives:

aj(x′, xn,+; ξ′, ξn) =
M−k−j∑

m=0

xm
n,+

m!
(∂m

xn
aj)(x′, 0; |ξn|−1ξ′, sgn ξn)|ξn|ν−j

+xM−k−j+1
n,+ a

(1)
jk (x′, xn,+; ξ) =

M−k−j∑
m=0

xm
n,+

m!

M−k−j−m∑

`=0

|ξn|ν−j−`

×
∑

|γ′|=`

(ξ′)γ′

(γ′)!
(∂m

xn
∂γ′

ξ′ aj)(x′, 0; 0, sgn ξn) + a
(2)
jk (x′, xn,+; ξ) ,(2.33)

where

a
(2)
jk (x; ξ) = xM−k−j−1

n,+ a
(1)
jk (x′, xn,+; ξ) +

M−k−j∑
m=0

xm
n,+a

(2)
jkm(x′; ξ),

a
(1)
jk ∈ Sγ−k−j

ν−j (T ∗M) , a
(2)
jkm ∈ Sγ−M

ν−M+m+k−1(T ∗M)(2.34)

and, obviously, a(2)
jk (x;D)uk ∈ IHI(∞,s−ν+M+1),$

p (M+).
Similarly (cf. (2.6)),

a∞(x′; ξn) = |ξn|ν〈ξ−1
n 〉νapr(x′; +1)

(
1 + iξ−1

n

1− iξ−1
n

)b(x′)

=
M−k∑

`=0

|ξn|ν−`a`(x′; ξn)

+ã∞M−k+1(x
′; ξn), ã∞M−k+1(x

′; Dn)uk ∈ IHI(∞,s−ν+M+1),$
p (M+) ,

a`(x′; ξn) :=
apr(x′; +1)

`!

[
∂`

t 〈t〉ν
(

1 + it

1− it

)b(x′)
]

t=0

(sgn ξn)` .(2.35)

As we see the coefficients of expansions (2.33) with j = 0 and of (2.35) coincide (cf.
(2.7)). Therefore (2.32)–(2.35) yield

r+a∞(x′; Dn)u =
M−1∑

k=0

M−k∑

j=0

M−k−j∑
m=0

M−k−j−m∑

`=0
j+m+`>0

xm
n,+a0

jm`(x
′; D)uk + v2

M+1 ,(2.36)

a0
jm`(x

′; ξ) :=
∑

|γ′|=`

[ajmγ′(x′; sgn ξn)− δj+m,0δγ1,`a`(x′; sgn ξn)] (ξ′)γ′ |ξn|ν−j−`,

γ′ = (γ1, . . . , γn−1) , v2
M+1 ∈ IHI(∞,s−ν+M+1),$

p (M+) , ajmγ′(·;±1) ∈ C∞(∂M) ,

where δj` is Kroneker’s delta. By inverting operator a∞(x′; Dn) (see Lemma 2.6)
we find

u =
M−1∑

k=0

M−k∑

`=0

M−k−j∑
m=0

M−k−`∑

j=0
`+m+j>0

K(x′)[a+(x′;Dn)]−1θ+a−(x′; Dn)a0(x′)xm
n,+

×a0
jm`(x

′, D)uk + r+[(a∞(x′; Dn)]−1v2
M+1 ,(2.37)
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where v3
M+1 ∈ ĨHI

(∞,s+M+1),$

p (M+) .
Applying (2.31) we find the following (see (2.29) for uk):

Fyn→ξn [uk(x′, yn,+)]

= K(x′)Fyn→ξn

[
y

ν
2 +∆(x′)+k
n,+ exp

(
− 1

2πi
Hapr log yn,+

)

σ(k)∑
q=0

logq yn,+K−1(x′)ckq(x′)
]

= K(x′)(0− iξn)−
ν
2−∆(x′)−k−1 exp

([
− 1

2πi
log(0− iξn) +

1
2πi

∂µ

]
Hapr

)

×
σ(k)∑
q=0

[
1

2πi
log(ξn + i0) +

1
4

+
1

2πi
∂µ

]q

Γ
(ν

2
+ ∆(x′) + k + 1

)
ckq(x′)

= K(x′)(ξn + i0)−
ν
2−∆(x′)−k−1B0

apr

(
− 1

2πi
log(ξn + i0)

)

×
σ(k)∑
q=0

logq(ξn + i0)c1
kq(x

′) ,(2.38)

since B0
apr

(t) = etHapr , t ∈ C (cf. (1.80)).
Invoking (2.38) and expansion of a0

jm` from (2.36), Inserting (ξn+i0)σ = θ+(ξn)|ξn|σ+
eπσiθ−(ξn)|ξn|σ (see (2.22)), we obtain

ujm`k(x′, xn,+) := a0(x′)xm
n,+a0

jml(x
′;D)uk(x′, xn,+)

=
∑

|γ′|=`

a0(x′)xm
n,+F−1

ξn→xn,+

{
a1

jmγ′(x
′; sgn ξn)|ξn|ν−j−`(i∂x′)γ′Fyn→ξn [uk(x′, yn,+)]

}

=
σ(k)∑
q=0

∑

|γ′|=`

a0(x′)F−1
ξn→xn,+

{
(i∂ξn)ma2

jmγ′(x
′; sgn ξn,+)(2.39)

×(i∂x′)γ′ |ξn| ν
2−∆(x′)−k−j−`−1B0

apr

(
1

2πi
log |ξn|

)
logq |ξn|ckq(x′)

}

=
σ(k)+`+m0−1∑

q=0

F−1
ξn→xn,+

{
a3

jm(x′; sgn ξn)|ξn| ν
2−∆(x′)−k−j−`−m−1 logq |ξn|

}
c0
kq(x

′)

=
σ(k)+`+m0−1∑

q=0

F−1
ξn→xn,+

{
|ξn| ν

2−∆(x′)−k−j−`−m−1 logq |ξn|a4
jmq(x

′; sgn ξn)
}

,

where a0
jm`(x

′; θ) is defined in (2.36) and a1
jmγ′(x

′; θ), a2
jm(x′; θ), a3

jm(x′; θ), a4
jm(x′; θ)

are similar (we remind that symbols are cut off at ξn = 0). The powers of logarithmic
terms increased by m0−1 due to the factor B0

apr

(
1

2πi log |ξn|
)

and by |γ′| = ` ≤ M−k

due to the differentiation ∂γ′

x′ |ξn|∆(x′). We proceed as follows

u1
jm`k(x′, xn,+) := r+a−(x′;D)ujm`k(x, xn,+)
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= r+F−1
ξn→xn,+

{
B−(ξn)(ξn − i)−

ν
2 +∆(x′)Fyn,+→ξn [ujm`k(x′, yn,+)]

}

=
σ(k)+`+m0−1∑

q=0

r+F−1
ξn→xn,+

{
B0

apr

(
1

2πi
log(ξn − i)

)
(ξn − i)−

ν
2 +∆(x′)(2.40)

×|ξn| ν
2−∆(x′)−j−k−`−m−1 logq |ξn|a4

jm(x′, sgn ξn)
}

.

As in (2.38), (2.39) we replace functions (ξn−i)σ and logq(ξn−i) by the Taylor sums
of |ξn|σ−k and logq−j |ξn|, respectively and apply Lemma 2.8, that might increase the

powers of logarithmic terms by 1. The factor B0
apr

(
1

2πi
log(ξn − i)

)
increases powers

of logarithmic terms by m0 − 1.
Ignoring summands with the argument ξn − i0 (they are deleted after the Fourier

transform by r+) and applying (2.19) with τ → 0 we get

ru1
jm`k(x′, xn,+) =

σ(k)+2m0+M−k−1∑
q=0

r+F−1
ξn→xn,+

{
(ξn + i0)−j−k−`−m−1 logq(ξn + i0)

}
c1
kjmq`(x

′)

+v3
jm`k,M+1 =

σ(k+1)∑
q=0

xj+k+`+m
n,+ logq xn,+ c2

kjmq`(x
′) + v3

jm`k,M+1 ,(2.41)

where c1
kjmq, c

2
kjmq ∈ C∞(∂M) and, due to the Taylor expansion, the remainder

v3
jm`k,M+1 ∈ ĨHI(∞,s− ν

2 +M+1),$
p (M+).

From (2.37)–(2.41) we get

u =
M−1∑

k=0

M−k∑

j=1

M−k−j∑
m=0

M−k−j−m∑

`=0
j+m+`>0

K(x′)[a+(x′;Dn)]−1u1
jm`k

+r+[a∞(x′; Dn)]−1v2
M+1 + v4

M+1 .(2.42)

Similarly to (2.37)–(2.41) we find:

K(x′)[a+(x′, Dn)]−1u1
jm`k = K(x′)r+F−1

ξn→xn,+

{
(ξn + i0)

ν
2 +∆(x′)+j+k+`+m

×B0
apr

(
1

2πi
log(ξn + i0)

) σ(k+1)∑
q=0

c3
kjmq`(x

′) logq(ξn + i0)

}

+v5
jm`k,M+1 , c3

kjmq` ∈ C∞(∂M) ,

where v5
jm`k,M+1 ∈ ĨHI

(∞,s+M+1),$

p (M+). Degrees of logarithmic terms in the last
formulae does not increase because all symbols have analytic extensions already, de-
pending either on the argument ξn + i0 or on ξn + i, and we does not need to apply
Lemma 2.8; to factors with the arguments ξn + i we should apply the Taylor expan-
sion which leaves behind sufficiently smooth remainder v5

jm`k,M+1.
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From (2.44), (2.45), by applying (2.19) with τ → 0 we derive

K(x′)[a+(x′, Dn)]−1u1
jm`k = K(x′)r+x

ν
2 +∆(x′)+j+k+`+m
n,+ B0

apr

(
− 1

2πi
log xn,+

)

×
σ(k+1)∑

q=0

c3
kjmq`(x

′) logq xn,+ + v5
jm`k,M+1 , c3

kjmq` ∈ C∞(∂M) ,(2.43)

which, together with (2.42), gives all summands of (2.2) but the leading term, if
we replace summations with respect to j, `, m, k by one sum with respect to k and,
respectively, replace j +k + `+m by k. We have to estimate exponents of logarithmic
terms as well.

For exponents of logarithmic terms we get the following estimate:

σ(k + 1) ≤ σ(k) + 2m0 + M − k − 1(2.44)
(σ(k + 1) ≤ σ(k) + 2m0 − 1 provided δ(x′) ≡ const) .

Let us prove, based on (2.44), that

σ(k) ≤ (2m0 − 1)k + m0 − 1 k = 0, 1, . . . ,(2.45)

which implies σ(k) = k for m0 = 1 (see (2.4)). To prove (2.45) we set M = k (this gives
possibility to find k–th summand of the asymptotic knowing previous summands).
Then from (2.44) there follows

σ(k) ≤ σ(k − 1) + 2m0 − 1 = (2m0 − 1)k + m0 − 1 , k = 1, 2, . . .

since, as we already know, σ(0) = m0 − 1 (cf. (2.28) and (2.29); let us note that
σ(0) = 0 does not mean that the first term of asymptotic expansion does not contain

logarithms–all terms have the factor B0
apr

(
− 1

2πi
log xn,+

)
).

Thus, due to (2.43) and (2.44) all summands in (2.42), which contain u1
jm`k, have

appropriate asymptotic (cf. (2.2)). These entries does not generate the leading term
of asymptotic in (2.2) because j + m + ` ≥ 1. The leading term is generated by
application of Lemma 2.6 to the summand r+[(a∞(x′;Dn)]−1v2

M+1.

Since order of PsDO orda+(x′, D) < −ν

2
+ε, where ε is due to the logarithmic terms,

and the symbol is analytic, due to Lemma 1.2 the summandsK(x′)[a+(x′, Dn)]−1u1
jm`k,

and the remainder terms v3
jm`k,M+1, v4

M+1, v
5
jm`k,M+1 all belong to ĨHI

(∞,s+M+1),$

p (M+);
therefore they can be included in the remainder ũM+1 of asymptotic (2.2).

Concerning the a priori estimates (2.3): the last two inequalities

‖u|ĨHI(µ,s),$
p (M)‖ ≤ C1‖v|IHI(µ,s−ν),$

p (M)‖ ≤ C2‖u|ĨHI(µ,s),$
p (M)‖

asserting the equivalence of the right–hand side and of the solution, follow due to the
boundedness and invertibility of the operator

rMa(x,D) : ĨHI(∞,s),$
p (M) −→ IHI(∞,s−ν),$

p (M) .

As for the remaining inequalities, they follow since the norms of c0(x′), ckj(x′)
and of ũM+1(x′, xn,+) are estimated by norms of the right–hand side v(x) and of the
solution u(x′, xn,+).
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