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Abstract. We consider a class of mixed boundary value problems in spaces of Bessel
potentials. By localization, an operator L associated with the BVP is related through
operator matrix identities to a family of pseudodifferential operators which leads to a
Fredholm criterion for L. But particular attention is devoted to the non-Fredholm case
where the image of L is not closed. Minimal normalization, which means a certain
minimal change of the spaces under consideration such that either the continuous
extension of L or the image restriction, respectively, is normally solvable, leads to
modified spaces of Bessel potentials. These can be characterized in a physically rel-
evant sense and seen to be closely related to operators with transmission property
(domain normalization) or to problems with compatibility conditions for the data
(image normalization), respectively.

Keywords: Normalization, boundary value problems, localization, pseudo-differen-
tial operators, Wiener-Hopf operators, Fredholm property, Bessel potential spaces

AMS (2000) subject classification: 35J40, 47TA52, 47A53, 47B35

1. Introduction to mixed boundary value problems and
normalization

We confine our attention to the following model boundary value problem (BVP)
based on considerations in [?, p. 186 ff.] and [?]. Let Q@ C IR? be a bounded
domain with smooth boundary I' = 9 divided into two simply connected parts
and their common boundary points, i.e. (see Figure 1.1)

I =T'ur?u{z*,2?}. (1.1)

Let A be a linear differential operator with smooth coefficients in € of order
2m where m € IN; and B!, B? are vectors of linear boundary operators both
1

with smooth coefficients on I' (extendible to Q) of order m!* = (m},...,m}))
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2 L.P. Castro, R. Duduchava, F.—O. Speck

and m?* = (mi,...,m3,), respectively, such that 0 < mj, m5 < 2m — 1. More

precisely we have B* with components

W=k, D)= Y W () TFD) =T | Y th(x)D¢ |, k=12

|s| <mk |s|<mk
i i

where T denotes the (usual) trace operator on I'*.

! Blu=g!' on I'!

B%y = g% on I'? 2

Figure 1.1: Mixed boundary value problem.

We look for all solutions u € H?>™+(Q), [ > 0, such that

Au(xz) = A(z,D)u(z) = f(x), x e
Bru(z) = (bf(z,D)u(z),...,b% (z, D)u(z)) (1.3)
= (glf(x>7“'7gvlfrz($))7 CL‘EFk, k=12,

where f € H'(Q), g}“ € H2m+l_m?_1/2(l“k) are (arbitrarily) given, j = 1,...,m,
and refer, for short, to the mized BVP (7?). It is called piecewise elliptic, if B
(k = 1,2) have extensions B* to the whole I such that (??) with B* replaced
by BF and with I'*, k = 1,2, replaced by T' are both elliptic (k = 1 or 2), i.e
cf. [?, p. 187],

I: the principle part of the Fourier symbol of A does not degenerate:

AP (2,6) £0, 0£¢cR? zely (1.4)

II: the Shapiro-Lopatinsky condition is satisfied for AP", B1P" and for AP

B2P" as well [?, §11]. This means that the following two initial value problems
have only the trivial solution in H?™(IR x R.y)

AP (20,&, 14 ) 0(t) =0
. (1.5)
BFP" (20,€, 3 4) v(t) = 0
for k =1,2, g € T, £ € IR\{0}, where (in brief) the operators result from (?7?)
by fixing the coefficients, taking the principal parts, applying locally a linear
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Localization and normalization of mixed boundary value problems 3

transformation such that xy becomes the origin, the z;-axis is tangential to I’
and Q lies locally left at zero, and replacing the differential operators D9 by
¢ and DOV by %%, respectively, see [?, §11] for details and for other equivalent
formulations.

REMARK 1.1. Smooth transformations do not destroy the Shapiro-Lopatins-
ky condition. This fact will be important for the localization principle presented
in Section ?7.

Later, in Section 7?7, we shall discuss modifications and generalizations of
the model problem.

EXAMPLES 1.2. 1. The very basic mixed Dirichlet/Neumann problem for the
Laplace equation

Au =0 in Q
u = g on rt (1.6)

ou 9 9
gu r
o g on

where u € H'(2) is unknown and g' € H'/2(T'"), g> € H~'/2(I'?) are given, is
well-posed [?]. Normalization is not needed in this space setting.

2. BVPs (as well as transmission problems) for the Helmholtz equation in
half-spaces in various cases of basic boundary conditions [?, ?], yield compat-
wbility conditions as to be necessary for the solvability or for the Fredholm
property in the initial spaces (H! formulation) [?, ?, 7, ?]. For instance the
mixed impedance BVP for the upper half-plane

(A+k)u =0 in Q:{$:($1,$2)€IR211'2>0}

u +izlu = ¢! on ' =R, x {0} (1.7)
81‘2
% +i2%u = ¢° on I =mR_ x {0}

where ko, 2%, 2% €C, Smko > 0, u € HY(Q), g* € H~Y/2(I'*) implies that
g' — R¢® € rp, HyP() & H-Y2(T)) (1.8)

where R is the reflection operator with respect to x; and Hlfll/ 2(I‘) denotes

the H~'/2 distributions defined on T' = 9Q = IR x {0} and supported on T,
which represents, as restricted on T'y, a proper dense subspace of H /2 (T) =

rp, H='/2(T'). In other words: the distributions of rlelfll/z (T') are extendible

by zero to I within H~'/2(T) but the elements of H~/2(I';) are not, in general.
Under this additional compatibility condition, the problem is already well-
posed, which can be understood in the following sense: the operator defined

by

Lo : Xo={ueH'(Q): (A+k)u=0} — HV/>I)x H-V/*(T?)

U — (91’92) (1'9)
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is not normally solvable. However, restricting the image of Lo by (?7?) and
changing the norm correspondingly, e.g. by using the zero extension operator
@, iro Hy P2 (0) — H-V(T)

1 1

H(91792)H = ||91||H*1/2(I‘1) + HK?HHF(QI - R92)||H—1/2(1—‘) (1‘10)

the (image) restricted operator becomes normally solvable and, moreover, bo-
unded invertible (up to some parameters of z* in a set of C—measure zero [?]).
We call this the image normalization of Lo, cf. [?] and Section ?? for the general
concept.

Instead of restricting the image of Lg, we can extend the domain. Let us
explain this in the special case of 2! = 22 = 2 (which numbers do not effect
the compatibility condition (??)). The solutions of the Helmholtz equation in
H(Q) can be written as [?, ?]

u(r) = F ', {expl-22t($)]-u(€)}, a1 €R, a2 >0 (L11)

where (for the trace ug of u) Fug(§) = ug(€) denotes the one-dimensional
Fourier transformation and #(¢) = (£2 — k%)l/ ? with vertical branch cut over in-
finity. Thinking of smooth data in a dense subspace S(IR ) instead of H~/4T*)
we can write the boundary conditions as

g' on T'!

4 on T2 (1.12)

F~l(iz—t)-Fuy = g= {
i.e. we understand the boundary value due to the boundary conditions of (?7?)
in the sense of

H™Y2(R) c HY2(MY) @ H~V2(1?) (1.13)
which embedding is dense, proper and continuous. Evidently X is [?] isomor-
phic to H=Y2(IR) by the formulas (??)-(??) (provided iz — t has no zeros
on R). If we equip Xy with the norm induced by the direct sum and take

its completion Xy, we evidently get a well-posed problem associated with the
domain normalization of Lo, cf. [?].

REMARK 1.3. The above examples are treated in the sense of weak solutions
(m=1,1=-1,2m+1=1) in contrast to the assumptions before (I > 0). We
plan to come back to these questions later.

2. Associated operators

The following operators shall be considered. They are fundamental for the
Fredholm property and normalization, respectively, as well.

A H'(Q)
L= Bl :H2m+l(Q) N XH;‘H:l H2m+l—m}—1/2(1—11) (21)
m m —mg—
B2 XHj:l H2mAl—m; 1/2(F2)
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- l
Apr H(Q)
T T . m m l—-mi—
Ly = BLp : H™H(Q) — ><1‘[j:1H?m+ 1 —1/2(1h)
2 pr m ml—m2—
Brg) XHj:1 H2 +1 r 1/2(112)

where AL" denotes the principal part of A with frozen coefficients in zo € Q
and BEP" is defined in the same way if 2o € I U {«!, z%}; otherwise we put
BEPr =0, ie. for all zp € QUI3"*. This means that LP" is defined for each

zo € Q as a mapping in the same space setting, but has a different form, namely

Agg Agg Agg Agg
LY = 0 , B;g”" , 0 , B;g’r (2.2)
2pr 2pr
0 0 B2P B2r

for 9 € Q, 19 € T, g € % or 1 € {2, 2%}, respectively.

B.(x?)
Figure 2.1: Local transformation.
Further, denoting by B.(x() the e-ball centered at zq € 2, we consider

smooth transformations se,, : Be(xg) — IR? of neighborhoods of zg into IR?
such that (see Figure 2.1 for the case zg = x?)

K (xO) =0, for xzg € Q
2.

#ay (AN Be(20)) C {z € R®: 25 > 0} P (2.3)

sy ([ N Be(x0)) C {2z €R*: 25 =0}
and the transformed operator

AP H'(R x R+)
L= | B | HPMP(R xRy — { x [Ty H2 2 (R )
B T,
(2.4)
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where AP’ (etc.) are the principal parts of the transformed operators and
APl — P=1®(()) - F corresponds with the PDO with Fourier symbol of AP

.'1;0,0 -

1/2
replacing the variable ¢ € IR? by (1;&2) & which makes A a bijection

provided (??) is satisfied, cf. [?, Lemma 7.1].

(pr)
xo,O

REMARK 2.1. A similar idea, namely the replacement of £ by 1%5'5 , was used

in [?, §7], which is modified here for computational reasons, see Remark ?? and
Corollary ??. Again B*P7 =0 for zy € QU T3+,

3?0,0 -

3. Localization

We like to apply a modification of the local principle [?, 7, ?] in a convenient
form. Following those well-known concepts, the above-mentioned operators L
(etc.) are called operators of local type, if the composition ¢ - L. is compact

for any ¢,1 € C*°(IR?) with suppp N suppt = (. An equivalent condition
can be formulated as follows: the commutator [L, g-] = Lg-—g- L is a compact

operator for all g € C§° (]l.%Z) Here IR2 is the one-point compactification of IR?
and - denotes the multiplication operator generated by the function ¢ in the
corresponding spaces, i.e. restricted to © and I'*, respectively. This is obviously
the case under the assumptions of Section ?7. Note that the multiplication
operator g- acts in a scalar way on the right side of L and as a diagonal 3 x 3
matrix on the left side of L in the sense of the image space of (??). In other
words

go 0 0
g-L=| 0 gr- 0 |oL (3.1)
0 0 g|p2~

and we shall work with the short notation on the left side of this identity for
convenience (also for smooth functions defined at least on Q).

To define local equivalence (see below) we need localizing classes, which
must be covering, to provide proper localization, see [?, Chapter 5].

Let g € C>®(Q), 0 < g(z) < 1, g(z) = 1 for z € B1(0) and g(x) = 0 for
x & B2(0). Further we define the family of functions

T — X0

M,, = {gwm(s €C®Q) i guys(x) =g ( ) ,0< < d(xo)} for zo € Q,

(3.2)
where
dist (x,T), xo € 0
d(wo) = % dist (20, T3 %), mo ek, k=1,2 (3.3)
dist (z!, 22), zo € {a!, 2%}
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Localization and normalization of mixed boundary value problems 7

Note, that for zo € € the class M,, consists of functions which are supported
only inside €2, i.e. supp g5 NI = 0. For zyp € T we have g, s(z*) = 0 if
xo # 2% and gg, 5(2%) # 0 if 29 = 2*.

We denote by M,, = M,,(X) the class of multiplication operators of the
form Guy5 = Gwy.6© = 9uo,0lx for all spaces appearing in Section 2 (scalar
and vectorial as well, cf. (7?)). It is obvious that M = U, _gM,, has the
characteristics of (a family of functions that generates) a covering system of
localizing classes for mized BVPs (77), i.e.

(j) Forallzg € Qand g € M,,, a multiplication operator G = glx € M, (X)
is bounded but not compact for any admissible space X;

(i) If g1, 92 € My,, there exists a function g € M,, such that g1g = g29 = g;

(jjj) If S € M such that, for every xo € ) there exists a function g € S with
g(z0) # 0, then there exist numbers N, N; € IN such that g = g1+ -+ gn
is invertible in C°°(Q) where g € M,1, go € M2, g3 + -+ + gn, €
Mrigre = Ug erturz My, and gy, 41 + -+ + gy € Mq = UyseaMy,, ie.
galw) = -+ = gn () = 0 for @ € {a,a%}, gy 1(2) = - = g(2) = 0 for
zel.

REMARK 3.1. All conditions can be reformulated in terms of multiplication
operators on the admissible spaces, e.g.

(Gi") If Gy,Ga € M, (X), there exists another G € M, (X) such that G1G =
GG = G2G = GG, =G.
and (jjj’) can be written by analogy.

If we had dropped the (redundant) zeros in (?7?), the different sizes of
multiplication operators in different xy’s do not allow this reformulation of
(jij)- In that case, relations resulting from the partition of unity had a more
complicated form.

Since we shall have a finite number of local transformations
wj U=V, U;cQ, V,cR* j=12,...,K

(see Fig. 2.1 and (?7?)), we will use, for convenience, s(x) which coincides with
() for considerations in U;. Similarly we use s !(z), dropping the index j,
for the inverse transformation.

The operators L and L are said to be locally equivalent in xo € Q, if for
all € > 0 there exists a § > 0 such that

I (L= LE7) Gaoolll <&, [[|Gaos (L—LE7) |l <& (3-4)

where ||| - ||| denotes the norm in the quotient space of bounded linear modulo
compact operators. The relation (??) is obviously true for the operators intro-
duced before, cf. [?]. Moreover, we have the local quasi-equivalence of LE! in

xo € I' and L;’; Té as well as L2 ; in 0 (we will apply both concepts later):

1G5 (L2 = Tl &N VI = 11 (8] = TL &) Gyl < 2,
1o (L2 = Tl (Tomt) Il = W (LB = T2 0 Toms) Gl | < 2,
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8 L.P. Castro, R. Duduchava, F.—O. Speck

where we define the operators T, in the following way.
If g € Uj, 3= »; and p € X = H>™T(Q), let

Tols) = { o(x(x)), zeQNU;

(3.6)
0, LUEQ\U]‘

If X is the image space of L, we modify 7,, in the sense of (??) and 77! is
defined similarly in the corresponding space settings.

Further we call the above operators locally Fredholm in xg if there exist local
left and right regularizers Réo, R}, such that

Il (RLyL = 1) Gy sll| =0
| (3.7)
H|Gwo,5 (LRTIO - I) |H =0

for suitable Gz, 5 € My, .
On the plane IR? we consider the “pull-back” localizing classes

m, = {G'M;(z) = Garys(37H2)) + Guys €May}t, 20 = x(x0) €IR?* (3.8)

Z

and define locally equivalent and locally Fredholm operators by analogy.

THEOREM 3.2. Let L be the operator (17) associated to a mized BVP (7).
The following assertions are equivalent:

(i) L is Fredholm;
(ii) L is locally Fredholm in xq, for all zo € Q ;

(i) Li’;f% is locally Fredholm in s(zo), for all zo € Q .

Proof. In brief: The equivalence of the conditions (i) and (ii) follows from a
general localization principle described in [?] — modified for the present settings.
Namely, if (i) L is Fredholm, there exist (global) regularizers R! and R" acting
in spaces inversely to (??) such that R'L — I and LR" — I are compact in the
corresponding spaces. This implies (??) for any g € C°°(IR?), i.e. condition (ii).
Conversely, if (ii) is satisfied, since {9, }gEO g is a covering system of localizing
classes in all Bessel potential spaces, from the collection {Gz,s},, ca.s>0 Of
operators Gy, 5 € M, , which provide localization in (?7), we can select a finite
collection {{G, s, }j=1,...,n, such that ijl,m,N G, s, is invertible. Therefore,

N
I _ l
R =) "Rl G,
=1

is a left regularizer of L because

N
RIL-T = ZR;J_GW;J.L — 1
j=1
N
= (R;J, LGy, s, — ij’gj) + compact
j=1
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is compact. Here we used that G, 5,L = LGy, 5 up to lower order terms
which are compact according to the well-known embedding theorems in spaces
of Bessel potentials. The same argument holds for the right global and local
regularizers.

The equivalence of (ii) and (iii) is an obvious consequence of the fact that
operators which are of local type and locally quasi-equivalent in 2y € € and
20 = x#(1g) € R?, like L and Lgf,”, are simultaneously locally Fredholm in xq
and in zp = s(xg) or not, respectively.

REMARK 3.3. The same reasoning implies the equivalence of the local Fred-
holm property of the operators Ly, LE!, L¥" and LY o, respectively, in each

zo € Q. But these conditions are less important for our purposes.

THEOREM 3.4. If the BVP (??) is piecewise elliptic, the associated operator
L is Fredholm if and only if L<’::(>) is Fredholm for x¢ € {x',x?}.

x

Proof. First, for the operator Lg; 7:%7 the Fredholm property and the local
Fredholm property in 0 amount to the same. This is a consequence of the fact
that Lg; T% is locally Fredholm anyway in all other points of IR x IRy and at
infinity due to the assumption of piecewise ellipticity [?].

Considering Theorem ??7 we have to prove the “if” part, i.e., assuming that
the BVP (?7) is piecewise elliptic and that L;’I()) is Fredholm for z¢ € {x!, 22},
we like to construct a two-sided regularizer of L.

First we think of local regularizers in zg € Q and zg € I''. The BVP

AU:f S HZ(Q):YO

— . . (3.9)
Blu =g € Hj:l H2m+l—mj—1/2(r) _ Yl
is elliptic for u € H?*™*(Q) = X. Thus
N A
L= _ |: X—=YyxYV (3.10)
Bl
has a regularizer Rl = (],%I, }/%\1;) : Yy x Y7 — X. Putting
Rl = (EI,E\;QEFI_,F,O) : YO X }/1|F1 X }/2|F2 — X (3.11)

where Er, .r : Y11 — Y7 is a continuous extension operator (of local type),
with obvious space identifications, we obtain a local regularizer R,, = R of L
for all zg € QUT.

By analogy we have local regularizers for zq € I'2. Together with the second
assumption and Theorem ??, we get a family of local regularizers for all zg € Q
and can construct a global regularizer as in the proof of Theorem ?7.
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4. Reduction to semi-homogeneous problems

In the present section we study the localized operator Lg; T% for zo € {zt, 2}
in Theorem ?7? and (??) in detail.

T2

Au=f in R xRy
Blu — gl 32u — g2 R
on IMN~R_ 0 on I?=~R, )

Figure 4.1: Canonical mixed BVP.

It is the operator associated with the canonical mized BVP for the upper
half-plane where now, abbreviating the previous notation, the operators A and
B* have constant coefficients. Figure 4.1 corresponds with the quasi-localization
in g = 2! in Figure 1.1 and the roles of B! and B? are exchanged, if we consider
o = I2.

We also consider the two BVPs where the mixed boundary condition is
replaced either by Biu = g on the full line I' = {(z1,22) : 23 = 0} = T'1 U
{(0,0)} UT? 2 IR or by BZu = g in the corresponding spaces, i.e. associated
with the operators (in short notation)

A H' (R x R;)
Lk = i CHP (R x Ry ) — N (4.1)
BE, <[, H>™H=ms =12 (R).
Both are elliptic (see Section ?7?) and admit therefore the following results.

PROPOSITION 4.1. The elements of ker A are represented by
(@, w2) = Fe oy, {(171\1 () + ot (€) + -+ + &b iy, (€)> exp|[—t1(£)w2]
+o (uTl(S) + Tl (€) + -+ b iy, (5)) exp[—tm(ﬁ)wz]} (4.2)

where k 1is the number of square roots ty,...,t. with positive real part of the
characteristic polynomial A(i&, z) with respect to z, the numbers p1,. .., w; are
the corresponding multiplicities, Y \_, pux =m, and

u>\7V€H2m+17”+1/2, v=1,....ux, A=1,... K. (4.3)

Proof. Making use of the characterization of elliptic PDOs [?, p. 150], the
representation formula (?7?) is a consequence of partial Fourier transformation
with respect to the first variable and solution of a homogeneous ODE by an
exponential ansatz. (?7) results from estimates in spaces of Bessel potentials,
see [?] for the case of second order PDEs.
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PROPOSITION 4.2. The operators
B ker A — Y =[] H2mH-m - V2(R) (4.4)
j=1

and L%, in (??) are homeomorphisms.

Proof. ker A as a closed subspace of H?™*! is toplinear isomorphic to the
topological product space of the data (?7?), which are in one-to-one (homeo-
morphic) correspondence with the data space Y;* by means of linear algebra
and elementary estimates in Bessel potential spaces. Together with the Fred-
holm property of L* [?] and elementary space decomposition, this implies the
statement.

These results allow the following interpretations.

COROLLARY 4.3. In short, the operators L]]f;{ can be written as

A Y.
k . 0 k

where By is a retraction [?], i.e. right invertible by an extension (or co-
retraction) operator E*.

The data (product) space Y? given by (??) is the image of a particular
boundary operator By of an elliptic BVP due to L° = (A, B]%)T.

The spaces Y, k = 0,1,2, are isomorphically connected by translation
mvariant operators

Yll — Y10 N Y12

5 B (4.6)

where the Fourier symbols Uy of By = F~'Wy - F are rational m x m matric
functions of the variables &, t1(£),...,t.(£).

Proof. This is a consequence of the well-posedness of the two elliptic BVPs
in combination with Proposition ?? and Proposition ?7.

Coming to the question of reducing BVPs to semi-homogeneous BVPs,
where Au = 0 instead of Au = f, we study bounded linear operators in Banach

spaces of the form
_(A). _ (Yo
L<B>.XHY<Y1> (4.7)

and like to relate L to

L°=DBix,: Xo— Y, (4.8)
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12 L.P. Castro, R. Duduchava, F.—O. Speck

where Xy = ker A. The question is, if the two operators are toplinear equivalent
after extension (in brief: equivalent after extension) i.e. [?, 7, ?] if there exist
Banach spaces Z1, Zs and homeomorphisms FE1, Fs such that

L’ 0 L 0
(0 Izl>_E1<0 IZQ>E2 (4.9)

which yields that the two operators have similar properties (invertibility etc.)
and various explicit results (representation of generalized inverses and normal-
ization, e.g.) can be obtained from corresponding results for the other (simpler)
one. Here we have:

LEMMA 4.4. Assuming (?7) where A is right invertible, i.e. surjective and
Xo = ker A is complemented, then the operators (??) and (??) are toplinear
equivalent after extension.

Proof. 1t is sufficient to observe that
L o\ (L0 I0
0 Iy, ) 0 A 0 R
Yy Xo Xo
(K))P(Xl)H(YO) (4.10)
provided AR = Iy,, X; = imR = RAX, R = RstR : Yy — X; (i.e. image

restricted) and the first factor on the right is equivalent to L (coincides up to
homeomorphisms).

REMARK 4.5. For this step, only properties of A (not of B) are important.
Here a right inverse is obtained by continuous extension of H'(IR%) to H'(IR?),
inversion of the PDO A (with constant coefficients) on IR?, and restriction to
the half-space.

Evidently the same arguments hold when B stands for a “mixed boundary
operator”.

PROPOSITION 4.6. Consider the operator in Theorem 77 defined by (?7)
and now abbreviated by

A Yo
L]\/[ = B1 X — ’/’_lel . (4.11)
B2 7'+Y12

This operator is toplinear equivalent after extension to each of the following:

B! r_Y1
Lo = D¢ :kerA—>< 1> 4.12
M (B2 )XO 0 7‘+Y12 ( )

Lg = B2|X8 Xg = XO ﬂkerBl — 71+Y12~ (413)
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Proof. The first equivalence relation is clear from the foregoing considera-
tion. A right inverse of the differential operator A with constant coefficients,
see (?7) and (?7), is obtained by

R=rF o, F¢

where £ : H'(R xR ) — H'(IR?) denotes a continuous extension operator, ® 4
is the Fourier symbol of A, and 7 : H*™+/(R?) — H?*™*/(R x IR, ) stands for
the restriction to the half-plane.

The second relation follows similarly by Lemma ??. B! is right invertible,
since a right inverse is obtained by continuous extension from r_Y{' to Y,
inversion of the operator L' associated to the (non-mixed, semi-homogeneous)
BVP due to (A, BY) in IR%r by Corollary 77, and restriction to the half-line R .

5. The Fredholm property

Now we focus on the two operators L;Z;?M zo € {z', 2%}, in (??) which are both
directly associated to the mixed canonical BVP described in Section ?77.

Let W_r denote the two Wiener-Hopf operators of the form

i m4l—mF— 3—
W = v By B2 [ Y™™ 72 gt 2Ry (s.0)
Jj=1
where £ = 1,2 and By are the operators of (??) resulting from the operator

Liirz) of (?77), k = 1,2 (or the corresponding mixed canonical BVP described
in Figure 3.1 for k =1).

PROPOSITION 5.1.  The operator LY . defined by (??) in the case of Ly =

Liﬁré, is equivalent to Wi (in the sense of toplinear [?] equivalent or isomor-

phic [?] or just equivalent [?] operators in Banach spaces).

Proof. Let us consider k = 1, the situation corresponding to Figure 4.1.

The elements of Xy = ker A can be represented in the form (??) due to
Proposition ??, in particular the elements of X§ = X, Nker B! can be written
in this form. Proposition 77 implies that the restriction of the operator L]1R
given by (??) on the space X, acting into its image, i.e.

Rst L 4 D¢ 0 (5.2)
stLig = : Xg — ol 5.2
Bk <Ly, 2

is a homeomorphism according to Proposition 7?7 and to the fact that X is
a complemented subspace of H 2erl(IRi). With the corresponding restrictions
of the boundary operators

Rst Bﬁ:{ . X((]) - Hj,n-v = (2m + I - ml - 1/2)j:1,...,7rb (5 3)

J
Rst B2 : X{ — H*(IR,), s:(2m—|—l—m§—1/2)j:1 )

)
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14 L.P. Castro, R. Duduchava, F.—O. Speck

we have the composition of toplinear mappings

Wy = Rst B2 0P 'oPo (Rst BR)  : H. — X — Y? — X — H*(R,)
(5.4)
where P is the Poisson operator defined by (??) and we put By = Rst B2oP ™1,

B_ = Rst Bk o P~! in accordance with (??).

THEOREM 5.2. Let L be the operator (??) associated with the mixed BVP
(??). Then L is a Fredholm operator if and only if the two operators W
of (??) are Fredholm.

Proof. This result connects Theorem 7?7 with Proposition 7?7 via Proposi-
tion ?7.

COROLLARY 5.3. The Fourier symbols ®* of
Wy =1y F1®% . F: HT — H"(R,) (5.5)

are reqular, i.e. F~1®F . F . H™" — H are bijective, and they are m X m
matrices of functions from R (§,t1(£),...,tx(§)), i.e. they are rational in these
variables.

Proof. Let us assume firstly that 2! = (0,0) and 952 is locally like Figure 4.1
near the origin. The principle parts of the Fourier symbols W%, of Rst B oP ™1
and Rst B2 o P~! are computed from (??) and (??) as

(YR) s = D Uio(0) ()7 D2 (2 exp(—trw2)) = (5.6)

\al_m

showing the dependence of the Fourier transformed principal parts of the data
in terms of the ansatz functions w,_, by a multiplication operator.

Thus the orders of the mappings result from the increase orders of the
symbols, bijectivity from the one-to-one correspondence in appropriate Banach
spaces, see Proposition 7?7 and Corollary 77, and the algebraic form is obvious
from (??) and (?7?). The localization does not effect the above properties and
the case k = 2 holds by analogy.

COROLLARY 5.4. The two operators Wokx are (toplinear) equivalent to the
lifted operators

W =r F0k-F: (I12)" — L2(Ry)" (5.7)
where

ok = Aok
AL(§) = diag (+0)™,...,(§£14)™)

for s=(s1,...,8m) € R™.

(5.8)
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Localization and normalization of mixed boundary value problems 15

Proof. See e.g. [?, 2, 7].

REMARK 5.5. Instead of Ay (&) = &= one can apply {+kg where Smky > 0 or
different functions of this type in different places of the matrices (??) in order to
reduce the “algebraic complexity” of ®F [?]. For instance, if t; =ty = -+ =1,
in (?7?) (AP" being a power of the Laplacian, e.g.) and [ € INy (see the original
BVP in Section ?7), then

1/2

(8 € R(E ()™ ™, t(§=(+1) (5.9)

taking the usual branch due to a vertical cut between +i over infinity. But, in
any case, we have the following result:

N
—1 mXxXm
(1) #h@erEn©. @)™ k=12 (510
COROLLARY 5.6. The Fourier symbols of the two lifted Wiener-Hopf opera-

tors Wy o due to the two locally quasi-equivalent operators Lgf% of Theorem 77
are reqular elements of the algebra of Holder continuous mxm matrix functions
defined on the two-point compactification of IR:

e MXM

dkegorR) , pel01] (5.11)

with a possible jump at infinity.

Proof. This is an elementary consequence of the form of ®% discussed before,
cf. [?].

THEOREM 5.7. Let the mized BVP (?7?) be piecewise elliptic. Then it is
Fredholm if and only if the two (for short) assigned Wiener-Hopf operators
Wk o from (?77) have symbols which satisfy

det (A®f(—00) + (1 — A)®f(+00)) # 0, Ae[0,1], k=1,2. (5.12)

If this condition is violated, the operator L associated with the mized bound-
ary value problem, is not normally solvable: im L is not closed but the defect
numbers are finite:

a(L) = dimkerL < oo

- (5.13)
B(L) = codimimL < oo.

Proof. The question of the BVP (??) to be Fredholm was already reduced
before to the corresponding question for the operators (?7) with symbols (?7).
But the Fredholm criterion is known for Wiener-Hopf (matrix) operators in
L? spaces with piecewise continuous symbols [?]. Considering L in dependence
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16 L.P. Castro, R. Duduchava, F.—O. Speck

of the smoothness parameter [ > 0, say L(l) in (?7?), we have evidently the

monotony property
a (L)) a<L(l2>)} for Iy >l (5.14)
B(L(l)) = B(L(l2))

and the set of non-Fredholm points of L(I) on the l-semi-axis is locally finite
due to (?7), i.e.

#SnrF ([a,b]) = #{l € [a,b] : L(I) is not Fredholm} < oo (5.15)
for any 0 < a < b < co. This yields (77?).

IA

6. Normalization — the basic idea

The normalization problem for a single bounded linear operator T : Xg — Yj,
which is not normally solvable in given Banach spaces Xy, Y; can be formulated
as to find another pair of Banach spaces X1, Y7 such that T'maps XyNX; into
Y1, Xo N X7 is dense in X7 and the operator T restricted on Xg N X1, as an
operator into Y7, has a continuous extension on X1, in brief

T: EXtT]XoﬂXl ZXl — Yl (61)

and such that T is normally solvable. Then we say that the pair (Xi,Y;) €
N(T) solves the normalization problem for T. See [?, 7, ?, ?] for details,
modifications and generalizations of the concept.

For mixed BVPs (??) we get the following result immediately from Theo-
rem 77.

COROLLARY 6.1. Let L(l) denote the operator associated to the mized BVP
(??) and L(ly) be not normally solvable for some lo > 0. Then there exists an
€ > 0 such that L(1) : X (1) — Y (1), abbreviating the spaces in (??), is Fredholm
forl € I. =|ly — €,1lo + €[N]0, 00[\{lo}, i-e. (X(1),Y (1)) € N (L(ly)). Further e
can be chosen such that both defect numbers a(L(1)) and B(L(1)) have only one
Jump within I, namely at ly.

As we saw in the second item of Examples 77, and for various other rea-
sons [?, 7, ?], it may be interesting, not to change the topologies of both spaces,
Xo and Yy, simultaneously. This leads to the question whether a normalization
problem is solvable under the additional assumptions

X1=Xp, Y1 CY or X1 DXy, Y1 =Y (62)

respectively. We call these minimal normalization problems [?, ?] and denote
the corresponding normalized operators by

< >
T= RstT: Xy — Y and T=ExtT: X; =Y, (6.3)

provided (Xo,Y1) € N(T) or (X1,Y)) € N(T) holds, respectively. The first one
is referred to as image normalization, the second as domain normalization.
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Localization and normalization of mixed boundary value problems 17

PROPOSITION 6.2. If a Banach space operator T € L(Xo,Yy) is not nor-
mally solvable, but ker T and imT are complemented, then the two minimal
normalization problems are uniquely solvable up to isomorphy of the spaces in
question.

Proof. For the image normalization decompose
Xo = ke T @ X,
_ — (6.4)

Since RstT : )f(\f) — im T is bijective (but not bounded invertible with respect
to the given norms of X, and Yp), we choose

Y, = imT @ Y, (6.5)
with the norm, for y = z + 3 due to this decomposition,

Iy, = [J(Rst2)™"2]| .+ [l (6.6)

The desired properties of Y7 are evident. Uniqueness follows from considering
two analogous decompositions of normalized space pairs and the isomorphy
of finite dimensional spaces with the same dimension and their complements,
respectively. The case of domain normalization is left as an exercise.

REMARK 6.3. The assumptions of Proposition ?? are satisfied for Hilbert
space operators (every closed subspace is complemented) or in the case where
the defect numbers (??) of T are finite.

In order to solve the two concrete minimal normalization problems for mixed
BVPs, we now start with normalizing the assigned Wiener-Hopf operators (?7?)
in the scalar case m = 1 corresponding with a second order PDE in (??). So
we study (dropping the dependence on x*) operators of the form

Wo=ryF &y F: L3 — L*(Ry) (6.7)
where
Oy € GCH(R),  p€0,1]. (6.8)

It is convenient to study simultaneously the restrictions for s > 0 and contin-
uous extensions for s < 0 of Wy, briefly denoted by

Wy =ryF'®y- F: H — H*(Ry). (6.9)

LEMMA 6.4 ([?, ?]). Putting “the complex winding number”

1
w=w(dg) = %/Rdlog(boza—l—h (6.10)
1 1 | ®o(—o0)
=— [ darg® = —log|——
7T o0 R are o, TT o8 @0(—1—00)‘
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18 L.P. Castro, R. Duduchava, F.—O. Speck

we can write any ©o € GC*(IR) in the form

By = (A> ¥ (6.11)
Av
where
U e GOM(R)
ind\I/:i/ darg¥ =0 (6.12)
2 R

U(+00) = ¥(—00) = (+00).

Let us recall that the spaces of Bessel potentials [?] were introduced by [?]
and [?] as convolutions of LP-integrable functions with modified Bessel func-
tions of the third kind for s > 0. With the help of the Fourier transformation the
spaces H® can be written, more rigorously, as images of the so-called [?, 7, 7]
Bessel potential operators

A S =F\".F: L[> - H®, seR (6.13)
where A(§) = ({2 + 1)1/2 and, moreover,
W=FI\Y.F:H® - g Rew (6.14)
where AL (§) =€+, s € R, w €C and

RstAY : H?® — | Rew

T+Aqﬁ£(s) : HS(IR+) i Hs_%ew<IR+) (615)

are isomorphisms, £(*)¢ denoting any extension of ¢ € H*(Ry) to (o € H?,
see [?]. So it is natural to consider the following modified spaces as images
of combined Bessel potential operators which are not normally solvable in the
above-mentioned spaces Hi and H*(IR.), cf. [?, Definition 2.1].

DEFINITION 6.5. For every w € C, let

<
HY (Ry) = ro ATV PHY? = o AZTV2AN2 L2 (6.16)
C H™"(Ry)

/2

equipped with the norm induced by H;l , namely with

= [|€%]| ;- 6.17
||¢H§w(m+) 1ol -1/ (6.17)
where ¢ = T+Ag+1/2£(%ew)¢ and /(Fe®)q) denotes any extension from R to IR

within the space H®*" (note that the extension of ¢ by zero within the space
H~'/2 is possible due to the given form of ¢). Further, we define for w €,

>w ew w—1/2
HY = clos {wer ;||¢||§w:|\r+/\+ /¢||H1/2(R+)}. (6.18)

+
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Localization and normalization of mixed boundary value problems 19
It is known [?, Corollary 2.2, Corollary 2.4] (i) that the embeddings

S R > R
H" (Ry) ¢ H*"(R,), HY 5 HEew (6.19)

are proper, dense and continuous for any w € €, (ii) that

< >
H*12 (Ry) =y HOY2, ry HPPV? = gEPVP(RL) (6.20)

for k € Ny (where the last space is the closure of D(IRy) = C§°(IRy) in
HF+1/2(IR,)), and (iii) that the following operators are homeomorphisms for
any wi,ws € C:

< <
Rstr AW 7w2 p(tewn) . gui(R,) — H™2(Ry)
y y (6.21)
EXt A$17w2leew1 . ijl — H:LFUZ .

Finally, we need the basic result about normalization from [?, Theorem 2.5]:

THEOREM 6.6. Let &g € gC’“(]ﬁ), w €]0,1[ and w = o + it be defined by
(??). Then Wy given by (??) is not normally solvable if and only if

1
n:8+0—|—§ € Z. (6.22)
In this case
(a3, @ ) (0 R, ) ) €N O (629

Moreover, each of the normalized operators is one-sided invertible with index

< >
Ind Ws= —k, Ind Wy=—-x+1 (6.24)

respectively, and one-sided inverses are explicitly obtained by factorization of
the Fourier symbols of Wiy, € €]0,1[, and extension or restriction of the
corresponding one-sided inverses of W1, respectively (see [?] for details).

Now, the basic idea is, to normalize the original mixed BVP “consequently”
provided it is piecewise elliptic and not Fredholm.

REMARK 6.7. In the system’s case, there are corresponding solutions of the
minimal normalization problem based upon a representation of the (multiplica-

ee MXM

tive) jump of &5 € GC*(IR) at infinity in normal Jordan form
Byt (400)®o(—00) = M~ Jp, M (6.25)
where M € GC™*™ and the quasidiagonal matrix

Ja, = diag (J1,...,J=) (6.26)
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20 L.P. Castro, R. Duduchava, F.—O. Speck

has Jordan blocks of size [; x [; in the diagonal given by

pi 1.0 -0

0 puj 1 -+ 0
Vo EEEE AN (6.27)
0 00--1
0 0 0 - py

which yields

Bo(€) = (-0 M ™ | diag | (355 ) | T+ 90(©) | M (628

where the elements of Wg(¢) are decreasing of order |£|™" at infinity, see [?,
Section 6].

For the sake of shortness we shall not work out the system’s case here
in detail but like to point out that the corresponding results for the scalar
(or diagonal) case can be obtained by analogy including explicit factorization,
which is a different and subtle problem in general, already in the case m = 2,
see [?].

REMARK 6.8. As shown in [?] there is a direct connection between an image
normalization of an elliptic Wiener-Hopf equation in L, space with a piecewise-
continuous symbol (having a jump at infinity) which is not Fredholm (the
Widom-Gohberg-Krupnik arc crosses the origin) and the corresponding image
normalization of a related Wiener-Hopf equation with continuous symbol which
has a zero of order 1 at a finite point. The normalized space is defined in both
cases by integral operators of Cesaro type (for details see [?, §3.1-3.3]). These
results can be modified for the present setting of Bessel potential spaces in
order to obtain useful characterizations of the normalized spaces.

7. Minimal normalization in the scalar case

Here we consider the case m = 1, which is easily extended to the case m > 1
when we have diagonal (or triangular, at least) Wiener-Hopf operators such
that we can normalize component-wise.

Let us focus on the image normalization of a mixed BVP (??) that is
piecewise elliptic but not Fredholm, and work it out, step by step, starting
with the assigned Wiener-Hopf operators W« o. At least one of them violates
the Fredholm condition (?7?), say, only if k = 1, for simplicity.

As seen before, its symbol

¢ﬂ@egR<@ 5_?>, (7.1)

§+1
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Localization and normalization of mixed boundary value problems 21

because ®,1 € QR(&, VE2+ 1) and W,1 acts between spaces of order r! =
2m+1—m'—1/2 and s = 2m+1—m? —1/2, i.e. of order [ +1/2 (since m = 1,

m* € {0,1}). Thus, ®,190 € G C”(].li) and we can apply Theorem ?? with s =0
and o = 1/2 mod Z. Therefore W1 o : L% — L?(IR..) is normalized by

< <
Weao @ L3 — H "(Ry) (7.2)

where 7 results from the modulus jump of ®,1 o at infinity (the integer part of
the winding number does not matter and the fractional real part is guilty for
non-Fredholmness), see (??) and (?7?).

According to Corollary ?? and property (?7?) of the Bessel potential opera-
tors, the unlifted operator Wy : Hf — H Sl(IE{+) is normalized by

< < . <

W= ry A 0 W o AT HT = p A5 HTV20Y212 v (R (7.3)
L

Now we modify the boundary operator B2 into

where w = s

< <,
B H*™ Q) — H* (I?,2') (7.4)

<
imposing the local behavior of H*(IR;) near zero by transformation in the
image of B? near z'; more precisely

H* (T%,2') = {w € H* (%) : £ ((wp) 0 53 € It?“’(]lh)} (7.5)

where w € C* (I'?), 0 < w < 1,w = 1in Be(z')NI?, w = 0 in Be(2?) NT?, 32,1
is the transformation from (??) and ¢° denotes zero extension to IRy which
represents a continuous operator according to the smooth cut-off by w. The
induced norm is given by

+ [0 (A = w)o) 0520 | yor ., -

(7.6)
Finally, the image of L has to be adapted, in order to end up with a
normalized operator due to (?7). Starting again with localization of

_ 1140 -1
P Y (GRS

A H'(Q)

P— | B | mrmrig) o < H(TY) (7.7)
< <
B2 stl(FQ,xl)

we obtain similar results due to local behavior, continuous embedding and com-

<
pactness criteria, ending up with the fact that [, is Fredholm in the described
situation. The modification for the case where W2  violates (77) is obvious.
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22 L.P. Castro, R. Duduchava, F.—O. Speck

Domain normalization runs analogously. Various details follow directly from
the fact that the normalized spaces are images of Bessel potential operators,
e.g. the local type property [?, Prop. 1.3] of the normalized operators and
compactness of lower order terms etc. So we proved the following result (up to
analogous conclusions).

THEOREM 7.1. Consider the mized BVP (??) that is piecewise elliptic, see
(7?), (??), suppose m = 1 (i.e. the PDE is of second order) and 1 > 0. Let
Wk o(1) denote the two assigned (scalar) Wiener-Hopf operators from (??) and
wh(1) = o®(1) +i7%(1) the numbers defined in (77) due to the Fourier symbols
®E(1) of Wy o(l). Then the BVP (??), i.e. the associated operator L in (??),
1s Fredholm for all 1 > 0 up to a set

SNF(IR+) = (ll + ]Nl) U (l2 + ]Nl) (78)
where I¥ € [0,1[. More precisely
wh (1) = wk(0) +1

(7.9)
Ik =—(c*(0)+3) modZ

for k = 1,2. For the critical orders | € Snrp(IRy) (where the BVP is not
Fredholm), the image of L is not closed, but the defect numbers are finite, and L
can be normalized as follows: IfI' # 12 andl € (ll + ]Nl), the image normalized
operator (??) of L is Fredholm, and, for | € 1> + Ny, an obvious normalization
of B! helps. If I'* = 1? and | € Syr(Ry) the image normalization is given by
simultaneous image normalization of B' and B%. Completely analogous results
hold for the domain normalization (based upon Theorem 7).

<
EXAMPLE 7.2. The full scale of normalized spaces H“(IR) (scalar case)
appears already for the following class of mixed canonical problems given in
Figure 7.1, where a,b and ¢ are complex constants.

1‘2‘
(I-Au=f in RxRy
u=g' au—&—buggl—l—cuwz:g‘2
on '>R_ 0 on 1"2%IR+ o

Figure 7.1: Mixed BVP with an oblique derivative boundary condition.

Consider only the semi-homogeneous problem due to f = 0, g' = 0 (cf.
Section ?77). The representation formula for u € ker(I — A) in the upper half-
plane

u(w) = Fg,, o(€) expl—zat(€)] (7.10)
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Localization and normalization of mixed boundary value problems 23
gives us the Wiener-Hopf operator (see Section 77)
W=r F ' (a—ib¢ —ct)- F: H-T72 S g2H-32(R,) (7.11)

and the lifted operator Wy : L3 — L*(IR) with symbol

(=i Pa—ibe —ct
‘I)o—(E_H.) T (7.12)

and the condition for (piecewise) ellipticity:
a — b€ — ct(€) #£ 0, ¢eRR. (7.13)

We compute the complex winding number
1 .
w=— [ dlog®y=o0+ir (7.14)
2mt Jr

and find a non-Fredholm operator for o = %1 mod ZZ, i.e., thinking of ®¢(+00) =
—c —ib, ®g(—00) = (¢ — ib) exp[—27i(l + 3)], for
—c—1b
[+ arg 5 € /A (7.15)

CcC—1

This condition has plenty of realizations, e.g.:

Case 1. Let [ = 0 and b,c € IR, then ¢ = 0 suffices, i.e. the principle part of
the oblique derivative is tangential (and not really oblique);

Case 2. Let I =0, b,c€ Cand (—c¢ —ib)/(c — ib) = p > 0; this is satisfied for
c=1ib(p+1)/(p — 1), i.e. an imaginary ratio of the coefficients b and ¢; and so
on for other [ ¢ INj.

8. Concluding remarks

The case m > 1 can be treated with the idea of Remark ?7 and yields, in
general, rather complicated formulas. Then, the compatibility conditions for
the data that result from image normalization, cf. (??), are not necessarily
“local”. For instance, in the canonical problem treated in Section 7?7, thinking
of the Bi-Laplacian for A and higher order boundary operators, one can meet
conditions which combine data after application of convolution type operators
on the boundary.

Various generalizations are possible: for three - or n-dimensional configu-
rations, systems of PDE (as resulting from Maxwell’s and Lamé’s equations),
pseudodifferential equations, weak formulations (I < 0), less smooth boundaries
and other spaces of Besov-Triebel-Lizorkin type [?, ?].

Beside of the interpretation of image normalization in terms of compatibility
conditions, one can understand the domain normalization in some cases as
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24 L.P. Castro, R. Duduchava, F.—O. Speck

imposing a transmission property [?]. A simple case is an operator in (??) of
the form

W=r B: H'? L gHHY2(R,), e, (8.1)

where B = I + c- A[° with ¢ > 0 which maps Hfl/? onto r+Hi+1/2 C

H'"'/2(R,) and is not Fredholm.
In the case [ = 0 the embedding r+H_}_/2 C H'Y?(R,) is proper and

dense [?]. Thus I/T/ can be identified with (is equivalent to)

WO = Ext W : HY2(R,) — HY2(IR,) (8.2)

which obviously has the transmission property [?].
Ifl =1,2,3,..., the closure of m_Hj_H/Q in H+1/2(IR,) has codimension
1 [?], thus the operator

W =r B2 HAH2(R,) — HAY2(RY) (8.3)

with arbitrary extension ¢/71/2 into H'*'/2 which has the transmission prop-

erty, coincides with I/?/E (defined on that closure) up to an operator of charac-
teristic [, i.e. is equivalent after extension by finite dimensional operators.
Further interesting studies may be based on the characterization of the
normalizing conditions (compatibility or transmission property, respectively)
in terms of integral conditions and resulting conclusions for the asymptotic

>
behavior of solutions. For instance, due to (?7), the elements ¢ € _l:_l/ 2, l e
Ny, are characterized by
HT+AZ+¢HH1/2(1R+) <00 (8.4)
which is equivalent to ¢ € (°HY?(IR) with
Di(0) =0, j=0,...,01—1
(8.5)

fooo %‘D%(x)ﬁdx < 00,

see [?, p. 11].
Some of these questions will be treated in a forthcoming paper.
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