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Abstract. The main purpose of the present paper is the investigation of systems of pseudod-
ifferential equations (PsDEs) with symbols from extended Hoérmander classes on a manifold with
smooth boundary. Equations are treated in anisotropic BESSEL potential spaces with weight (BP-
SwW). Theorem about factorization of symbols, proved earlier by E.SHAMIR, R.DUDUCHAVA and
E.SHARGORODSKY is revised and general criteria is obtained for PsDEs in BPSwW on manifolds with
smooth boundary to possess the FREDHOLM property. It is proved that the criteria is invariant with
respect to the weight exponents and the co-normal smoothness parameter, which participate in the
definition of the spaces. In the second part of the paper results of G.ESKIN and J.BENNISH on asymp-
totic of solutions to systems of PsDEs (La—theory) are extended and complete asymptotic expansion
of a solution to near the boundary is obtained (Lp—theory). More precise description of exponents
and of logarithmic terms of the expansion is presented. Investigations are carried out in connection
with problems arising in elasticity (crack problems) and some other fields of mathematical physics
when the potential method is applied. In forthcoming papers asymptotic of a function represented by
a potential will be presented when asymptotic of a density on the boundary of the domain is known.

Acknowledgements
This work was supported by:

o DFG within the GRANTs "the Programme Multifieldproblems SFB /07 at the
University Stuttgart;

e INTAS, Grant 96-876

Contents
Introduction 2
Freédholm criteria 5
1.1, Spaces . . . o o o o 5
1.2. Symbol classes . . . . . . ... L 6

1991 Mathematics Subject Classification. 47TA68, 35J25, 35J55
Keywords and phrases. Pseudodifferential equations, FREDHOLM property, Asymptotic expansion,
Factorization of symbol, WIENER-HOPF method, Anisotropic weighted BESSEL potential space



2 Math. Nachr.  (1998)

1.3. Anisotropic Bessel potential spaces with weight . . . . . . .. ... .. 11
1.4. Pseudodifferential operators on manifolds . . . . ... ... ... ... 15
1.5. Solvability results . . . . . . .. ... L 22
1.6. Holder spaces . . . . . . . . .. . e 27
1.7. Factorization of symbols . . . . . . . .. ... ... ... .. 34
1.8. Proof of Theorem 1.18 . . . . . . . . . . ... ... . ... ....... 36
1.9. Proof of Lemma 1.18 . . . . . . . . . .. ... ... ... ... 41
Ag&mptotic 44
2.1. Formulation of results . . . . . . .. ... .. ... .. ... .. ..., 44
2.2. Auxiliary propositions . . . . . .. ... 46
2.3. Proof of Theorem 2.1 . . . . . . . .. .. ... ... .. ... ...... 52
References 59
Introduction

Investigation of a system of boundary integral (or, more precisely, pseudodifferential)
equations (BPsDEs) constitutes a crucial part of the potential method for studying
boundary value problems (BVPs) in general and BVPs of the elasticity in particu-
lar. If boundary of the domain where elliptic equation is treated is smooth, solutions
are smooth too provided the data of BVP are smooth. But dealing with crack—type,
screen—type and mixed problems of the mathematical physics we arrive to necessity of
investigating BPsDEs on manifolds (surfaces) with boundary. It is well-known that
solutions to such problems have singularities on the boundary and other sub manifolds
(points, curves) of geometrical and structural peculiarities of the manifold (e.g. at con-
ical points, edges etc.) regardless smoothness properties of given data. Both, mathe-
maticians (cf. V.KONDRAT’EV [Kol], V.KozLov, V.MAZ’vA, J.ROSSMANN [KMR1],
[MP1], M.DAUGE [Dal], P.GRISVARD [Grl], S.NAZAROV and B.PLAMENEVSKI [NP1],
B.W.SCHULZE [Sc3] etc.) and mechanist (cf. G.CHEREPANOV [Chl], J.LEKHNITSKY
[Lel], J.RABOTNOV [Ral], L.MALVERN [Mal], J.RICE [Ril, Ri2] etc.) have analysed
local asymptotic expansions for the elliptic system of linear elasticity. The meth-
ods used were either Mellin transform, suggested by V.Kondrat’ev, or an appropriate
ansatz (M.WiLLiams [Wil], T.TING [Til] etc.). With the help of the MELLIN trans-
form a big number of interesting and important problems were investigated, including
asymptotic of solutions to boundary value problems near edges, conical points, cracks
etc. The ansatz was used mostly by mechanist to get formulae for exponents.

An alternative approach based on the WIENER—HOPF method seems to be much
less exploited, especially in applications. The method was originally designed for the
investigation of pseudodifferential equations (PsDE) on the half-line IR". Later on
the method was applied to the investigation of Fredholm properties and solvability
of systems of PsDEs on manifolds with boundary (see G.ESKIN and M.VIsHIK [Esl],
I.SIMONENKO [Sil] for Ly—theory and R.DUDUCHAVA [Dul], E.SHARGORODSKY [Sh2]
for L,~theory).
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The results found ample applications in BVPs of mathematical physics (see e.g.
[Nol] for two-dimensional case and [BG2, Ch2, Ch3, CS1, DNS1, DSW1, DWI,
KGBB1, MPr]| etc. for multidimensional case of elasticity and diffraction theory, aero
and hydrodynamics).

The method is based on the factorization of symbols and provides rather explicit
results concerning the FREDHOLM criteria and solvability of BPsDEs on manifolds
with smooth boundary.

The pioneering work in the application of factorization to boundary value problems
for elliptic differential systems was carried out by Y.Lopatinskij [Lol, Lo2].

It turned out that the same WIENER—HOPF method can successfully be applied
to derive full asymptotic expansion of solutions to PsDEs. G.ESKIN [Esl, § 7] had
applied the method to the investigation of the leading term of asymptotic of a scalar
pseudodifferential equation. M.COSTABEL & E.STEPHAN [CS1] applied the explicit
factorization of the symbol, while R.DUDUCHAVA & W.WENDLAND [DW1]-implicit
one to describe the leading term of asymptotic of the solution to a system of PsDEs
(see also [Esl, § 26]). In [CS1, DW1] the results were applied to the crack problem of
elasticity.

Further progress was a full asymptotic expansion of the solution to a system of
pseudodifferential equations on arbitrary but smooth manifold with smooth bound-
ary, obtained by G.ESKIN in [Esl, Sec. 23]. This result was extended by J.BENNISH
in [Bel] (Lo—theory). In the present investigation the results are extended further:
equations are treated in the weighted anisotropic BESSEL potential spaces, which
are well-adapted to the analysis of smoothness and asymptotic of solutions to Ps-
DEs on smooth manifolds with smooth boundary (L,—theory). More transparent
asymptotic expansion formula is presented, which demonstrates clear dependences of
asymptotic (of exponents, of presence and disposition of logarithmic terms) on the
geometry of manifold and on the symbol of PsDE. The obtained dependences can be
applied, for example, to reveal connections between different elastic fields (the stress
tensor field, the traction and the displacement vector fields) on crack faces and on
the prolongation of the crack surface. The latter connections play a crucial role in
rupture criteria for elastic materials and will be treated in one of forthcoming pa-
pers. The results on asymptotic are already applied to different BVPs of elasticity
(see e.g. R.DUDUCHAVA, A.M.SANDIG, W.L.WENDLAND [DSW1], R.DUDUCHAVA,
D.NATROSHVILI [DN1], O.CHKADUA [Ch1]-[Ch4]).

The paper is organised as follows.

First we present classes of symbols which provide boundedness of corresponding
pseudodifferential operators (PsDOs) and are closed with respect to the factorization,
i.e. together with elliptic matrices they contain their factors. It is well-known, that
by factorization of C°°—function with respect to one variable, we might get factors
which fail to possess even one continuous derivative (moreover—factors can be un-
bounded). Therefore the most frequently used classes of symbols, e.g. the Hormander
classes S s(w,IR"), are not suitable for the WIENER-HOPF method. This requires to
extend classes of symbols of PsDEs up to relevant ones with respect to the WIENER—
HorrF factorization. In our investigations we rely on the generalisation of MIKHLIN—
HORMANDER-LIZORKIN multiplier theorem for PsDOs, given by E. SHARGORODSKY
[Sh1] (see Subsection 1.2).
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The factorization is important tool in obtaining the FREDHOLM properties and in-
vestigating the solvability of PsDEs. In most problems in applications solvability of
BPsDEs can be derived from the strong ellipticity or even positive definiteness of
the corresponding symbol, but this does not work in some cases. The FREDHOLM
property criteria of PsDEs on manifolds with boundary is presented in Subsection
1.5. Equations are studied in the anisotropic BESSEL potential spaces with weight
H,g“’s)’m(/\/l), introduced in [Esl] for the case p = 2 (cf. also [Bel]) . Main features
of this space can be described as follows: 1+ s indicates the smoothness of a function
pt',p), € HI(,”’S)’m(M), with respect to the local variable ¢’ on the boundary of
the manifold M, while s indicates the smoothness with respect to the variable p, im-
plementing the distance to the boundary d.M; moreover, p*(t', p) becomes smoother

and belongs to HI(,” ’S)’m+k(./\/l) for arbitrary £ < m. Precise definition of the space
in § 1.3 is followed by the theorem on FREDHOLM properties and the index of Ps-
DEs. These properties and the index turn out to be invariant with respect to the
weight parameter m = 0,1, -+ and with respect of the co-normal smoothness param-
eter u € IR. The weighted anisotropic BESSEL potential spaces play a crucial role in
obtaining asymptotic of solutions to systems of BPsDEs (cf. § 2). Results of Section
1 are revising those from [Dul, Esl, Sil, Sh2, Sr2] and enrich them to comply with
the purposes of the present investigation.

In Section 2, continuing the investigations of G.ESKIN AND J.BENNISH, complete
asymptotic expansions of solutions to pseudodifferential equations on manifolds with
boundaries are derived. The results demonstrate transparent dependence of exponents
and of coefficients of the expansion on the symbol of PsDE and on the geometry of
the underlying manifold M.

Compared with a similar asymptotic obtained earlier by the method of V.KONDRAT EV
(see [Kol, KMRI1, MP1, Dal, Grl, NPI] etc.), the WIENER-HOPF method provides
more transparent formulae for the exponents and coefficients of the expansion. For
example, exponents are found as eigenvalues of the symbol matrix at certain points.
On the other hand by applying the obtained results we can get rigorous justification
of asymptotic for solutions to BPsDEs, encountered in elasticity and other problems
of mathematical physics (cf. [DSW1]), which were available before only by ansatz (cf.
[Wil, Til]).

Investigations of asymptotic started in the present paper is continued in the paper
[CD1], where spatial asymptotic of a function represented by potentials will be derived
provided the asymptotic of a density on the surface is known. The topic is important
because after obtaining asymptotic of solutions v(z) to boundary PsDE one needs
asymptotic of the solution to the corresponding BVP, which is written as potential with
the density v(z). Applications to different BVPs and, especially, to crack problems of
anisotropic elasticity, is the main purpose.
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1. Fredholm criteria

We recall definitions and some important results on Pseudodifferential operators,
which are main tools in our investigations.

1.1. Spaces

We recall results mostly from [Tr1, Tr2] (see also [DW1], [Sr2, §1.1]).
S(IR™) denotes the SCHWARTZ space of all fast decaying functions and S’(IR"™) — the

dual space of tempered distributions. Since the FOURIER transform and its inverse,
defined by

Fo(&) = / e p(z)dx and

(1.1) B "y

are bounded operators in both spaces S(IR") and S’(IR"), the convolution operator

/ e S(E)dE, € € R

R™

(1.2) a(D)p =W := F 'aFp with acS'(R"), ¢cSR")

is a bounded transformation from S(IR™) into S’'(IR") (see [Dul, DSI]).
The BESSEL potential space HI) (IR") is defined as a subset of S’(IR") endowed with
the norm (see [Trl, Tr2])

(1.3) [|u[HL, (R™)|| == |[[(D)*u|L,(IR™)||, where (€)° := (1 + [¢[*).
For the definitions of the BESOV spaces B, /(IR") (1 <p < oo, 1< g <00, s€1R)
see [Shl, Trl]: the space B, ,(IR") (1 < p < oo, s > 0) coincides with the trace

stl
space yp- I, 7 (R} (R} := R™ x RT) and is known also as the SOBOLEV—
SLOBODECKII space W (IR").

The space BY, . (IR") coincides with the well-known ZYGMUND space Z*(IR"):

s n s|™ n —{s}* [eY n
Iz @) = 10 @)+ Y s [ azen o)}
Jaf=[s]- MERTNON
s=1[s]7 +{s}T [s]7 €Ny, 0<{s}" <1,
where INg := INU{0}, IN denotes the set of positive integers, Ap, f(z) := f(z+h)— f(x),
A}% = AhAh and

IFIC™(R™)] = Y sup{|0°f(z) : & € R"}.

laf<m

For s € R™ \ IN the space B,  (IR") (and Z°(IR")) coincide with the HOLDER
space C*(IR")

e ®m | = ACT R+ 3 sup (B A0 o)}

jaf=[s] "R}

s=[s]+{s}, [s] € No, 0<{s}<1l



6 Math. Nachr.  (1998)

The space ]ﬁI;(IRi) is defined as the subspace of HI;(IR") of those functions ¢ €
HL, (IR™), which are supported in the half space jlippw C EZ whereas IHI (IR}) de-
notes the quotient space HI)(IR'y) = HI(IR™)/HIL,(IR" \ R'}) and can be identified
with the space of distributions ¢ on IR’ which admit an extension fp € HI)(IR"™).
Therefore 7 pHL) (IR™) = HL (IR} ).

The spaces ]E;q(IRi) and B, (IR} ) are defined similarly [Tr1, Tr2].

1.2. Symbol classes

If the convolution operator in (1.2) has the bounded extension
Wy Ly(R") — Ly(R"),

then we write a € M,(IR") and a(€) is called a (FOURIER) L,—multiplier. For v € R
let
M (R™) = {(€)"a(é) : a € My(R™)} .

By using the isomorphism (1.3) and the obvious property

(1.4) W Wy =wy

aiag?

a; € M{")(R,), j=1.2,
we get that the operator
Wy : H(R") — H~"(R")

is bounded if and only if a € M,ﬁ”) (R™).

Vice versa: if A : H(IR") — IHI;""(IR") is a bounded operator for all s € IR,
is translation invariant AV) = V) A where Vyp(x) := p(x — A) for all A > 0, then
obviously A : C°(IR™) — C*°(IR™) is continuous and, due to [Hrl, Theorem 4.2.1],
this implies A = W2 with a € M,S”) (R™).

The next theorem is a slight modification of the MIKHLIN-HORMANDER—LIZORKIN
multiplier theorem. Proofs can be found in [Srl] and in [Hrl, Theorem 7.9.5].

Theorem 1.1. If

(1.5) £°0%a()| < M(&)”, ¢eR",

for some M >0 and all |B] < [g] +1, <1, thenae () MZEU)(]R”).
1<p<oo

Let a € MZSV)(]R"). Then the operators

W, :=ria(D) : Eﬂ}p(ﬂ{i) —  HL7Y(RY),

Rp,q(]Ri) - R;;]V (]Rr-‘,]:)7

are bounded, where r := TR? 1S the restriction operator and

D:zi@::i(81,~~,8n) 8]" 0
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is used as argument because it corresponds, by the above definition, to the symbol
5 = (517"'a€n)'

The composition rule (1.4) fails in general for half-space operators (1.6). But if
there exists an analytic continuation a (&', &, — i) (or as(&', &, +iX)) for &, € R and
A € R which belongs to S’(IR"™* x €7) (to S'(IR"™* x € T), respectively), where
C* =R ®iR*, then
(1.6) WoWay, = Waya,-

If the symbol a(x, ) depends on the variable x, then the corresponding convolution
operator (see (1.2))

L) ale D)p(@) = Wi, (@) = (Fl,a@, O F,—epv)) (2)

with the symbol @« € C(IR", S'(IR™)) is called a general pseudodifferential operator
acting on ¢ € S(IR™). Here C(w,B) denotes the set of all continuous functions a :

w — B. Let M,SS’S*”) (R™,IR™) denote the class of symbols a(z,§) for which the
operator in (1.7) extends to the bounded mapping

(1.8) a(z, D) : HI5(IR") — HI ™ (R")

and M (R™,R") := |J M (R",R").
selR

Lemma 1.2. [DW1, Lemma 1.7] Let a,b € M,ES’S*”)(]R" x R"), s,v € R. If there
exist analytic continuations a(x, &, &, +1iN) and b(x, &', &, —iA) for allz € R, £ € IR,
& € R, A € R with polynomial growth at oo (i. e. |a| and |b| are majorized by
(1€'] + |&n] + NN for some N and all x € R™ uniformly), then the operators

(19) a(z,D) : HL(R}) — I, (R}),
ryb(z,D)¢ : H(R
are bounded and

ria(z, D)p=a(z, D)y, p € HL(RY),

(1.10) rib(e, D)erip=rib(e, D), o€ H(RY).

Here ( is an arbitrary extension of ¢ € HI (IRY) with Ly € HI,(IR"). The operator
in (1.9) is independent of the choice of £.

Theorem 1.3. Let Ny :={0,1,...}. If
(1.11) / €90200 ale, ©)ldz < Mol€)*, €€ R
R7l

for some My, > 0 and all o, € IN{, |B] < [g} +1, B <1, then a €
N M7 (R"R").

1<p<oo
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Proof.. The claim follows from the general theorems on multipliers [Sh1, Theorems
4.1 and 5.1] and Theorem 1.1. a

Definition 1.4. For any Q C R", n € N:={1,2,...}, re R by R
m =0,1,...,00 we denote the class of symbols

(1.12) a(z,§) = aso(§) + ao(x, ),

where:

(€,IR"),

m
hom,v

1. both summands are homogeneous of order v in £, that is as (Af) = Aax(§) and
ag(z, ) = Nagp(z,€) for all A >0, &€ R

2. there exist constants Mg and M, g such that

(€)' 00 ase (€)] < Mple| =P,

(1.13) [ |(g/)ﬁ’aga§ao(x,§)|dx < Mo gl
Q

for all o, 8 = (0, 6n) e Ny, |B/|<m, B,=0,1,...and all { € R".
Definition 1.5. By R}'(2,R™) we denote the class of symbols a(z,§) = apr(z, &) +

a®(z, &) where a,, € Riom. (€2, IR") is known as the homogeneous principal symbol
and a°(x, &) have the following estimates

(1.14) J1€)7 020¢ a0 w. €)lds < Mol
Q

for all a, 8 = (0, n) € NG, |0/| <m, B,=0,1,..,and all £ € R".

Definition 1.6. By S (Q,R"), m = 0,1,...,00 we denote a subclass of

hom,v

o, (2, IR™), which consists of symbols (1.12) with stronger estimates than (1.13):

hom,v

08 aso (€)] < Mple|*~171,
(1.15) s
J 1038 ao)(x, &)|dz < Ma,glé]"~ 17,
Q
forall a, 8= (0, 5n) e NG, |6/ <m, B,=0,1,... and all £ € R".
Definition 1.7. By S7*(Q,R"), m = 0,1,...,00 we denote the class of symbols

a(z,€) = apr(z,€) +a’(x,§) where a,,. € Sp, (2, R") and a°(,€) has the following
estimates (cf. (1.14))

(110 [ 10202 @, €)1de < Mo ple
Q

for all o, 3 = (8',0,) € NG, |8/ <m, B,=0,1,..., and all £ € R".
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We will drop m = co and use Rpom, (2, IR"), R,(Q,IR"), S,(Q,1R"),... instead
of Ry, (2, R™), RP(Q,IR"), S°(2,IR"), ... when this will not lead to a confusion.
Definition 1.8. We write a € S}, (22, IR") if a(z, &) has the following asymptotic
expansion

(117) a(x,f)2a0($7§)+a1(m,§)+---
where aj, is a homogeneous symbol of the class S;;, , (2,R"), k=0,1,...,N and
for any natural NV € INy the difference

5N+1(x75) = Cl(ﬂf,g) - ao(x,f) - aN(‘/E7§)

has the estimate
(1.18) / 10202 aN 11 (x,€)dz < My glg]7~ 1IN
Q

forall¢ e R", |{|>1andalla,fe Ny, |B]<m.
aop(z, &) = apr(z,€) in (1.17) is known as the homogeneous principal symbol of
a(z, D).
Finally, we use S, (€2, IR") := N S7, (2, R").
It is obvious that "
Si?im,y(Q’IRn) - SClyl/(QvIRn) C S;n(Qlen) c Rln(Qlen)v
(119) Shom,V(Qa ]Rn) C Rhom,u(Q; IR") - RV(Q7 IRn) .

hom, (2, IR") C R (Q,RY),

hom,v

For a € R, (2, IR"™) we can consider the modified symbol

(1.20) @ (2,€) = alx, (€)', 6),
(see [DW1] and [Esl, p.91]) and the truncated symbol

(1.21) a (2,€) = [1 - xo(€)]a(x, &),
where xo € C§°(IR), x0(§) =0 for |£] > 1, xo(§) =1 for [¢] < %

Lemma 1.9. Let a € 87" (Q,IR") and m > [2] + 2.
Then dj,cvte N M,g”)(Q,IR”) and

1<p<oo
(1.22) a—ac ) RPQRY)
—oo<usy
(1.23) (1—x1)(a— @) € R, (Q,R"),

w6 =0 (26
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Proof. Inclusions in the multiplier classes (the first claim) follow from Theorems
1.1 and 1.3 since for both @ and a inequalities (1.13) and (1.14) hold with || replaced
by (£)-

(1.22) is obvious since a— & has a compact support.

In the proof of (1.23) we follow [Esl, page 91| and [DW1, Lemma 1.4]: by the mean
value theorem

n—1

a(z,8)— a (2,€) = a(,§, &) — a(w,§ + w,6) = D (Fg,a)(x, &' + 0w, & )wr
k=1

3 — AN / et I—=1¢r 1 | —1 ¢/

with wi=w(€) = (<& > DI = —goalele

for some 0 < 6 < 1. Obviously,
lw| <1, |(§')a/8§lw(§’)| <M, <oo, forall o € INp™!
and
1 !/ !/ ! 1
SlEl <+ 18n] = 1 < €+ 0wl + [6a] < [E] + [€a] +1 < V20¢) + Slel = 2l¢

provided |£] > 2; therefore,

1

(€)7 0207 [a(x, &)~ a (x,8)]| = / (€)7 0200 0-a(w, & + Tw,&,)dr

0

n—1 1
=130 3 M €)al€)(OL ) [(@207 06,08 a)(w. ¢+ rl€)). )
0

h=17'<p’

|V fn—1 , 0< 9071677/ <1

Z > Mg €+ O, &)l P74 < My,

,<ﬁ/

for |¢| > 2 and all « € IN, |8'| < [2] + 1, 8, =0,1,.... 0

If X,(M,IR") is a symbol class, by 7X,(M,IR") we denote those symbols a €
X, (M,IR™) for which a(z,£) = ag(z, tw, &,) with w = |¢']71¢ € S»2 t = |¢'| € RT,
&, € R, the derivatives 9Fag(x, tw, £1) exist and

lim OFag(z, tw, —1) = (=1)* lim OF ag(x, tw, 1),
(124) t—0 t—0
forall €M, wesS" 2, k=0,1,....

Let us note, that for homogeneous a € Ry, (M,IR") derivatives in (1.24) exist
automatically because ag(z,tw,+1) = tYao(z,w, £t71).

(1.24) is known as the transmission property (see [Esl, p.278], [GH1], [Hrl, Sec.18.2],
[RS1, Sec.1.1.2]).
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The next Lemma is a particular case of [DW1, Lemma 1.8], proved by E. Shargorod-
sky, and a generalisation of the well-known Lemma on composition of pseudodifferen-
tial operators.

Lemma 1.10. Let m € Ny, v, € IR and a§-m) € RTJ_(IR",R"), where
a(m)(ﬂc,g) = (x)"a;(x,§), j =1,2. Then

a1(z, D)as (-, D) = (aia2)(z, D) + g(x, D)

with g € R}, (IR", R"™).
Note, that if a;(z,§) has a compact support in z—variable, then a; € R} (R",IR")

implies a( ™ e R (IR™, IR").

1.3. Anisotropic Bessel potential spaces with weight

Next we define anisotropic BESSEL potential spaces with weight, similar to [Esl, Sec-
tions 23 and 26].

Let p,s € R, m € INg and 1 < p < oo; by IHIZ()“’S)’T”(]R") we denote the space of
functions (of distributions when 1 < 0 or u+ s < 0 ) endowed with the norm

(1.25) a2 = [ THLY (R™) | —ZII D)** aul Ly(R™)||,

5 :(517"'7€n—1)€IRn 17 fz(g/agn)emn

We shall write THLY“* (IR") for HI%***(IR") and HI}™(IR") for FL{"*"™(IR"), be-
cause ]I-]I ) (IR") = HE (IR™).
The operator

<D/>I_/<D>T‘ . H](),u,s),m(IRn) N Hép—u,s—r),m(IRn)
arranges an isomorphism of spaces for arbitrary v,r € IR and the inverse operator
reads (D)~Y(D)™"

In fact, the last claim about invertibility follows easily from (1.6). To prove that
(D"Y(D)" arranges an isomorphism we recall the following equality

k
(1.26) na(z, Dyu(z) =) “(kz) i (9, a)(z, D) [ u()]
VueSR™),
which is verified straightforwardly by applying integration by parts:
z;

2Fa(z, D)u(z) = e (x ey
ae. Do) = o2 [ e ateg) [ty e

RrR™ R
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= o | 00 ate) [ rati) v
R™ B

- (271r)”/ e " (~idg, )" |a(a.£) / Vu(y) dy | de
R™ .

b —1) lk' bl
= Z I 8& a)(z, D)z, u(z).
1=
Applying formula (1.26) we proceed as follows
(D) (D) | LY R

= DD (D) Tk (D) (D) ull, @)

k=0
3 DYDY D) L, @)
k=0
< S gl O D) )

IN
£

(D) (D) whu Wy @™) || = My |Ju[ LY @)

with gr!(€) = 8én (€)7, since (€)"lgrl(¢) = (§>T_l82n (&)™ is an IL,-multiplier due to
Theorem 1.1.

The same is true for the inverse (D’)~*(D)~" and the claimed isomorphism is es-
tablished.

Lemma 1.11. Let v, p,s €R, m €Ny, o(v,m) = max{0, m — v} and
]I_]I(oo s maRn . ﬂ ]I_I[(u, m(mn)
nek
be a Freschet space with a standard metric. The operator
<D7L>V : Hz()u,s),makn) N H}(}pfa(u,m),sfu),m(mn) ’
(127) . Héoo,s),m(ﬂin) N Hz()oo,s—u),makn) ,
s bounded for both pairs of spaces.

Proof. The boundedness for the second pair of (Freschet) spaces is an obvious conse-
quence of the first one. The boundedness result ]H[I(]“’S)’O ®R"™) — H—]I](g“fa(”’o)’sf”)’m(lkn)

(the case m = 0) follows from Theorem 1.1 because is equivalent that (£,,)¥ (¢/) =7 (™) (¢)—¥
is an IL,-multiplier.
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Now let m = 1,2,.... we apply (1.26) and proceed as follows:

H<D’n>yu | H(#ia(u’m)’sf’/),m(mn)n

p
= ZHx’fL<Dn>VU|H§,“"’(”’m)’S*”+k)(ﬂi")||
k=0
m k
< ZZMk,z(V)IIhZ’l(Dn)xﬁ’ZU}Hé“*"(”’m)’“”k)(R”)||
k=0 1=0
m k
< SN M) (Do (DY R R (D, Yk L, @)
k=0 =0
m k
< Z My (v)|[(D") ™D = bl (Dy,)
k=0 =0
x (D)~ rgh=tu] L, ®™)]|
m k
< My(v) Z Z [(D)*=FFah =y, @™)|| < M (v)|u[HI @™,

k=0 1=0

with h24(E,) == aén (&n)Y, since

<§/>—a(u,m) <§>l_”h2’l<fn) _ <§/>—a(u,m) <€>l—yaé” <£n>v
is an IL,-multiplier due to Theorem 1.1. O

The boundedness property (1.27) is a clear advantages of the anisotropic spaces
IHI;"’S)’"’(IR”), especially with p = co. The next theorem generalises this property.

Theorem 1.12. Let m € Ny, 1 <p < oo. If 8§na(x,£) € Mlgy_k)(IR",]R") and

020F b(x, &) = 0(|¢| ) for all k =0,1,---,m, a € N", z € R") £ € R, then the
operators

a(a:, D) : ngﬂ’s)’m(ﬂ:{n) . H;#’S_V)’m(ll:{n) ’
b(CC, Dn) : ]le(aﬂ,s)am(IRn) N Héﬁfo(u,m),sfu),m(mn) ,
b(iﬂ, Dn) : ]HIéOO’S)’m(IRn) _ Hz()oo,sfu),m(mn) 7

where o(v,m) = max{0,m — v}, are bounded for arbitrary u,s € R, m € Ny and
1<p<oo.

In particular, if a € RY(R™",R™) and v > {g} + 1, then a(x, D) is bounded for all
m € INg and p, s € R.

Proof. Multipliers of the anisotropic BESSEL potential spaces without a weight
]HIZ()”’S)(]R") coincide with M,(IR"™) since for arbitrary g € MI(,V) (IR™) the equality
(D"YM(D)*W) = WJ(D')*(D)* holds. Moreover, the boundedness for m = 0 can be
proved as for corresponding theorems [Sh1, Theorems 4.1, 5.1] if we invoke Theorem
1.1 (cf. Theorem 1.3).
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To prove the boundedness in the weighted spaces we apply (1.26) and proceed as
follows

lla(z, D)u[ L™ (R™)]| = Y [l a(e, D)u|HE ) (IR"))]
k=0

k! ) o
m”(aéna)(x,D)xk L[ (R |

NE
Mw

<

b
I

01l

n

I
=3

< My

IR

Il
=}

o | T 9 (IR™) || < Mo TS (R™)]
J

Asfor b(z, D,,): we note that bo(x,&,) = b(z,&,) (&) 7" € R (IR™,IR) and therefore
b(z, Dy) = bo(z, Dn){(Dy)" : Hz()#’s)’m(IRn) N H]()u—a(u,m),s—u), (R"),
]I_]Iéoo,s),m(]l:{n) N H}(}oo,s—l/),m(ﬂ;{n)
are bounded as it is clear from (1.27) and the proved part of the theorem. a
The spaces IIAJI/IZ(,#’S)’m(IRﬁ) and IH[I(f"S)’m (IR'}) are defined similarly to IIAJI/I;(IRZL_) and
to HL(IRY} ) (see Subsection 1.1).

Theorem 1.13. Ifa € R)(IR'},IR"), the operators

roa(z,D), roa(r, D) HLT(RY) — HGe (R

are bounded for all v > [g] +1, u,s€R, meNg and 1 < p < 0.
In particular,

v N(U’)S)vm n N(M_U7S_T)7m n
7/.-|'<D/> )‘:-(D) : IHIp (IR+) - Hp (IRJ,-)v
(D)X (D)E  HI* ™ (R ) — TP (IRY),
A (€)= (G il £0)", 6= (€,6n) €R”
(cf. (1.9), (1.10)) arrange isomorphisms of the corresponding spaces.
If a € TR,(IR,IR™), then the operators with modified and truncated symbols

ria(e,D), rya(e,D): HY™(RE) — HP"™(RY)
(cf. ((1.20), (1.21)) are also bounded.

Proof. The first claim follows from Lemma 1.9 and Theorem 1.12.
The second claim follows form the first one and Lemma 1.2 (see [SD1], [Sh2, Theorem
1.12)).
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The third claim is proved as in [Esl, p.278], [GH1], [Hr1, Sec.18.2], [RS1, Sec.1.1.2].

O
Lemma 1.14. The multiplication operator by the HEAVISIDE function
0,1 = fory  HYT(RY) — HPO™ (R, 0,(6) = o (1+santa).
where £y extends a function by 0 to R"™, is bounded provided
%—1<s<%, l<p<oo, pelR, melN.
In particular, under the asserted conditions the spaces ﬁ;u’s)’m(IRi) and

IHIZ()”’S)’m(IRi) can be identified: if p € IHI}()”’S)’m(IRi) , then Ly € I,I—VIII(,M’S)ym(IRi).

Proof. The second claim of the lemma is an equivalent reformulation of the first
one.

For p = m = 0 the proof of the first claim can be found in [Sr3, St1], [Tr2, §1.8.7]
and can be derived from [Dul, Theorem 1.12], because is equivalent to the invertibility
of the operator A* (D)AL°(D) = W with the symbol g,(&) := (&, — il&'| — 9)*(&n +
il€’| +i)~° in the LEBESGUE space L,(IR") (cf. Theorem 1.13).

In the case p # 0, m # 0 we proceed as follows:

16w L™ (IR™) | —ZH D'y fu|HG T (IR™)|

M3 3 o7 D)0 B(RY)| < Y 3 (60 (D)ol )|
k=0 |a|<k k=0 |a|<k

S Mo 3 37 19700 )] < M B B0 .
k=0 |a|<k

1.4. Pseudodifferential operators on manifolds

Let M be a compact, closed, C*°-smooth n-dimensional manifold with a smooth
boundary I' := OM # (). Then M can be embedded in some manifold M C M of the
same smoothness.

Let {Y; }?zl be a sufficiently refined covering of M. A special local coordinate system

(s.l.c.s.) 21 is defined as in [Esl]: in any chart Y; which has a non-empty intersection

with the boundary I" the variable me ) is the directed distance to the boundary (and is
(4) ()

(xl y ey )

taken positive for # € M\ T'), whereas the tangential variables x{; = T

are a coordinate system on I'.

The spaces HIS (M), L (M), B3, (M), B, (M), HY*"(M)and H,
can be defined by a partition of unity {¢;}{_, subordinated to the covering {Y} } =1
and local coordinate diffeomorphism

—(1,8),m

(128) W ZXj —>Y}, Xj C]R,ﬁ

(M)
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If B* denotes the dual space to the space B and M ## (), then the following relations
are valid (see [Trl]):

(1.29) (ﬁ;(M)) — HL,* (M), (@;qw)) =B, (M),
providedsEIR,1<p<oo,1§q§oo,p’:L1,q’: 9 and

D — q—
(1.30) (HEZ(M))" =HL, (M), (B, (M) =B, (M),

1
provided s > —, 1 <p < o0, 1< g < o0.
p

If M is embedded in IRl, n < [, then the trace operators

o HE(RY — B, 7 (M),
(1.31)

B;,Q(Rl) — Bpy " M)
are correctly defined and bounded, provided

1 —
1 <p<oo, 1<qg< o0, —n<s.
p

The next lemma follows from (1.31), as noted in [Gr2, (3.20)] and in [Sh2].

Lemma 1.15. Let 0 < dimM =n <[, ¢ € B} (M) (¢ € B} (M)) and
l<p<oo (1<g<o0),s<0.

l=n

S——7r sfl’—,"
Then ¢ @ 6pq € H, * (RY) (0@ 6ap € Bpy ™ (RY)), where

(1.32) (P ® oM, ¥) = (p,ym¥) for ¢ € S(RY).

It is easy to prove that the symbols of the class R} (M, IRl) are invariant with respect
to the diffeomorphism (z,¢&) — (go(z, &), g1(x,)), gk € Rm)mk(/\/l,]Rl)(k =0,1) (cf.
[Sb2, Lemma 1.2]). Therefore the symbol class R7*(T*M) on the cotangent manifold
T*M is defined correctly (see [Sb2, Subsection 4.3]).

Moreover, the principal symbol ap,(z, ) is defined invariantly, is independent of the
chart (i.e. of j =1,...,¢) and ay, € Ry, (T*M).

Definition 1.16. (see [Hrl, Sb2] etc.). An operator

—(1,8),m

(133) A : ]I'I[p (M) — IHIZ()}L,S*IJ),m(M)

is called pseudodifferential with the symbol a € R (T*M), if:

(i) x1AxoI : ]HII()“’S)’m(M) — C°°(M) are continuous for all pairs x1,x2 €
C*°(M) with disjoint supports suppyi [|supp chiz = 0 (i.e. x3Axel has or-
der —o0);
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(i) the transformed operators
wj,*ij_’:u = a(j)(x,D)u, u € Cg°(IRY), ji=1,...,¢,

where

wu(z): =

w?(m)u(wj(m)), when =z € Xj,
0, when z & X,

wj(t)go(w-fl(t)), when teY]j,

(1.34) w;to(x): =
0, when ¢ &Y,

i(x): = (wi(x), e X; CRY, teM

and {¢; }ﬁzl is the partition of unity (see above), are pseudodifferential with the
symbols

aV(w;(x),€) = ¥] (@)a(w; (1), )y ().

The principal homogeneous symbol is responsible for the FREDHOLM properties and
the index of the corresponding operator. Moreover, it is responsible for the exponent of
the leading term in the asymptotic expansion of the solution to the pseudodifferential
equation a(z, D)u = f, fe M "(M), ue ]ﬁ[:(M) in the vicinity of the boundary
I'. But to get further (lower) entries of the asymptotic expansion of the solution, we
should involve the full symbols a(t, &) (see [Esl, Section 26], [Bel] and Theorem 2.1
below).

If symbol a(w;(x),§) of a pseudodifferential operator a(t, D) in (1.33) has the trans-
mission property (1.24) (j = 1,...,£), the operator

a(t,D) : HIJ“*) ™ (M) — HII* =)™ (M)

is correctly defined and bounded.

Example 1.17. Let M C IR® be a 2-dimensional, compact, C*°— smooth surface
in IR® with a smooth boundary OM =T,

¢
(135)M: U}/j, w; :(Wjo,wj'l,wj‘g) : Xj —>1/j, Xj CRQ =R xR"
j=1
be a smooth atlas on the surface M (cf. (1.28)) and p,s € R, m € INg, 1 < p < 0.
Let £;(x) = (£j1(2),42(x),¢j3(2)), = € R®, j = 1,2 be two vector fields on IR?
which coincide with linearly independent tangent vectors to the surface M. Restriction
of the differential operator

3
e(z) = (00, (2)> Ota(a)) » () = Zgjk(x)a$k
k=1
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to the surface ya(0y is defined correctly. Then a matrix N x N differential operator
of order v € IN

v

a(t,D) := Z Ca(t)ag(t)

|a|=0

with C'°°(M)—coeflicient is pseudodifferential

=~ (u,5),m

(1.36) am(t,D) :=rpmal(t,D): IHIP (M) N H](Jms—u),m(M)

and the symbol reads
am(t,€) = a(t, J5 ! (@; (1) T€),  am € Sau(T*M);

here t € Y; and Jw,(7) = @ (2) = ||Okwji(7)||3x2, © = (z1,72) € X; denotes the

JACOBY matrix of transformation (1.35) (with k—th row (01w, Oowjk), k = 0,1,2);
AT denotes the transposed matrix to A.

In fact, let
’l%jl)ﬁzj—>}7j, )?j,i;jCIRg, ?ij:Y],
(137) X, :=(—e,¢) x X, V= {Mi(t): —e < A <e, teY;},

’l%j |Xj:%j(07x):wj(x), j:1,2,...,£,

where 7i(t) is the unit normal at ¢ € M, be extensions of the diffeomorphisms in
(1.35). By J;j(%) = @i(T) = ||Ok@;1(T)|3x3 for T = (z0,71,72) € )~(j we denote
the corresponding JACOBY matrix. Jw, () coincides with J~ (0,z) for x € X if
we delete the first column, i. e. the entries (Jyw@;)(0,x), ko= 0,1,2; therefore
Tz, (0,2)(0,y) = T, (x)y for w € X;, y € IR?. It is known, that

J= (0,2) = (eo(z), e1(x), ea(x)),
(1.38) ’
er = (ak%ﬂ, 6kﬁj2,ak{5j3)T, k=0,1,2

where vector—columns eg(x), e1(x) and ez(x) can be chosen orthogonal on the bound-
ary x € X; N1IRY.

The unit vectors e; (z) and e2(x) are not usually orthogonal (in contrast to the pairs
eo,e1 and eq, ez).

As a consequence the JACOBY matrix J;j (Z) becomes orthogonal on the boundary

(1.39) detj;j (0,2) = I,J;j 0,2)" = [j;j (0,2)]7! forall =z € X;NORY.

Since
@ .grad ,@; | = j;jl(o, t)Tgrad ,
(1.40)
ToHOTE = T2 0,07(0,6),
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we find that the transformed operator @, .an(t, D)w;i to (1.36) reads as

@am(t, D)w; ! =afi(@,D), aff(@.&) :=aP (2, T @)7¢), z€X;,
which means that ap € Sep,. (7*M), as claimed above.

Example 1.18.(see similar in [Agl, DNS1, DNS2]). Let M be as in Example 1 (cf.
(1.35)) —co < v < —1 and

a(é) = Fk(€) ~ au(&) + ap1(&) + -+ apr(&) +- -,
a1t = N "Fa, (&) €€R® A>0

be a classical N x N matrix—symbol a € Sclv,,(IR?’).
If v # —1 the trace

p(t, DY(t) = paa(D) (e @ bault / K(t — y) (0 ® 5p0) () dy

(1.41) R?
= /k:(t —ne(r)d: M, teM

M

(see (1.32)) is a pseudodifferential operator

(p,8),m

am(t,D) : HL)

(M) — HI>— D™ (M),

This operator has a classical symbol

G;M(t,fl) = Z aM,V+1—k(t,€l) ) AM,v+1—k S Sfigm)y+17k(T*M) ) 5/ S IR2 ’

k=0
A .
_ (=)l H1bg 5(2) 0} G, (2)
amupti—k ( = z:() Z 2rdetJ~ (0, z)9!
0 B lglkm '
(1.42) /8%%” n (T2 027N ) dr
where

gwj = (det”(akw]‘,ale‘)‘bxg)% with Bkwj = (akWﬂ,akwj'g,aijg)T

denotes the square root of the GRAM determinant of the vector-function w; =
(wj1,@j2,@53) | for j =1,2,...,N, by g(x) = 1 and coefficients b, () for |a| > 0
are found from the following equality

«
m >|5|+1 m+2 mlal

1 -1 m n
LIy @ = 3 b+ Y d@r. aen.

|6]=2 ' |8]=2]e| |8l=m+3
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In particular, the homogeneous principal symbol reads

(1.43) ampr(@j (1), &) = armuy1(w;(x),§)

gwy' ()

B TS -1 Ter '
N 27rdet,_7;j (0’([;) / v (‘7;] (va) (6 7)\)> d\, z¢€ XJ .

—0o0

If v = —1 we can not write (1.41) but

(1.44) am(t, D)p(t) = yma(D)(p © dm)(t) = co(t)p(t) + /k‘o(t,t —7)p(r)d- M.
M

is a pseudodifferential operator of order zero apq (¢, D) : ]IA-]/I;MS)M(M) — ]HI](,“‘S)’m(M)

i.e. is a singular integral operator; the integral in (1.44) is understood in the CAUCHY

principal value sense and (see [Esl, (3.26)])

T n—1
CO(t) = 2(7121) / @M,pr(tvw)dwsa kO(t77-) = fg_iq—[a./\/l,pr(tvg)_co(t)] , t,reM.
T2
|w|=1

In fact, it is known that

/ o M=3" / W) G, (W) (@ (4))dy

M jzlanfl

(see [Sc2, §1V.10.38], [SIL, §3.6]). Therefore
al) (2, D)p(x) = w5 vam(t, D)@ () = colwy () (W2(2))2(a)
() / V)G, (W) (5(2) — 3 () () dy
]R"71

= co(w; (@) (W (2)) (@) + Y ¥ () / VS ()G, (W) bv—m (5 (x) — @ (y))p(y)dy ,

m=0 IRn—l

Fky—m = Qy_m , kv—m(At) = /\nithmku—m(t)a A>0, te R"™.
By the TAYLOR formula we get the asymptotic expansion

o (_1)lal+1
(145)  m5(0) ~ wy(9) = T, (@ — ) + 3 Py )
|6]=2 '
Applying the TAYLOR formula again with the help of (1.45) we get

o0

Fom(@5(@) ~ w5() = Y 0%k (e, ()~ )

|a|=0



Chkadua & Duduchava , PsDOs on manifolds with boundary 21

[0

> (—1)l8l+1
< |3 B i) -y

5]=2
(1.46) = Z Z ba,8(2)0ky—m (T, (2)(z — y))(z — y)’B )
ler|=0|8|=2|c|

where by, 3 = 1 and other coefficients by g(x), |a| > 0 are defined above.
Applying the TAYLOR formula once more we get

(=1l
(1.47) G (9) = G, (0) + Y 0G0, () — )"
lvI=1
Applying formulae (1.45)—(1.47) we proceed as follows
k ba _81 ng~
aM,u-s-l—k(Wj(x),fl) = Z Z B(x)( 71) ](m)
m=0 ’

2a<B|B1+|v|—lal=k—m
XF gl [Z'BJW@ZO‘kV_m (jwj (z)z)}

k .
(=)l 5(2) (~0:) G, ()
- Z Z 27rdetj;j (0, )y!

m=0

|/3|+\7£;\<O<}3:k*m

(1.48) x(=¢)" / 08y (T510,0) (€ N)) dX |

because

Foer [ 2°70%ky (Tmy (2)2) ]

v 1 .

R7—1 R"
1 il —iT~ (0,2)(0,2)n
= @) / LB+ [(_az)ae 3 } / e i au—m(n)dn
R"—1 R"
1 s .
= 50 )P _ghe i€’z —izn —1 T
(%’)"detj; (0, 1‘) ( Zag ) / ( g ) e / e a,j,m(jwj (O’ x) n)dn
7 R—1 R
(—i)l8+]

B+ -1
af/ ’YFZHE’.F

n'—z

/ an(J;jl(O,x)T(n’,A))dA]

— 00

~ 2ndet T~ (0,2)

—i)lB+71 7
- m(eﬁ)%(ox)ﬁg’ﬂ / ay-m (T2 (0,2) T (€', X)dA.

—0o0

aaa
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1.5. Solvability results

Let M be a smooth manifold with a smooth boundary and consider N x N system of
pseudodifferential equations

(1.49) ryma(z, D)u = v,

—~—(p,8),m

a€RYUT*M), uel, (M), veH*m(M),

n
m,v € INg, 72[5]4—2, s, v eR, 1<p<oo.

We suppose the homogeneous principal symbol a,,(z,§) is elliptic
(1.50) inf |detap,(z,w)| >0

|w]|=1
and consider the matrix

(1.51) ag = ap(a') := lap,(2', +1)] " ape (2, 1),

apr (2, £1) := ap-(2,0,...,0,£1), 2z’ € OM.

Let Ar(a'), ..., Ae(2”) be all eigenvalues of the matrix ag(z’) with the RIESZ indices
ma(z'),- -+, mg(a"), respectively (i.e. A;j(z’) defines m;(a’) linearly independent asso-
ciated vectors for ag(2’); see [Gal]) and
<

1 1
(1.52) §; = 6;(2") := =—— log A\;(2"), o 1<s—Red; — , j=1,...,¢

211

IIAN
bR

Theorem 1.19. Let the homogeneous principal symbol ap, € Rzom’y(T*M) of
equation (1.49) be elliptic (see (1.50)). Then

apr(l‘/,f) = [a;r(x/7f)]ilEapT(xlvf)a;r(xlag)a
(1.53) at (), €) = (& +il¢)) T2 ge(2, ),

gn—z’w)““*"(“go (s os 2Ty,

.:apr(l' 75) = <£” +Z|§/‘ o

Apr

2mi C €]
Here:

(i) the functions g=*(a', &, &, —it) and gfl(gc’, ¢’ Cntit) have uniformly bounded an-
alytic continuation for t > 0, are homogeneous of order 0 gy (z',A§) = g+ (2, &)
(A > 0) and the estimates

(1.54) 0 g (Ol < MIE|™F, 19E gt (2!, 6)] < Mg|T"
hold for all k =0,1,..., £ € IR", and x € OM;
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(i1) numbers d; are defined in (1.52), the vector A := (d1,...,0¢) has length N (each
d; occurs, according to its algebraic multiplicity, m; times), o = (o1,...,0Nn) €
INYY are integers (known as the partial indices of ay(x,€)) and

(1.55) AT = diag {h1Fo1 .. ROTONY for heC;

(iii) apr(x,0,£1) are positive definite or ag(x') is a normal matriz, commuting with
the transposed

(1.56) ao(z')[ao(2)] " = lao(2")] "ao(2'),
then By, (t) = I; the N x N matriz B,,, (t) = ||bjx(t)||nxn is polynomial, upper

triangular (bji(t) = 0 for j > k) with identities on the main diagonal (b;;(t) =
1). B,,, (t) commutes with the diagonal matriz (°: ng ()¢ = (‘SBgm (t).

If equation (1.49) is Fredholm for some p € (1,00), u,s € R and m € Ny, then all
partial indices vanish o1(z') = --- = on(2') = 0 for ¥’ € OM and [a,,]*, [af,]T €
Ry om i (T*M).

We postpone the proof of this theorem until Subsection 1.8. Here we formulate an
important corollary which will be proved also later in the same Subsection 1.9.

Lemma 1.20. If the matriz ag(x’) (see (1.51), (1.79)) is normal, then it is simple
¢ =N (ie. each eigenvalue \;(x") has algebraic multiplicity 1) and ag(x') is unitarily
stmilar with the diagonal one
(1.57) B, (&) =1, ao(2')=K(z")diag {\i(z"),..., An(2")} K*(2"),

KeC>®OM), detK(z))#0, K '(a')=K"(a2).

If the principal symbol a,, € R} (T*M) is strongly elliptic on OM, that is

hom,v

there exists a constant M > 0 such that the inequality

(1.58) Re (ap(a',€)n,m) = MIE|"[n]?

holds for all «’ € OM, ¢ € R" and all n € C". Then it admits factorization (1.53)
with

(159) o1(a') = =on(@) =0 and [a,,]7" [} € RIS (T M),

Moreover, if ap, € R} (T*M) is positive definite on OM, that is

hom,v

(apr (@', E)n,m) > MIE["|n|*> for all 2’ € OM, ¢€R"™ and neC”

Precise description of Bgm (t), connected with the Jordan normal form of ag, see in Subsection

1.7, (1.79)—(1.80).
The same assertion holds if we replace condition (1.58) by the following less restrictive one:

l(apr(z’,€)n,m)| > MIEN |n|?

(noted by I.NADIRADZE).
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with some constant M > 0, then ag(z’) in (1.51) is simple and
(1.60) (@) =--=on(z') =0, Redi(z') =--- =Redy(z') =0.

Now we can prove the following

Theorem 1.21. FEquation (1.49) is FREDHOLM if and only if:
(i) The homogeneous principal symbol a,,(x,€) is elliptic (cf. (1.50));
(ii) all partial indices of factorization (1.53) are trivial on OM:

oi(z)=-on(@)=0 forall z'e€dM;

1
(1ii) (1.52) holds with the strong inequality Re d;(z') # s — i g forallj=1,...,¢
and all ' € OM.

If equation (1.49) is FREDHOLM, it has one and the same kernel
Ker raya(x, D) and the same index Indraya(x, D) in all spaces ]HI;”’S)’m(M) —
Hé“’57”)7m(/\/l) which meet the conditions (i)-(ii) and are independent of m € INy.

Proof. First we replace a(x, D) by the operator ;pr(z, D) with the truncated symbol
(cf. (1.21)). Since the manifold M is compact and the difference is smoothing oper-
ator of order —co (cf Lemma 1.15), the difference is compact operator in the spaces
IAP/]I,()’L’S)’m(M) — IHIZ(,“’S_”)’m(M) and has no influence on the FREDHOLM properties.

Now we apply the ”quasilocalization” technique (see [Sil]), which means ”freez-
ing coefficients” and transforming the operator from the manifold to IRY;. For the
BESSEL potential spaces this approach is described in details e.g. in [Dul, §3.2°] and
we suppose the reader is familiar with the quasiequivalence and local invertibility of
operators. We remind that quasiequivalent operators are locally invertible only simul-
taneously (see [Dul, §3.2°]) and if the operator a(z, D) in (1.49) is locally invertible
for all z € M, it is FREDHOLM (see [Dul, §3.2 °] and [GK1]).

We find easily that operators

2\; (.’L‘, D) . ]I_N]Iz()u,s),m(M) N ]le()u,s—u),m(M)
and

A, (w9, D) : HIY“)™(R™) — HIY*)"™(R") for x9 € M\OM,

—~—(p,8),m

(1.61) 7y &, (z), D) : HI, (R}) — HI™RY) for zj € OM

are quasi-equivalent. Therefore equation (1.49) is FREDHOLM if and only if the oper-

ators z\;pr (zo, D) and 7y :G/lpT (xh, D) in (1.61) are locally invertible at the respective
points to = w;(xg) in the respective spaces.

Numbers d; in (1.52) and v; in [DSW1, (A.32)] are related as follows: §; = —iv;.
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v

A condition for local invertibility of the convolution operator W0 =a,, (z9,D)
apr (o,

is well-known and coincides with the ellipticity condition at an inner point zy €

M\OM (see e.g. [Dul, §4]). We leave the details to the reader and proceed to the
case o € dM which is more complicated.

If we apply the "lifting” BESSEL potential operators (D')*A\*(D) and
(D")y~#X*7Y(D) (see Theorem 1.13) and recall that

(D)1 &, (20, D) =y 8y, (29, D)(D')=H

for a fixed o € OM and A\F#(¢’) independent of &,, we get: the second operator in
(1.61) is locally invertible iff

(1.62) 78 (20, D) 1= 14 X"V (D) Ay (z0, D)AT"(D)

is locally invertible at 0 as an operator in the space ]ng’m(]Rﬁ) for all zyp € OM. We

remind, that ﬁg’m(ﬂ%i) = ]I-]Ig’m(]Ri) (see Lemma 1.14).
The operators (1.62) and

(1.63) ryap, (wo, D) : ]I-]Ig’m(IRTfr) — H—]Ig’m(IRﬁ)

are locally equivalent (see [DS1, §3.1]); here

(168) @2(00,8) 1= lim (20,16 = (21E1) e, — it~y (a0, )
pr ) (oo PT ) €n+l|£/| n pr P

is the radial limits of @, (xo, &) at co.
If we introduce an equivalent norm in IHIg’m (RY}) -

m

luH™ (R = > 9@l Ly (RM)]|

k=0 |a|=k
(cf. (1.25)) we find that the dilation operator
V., u(z) := T_%U(TLC), >0, kelRY,

is an isomorphism in ]I-]Ig’m(IRz). Therefore we can apply [Dul, Lemma 3.6] and find
out that the local invertibility of operator (1.63) at 0 coincides with the (global) in-
vertibility, because V,r a5 (o, D) = riags(zo, D)V, due homogeneity of the symbol
aps (0, 7E) = apyp(x0,8) (7> 0).

Further localisation with respect to w € S"~! (see e.g. [Dul, §1.4°], [DS1, Theorem
3.20], [Sh2, Lemma 1.20]) leads to the following result: ellipticity deta,,(zo,w) # 0,
w € 8™~ is necessary condition for the invertibility of operator (1.63).

Since apr (20, €) is elliptic, from (1.53)—(1.54) and (1.64) we find

gn . Z|§/| s—A(zg)—v/2+0(z0)
&n + ilf’l)
fn _ Z|£/‘

1
Gy log M) 9+ (x0,&),

o (0,6) = g~ (20, €) (

(1.65) x BY (

apr
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where under the sum s — A(zg) — g +o(xg) of vectors A, o (see (1.54)) and the scalar
v, v v
8—5 is meant (s — d; — 5—&-01,...,8—(5@—5—1—0]\;).
Due to estimates (1.54) g% (z, ), gfl(xo, )€ MISO) (IR™) (see Theorem 1.1); there-
fore the convolution operators W -1, | = =ryg_ " (zo, D) and Wy, (z,.) = 48+ (20, D)

are invertible in IHIS "(IRY) (see (1.6) and Lemma 1.2) with the inverses rg_(xo, D)
and g} " (2o, D), respectively.
The convolution operator ro[{(D)]*"2~21B, (D) with the symbols

il = B, (1& Zm) n
En + i€’ Ba,. (8) = Ba,, 2m & +il€'] ) el

is bounded in the space ]HIg’m (IR") due to Theorems 1.1, 1.19.iii and to Lemma 1.14.
From (1.65) and (1.6) we find

(€)=

(1.66) ryap(wo, D) = r+g~" (zo, D)ro[((D)]*~ A_dr”Bam(D)7“+g+(31307D)

and since 7 g~ (xo, D), 74 g4 (0, D) are invertible, invertibility of (1.66) in ]ng’m(]Rﬁ)
is equivalent with the invertibility of

(1.67) ri[¢(D)"2727°B

Apr

(D) : FIS™ (IR7) — HIS™ (R,

The operator A := 4 [((D)]*°~2+°B,, (D) is upper triangular with scalar opera-
tors 7 [¢(D)]*7% 2% j=1,...,N on the main diagonal (we remind that B, (D)
has identities on the main diagonal ). Invertibility of these scalar operators ensure
invertibility of A.

First let us suppose conditions (ii) of the theorem fulfilled. Due to (1.6) the operator

(168) o [C(D)) 5% = v (D — il 57 (Dy 4l D/]) >+

P [C(D) % Y™ (RY) — HO™ (RY)

is formally invertible and the operator

(1.69) (ro[C(D)~ %) o= (D + 4| D)% Exy Dy — i D'[) 0%

is the formal inverse to (1.68). It remains to prove that (1.69) is bounded in IHIg’m(IR:L_)

forj=1,...,N.

Due to Theorem 1.13 invertibility is equivalent to the boundedness of the operators
0,1 :H*%~2™(R") — H* %~ 2™(R") for j=1,...,N,

1

which follow from Lemma 1.14 due to conditions (1.52) provided — # s—Red;(z") —
p

(cf. condition (iii) of Theorem 1.21).

The explicit inverse to r4Baq,,. (D) see in Remark 1.28.
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By a standard arguments it can be proved that if the integer o; # 0 in (1.68),
then this operator would have either infinite dimensional kernel (provided o; < 0)
or infinite dimensional co-kernel (provided ¢; > 0), which is incompatible with the
Fredholm criteria we look for (see [Dul, §4.4]).

1
The last step is to prove that the conditions s — Red;(z’) — g #-(j=1,...,N)
are necessary. p

For this we note, that if s — Red;(z’) — % = ]1) for at least one 1 < j < N, then the
operators A, := r[¢(D)]* %~ %%¢ for sufficiently small & > 0 is close (by norm) to
Ay := 7, [¢(D)]*%~3 and has different partial indices: 0 for A_. and +1 for A,..
If we assume Ay is FREDHOLM, the same holds for A4., which is a contradiction,
because A _. is Fredholm as proved above, whereas A . is not.

The last claim about the kernel and the index follows from [DNS2, Lemma 19] since
a(xz, D) has one and the same regulariser in all spaces where it is FREDHOLM. ad

1.6. Holder spaces

Let 0 < v < 1 and H”(IR) denote the space of HOLDER continuous functions on IR
endowed with the norm

lp(t2) — p(t1)]

to t1
to+1t 1141

v -

e[ R (R)[| := sup |(t)| +  sup
telR

t1,t2€R
t1#to

Norm can also be represented in two following forms:

lp(ta) — o(t1)]

le[H(R)]| = sup (1) +  sup
telR

v
ti,t2€R L _ L
ti#ts to+1i  t1+1
to) — p(t
(1.70) = sup |p(t)| +2  sup tls@( 2) f< ol
telR titpem |27t 1Tt
ti#ts to+1 t1+1

The space HY(IR) differs from C”(IR) (see §1.1) since IR is not compact; for a
compact curve I' the spaces H”(I') and C¥(I") are isomorphic.

The spaces H"(IR) and H”(T'g) = C¥(Ty), where I'g = {z € C : |z| = 1} is the unit
circle, are isomorphic:

1—=2

(1.71) we + H'(R) — H"(To), w.p(z):=¢ <i1 + Z) , z€Tly.

The inverse isomorphism reads

w (1) w(i—i—i) , telR.
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In fact,
.o HY (To) |

1+ 2 A+ 2z

i — )
(‘1+z>‘ 14 1— 29 ¢ 1—2

= sup | |? + sup -

z€lo 1-2 z1,22€0 ‘ZZ N Zl|
Z1#29

lp(ta) — w(t1)]
ty—i  t,—i

to+1 t1+1

=sup [p(t)| + sup

teR t1,t2ER
t1#£to

v

and, due to (1.70),
le[H" (R)|] < [lwwp|H” (To)|| < 2je|H" (R)]| -

Lemma 1.22. The HILBERT transform

(1.72) Hrp(t) ::% / @

is bounded in HY(IR) and in HE(R) := {¢ € H*(R) : p(00) = 0} provided 0 < v < 1.

Proof. The CAUCHY singular integral operator
_ 1 [4(Q)d¢
Seube) = o= [
To

is bounded in H"(Iy) for 0 < v < 1 by the PRIVALOV’S theorem (see [GK1, MP1,
Mul]). Under the isomorphism (1.71)) the transformed operator w; S, @, acquires
the form

3 1 7 (1) 2idT 1 OotJrisD(T)dT
1
Sp . o(t) = — ’ . = —
@, Sy wxp(t) ﬂi/T_Zt_Z(T+i>2 i T+i T—1
T 4t o
1 7 7)dT
ke, e 0
e T+

Since one—dimensional operator K is bounded in H¥(IR) — € C H”(IR), the operator
Hp is bounded in H"(IR).
Boundedness in the space Hg (IR) is a consequence of the equalities:

HY(R) = {const}+Hg(IR), Hgrc=0 for ¢ = const. 0

For a positive p > 0, p = m+v, m € IN, 0 < v < 1 we consider the following
BANACH algebra

HM(R) := {p € C™(R) : (t +9)k0Fp € H'(R),k =0,1,...,m},
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endowed with the norm

m

le| HH(R)|| =D It + i) Of |1 (R))]

k=0
If ¢ € H*(IR) by sending in (1.70) t; — 0 and setting to =t € IR we get
(1.73) Olp(t) = p(00)] = O (Jt+i[7 %), k=0,1,....[ul=m.

The next lemma states a certain inverse estimates to (1.73).

Lemma 1.23. Let 0 <v <1, ¢ € C(IR) and

Chp = sup |[t + [0} [p(t) — p(00)]| < 00 for k=0,1,....,m.
t

Then ¢ € H™ 1 (IR) and ||<p‘Hm_1+”(IR)|| <M Y C,, where M =const is inde-
k=0
pendent of .
If o € Hg'"(R) and
ob(t) =0 ([t+i|™%) for k=0,1,..m,
then by € Hy' ™ (R).

Proof. To prove the first part of the lemma by the definition of H™ 17" (IR) we
need to check that ¢y (t) := (t +i)*0F p(t) belong to H*(IR) for k =0,...,m — 1 and
the norms can be estimated with constants Cy, ..., Cy,.

For the proof we need the following inequalities from [Mul, §5])

(z4+y)° < (@ +y7)<2'"7(x+y)?, 0<o<1,
(1.74) 27 =y <z —yl”, x#y, z,y€l0,00),

which are easy to check directly.
Let t1,t5 € [0,00); applying (1.74), we proceed as follows

oulta) = ultr)| = | [ 0rourrar| < [ [+ 10ke(r)

to
+(T+i)kaf+1<p(7')‘d7' < (kaW—FCk_,.LV)/|T—|—Z'|717Vd7'

t1
tz to

< (kCry + Cry1,0) /(T2 + 1)71+Tyd7 < 27%1(k6’k71, +Cri1) /(T +1)"'dr

t1 t1

As an example of the function b(t) can be taken (¢ + i)™, u € IR. A similar assertion is proved
in [Mul, Chapt.1, §6] for the functions on a smooth curve when m = 1.
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, i » to+1)” — (t + 1)
<Ol |2+ 1) — (b + 1| = o, L i

(B +D(E+ 1)
to ty |”

to+i ] +i

/ |t2_t1|y —
I (PR I e

where

9

271%1 (kaW + Ok;_l’_l,y)
» .

[
Cy, =

Similar inequality holds if ¢1,t3 € (—00,0].

Next we have to consider the cases when t; and to have different signs. Without loss
of generality we can assume t2 > 0 and t; < 0; since ¢(t) is continuous at ¢ = 0 and
at t = oo (which means tlir}loo p(t) = tligloo o(t) = p(00)), applying (1.74), we find:

lon(t2) = r(t)| = [or(t2) = @i (to)] + [@r(to) — wr(ta)]

v

t v t
<Cl,|———tl +Cp, |th— —*
— k},l/ t2 +'L 0 + k}ﬂ/ 0 tl +Z
_ to tq v
< 21 I/Cl 2 t/ + t/ _ :
= k’”(‘t2+i 0 Ot +il)

where

t6 = lim - =
t—to t 41

oo for to—t1 > 2.

t 0 for ty=0, 0 for to —t1 <2,
J— tO —
1 for tyg= o0,

Let to — t; < 2, then ¢ = 0 and

. tQ tl Y
to) — t)| < 2t-v¢! - ;
lok(t2) — er(tr)] < P (|t2+i |ty +ZI)
cotven [ 1)z —t(t3+1)3
= o [t + ] [t1 + i
< 9l=ve <t2(—t1+1)_t1(t2+1)>y
= kv |t + il[t1 + i
< 9l-ver <t2tl2t?t1)u <2l-vc! <t2 B tl)Q)V
< b\ Torimza ) S B e+l + ]
< ol-ver Bt —t) \" <otvyrey |2 D )
= k,v |t2+l”t1+l| — k,v t2+l tl +'L

If 2 < ty — ¢ then tj; = 1 and
ok (t2) — or(t)] < Ch, (Ita +i72 + [t +1477)
<o ((t%+1)5 +(t§+1)5> <o <(t2+1)”+(t1+1)”>
= kv |ty + i|"|ty + i = kv [to + i|¥|t, + i|”
_V ta—t1+2 \” _V 2(ta —t1) \”
< 21 C]/g’y T T < 21 Cl’g’y (
|t2+l”t1+l| |t2+l||t1+l‘

v

to t1
to+1 1141

<2Cy,
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The proved inequalities can be summarised as follows

v

to ty
to +1 t1+1

12
(1.75) lon(ta) — @r(t1)| < — (kCh + 1)

Thus, i € 17 (IR) and [}p[ 171 (R)| < 0 3 Gy

Let us prove the second assertion. We have to prove that
U € HY(R), p(t) := (t +)*0%[b(t)p(t)] for k=0,1,...,m

Since

k

Ue(t) =D bi(pn—j(t),  bi(t) = (E+iYb(E),  @(t) = (¢ +iY P p(t),

Jj=0

the claim has to be proved only for m = 1: ¢x_; € H§(IR) and 9;b;(t) = 0 (|t + 14| ~")
for I = 0,1 imply b;p,—; € HE(IR) and, finally ¢, € H{(IR).
Due to isomorphism (1.71) it suffices to prove ae.(bp) = ae,bae.p € HE(Ty). Since

ae.p € Hg(Lp), aep(l) =p(o0) =0, aed(()=0(1) as ( — 1,
Beae,b(C) = 8<b( “) (.) ( T_LC) [z Lo 1*e

¢ ¢JL1-¢ (1-=¢2
1+¢ 2 .
=0 + i =0([1-¢ as ¢ —1,
<’ -0 ) (=)
conditions of the assertion in [Mul, §6.1°] are fulfilled and the inclusion ae.(bp) =
aeibae.p € HE(IR) follows. m]

Corollary 1.24. If 0 < p; < po, the embedding H"*2(IR) C H*1 (IR) is continuous.
Proof. The claim follows from the foregoing Lemma 1.23 and inequality (1.82). O
Rational functions

N\ Kk
(1.76) re(t) = Z Ck <H> , teR, ¢ €C

ki< t41

belong to all H*(IR) (see Lemma 1.23) and let ’I-o[”(IR) denote the sub-algebra of H*(IR)

obtained by closing the algebra of rational functions (1.83). The algebra 7?(”(IR) is
rationally dense by the definition in [BG1] (see also [CG1]).

In [Tal, §1.3.4] the sub-algebra 7—?“(1R) is characterised for 0 < p < 1 (the same
holds for all non-integer € IR™ \ INy) as follows: ¢ eﬁ“(]R) iff

, () =@  _
6113(1) sup ﬁ =0
|t —t|<e —
A it
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uniformly for all t € R U {o0}.

Lemma 1.25. I[fO<pu=m+v <y =m' +v, mm € Ny, 0 <wv,v/ <1, then
the embedding H" (IR) C?%“(IR) is continuous and dense.
If ¢ €H!(R) and

obt) =0 ([t+i|™%) for k=0,1,..m,
then by €Hpy (IR).

Proof. It is known that C*' (o) CCO’”(FO) provided 0 < v < v/, where Co”’(Fo) is
obtained by closing rational functions Z exC® in C7(Ty) (see [Mul], [Tal, §1.3.4].
|k|<e

The claimed inclusion H* (IR) C?f)[”(IR) (for the case m = m’ = 0) follows automati-
cally if isomorphism (1.71) is applied, because the rational functions on the axes r,(t)
(see (1.76)) and on the unit circle are related via the isomorphism:

(aexre)(¢) = Z et

k<t

Now let m =1,2,..., ¢ € H¥ (IR) and @, (t) = (t + )™ p(t). By the definition
of the space ¢,, € H” (IR) and as we already noted for arbitrary e > 0 there exists a

rational function ]
t—i\’
Pme(t) = D Cmje (t—l—z)

lilI<N
(cf. (1.76)) such that
(1.77) lom — Tm E|H” ) <e.
We can assume that 7, .(00) = ¢, (00) since otherwise we can take T, (t) :=

©m(00) = [Pm,e(t) — Tme(00)] and find

Tm,e(00) = ¢(o0),

lom —Tm 6|HV N < Nlom —7m E}HV M =+ lpm(00) = T (00)| < 2e.

Since p > 1 due to Corollary 1.24 ¢ € H'(IR), ¢(00) exists and is finite; then

t Tm—1
rs(t):rm,s(oo)—i—/dTm,l / /dﬁ/i
/ i (7)d
-
“rnelee) [ [ /ﬁ/d
t Tm—1 T2
ro, (T)dT
Tm,e(00) + /drm_l /(72_7') .
(t4+9)m
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t

o (r =)™ ()
= ... —rm,s(00)+/ (m—-1! (r+q)m "’

—0
where
T e (t) := T e (t) = Pe(00) .

Easy to verify that r. is a rational function of the form (1.76).
Similarly,

Tm—1 T2

—00

; 7 —t)m1 L0 dr
—otoo)+ [ CL PO 0ty i ptt) - o).

— 00

Since ¢(00) = 7, (00) we proceed as follows:

t T1 0 0
. v . v ¥ (T) - rm,e<7—)
’(t+z)k+ 3f [gp(t) - TE(t)H = (t+l>k+ ﬁTmfkfl e / WdT
t 71 0 .0 1-46
<414 s 7)o, ) iy o 1P e DL
' , ()

T1
< Myt + " sup |o(7) — e (7)) / dTmp—1 -+ | |7 +i|C D —mgr
T
— 00 — 00

t T1
(1.78) < Myed|t + iV / ATt -+ [ |7 +i|7V7™dr < Mae®

—00 —0o0

for k=0,1,...,m — 1, where
v /
0<d=1-—<1 and (1-6v =v.
v

Recalling the norm estimate from Lemma 1.23 and applying inequalities (1.77) and
(1.78) we find

m—1

o —re[HER)| < M D sup [t +i[* T 0" o f (t) = re(O)]] + Ml m — rm.c[H”(R)]|
k=0

< M[mMﬁ‘s + €]

and the convergence 7. — ¢ in H*(IR) as § — 0 is proved.
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The second claim follows from the proved one and the second claim of Lemma 1.23.
O

Lemma 1.26. I[f u € RY\INg (u=m+v, m € No, 0 < v < 1), then H*(IR) and

7—%’*(]R) are decomposable Banach algebras, i.e. the HILBERT transform Hy is bounded
in these algebras.

Proof. Boundedness in 7—0(“(]R) is a consequence of boundedness in ’}—o[“/ (R) with
0 < p <y (see Lemma 1.25). Applying integration by parts we get the following

(t+ i)kGfH]Rgo = Hr(t + i)kﬁfgo .

Applying Lemma 1.22 we proceed as follows:

I Hwep|H* (R =Y [I(¢ +4)"0f Hrp[H (R)]|
k=1

=D I Hr(t+ ) 0f o[ H (R)|| < [|Hwrl Y It + ) 0F | H” (R)]]

k=1 k=1
= [|Hr|[lo|H*(R)]| - m

It is possible to define the algebra H*(IR) with the help of the ZYGMUND spaces
Z"(IR)

Z'R) :={p e C™(R): (t+i)*0Fp c Z"(R),k=0,1,....,m}, p=m+v,

and endow it with the norm

m

lp|Z* (R)[| := Y (¢ +0)* 0y 0| 2" (R)]]
k=0

Then spaces Z"(IR) and H*(IR) are the same for non integer u € R™ \ INy and
boundedness of the HILBERT transform Hp in Z"(IR) holds even for an integer p =
1,2,..., which is not the case for H™(IR).

1.7. Factorization of symbols

Let M, ap-(2',€), ao = ao(z’) be as in Subsection 1.5, Ai(z),..., A¢(2’) be the
eigenvalues of ag(z’) (see (1.51)) and my, ..., my be their algebraic multiplicities, i.e.

¢
the lengths of the corresponding chains of associated vectors > m; = N. Then aq(x’)
j=1
has the following decomposition

ag(2') = Ko(a') o, (+')Kq * (2') = K(2")Aa,, By, (DK™ (a"),

Apr = apr

(1.79) detKo(2') # 0, detK(z') #0, 2’ € OM



Chkadua & Duduchava , PsDOs on manifolds with boundary 35

(see (1.57)), where the matrices Bgm and Jg,, (2') are quasi-diagonal

Jao (@) = Aq,, (2')+ H,,, = diag {\1(2") Lo, + Hmyy oo, Me(2') Iony + Hpny }
By (t) := diag{Bm,(t),...,Bm, (1)}, teC,
Bn(z) = exp(zHpn), zeC,
A, (') = diag {M (@) gy M@ ), } s
H,, = diag{Hp,,...,Hpn,};

I, is the identity and H,, is the nilpotent matrix H = O:

100 - 00 010 00
010 00 00 1 00

Ly = . o CH, = _
000 10 000 01
000 0o1) 000 --00)

The first representation in (1.79) is known as the normal JORDAN form and Al,, + H,,
is the JORDAN cell of the dimension m

A1 0 0 0
0 X 1 0 0
A, + H,, = . .
0 0 O Al
0 0 0 0 A

mXxXm

Since B, (z) = exp(zH,,), z € C and H,, is nilpotent, the exponent has a finite
expansion

m—1
B (z) = exp(zHy) =1+ %Hﬁl
k=1
2’2 Zm72 mel
1 = =
1 2! (m—=2)! (m-1)!
2 m—3 Zm—2
0 1 —=
= 1 (m—=3)!  (m—2)! , zeC.
' z
1!
0 1

mXxXm

The sets {32 (2)} ¢ and {Bp,(2)},c¢ are one parameter groups (see [Arl, §§ 14—
pr ze

23]) of matrix—operators and have the following properties:

By, (21 +22) = By, (21)B,, (22) ,

(1.80) By (0)=1Iv,  Bg (=2)={B] ()},
{Bg,, (2)}" = exp(2vHa,,) = By, (v2),  z7€C.
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According to the definition e.g. in [Gal, § V.1]

b(a') = = log ag(s”) i=

27 (27)2 /[ao(x’) - ZI]_l log zdz,

r

where [ is the identity matrix, I" is a closed contour, circumventing all eigenvalues
A(z), ..., Ae(2) of ap(2’) and leaving outside the negative real half-axes Re z < 0.
We assume log z := log |z| + iArgz, —7 < Argz <.

Here is the ”pure algebraic” definition of the above defined logarithm:

') = o logao(a’) = > C @) = ety tog [ A, BE,, (0] K@)
(180 = K@) {AE) + gt IO, 56) = g Tor().
Az') == % log A, (o) = diag { 61(2'),...,61(2"),...,80(a"), ..., 0e(a) } .
my —times me—times
Introducing the notation
(1.82) By(t):=B? <1,10g(tiz‘)> ,
P\ 2

where the branch of the logarithm is fixed in the complex plane cut along the ray
{z € C :argz ="}, we find (cf. (1.80))

1 t—i
0 _ —1
By <2m, log - Z) =B_(t)B;'(t)
{ B (D' +0O(t—il"') if t— —oo,

(183) In+O(Jt+i™1) if t— +oo0.

1.8. Proof of Theorem 1.18

Since

v

apr (', €) = €] apr (2, €] 7€) = (& —il€'N) (&0 +il€N T ap, (', €)
(184) agr(‘r/a 6) = aPT(xl7 ‘€|71§) ’ a’gr('x,v >‘§) = agr(xlv 6) ) )‘ > O
we can suppose that v = 0 and ap,(2/, A§) = ap-(2/, €) itself is homogeneous of order

0.
Let

(1.85) a*(w,t) = (t —i)*B_(t)as (w, t) By (1) (t +i) 74,
w=gI"e es" i ={weR" w =1}, t=¢]"%, €R,
a1 (w, t) = K"y, (0, + 1) ap (w, 1)K
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(we have dropped the variable 2’ € 9M for simplicity). Next we prove that
(1.86) w02 OF [a*(w, ) — In]jq = O[[t + i[Re s —dalte—h=1y — Q| 4 jote—h1)

for all k € Ny, o € ]Ng_l, |o/| <+ —1, small € > 0 and §p defined by the relations
(see (1.52))

(1.87) 0o = max {Re( —0g)} <dp+3e<1.
J,qi .....

First let us prove that
(1.88) W R a1 (w, 1) — a1 (0, +£1)] = O(Jt +i|F71),
for |&'| <~ —1, k€ Ny, where

a1(0,-1) = lim a1(¢,&) =K "a,,' (0, +1)ap (0, 1)K = A, Bp.(1)

n——0Q

(1.89) a1(0,+1) = _lim ai1(§',6n) = In

(see (1.51), (1.79), (1.85)).
ai(w,t) is homogeneous of order 0, and a;(-,41) € C?(S"~2); TAYLOR expansion
at t = +oo provides

a1 (w, ) — a1 (0, 1) = a1 (|t| 'w, £1) — a1 (0, +1)
n—1
= wj(0u,a1)(0,£1)[t] T + O(|t| ) as  t— *o0.
j=1
For 0 < |o/| < — 1 estimate (1.88) follows if we differentiate the foregoing identity.
The function a*(w,t) from (1.85) can be rewritten as follows (cf. (1.89))

(1.90) a*(w,t) = aQi(w,t) + a3i(w,t),
ay (w,t) = (t —i)*B_(t)[a1 (w, 1) — a1 (0, £1)] B () (t+ )2,
aj (w,t) = (t—)*B_(t)By (t)(t+i) 2
t—i\® , (1 t—i
- (t+i> B, <2ml gt—i—z’) ’

az (w,t) = (t — i) B_(t)A By, (BN +0)

apr

If we apply (1.88), we get estimates for a3 (w,t)

(1.91) W O OF [ (w,t)]j.q = O(|t + i|Re G —dayte—k-1)
— O(ft+i|%=F 1) k4| <y, as [t — oo,

where € > 0 and ¢ are defined in (1.87).
To prove a similar estimate for a3i (w,t) we note that according to the definition of
function (t £ i)™ (see (1.52), (1.55))

t—i)iA_{ INn+O(t+i]™Y) as t— +oo,

+A FA _
(1.92) (t—)=2(+0)7 (HZ AFL 4 O(ft+i[7Y) as t— —oo.
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Applying (1.83), (1.88), (1.89), (1.90), (1.92) we proceed as follows
w92 OF [af (w,t) — In] = w82 OF [(t — )*B_(t) By ()(t + i)™ — Iy]

R ABO Nk B
o ar \ oi B F i N

(1.93) =0(t+i"1) as t— 4oo
w0 of [a (w,t) — Iy]
= w0 O} [(t ) B ()M, B, (DB (0)(t +i) — L]

Apr—apr
i N A .
’ ’ t — 1 1 t —1
=w* 9 dF A, B (1 BY (—1 -1
w w Yt pr apr( ) <t+ 7/) apr i 0og t +'L N
— w02 0F [Aa,, BY (1A} BY (1) - IN] FO(t+i|7F Y

(1.94) =0(t+i|* 1) as t— —o0,

because the diagonal matrices A, , (¢ £4)** commute with the block-diagonal ma-
trices By (t), Bgm(l) (the diagonal matrices are constant inside the blocks of the
block-diagonal ones) and By (21), By (22) commute as well (see (1.80)).

From (1.90), (1.91), (1.93§, (1.94) we get (1.86) and, by virtue of Lemma 1.23,
a* € H™m%~¢(IR) C?—O[mf‘sofk(]R) foralm=1,2,....

The elliptic matrix—function a* in the decomposable and rationally dense algebra

7_°[m—60—25(IR) (see §2) admits a factorization

(1.95) =l (755) e,

o= (01,...,on) €ZN, Z={0,%1,...}

with factors [a* (¢)]*!, [a* (t)]*! which belong to ﬁm*‘S“*zE(IR) and have uniformly
bounded analytic continuations into the half-planes Im¢ < 0 and Im ¢ > 0, respectively
(see [BG1, CGI)).
Since the limits a’ (00) and a*(00) = I'n exist (see (1.73), from (1.95) and (1.86) we
find
[a* (00)] "’} (00) = a* (00) = Iy

and, without loss of generality, we can suppose a’ (00) = Iy; then (see (1.73))
(1.96) Olat(t) — In] = O (Jt +i|*F 1) as t— 0.

From (1.85) and (1.95), inserting w = [¢/|71¢" and t = |¢/|71¢, we find the com-
ponents of the factorization (1.53) (we remind that v = 0 and, therefore, g4 (2/,&) =
at (2,¢) in (1.53)):

pr

ap (@', €) = al (2!, [/ 71 1€/ 7 ),
a?ﬁ:(m/a w, t) = (t + i)iABzzl(x/a t)a‘j: (CC/, W, t)B:I: (xlv t)(t + i)Aai (1'/)
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(1L97) =aa(e) + (b9)" ABTV (! B)ak (!, w,t) — In|Ba (s t)(t £ 9) as (2)
T) =K, ) = K @ ap (o +1),

0 En _ Z|£l|
Bapr(g) T BU«pT <27T71 1 gn —+ 7,|§ |>

The theorem will be proved if we can prove the estimates

w07 0 ([0 (w, H)EL — [a4]E)) = ot + i+,
(1.98) w3 of ([a,(w,t)}m _[EJED) = ot + 0k

forall j,¢g=1,..,N,k=0,1,... and some 0 < 6 < 1; concerning ’: |§'| = 0if a(x, D)
is not FREDHOLM, |3'| < v — 1 if a(z, D) is FREDHOLM.
In fact, from (1.97) we find

2
§06,06r a1 (§) = = D (0,0 al)(I€'172¢ 1€ 1&1)';']513
7N

(01,00 )€ €176 iy — (08161 E € ) o

and, due to (1.98),

S gl =le | 7B L qer)=lg |71
R I 5 =1 |§n>2M1§|ﬁn.

6506,02; a4 (€)] < My ( Rl S

By similar estimates
(1.99) (€7 00ar(©)| < Magl™, Bu=0,1,., |FI<y—1,

where again |5’'| = 0if a(z, D) is not FREDHOLM, |#'| < y—1if a(z, D) is FREDHOLM.
From (1.99) we get estimates (1.54) (if a(z, D) is not FREDHOLM) and the inclusions
la,, ], [af]F! € Rhomo(T*M) (it a(z, D) is FREDHOLM; we remind that we are
treating the case v = 0).
First we will prove estimates (1.98) for 5’ = 0, i.e. when a(z, D) is not FREDHOLM.
Consider, for definiteness, a’.(t) = a9 (w,t). Other estimates are similar.
A typical entry of the matrix a‘l is

(1.100)  (a%)jq(w,t) — (t+1) chql a’)ji(w, t) — 8;] Mn(t +4))™,
1<q
where mgyq =0, §; = 05, 65 is the KRONEKER’s symbol.
Invoking (1.73) we find
0y ([a$ (w, t)]jq — [ar]jq) = OF((t+ D)7 Y cjqr(w)l(a?)jelw,t) — du]n(t +0))™)
1<q

o((t+ Z-)Re (5q—5.7‘)+50+35—k—1> if Redq, > Red;,
O ((t +)%0F3e—k-1) if Redy < Red;.
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From (1.95) we have

t—1
t+1

(1.101) @} —a* = [IN —~ < )U] at +[a* — Iy)ja* — InN] +a* — In

and applying (1.86), (1.96) we obtain
N
Offa’ —a* Ju(t) = Ot +i[* 1) + 0F > {la”]jr — djp}a™ — Inm
r=1

N

) (|t i i|Re (6j—5,,)+e—k71) _ Z o <|t 1 Z-|Re (§T761)+8717k>
r=1

—0 (|t+i|5?+5*1*’€) L k=0,1,...,

where 6;-r = man{Re [0 — 0;]} = Reld;, — 0] for a certain 1 < j < n (note, that we
have inserted 0} {[a* ];r(w,t) — &;} = O(|t +i[°0F2=71=1) = O(|t +i|7Y); cf. (1.96)).

Invoking Lemma 1.23 we conclude [a} — a’i]jle?otm_‘sfr_%(lf{) forallm=1,2,....

1
The projections PE = 5([ + Hp) eliminate functions, analytic in the half planes

Flmt < 0 (see [CG1, GK1, LS1]); hence

(al);i = +PEla’ —a* ] e 7 (R)

and therefore (see (1.73) and cf. (1.96))
OF [(ah)ulwt) = In] = O (It +il +7+1) k=01,

Inserting the obtained asymptotic for [(a*);i(w,t) — IN]jl into (1.101) and again
invoking (1.95) we get more precise asymptotic

ofla% —a]u(t) = O (jt+47*7")

WE

n o (|t 4 Z~|5j+2571+Re (5T761)+57k:71> 1O (|t 4 i|Re (5j751)+57k71)

Il
-

r

I
M=

O<|t+i|Re(6r*f§l)+357k72> +O(|t+i‘Re(5jfal)+sfk71)
r=1

—0 (|t n z’|Re(5j*5l>+f*’“*1) C k=0,1,...

where 6, := 8, + 6.
Thus, [a% —a’]j Gﬁm*Re (9;=01)=2¢(IR) for all m = 1,2,... and we conclude, as

above, (a’); = £Pga} — a*_}leT(’{m_Re (9=0)=2¢(IR). The latter yields (cf. (1.96))

of [(al)ji(w,t) = In];, = O (|t +z’|Re<‘5j‘5l)+25—"’—1) o k=01,....
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By virtue of (1.100)
85[(13_]”(25) -0 (|t + Z-|Re (54—3;)+Re (5_7»76l)+357k71) =O(|t + i|07k71)

for all k =0,1,... since §; = §; (see (1.97)) and Re (§; — d;) +3c =0 < 1 (see (1.87)).
Now we will prove estimates (1.98) for 8’ # 0, i.e. when a(z, D) is FREDHOLM.
If equation (1.49) is FREDHOLM for some p, i, s and m; then the partial indices of
factorization (1.95) vanish

(1.102) o1(z')=...=0on(z')=0 forall 2z’ €M

and components a’ (z',w,t) of the factorization (1.95) depend on 2’ € M and on
w € S"~2. Conditions (1.102) ensure that [a+(z’,w,t)]T! satisfy the same condition
with respect to the variables 2/ € OM and w € S"~2 as a* (2, w, t), i.e. as [ap (2, w, 1)

(see [Sb1]) and the inclusions [a,,|F!, [af]*! € RZ;&JT*M) follow.

1.9. Proof of Lemma 1.18

For the first claim of the Lemma we quote [Lal, Theorem 2.10.2].

The pseudodifferential equation (1.49) with the strongly elliptic symbol aj,.(z,§) is
FREDHOLM (see e.g. [DS1, Theorem 3.26], [DW1, Theorem 1.7] etc. for the case
w=m = 0; the case pp # 0, m # 0 is similar). Therefore the partial indices vanish
(see (1.102) and (1.60)) and imply the inclusions [a,, ]!, [af.]¥! € Rl_%l’o('f*/\/l) as
in the foregoing theorem.

The remaining assertions are proved in [DSW1, Lemma A.6] as follows.

Since the matrices ap.(w,+1) are positive definite, there exist the square roots

[apr(w, —l—l)]i% and the matrix

ab, (@) = [apr (w, +1)]? @, (W) [apr(w, +1)]

= [apr(w, +1)] 72 apr(w, —1) [apr(w, +1)] 2,

Nl

(SIS

due to similarity, has the common eigenvalues, the common eigenvectors and the
common JORDAN chains of associated vectors with a) (w). On the other hand a,,.(w)
is self adjoint, i.e. is normal and. has no associated vectors as noted above; moreover,
K € C®°OM). Let n(w),...,nn(w) € CV be eigenvectors corresponding to the
eigenvalues A;(w), ..., Ay (w); then

agr(w)nj(w) =\n;jw), j=1,...,N

and we get
(a?)'r'(ylv 0’ +1)77j (w)a Ui (w))
(agr (yla 07 71)77]' (w)ﬂ Uk (w))

because of the positive definiteness of ap,(w,%1). This implies (1.60). a

/\j(w) = >0
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Remark 1.27. Let an elliptic symbol a,,(z, ) have restricted smoothness a,, €

Riyomw (T* M), which reads: a,(r,§) is positive homogeneous of order v in ¢ and

(1.103) (€)' 020 an(x,€)| < Ma, EER”,

forall o] <w |f|<7vy, v>1, k=1,....m, m>2.

Then for the components of factorization (1.53)—(1.54) we get the inclusions [a,, ]!,
w 1,m—2 o
a5 € Ry vy (T"M).

Remark 1.28. The convolution operator 7 Bg,, (D) (see (1.54)) (1.66)) is bounded

in both spaces ff,ﬁ“’s)’ (R}) and Hy (p),m. "(R%) for all p,s € R, 1< p < oo and
m =0,1,... due to Theorems 1.3, 1.19.iii and to Lemma 1.14, because

ot (o ST gy (L S
B, (0= B, (5 os 2550 ) = B, e ) = B 6

(cf. (1.97)) has analytic extensions in both complex half-spaces (see Lemma 1.2).
The inverse to this operator can be written explicitly based on the factorization

By (€ = BHOBO, Bale)i= B2, (51 lou(en l€))
(see (1.83)), on the properties (1.80) and on (1.6); namely
(1.104) [riB,,.(D)] " =BI'(D)B_(D).

In fact, the only property which needs to be verified is the boundedness of the in-
verse operator [r;Bg, (D)] ~in the spaces ﬁéﬂ’s)’m(ﬂ{ﬁ) and Hz(,”’s)’m(ll{")+), which
follows since it is a formal inverse (see (1.6)) and 7B, (D) is invertible, as proved
in Theorem 1.21 (we remind that B, (D) is upper triangular with identities on the
main diagonal).

Theorem 1.29. Let MT := OM x R", a,b € C®°(M) and

/ / gn_i -2 0 1 gn—i /
(@6 = a6 (21) B, (shioe 2t o)

(see (1.79)—(1.80) for ngr)'
Then the corresponding pseudodifferential operator

(1105) aoo(x/’D ) ]I—H(OO s (M+) N H(oo s—v),m (M+)

with the symbol a® (z',&,) is bounded.
The equation

(1.106) a™(z', Dy)u = v, v E ]I-]I(OO s=V) M)
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has a unique solution u € ﬁ](goo’s)’m(./\/ﬁ) for all m € Ny provided a,b are elliptic
(non—degenerate) matrices and the conditions

1 1
,_1<s—Re5j—5<,, j=1,---,¢
p 2 p

hold. The solution reads
u="b"1 (") (D +i) 2 EBL(Dy)04 (D, — )2 EB-YDyp)a (2 ).

Proof. The proof follows word in word the proof of Theorem 1.21, but we will expose
a simpler version of the proof.
The variable 2’ € M can be localised and the localised operator

(1.107) a®(zp, D) : HIZ™(RY) — HE "™ (RY)

is a one—dimensional PsDO (a*(z’,D,,) in (1.105) is invertible iff a®°(xf, D)) in
(1.107) are invertible for all f, € OM; (see [Dul, Sec. 3.2]).

Further we apply the lifting (see [DS1, Sec. 3.1] and Theorem 1.13 above): a* (x, D,,)
in (1.107) is invertible iff the lifted convolution operator

Wazos (@) = afs (.%‘6, Dn) : Hg’m (IR+) — IHIg’m(IRJ")
with the symbol

055 (7, €n) = (&0 = 0)"7"a> (20, 6n) (60 +14)
_ / gn_i sTATE 0 1 gn_i /
_a(x)(éwrz') Bay, <2m'1°g£n+i)b($)
is invertible.

Invertibility conditions of the convolution operator Wase, (x,) I the space Lp(]R+) =
IHIg’O(IR+) are known (see [Du2]) and coincide with the conditions of the theorem. As
for the spaces ]HI%’”(IRU with m # 0, the invertibility condition is independent of
m = 0,1,2,--- since the inverse in L,(IR") is bounded in all spaces ]I-]Ig’m(]RJr) and
therefore represents the inverse there. O
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2. Asymptotic

Throughout this Section we assume

acS)

cl,v

(T*M) and ~ € N 72[%}—1—2. velR.

Further we suppose that a(z, ) has an elliptic homogeneous principal part, which
reads

det ap (7;€) #0, ze M, ¢eR"\{0}

(cf. (1.50)). The notations ao(x'), K(2'), Tag@), M(2'), Aa,. (2'), d;
B.,., By, B+(t), H,,, H,, from Subsections 1.5 and 1.7 (cf. (
(1.55), (1.79)—(1.81)) will be used without further references.

2.1. Formulation of results

Let M be a compact n—dimensional C*°-smooth manifold with the C°°-smooth
boundary OM and consider a N x N system of pseudodifferential equations

(2.1) a(z; D)u = v, u€ IIIJIJII()OO’S)’W(M) ,

UGIHI]SOO,SfIJ),W(M), seR, l<p<oo, w=01,....

Let us introduce a special local coordinate system (s.l.c.s.) ( 2/, z,4) € Mt =
OM xTR™ on M in the neighbourhood of M, where z’ € OM, while x, ; measures
the distance to the boundary oM.

The main purpose of the present section is to prove the following.

—(00,8),@

Theorem 2.1. Let equation (2.1) have a unique solution u € IHI, (M) for

each given v € ]HIZ(,OO’S_”)’W(M). Then

1 v 1
~—1<s—=—Red;j(a') <~ forall j=1,---,¢.

Let further g + Red;(z') > =1, M € No, M < w, v > [g} + M + 4,

K,01,...,00 € C®°(OM) and v € Hl()oo’s_”+M+1)’w(M). Then the solution has
the following asymptotic expansion

(@2 4) = K@) i 200 B0 (— g loga,, ) K7 (a) [co@')

Apr 271
(22) M (2mo—1)k .
+ > xﬁ,-s— > crj(x')log Ty 4 | Xo(Tn 4 ) + Unr1 (2, 20 y)
k=1 =0

The inclusions K,6d1,...,0; € C°°(OM) can be guaranteed if either K,§1 € C>°(OM) or
01,...,0p € C°°(OM) and dimensions of JORDAN blocks in the block—diagonal matrix ngr(l) are

stable m; = const, j=1,...,¢
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with Upry1 € ]/PVH;OO’S+M+1)W(M) and a suitable cut-off function xo € C§(RY),
Xo(@n,4+) = 1 for small 2, .+ > 0 (c¢f. (1.55), (1.81) for notations ). Here Bgm(t)
is the block—diagonal matriz defined in (1.81) by the homogeneous principal symbol

of equation (2.1) and mg = max{mi,...,my} denotes the size of its maximal block.
N-vectors coo = co and c; belong to C*°(OM), ¢ is defined by the homogeneous
principal symbol, while others cy1, c1g, - - . are influenced by the full symbol of equation
(2.1).

Furthermore, for arbitrary p, m,k € Ny the a priori estimates

Co Z Z lexs |[CM (DM + Co[ting 1 [T M
k=0 75=0

(2:3) < L= (M) < Cy [[o]HIES s HMHD-= ()|
[0[HIS =) (M) || < Co|u|HLZ ) (M)

hold with some constants Cy, Cy, Co which are independent of v.

If chains of associated vectors are trivial BO =1 (e.g. if ap-(2',0, il) are positive
definite or the matriz ag(x’) in (1.51) is normal see (1.56)) for all ' € OM, then
mg = 1, logarithmic terms vanish from the leading term of the asymptotic expansion
and it acquires the form

u(z’,xn +) _ K($/)$51A(m/)K71($/)
{ +Z$n+zck] ) 10g @+ | Xo0(@n,+) + Unr1 (@ 0 s) -

If M1 = ... = Mg = X are all equal, expansion takes simplest form

+Am ; ~
20) uleans) = 33 g @eE O loghan s xalon ) + Taror ().
k=0 j=0

As we noted in the Introduction asymptotic (2.2) was derived in [Esl] and [Bel] for
p = 2; but even for the case p = 2 asymptotic (2.2) is more precise.

Remark 2.2.. The obtained estimate for the exponents of logarithmic terms (2mg—
1)k in (2.2) is rough. In the model case of the half-space we have estimate mok (see
[DW1] and cf. Lemma 2.6 below).

As it was noted in [Bel] and as it is clear from the proof of Theorem 2.1 in § 2.3
(the case M = 0) even if K ¢ C*°(OM) the leading part of asymptotic (2.2) is the
same:

Z4A 1 _
w@, xn,4) = K(z') x,ﬁi (@ )BSW (—Qm,log zn,+> K 1($/)CO(I/)X0(%,+)

(25) K@) E 2 (@ )

with “almost bounded” |zf, \ w1 (2", 2, 1) < C < oo for arbitrary ¢ > 0 but we can
not claim any more that the “stress intensity factor” is smooth ¢y ¢ C*°(OM).
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2.2. Auxiliary propositions

Let us remind that we use the notation from Subsections 1.5, 1.7.

Lemma 2.3. (¢f. [Bel, (1.32)]). Let a € S},

cl,v

(T*M) and

a>(a', &) = ()" apr(@’, +1)DZH (@', )b (2, 6n)
bi(2,&n) = (En £0)PE) ) b(2)) = 1 log ag(x') .

21

(2.6)

(cf. (1.81)). Then

07)  lim (6 a (@6 = ap(@' A1),

(28) 0200 [apr(2'30,6,) — a®(2'16)] = O (|7 71)  as [€a] — o0

for all o/ € Ng™1, B, € Ny (we remind, that a,,(x'; £1) := ap,(2';0, £1)).
Proof. The equalities

(t+z’>“:{ 1+0((t)™1) as t— +o0,

t—1 exp(2rpi) + O(Jt|71) as t— —oo

(cf. (1.92)) and (1.51), (2.6), yield:

g +i ﬁ log ao(x/)

a™(@'360) = (6a)" ape (a3 +1) (gn = ) = (&) apr(a's +D)ao(a) + O (&) 7")
= <§n>yapr(m/§ _1) + @ (<€n>y_1) as fn — =00,

0™ (') = (€a) ape (2 +1) + O ((Ea)"™1) a5 €y — +o0

and (2.7) is proved.
To prove (2.8) we apply the Taylor expansion to a®(z’;&,,) at &, — *oo separately:

1 ’
1 LA~ 1\ 377 log ao(z")
0 (@' &) = ap (2’ +1)|Gal (6,1)" ( SR )

1—ig;!
M
(2.9) = a(afisen &) + a3 (25 6n)
j=0
where - @)
1 ; 1+t 27 08 90t
o0 /. _ /. . v
(51 = S (o' 41) lim, [<t> (1 t) ]

1+t

and the function g,(t) := (1 +Z,t> is continuous on IR \ {0} except ¢ = 0 but
—i

including infinity g,(—o00) = g,(+00); the branch of the analytic function g,(z) on

Estimates (2.8) for o/ =0, 8 = 0 are obtained in [Esl, (26.7)] (cf. also [Bel, (1.32)]). As proved
in [Srl, Sect. 4] derivatives 8%2b(z,£) up to order |a| < n must be estimated to get boundedness of
the corresponding operator b(z, D).
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the complex plane C \ [—4,7] cut along the interval [—i,4] on the imaginary axis, are
fixed as follows

go(£00) = €™ g,(=0)=1, g,(+0)=e*"".

Obviously,
ag®(z'; £1) = ape (2’5 £1)

(see (2.7)) and, therefore, aj®(2’;&,) = apr(2';0,&,). (2.8) is a consequence of (2.9) if
we take M = 0. g

Lemma 2.4. Let M € Ny, sc RT, p € IHI;OO’HMH)’W(]R") and

1 1 1
(210) ;—1 <s < 5, 0+ = i(l—l—sgnxn), Ty, + 1= 9+xn_
Then
- (=)F A
(2.11) Orpla) = 1 Tnae (D4 0)(@,0) + Gara ()

k=0
Prrr1(x) = (Dn +0) "M 7104 (Dn +0) M (@)

and Gy € HIYS D= (R Y

Proof. Let ¢ € C§°(IR™) and govn (2 tn) = (Fy ", ©)(2',t,). Then

00y
1 Vv 1 Vv 1 9071 (xl Tn)dTn
S(I=SR) ¢n (@' tn) = 5 |@n (@, t,) — — [ Pt
5 (I = S)) on (27, tn) = 5 | #n (2, 1n) m./ p—

P K n —1
t, —)~M-1 7 DMLY (2 Vdr
) PRI Ry S K N AT
s Tn — tn
— 00
M o0 .
1 (1, —)F v

= — ———— @ (t,T)dT,

D / @, —qyert 7 (Em)dr

k=0 """ 7

1
g (tn = )M = S) (7 — )M G (@ 1)

if we apply F,, := F%, —4,,, we obtain (2.11). In fact,

1
Faz(I = Sw)Fy e =01

Fnltn — i)iquz_lw = (_1)k]:7:1(tn + i)ik}—n‘»@ = (_1)k(Dn + i)ik%

(o}

/ (= i) @ (&7 = (~1)* (Do + i) ) (@, 0),

— 00
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o0
Tyt 11 -k
Nkl eCrindt, 1 ntedt,, A
fn(tn_l) = / W—H(Zl‘n) / ﬁ—Zﬂ'lk' n+e o+,
For ¢ € ]H[(OO HMH)’W(IR") we get the following inclusions successively (Dn, +
HMHlp e IHI(O" IE(R™) (see (1.27)) == 1y = 04 (Dy, +9)M+lp € H" = (R} )=
HI " (IR™) (see Lemma 1.14), = (D,, + i)~ ~14ye HI(> — Z(R) (see
Theorem 1.13).
For ¢ € IHIZ()OO’S"’MH)(]R") the claim (2.11) follows since C§°(IR™) is dense in
H}()oo,s—i—M-i—l)(IRn)- 0

Remark 2.5. Let us note that if conditions of Lemma 2.4 holds, then
M

AL
0-ple) =3 Tk e (D~ 0 0) + Bara(e)
k=0
Brinr = (D — i) M0 (D, — i)+ € T2 (R,

Note that if we change D,,+i (D, —i) in (2.11) (in the previous identity) by D,,—i (by
D,, + i, respectively), we can not claim any more @41 € Héoo’SJrMH’w)(]Rﬁ), since
from g € lHI;g,OO’S)’w(]Ri) does not follow (D,, £i)~ M1y € Héoo’SJrMH)’w(IRi).

Lemma 2.6. Let MT = OMxIR", s,re R, wec Ny, 1 <p<o0,ac Sh.
and conditions of Theorem 1.21 be fulfilled.
If a>(2',&,) is defined by (2.6) the equation

(2.12) rea®(a/, Dyu=f, feH )= (M*)

(T*M)

has a unique solution in ]I-]Iéoo’sfl’))’w (M™), represented by the formulae

u = K(")a7 (D,)ra_(Dy)a®s.
a®(2') == K~} (@) [apr(2', +1)] 7}
a! (D) = BN (Dy)(Dy +1) 520,
a_(D,) :=B_(D,)(D, —i)~5tAE",
where By (&) are defined in (1.82).
For arbitrary M € Ny, M < w, f € IHIZ()OO’S*VJFMH))’W(M*) this solution has the
following asymptotic expansion

(2.13)

ko-a 1 _
(@', Ty 1) Z K(z 0+ " +ng7‘ <_2m' log xnﬁ_) K2 )er(2)
(2.14) —|—uM+1(x Tng),  Gmer € HISSEMFD=(RY)

with
1
21

en(z)) = K(z)B° e Nea_ a® (2’ '
(o) = K >Bapr< a) F (Dot i (D)) 1) 0),

SA@) —k—1, ceC®@OM), k=1,....M



Chkadua & Duduchava , PsDOs on manifolds with boundary 49
and g(p) == diag {g(p1), -, g(un)}-
Proof. From (1.92) we find

A - log ao(m) A —i —A(z) i
(ﬁi) =T ) ) (T) e )

A—i) A 1 A—i\ .
= K(z) (Aﬂ_) By (log)\+ )/c Y(z').

Now the first assertions about solvability of equation (2.12) and solution formulae
(2.13) follow from Theorem 1.21 (cf. also Theorem 1.29).

Let us prove (2.14).

Applying (2.11) to (2.13) we proceed as follows:

M
(2.15) w(@', T +) Z K(z D)ok (€, + ), (@) + Unrpr (2 2 1),
k=0

0u(ns) = ok e, c,£<x'>=(k,> (Do +)*a_(a', Dy)a(@')f(&',0),

Uni1 = (D +8) M a> (2, D))~ (D + )M S

Since (D, +i)M*1f € Hl(joo’s_”)’w(./\/ﬁ') and due to Theorems 1.12, 1.13 and (1.27)
the operators

@%@, D))t HETE(MT) — HOOE (M)
(Dy +1)™M=1 0 T (MT) — TP+ M+ (Af+)

are bounded, we get U1 € IHI(Oo s+M+1) ’w(M"‘)

Due to conditions (iii) of Theorem 1.21 from the SOBOLEV embedding theorem there
follows

k

(2.16) ¢t = (=i k|) (D 4+ i)¥(D,, — i) 2 2B-YD,)a"f ,

(co,s+M+1— kfng),w

cj, € I, (M) c CM=FR*,C>®(0OM)), k=0,1,...,M,

1
because s — g — ReA +1 > =. Under the space HI(JOO’“)’W(M+) with a vector

p
= (p1, -, pun) is meant the vector space.
We proceed as follows

u(z', zp, 1) Z K(x D) vk(wn 1 )i (2') + Unryr (2, 20, 4)

M
1
:E K(z')(D, +i)"2"2BY (Nlog(Dn—l—i)) al e Tmtel(a)
pr T 5

k=0
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_ l 1
1 (2, 2o 1) = kg’c( el [(fn +i)"EABY (2m log(&n + i))

0
XF g —tn ($Z,+€_x"’+) en (@) + nr (2, T +)

—Z’C Pl |Gt 825, (tonte, ) | @)

(2.17) —l—uMH(x Tt ) s c(z') ="k ci(2) € C(OM)

because
Fan ey (@h ety = PRI, +4) 77

By differentiating the formula

TH .
5 K2

(2.18) Filt A +ir)H] = e( i lem™ . 7>0
with Rep < 0 (see [Esl, (2.36)]) in p we find that
By [+ implog™ (e in)] = e e
(2.19) . &)
— =l Tt 2
" e (—logty +0,)™ o u)

Applying this formula to (2.17) we get the following

+A+k —
ZC mn K: 2 Tn,+
+

1 ezt

X exp [277 (—log @y, + + 0y) aw] F(—u)c (') + unr1 (2", 20,4 )

Atk o 1 _
fZ/c wp e B0 (Mlogxn,+>/c ! )ex(a)

v
+unr1 (2, x4, W= —§—A—k—
;
cr(z) = K(2')(—2mi) B2 1 —d, ¢’ cp(z'),
¥ e\ 2mi T(—p)
because ngr (t) = etHarr € € (cf. (1.80)). g

Remark 2.7. Inserting the expansion of e ®»+ into (2.14) and rearranging the
sums, the formula acquires the form

x 1 ~
uw(x', xp, +) Z K(x 2+A( HkBgm ( ; log z,, +> K12 )en(2))

[N}
3

k
(2.20) +upr (2 o0y ), k() = Z m@(m’) )
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where Up41 € HéofoﬁpMH)’w(IR") and cg(2') is the same as in (2.14).

Lemma 2.8. For a given constant v € C and given functions {ax(z',sgnt)}y,
ag(-,£1) € C®°(OM)), k=0,1,...,m, t € IR the following representation holds

m+a

Zak (z,sgnt)|t|” log" |t| = Z bi(z')(t — i0)7 log® (t — 40)

m+0(w)
(2.21) + Z e (x')(t +i0)7 log® (¢ + 40)
k=o(v)
0, ify¢Z,
e dM, teR, o(y):= :
1, ifyeZ

where by, ¢ € C®(OM), k=0,...,m+o(y).
Representation (2.21) is unique.

Proof.(cf. similar assertions in [Esl, Remark 10.3] and [Bel, p.438]). Since

. 7, fort > 0,
(2.22) (t+i0)7 = { Ll”'yﬂt\'y, fort <0,
assuming (2.21) we find that
m m+o(7y) m+a(y)
> ap(@’ +1)[t og" [t = Z br(2 )|t log" [t} + > ex(a)[t|" log" |,
k=0 k=a(v)
m m+o(y)
D an@, =)t log" |t = Z bi.(x')e” ™|t (log [¢| — mi)* +
k=0
m-&-U(’Y)
+ Y @) i (log [t] — i)
k=c(v)

if ¢t > 0 and if ¢t < 0, respectively.
Equating coefficients of log" |t| we get

ar(a’,~1) mim( ‘,1 )( i)/ ~h e (a)+

Jj=k

m+o(7) .
# 3 (L) mrteew,

ck(x)—ak( 1) —bp(2’), k=0,....m+o(y),
am+1(m’,i1):O, co(@)=0 if yeZ.




52 Math. Nachr.  (1998)

The system can be rewritten as follows:

m+o(v) , . . . ‘ ‘
S (1) e e e - ) = )
j=k
cp(z") = ap(z',+1) —bp(2’), k=0,....m+o(y),
ama1(x',£1) =0, co(z’) =0 if ve€Z,

where

ar(2') = ap(2’, —1) — Z ( % ) (i) ~te™ay (2, +1), L=1,...,m,

j=£
Em+1 ($/) =0

are known C*°—functions.

For v ¢ Z the matrix of the system is (m + 1) x (m + 1) upper triangular matrix
with the entries —2isin 7wy # 0 on the principal diagonal j = k; therefore the system
has a unique solution which is a vector—function with C*°-smooth entries.

For v € Z the matrix of the system is (m+2) x (m+2) upper triangular matrix, but
the principal diagonal j = k vanishes; therefore the principal becomes the diagonal
k = j + 1 which has the entries 2 [e™™(—1) — e™] = —4cosmy = 4(—1)7". Since
unknowns are exactly m -+ 1 again, the system has a unique solution which is a vector—
function with C'*°—smooth entries. a

Lemma 2.9. Let b € S°(T*M) have a compact support in the variable &, :
(2.23) b(x,&,6,) =0 if |&,|>M, forall zeM, ¢ eR"
Then b(z, D) is a smoothing operator
(2.24) b(z, D) : ﬁ;m’s)’w(M) — C®(M) forall seRR.

Proof. In a local coordinate system

0yb(z, D)u = Z cwb("’)(x,D)ﬁﬁ/_"’/m
0<y<a

b (2,€) = (—i&) """ (97) (2, €)

and, obviously, b(" € $%°(T*M). Therefore d%b(z, D)u € HI*))= (M) for all
a € INy and this means b(z, D)u € C*°(M). O

2.3. Proof of Theorem 2.1

Solvability conditions of equation (2.1) follow from Theorem 1.21 and we skip over to
the proof of (2.2)—(2.4).

We will apply iteration, starting with the case M = 0. Some formulae, which will
be used repeatedly, will be derived for general M.
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Since the assertion is local we can suppose M is the half-space, but functions are
compactly supported. Then equation (2.1) can be written in the following equivalent
form

2.25 rea™(z’', Dp)u = v},
+ 0

where v} := v — a; (2, D)u — [ag(z, D) — a*(z, D)]Ju and we applied the expansion

M
(2.26) a = aj+ani1, 5 €Sy, (T*M), Qi1 €8]y (T*M)
j=0

of the classical symbol for M = 0.

Homogeneous symbols and kernels of corresponding PsDOs with negative order have
singularities at 0 and multiplying them by a function x§ € C*°IR), where x2(&,) =0
for |&,] < 1 and x{(&,) = 1 for |&,] > 2 we cut-off the singularity. Due to Lemma
2.9 the perturbation operator is smoothing [I — x§(Dy,)]y € C*°(M) for arbitrary
(NS IH[](DOO’”)’w[IR") and we can ignore it. Although we will not write cut—off function,
we suppose its presence and can forget about singularities of symbols at &, = 0.

Applying the TAYLOR formula at z, + = 0 and at & = 0, invoking Lemma 2.3, we
find

a($/7xn,+; E) - aoo(x/’wnr‘r;g) = [ao(l'/, xn,+;§/,£n) - ao(m’,();f/,fn)]
+[GQ(SL‘/, 07 5/7 gn) - ao(l‘/, 07 07 fn)] + [(10({13/7 07 Oa 6’”) - aOO(J:/; {n)]
(2.27)+ay " (@ 6) = ay (a3 €) +ay (25 6n)

n—1

A (@38) = w4 (0n,00) (@, O0wn,15€), AT (@56) =D &(0e,a0) (25 056)
j=1

agil(x/;gn) = aO(xl§ Oagn) - aoo(xl;fn) )

where 0 < 6; < 1. The inclusion 5&”_1)(x;D)u € ]HI;OQS*Z’H)@(M) follows since
Oz, a0 € S)~H(T*M) and the factor x,, ; increases the smoothness of the product by
1 (see the definition of the weighted spaces HI()OO’S_”H)’W(M) in §1.3). The inclu-

sion 55”_1)(1’;D)u € II-II](DOO"PVH)’W(M) follows since O¢, a9 € S)_;(7*M) and the
operator D; = i0,;, which corresponds to the symbol ¢;, is bounded in the space

]HI;OO’S_”)’W(M) (does not changes it) provided j =1,...,n—1 (see §1.3). The inclu-

sion 5&"71)(96’;Dn)u € H;"O’s_”"’l)’w(/\/l) follows due to Lemma 2.3 (see (2.8)) and
to Theorem 1.12.
Thus, v§ € ]I-]I§,00757”+1)7w(/\/l) (see (2.25)).

By invoking Lemma 2.6 and Remark 2.7 we derive expansion (2.2) for M = 0:

—~(00,54+1),™

(2.28) u = ug + U1, uy € »

M),

apr 271

wo(@!, @ 4) = K@)k 12 B ( o log xn,+)/c1<x'>co<z’>><o<xn> . o€ C(OM).
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Now let M > 1 and suppose we have proved

M-—1 v ’
u= > uptum, ug(r,Tnq) = IC(x’)xZ,iA“ Hkngr (*ﬁ log xn,+)
k=0
. xK~L(2') 3 log? T, yCrj(@)e Pt o ey € CP(OM),  coo(a’) = co(a'),
j=0
~ —~(oc0,8+M),w
up € L, M).

Next we shall prove that u; € ]ﬁlz(,oo’ﬁk)’w (M™T) for k=0,1,.... In fact, for this it
obviously suffices to prove that

2.30 v € 5 (RY)  where vp(t) = e 2 tA R g™t te RY
P g
for k=0,1.... Since
(Dp +i)*** o H3PF(RT) — L,(RT)

is an isomorphism, we have to prove the inclusion vy := (D,, +14)*+*v, € L,(IRT).
Let us recall the formulae

(2.31) Froa[thlog™ tye ™) = (7 —i\) T [ log(T — iA) + 0, )"+ 1),
which is the inverse formula to (2.19) and follows from the formula
Fooalthe ™ ] =D(p+1)(r —iN)"#', Rep>-1, 7>0

(see [Esl, (2.36)] and cf. (2.18)) by differentiating in u.
Invoking (2.31) and applying (2.19), we proceed as follows

vo(t) = (D +9) Fog(t) = Face {X+9) T Fy_a[ow(y)] }

= Fact l()\ +i)sEAED-1 S e logd (A + i)] = TTETAED SN 1 logl (ty + )
7=0 7=0
1
and the inclusion vy € L,(IR™) follows since —s + g + ReA(z) > —=.
p
Locally equation (2.1) can be represented as follows
M—1M—k
ra™(z'; Dy)u = vy — Z ryaj(z; D)ug
k=0 j=1
M—1
(2.32) — ry[ag(z; D) — a*(z'; D) ]ug
k=0
where
M—-1 M-1
Vo =v—rdua@Du- Y Y rea(e D
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It is almost obvious that v}, , € IHI(OO s=vHMH1).= (Af) because the operator in the
square brackets has order v — 1 (cf. (2 27)).

The TAYLOR formula, applied at x,, , = 0, and then at |¢,|71¢ = 0, gives:

M—k—j
aj(xlvxm-Hf/agn): Z (8ma])(aj 0; |§n‘ 15 sgn&n)lnl”™ I
m=0
) Mfkfjxm M—k—j—m
+ng,;’“*J*1a§?<x',xn,+;s)= DI
m=0 ’ £=0
(233) x a;)(a’,0; 0,580 &,) + aS (2, 2n 45 €),
|y 1=¢
where

M—k—j
aD(2:6) = M ) (@ 2 €) + Z ) (3759),
1 —k—1 % 2 %
(2.34) aly) e SITEI (T M), oD e ST (TEM)

and, obviously, aﬁ) (x; D)uy € IP]I;OO’S_”+M+1)’W(M+).
Similarly (cf. (2.6)),

o1 b(z') M—Fk
(036 = ol 6 50) (T ) = X 6l aa'6,)

i&n =0
57k (@3 6n), ARy (25 Dy )uy € HIZOS TV EMED-= (A4,
.\ b(z))
apr(z';+1 L (141t
(2.35) ap(z';&,) = % dL(t) (1 — it) ] (sgné&,)’.
t=0

As we see the coefficients of expansions (2.33) with j = 0 and of (2.35) coincide (cf.
(2.7)). Therefore (2.32)—(2.35) yield

(2.36) rya*(z'; Dy)u = Z Z Z szra?mZ(x/;D)uk +v%/[+17
J+m+é>0
a?mf(xl;g) = Z [ajm"/’ (fl;Sgn fn) - 5j+m,06"/1’5(1£(1'/§ sgn gn)} (5/)7 |§n|ll_j_e7
lv'|=¢

’}/ = (717 e 7'Yn—1) ) UM—i-l € ]HI(OO s—vtM+1), (M+) ajm'y’('; :l:l) € Coo(aM) )

where J,, is KRONEKER’s delta. By inverting operator a*(z’; D,,) (see Lemma 2.6)
we find

u = K(z')[ay(2'; Dy)] " 0ra_(a'; Dy)a’ ()2,

(2.37) xalg (', D)y + 1 (2™ (@' Do)~ 03
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00,s+M+41),@w
where v}, | € MR (MT) .

Applying (2.31) we find the following (see (2.29) for uy):

Fynta[ur (@', yn +)]

A(z')+k 1
- IC( ) yn_’gn |:yn =+ Xp <_27_(_Z-Hapr 1og yn,-‘r)
o(k)
> oy (5 )eng )|

q=0

Ak 1 , 1
= K(2')(0 —i&,) " 2 Ala')—k 1exp<[—2ﬂ_i10g(0_lfn)+2m3u} Hapr)

o(k)

xZ[logfn—FzO) lalt]qF(V+A( )+k—|—1>ckq( n
T om 2
= K(2') (€, +i0) " F—AE) k=10 <—1.10g(§n +i0)>
T 211
a (k)
(2.38)  x Y log?(&, +1i0)cy, ('),
q=0

since Bgm (t) = eforr t € € (cf. (1.80)).
Invoking (2.38) and expansion of agmz from (2.36), Inserting (£,+10)7 = 0, (&) 60|+
€™M0 _(£,)]€n] (see (2.22)), we obtain
Wimek (2, T 4 ) 1= ao(x')gcﬂ’Jra?ml(x'; D)ug(z', 2 +)

= Z ao(x/)x$+f£tLLm7L,+{a}mv’ (2'; Sgnfn”gn‘y_j_e(iaw’)v Fyn—tn [uk(x/vyn,-i-)]}

|y |=¢
a(k)
(2.39) =3 ¥ @@, {00 s )
q=0 |y'|=¢

. T NN Ny I 1
X(lam/)v |§n|2 Ala)—k—j—t 1B2m (27” log |£n|) log? |£n|ckq(x/)}

( +e+mo 1

Z §nﬂzn + {a?m (l‘/? sgn fn)|§7l‘%_A(x SRt log” |€n| }ng (xl)
(k)+e+mo—1
= Y Al flel e gt g o, s |

q=0

where a9, ,(z';0) is defined in (2.36) and a},,.. (¢;6), a3, (2';0), a3, (2';0), aj,, (z'; 6)
are smnlar (we remind that symbols are cut off at &, = 0) The powers of logarithmic
terms increased by my — 1 due to the factor Bgm (ﬁ log |§n|) and by |[y/| =< M-k

due to the differentiation 83,/ 1€,]2E) . We proceed as follows

ujl'mfk(wlv Tpy) =T (»T/§ D)“jmék(x, T4 )
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= g A B€) 6 — ) FAEOE, e (@ )]

o(k)+L+mo—1
2.4 = - B (—1 ' — )" EHAE)
(2.40) DS LB (g onten ) (60— )

X ‘§n|%—A(a¢’)—j—k—€—m—l logq |£n|a§m(1‘/7 sgn gn)}

As in (2.38), (2.39) we replace functions (&, —4)7 and log?(§, —i) by the TAYLOR sums
of [£,]77% and log? ™7 |£,], respectively and apply Lemma 2.8, that might increase the

1
powers of logarithmic terms by 1. The factor ng ot log(&, — z)) increases powers
" e

of logarithmic terms by mg — 1.
Ignoring summands with the argument &, — 0 (they are deleted after the FOURIER
transform by r) and applying (2.19) with 7 — 0 we get

o(k)+2mo+M—k—1
Tu]m[k(xl7xn,+) = Z fgn—m +{(£n+7’0) Jmktmme llog (£n+lo)}ckjmql( /)

g=0
o(k+1)
3 _ LkeEm g 2 / 3
(241) +vjm€k:,M+1 - Z n + IOg Ln,+ ijmq[(x ) + vjm@k,M-&-l )
q=0
where ¢ 0 GRimg € C°°(OM) and, due to the TAYLOR expansion, the remainder

VS ka1 € AR O VA

From (2 37)- (2 41) we get

M—1M—kM—k—j M—k—j—m

u=> 2> > X K@Dl W

k=0 j=1 m=0 B

j+m+£>0
(2.42) +r[a% (2" Da)] MR gy + Vg -
Similarly to (2.37)—(2.41) we find:

K(@)as (@, Do) b = K@) Fol, +{<sn+io>5+ﬁ<w’>+j+’“+“m

o(k+1)
Xngr (2 10g gn + 40 ) Z ijmqZ log (é-n +20)}

+U?m5k,M+1 ) ijmqe € Coo(aM) ;
(oo s+M+1),w . X .
where v]mek Mmi1 € (M™). Degrees of logarithmic terms in the last
formulae does not 1ncrease because all symbols have analytic extensions already, de-
pending either on the argument &, 4 0 or on &, + i, and we does not need to apply
Lemma 2.8; to factors with the arguments &,, + ¢ we should apply the TAYLOR expan-
sion which leaves behind sufficiently smooth remainder U?mék, Ml
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From (2.44), (2.45), by applying (2.19) with 7 — 0 we derive

- L+ A(z)+j+k+l+m 1
K@) las (@' Do)~ gy = Kyl 15T BY (—mlog +)

o(k+1)
(243) X Z cijmqﬂ(xl) logq Ln,+ + v?mfk:,MJrl ) cijmql € COO(aM) ’
q=0

which, together with (2.42), gives all summands of (2.2) but the leading term, if
we replace summations with respect to j,¢,m,k by one sum with respect to k and,
respectively, replace j+ k+ £+ m by k. We have to estimate exponents of logarithmic
terms as well.

For exponents of logarithmic terms we get the following estimate:

(2.44) ok+1)<o(k)+2mo+M—k—1
(oc(k+1) <o(k)+2mg—1 provided §(x') = const).
Let us prove, based on (2.44), that
(2.45) o(k) < (2mo—Dk+mo—1 k=0,1,...,

which implies o (k) = k for mg = 1 (see (2.4)). To prove (2.45) we set M = k (this gives
possibility to find k—th summand of the asymptotic knowing previous summands).
Then from (2.44) there follows

ok <olk—1)+2mog—1=2mo—Dk+mpo—1, k=1,2,...

since, as we already know, o(0) = mg — 1 (cf. (2.28) and (2.29); let us note that
o(0) = 0 does not mean that the first term of asymptotic expansion does not contain
1
logarithms—all terms have the factor B? (—2_ log xn,Jr) ).
pr ™

Thus, due to (2.43) and (2.44) all summands in (2.42), which contain u;mek, have
appropriate asymptotic (cf. (2.2)). These entries does not generate the leading term
of asymptotic in (2.2) because j + m + ¢ > 1. The leading term is generated by
application of Lemma 2.6 to the summand r4 [(a™ (2'; D,,)] 103, 4.

Since order of PsDO ord a (2', D) < —g—i—a, where ¢ is due to the logarithmic terms,

and the symbol is analytic, due to Lemma 1.2 the summands K(z')[a (2, Dn)]*lu;m%,

. 3 " 5 —~(co,s+M+1),w™w +
and the remainder terms v5, i 7415 Va1 Vymek, 41 @ll belong to HI, (M™);

therefore they can be included in the remainder @as41 of asymptotic (2.2).
Concerning the a priori estimates (2.3): the last two inequalities

| LY (M) < Co[lo| P2 (M)]] < CoJu HLE = (M)

asserting the equivalence of the right—hand side and of the solution, follow due to the
boundedness and invertibility of the operator

rama(e, D) : H) (M) — HI ™) (M)

p

As for the remaining inequalities, they follow since the norms of co(z'), cpj()
and of wps11(2’, 2y +) are estimated by norms of the right-hand side v(z) and of the
solution w(x’, ).
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