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Abstract. We consider a class of mixed boundary value problems in spaces of Bessel
potentials. By localization, an operator L associated with the BVP is related through
operator matrix identities to a family of pseudodifferential operators which leads to a
Fredholm criterion for L. But particular attention is devoted to the non-Fredholm case
where the image of L is not closed. Minimal normalization, which means a certain
minimal change of the spaces under consideration such that either the continuous
extension of L or the image restriction, respectively, is normally solvable, leads to
modified spaces of Bessel potentials. These can be characterized in a physically rel-
evant sense and seen to be closely related to operators with transmission property
(domain normalization) or to problems with compatibility conditions for the data
(image normalization), respectively.
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1. Introduction to mixed boundary value problems and
normalization

We confine our attention to the following model boundary value problem (BVP)
based on considerations in [?, p. 186 ff.] and [?]. Let Ω ⊂ IR2 be a bounded
domain with smooth boundary Γ = ∂Ω divided into two simply connected parts
and their common boundary points, i.e. (see Figure 1.1)

Γ = Γ1 ∪ Γ2 ∪ {x1, x2}. (1.1)

Let A be a linear differential operator with smooth coefficients in Ω of order
2m where m ∈ IN1 and B1, B2 are vectors of linear boundary operators both
with smooth coefficients on Γ (extendible to Ω) of order m1 = (m1

1, . . . , m
1
m)
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and m2 = (m2
1, . . . ,m

2
m), respectively, such that 0 ≤ m1

j ,m
2
j ≤ 2m − 1. More

precisely we have Bk with components

bk
j = bk

j (x,D) =
∑

|s|≤mk
j

bk
j,s(x)T k

0 (Dsϕ) = T k
0




∑

|s|≤mk
j

bk
j,s(x)Dsϕ


 , k = 1, 2

(1.2)
where T k

0 denotes the (usual) trace operator on Γk.

•
x2

•x1 B1u = g1 on Γ1

Au = f in Ω

B2u = g2 on Γ2
Γ

Figure 1.1: Mixed boundary value problem.

We look for all solutions u ∈ H2m+l(Ω), l ≥ 0, such that

Au(x) = A(x,D)u(x) = f(x), x ∈ Ω
Bku(x) =

(
bk
1(x,D)u(x), . . . , bk

m(x,D)u(x)
)

(1.3)

=
(
gk
1 (x), . . . , gk

m(x)
)
, x ∈ Γk, k = 1, 2 ,

where f ∈ H l(Ω), gk
j ∈ H2m+l−mk

j−1/2(Γk) are (arbitrarily) given, j = 1, . . . , m,
and refer, for short, to the mixed BVP (??). It is called piecewise elliptic, if Bk

(k = 1, 2) have extensions B̃k to the whole Γ such that (??) with Bk replaced
by B̃k and with Γk, k = 1, 2, replaced by Γ are both elliptic (k = 1 or 2), i.e.,
cf. [?, p. 187],
I: the principle part of the Fourier symbol of A does not degenerate:

Apr(x, ξ) 6= 0, 0 6= ξ ∈ IR2, x ∈ Ω; (1.4)

II: the Shapiro-Lopatinsky condition is satisfied for Apr, B̃1 pr and for Apr,
B̃2 pr as well [?, §11]. This means that the following two initial value problems
have only the trivial solution in H2m(IR× IR+)

Apr
(
x0, ξ,

1
i

d
dt

)
v(t) = 0

B̃k pr
(
x0, ξ,

1
i

d
dt

)
v(t) = 0

(1.5)

for k = 1, 2, x0 ∈ Γ, ξ ∈ IR\{0}, where (in brief) the operators result from (??)
by fixing the coefficients, taking the principal parts, applying locally a linear
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Localization and normalization of mixed boundary value problems 3

transformation such that x0 becomes the origin, the x1-axis is tangential to Γ
and Ω lies locally left at zero, and replacing the differential operators D(1,0) by
ξ and D(0,1) by 1

i
d
dt , respectively, see [?, §11] for details and for other equivalent

formulations.

REMARK 1.1. Smooth transformations do not destroy the Shapiro-Lopatins-
ky condition. This fact will be important for the localization principle presented
in Section ??.

Later, in Section ??, we shall discuss modifications and generalizations of
the model problem.

EXAMPLES 1.2. 1. The very basic mixed Dirichlet/Neumann problem for the
Laplace equation

∆u = 0 in Ω
u = g1 on Γ1 (1.6)

∂u

∂n
= g2 on Γ2

where u ∈ H1(Ω) is unknown and g1 ∈ H1/2(Γ1), g2 ∈ H−1/2(Γ2) are given, is
well-posed [?]. Normalization is not needed in this space setting.

2. BVPs (as well as transmission problems) for the Helmholtz equation in
half-spaces in various cases of basic boundary conditions [?, ?], yield compat-
ibility conditions as to be necessary for the solvability or for the Fredholm
property in the initial spaces (H1 formulation) [?, ?, ?, ?]. For instance the
mixed impedance BVP for the upper half-plane

(
∆ + k2

0

)
u = 0 in Ω =

{
x = (x1, x2) ∈ IR2 : x2 > 0

}

∂u

∂x2
+ iz1u = g1 on Γ1 = IR+ × {0} (1.7)

∂u

∂x2
+ iz2u = g2 on Γ2 = IR− × {0}

where k0, z
1, z2 ∈C, =mk0 > 0, u ∈ H1(Ω), gk ∈ H−1/2(Γk) implies that

g1 −Rg2 ∈ rΓ1H
−1/2
Γ1

(Γ)
⊂
6= H−1/2(Γ1) (1.8)

where R is the reflection operator with respect to x1 and H
−1/2
Γ1

(Γ) denotes
the H−1/2 distributions defined on Γ = ∂Ω = IR × {0} and supported on Γ1,
which represents, as restricted on Γ1, a proper dense subspace of H−1/2(Γ1) =
rΓ1H

−1/2(Γ). In other words: the distributions of rΓ1H
−1/2
Γ1

(Γ) are extendible
by zero to Γ within H−1/2(Γ) but the elements of H−1/2(Γ1) are not, in general.

Under this additional compatibility condition, the problem is already well-
posed, which can be understood in the following sense: the operator defined
by

L0 : X0 =
{
u ∈ H1(Ω) : (∆ + k2

0)u = 0
} → H−1/2(Γ1)×H−1/2(Γ2)

u 7→ (g1, g2)
(1.9)
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is not normally solvable. However, restricting the image of L0 by (??) and
changing the norm correspondingly, e.g. by using the zero extension operator
`0Γ1→Γ : rΓ1H

−1/2
Γ1

(Γ) → H−1/2(Γ)

‖(g1, g2)‖ = ‖g1‖H−1/2(Γ1)
+

∥∥`0Γ1→Γ(g1 −Rg2)
∥∥

H−1/2(Γ)
(1.10)

the (image) restricted operator becomes normally solvable and, moreover, bo-
unded invertible (up to some parameters of zk in a set of C–measure zero [?]).
We call this the image normalization of L0, cf. [?] and Section ?? for the general
concept.

Instead of restricting the image of L0, we can extend the domain. Let us
explain this in the special case of z1 = z2 = z (which numbers do not effect
the compatibility condition (??)). The solutions of the Helmholtz equation in
H1(Ω) can be written as [?, ?]

u(x) = F−1
ξ 7→x1

{exp[−x2t(ξ)] · û0(ξ)} , x1 ∈ IR, x2 > 0 (1.11)

where (for the trace u0 of u) Fu0(ξ) = û0(ξ) denotes the one-dimensional
Fourier transformation and t(ξ) = (ξ2 − k2

0)
1/2 with vertical branch cut over in-

finity. Thinking of smooth data in a dense subspace S(IR+) instead of H−1/2(Γk)
we can write the boundary conditions as

F−1(iz − t) · Fu0 = g =
{

g1 on Γ1

g2 on Γ2 (1.12)

i.e. we understand the boundary value due to the boundary conditions of (??)
in the sense of

H−1/2(IR) ⊂ H−1/2(Γ1)⊕H−1/2(Γ2) (1.13)

which embedding is dense, proper and continuous. Evidently X0 is [?] isomor-
phic to H−1/2(IR) by the formulas (??)–(??) (provided iz − t has no zeros
on IR). If we equip X0 with the norm induced by the direct sum and take
its completion X0, we evidently get a well-posed problem associated with the
domain normalization of L0, cf. [?].

REMARK 1.3. The above examples are treated in the sense of weak solutions
(m = 1, l = −1, 2m + l = 1) in contrast to the assumptions before (l ≥ 0). We
plan to come back to these questions later.

2. Associated operators

The following operators shall be considered. They are fundamental for the
Fredholm property and normalization, respectively, as well.

L =




A

B1

B2


 : H2m+l(Ω) →





H l(Ω)

×∏m
j=1 H2m+l−m1

j−1/2(Γ1)

×∏m
j=1 H2m+l−m2

j−1/2(Γ2)

(2.1)
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Lpr
x0

=




Apr
x0

B1 pr
x0

B2 pr
x0


 : H2m+l(Ω) →





H l(Ω)

×∏m
j=1 H2m+l−m1

j−1/2(Γ1)

×∏m
j=1 H2m+l−m2

j−1/2(Γ2)

where Apr
x0

denotes the principal part of A with frozen coefficients in x0 ∈ Ω
and Bk pr

x0
is defined in the same way if x0 ∈ Γk ∪ {x1, x2}; otherwise we put

Bk pr
x0

= 0, i.e. for all x0 ∈ Ω ∪ Γ3−k. This means that Lpr
x0

is defined for each
x0 ∈ Ω as a mapping in the same space setting, but has a different form, namely

Lpr
x0

=




Apr
x0

0

0


 ,




Apr
x0

B1 pr
x0

0


 ,




Apr
x0

0

B2 pr
x0


 ,




Apr
x0

B1 pr
x0

B2 pr
x0


 (2.2)

for x0 ∈ Ω, x0 ∈ Γ1, x0 ∈ Γ2 or x0 ∈ {x1, x2}, respectively.

•
x2

•x1

¹¸

º·

Bε(x2)

Ω

6x2

0
-
x1

IR× IR+

-
κx2 κx2

(Bε(x2)
)

Figure 2.1: Local transformation.

Further, denoting by Bε(x0) the ε-ball centered at x0 ∈ Ω, we consider
smooth transformations κx0 : Bε(x0) → IR2 of neighborhoods of x0 into IR2

such that (see Figure 2.1 for the case x0 = x2)

κx0(x0) = 0, for x0 ∈ Ω

κx0 (Ω ∩ Bε(x0)) ⊂
{
x ∈ IR2 : x2 > 0

}
for x0 ∈ Γ

κx0 (Γ ∩ Bε(x0)) ⊂
{
x ∈ IR2 : x2 = 0

}
(2.3)

and the transformed operator

L
〈pr〉
x0,0 =




A
〈pr〉
x0,0

Bk pr
x0,0

B
(3−k) pr
x0,0


 : H2m+l(IR× IR+) →





H l(IR× IR+)

×∏m
j=1 H2m+l−mk

j−1/2(IR−)

×∏m
j=1 H2m+l−m3−k

j
−1/2(IR+)

(2.4)
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where Apr
x0,0 (etc.) are the principal parts of the transformed operators and

A
〈pr〉
x0,0 = F−1Φ(〈·〉) ·F corresponds with the PDO with Fourier symbol of Apr

x0,0

replacing the variable ξ ∈ IR2 by
(

1+ξ2

ξ2

)1/2

ξ which makes A
〈pr〉
x0,0 a bijection

provided (??) is satisfied, cf. [?, Lemma 7.1].

REMARK 2.1. A similar idea, namely the replacement of ξ by 1+|ξ|
|ξ| ξ, was used

in [?, §7], which is modified here for computational reasons, see Remark ?? and
Corollary ??. Again Bk pr

x0,0 = 0 for x0 ∈ Ω ∪ Γ3−k.

3. Localization

We like to apply a modification of the local principle [?, ?, ?] in a convenient
form. Following those well-known concepts, the above-mentioned operators L
(etc.) are called operators of local type, if the composition ϕ · Lψ· is compact

for any ϕ,ψ ∈ C∞(
•
IR2) with supp ϕ ∩ supp ψ = ∅. An equivalent condition

can be formulated as follows: the commutator [L, g·] = Lg · −g ·L is a compact

operator for all g ∈ C∞0 (
•
IR2). Here

•
IR2 is the one-point compactification of IR2

and ϕ· denotes the multiplication operator generated by the function ϕ in the
corresponding spaces, i.e. restricted to Ω and Γk, respectively. This is obviously
the case under the assumptions of Section ??. Note that the multiplication
operator g· acts in a scalar way on the right side of L and as a diagonal 3× 3
matrix on the left side of L in the sense of the image space of (??). In other
words

g · L =




g|Ω· 0 0
0 g|Γ1 · 0
0 0 g|Γ2 ·


 ◦ L (3.1)

and we shall work with the short notation on the left side of this identity for
convenience (also for smooth functions defined at least on Ω).

To define local equivalence (see below) we need localizing classes, which
must be covering, to provide proper localization, see [?, Chapter 5].

Let g ∈ C∞(Ω), 0 ≤ g(x) ≤ 1, g(x) = 1 for x ∈ B1(0) and g(x) = 0 for
x 6∈ B2(0). Further we define the family of functions

Mx0 =
{

gx0,δ ∈ C∞(Ω) : gx0,δ(x) = g

(
x− x0

δ

)
, 0 < δ < d(x0)

}
for x0 ∈ Ω ,

(3.2)

where

d(x0) =
1
2





dist (x0, Γ) , x0 ∈ Ω

dist (x0, Γ3−k) , x0 ∈ Γk , k = 1, 2

dist (x1, x2) , x0 ∈ {x1, x2}
(3.3)
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Localization and normalization of mixed boundary value problems 7

Note, that for x0 ∈ Ω the class Mx0 consists of functions which are supported
only inside Ω, i.e. supp gx0,δ ∩ Γ = ∅. For x0 ∈ Γ we have gx0,δ(xk) = 0 if
x0 6= xk and gx0,δ(xk) 6= 0 if x0 = xk.

We denote by Mx0 = Mx0(X) the class of multiplication operators of the
form Gx0,δ = gx0,δ· = gx0,δIX for all spaces appearing in Section 2 (scalar
and vectorial as well, cf. (??)). It is obvious that M = ∪x0∈ΩMx0 has the
characteristics of (a family of functions that generates) a covering system of
localizing classes for mixed BVPs (??), i.e.
(j) For all x0 ∈ Ω and g ∈ Mx0 , a multiplication operator G = gIX ∈ Mx0(X)

is bounded but not compact for any admissible space X;
(jj) If g1, g2 ∈ Mx0 , there exists a function g ∈ Mx0 such that g1g = g2g = g;
(jjj) If S ⊂ M such that, for every x0 ∈ Ω there exists a function g ∈ S with

g(x0) 6= 0, then there exist numbers N,N1 ∈ IN such that g = g1+ · · ·+gN

is invertible in C∞(Ω) where g1 ∈ Mx1 , g2 ∈ Mx2 , g3 + · · · + gN1 ∈
MΓ1∪Γ2 = ∪x0∈Γ1∪Γ2Mx0 , and gN1+1 + · · · + gN ∈ MΩ = ∪x0∈ΩMx0 , i.e.
g3(x) = · · · = gN (x) = 0 for x ∈ {x1, x2}, gN1+1(x) = · · · = gN (x) = 0 for
x ∈ Γ.

REMARK 3.1. All conditions can be reformulated in terms of multiplication
operators on the admissible spaces, e.g.

(jj′) If G1, G2 ∈ Mx0(X), there exists another G ∈ Mx0(X) such that G1G =
GG1 = G2G = GG2 = G.

and (jjj′) can be written by analogy.
If we had dropped the (redundant) zeros in (??), the different sizes of

multiplication operators in different x0’s do not allow this reformulation of
(jjj). In that case, relations resulting from the partition of unity had a more
complicated form.

Since we shall have a finite number of local transformations

κj : Uj → Vj , Uj ⊂ Ω , Vj ⊂ IR2 , j = 1, 2, . . . , K

(see Fig. 2.1 and (??)), we will use, for convenience, κ(x) which coincides with
κj(x) for considerations in Uj . Similarly we use κ−1(z), dropping the index j,
for the inverse transformation.

The operators L and Lpr
x0

are said to be locally equivalent in x0 ∈ Ω, if for
all ε > 0 there exists a δ > 0 such that

||| (L− Lpr
x0

)
Gx0,δ||| < ε , |||Gx0,δ

(
L− Lpr

x0

) ||| < ε (3.4)

where ||| · ||| denotes the norm in the quotient space of bounded linear modulo
compact operators. The relation (??) is obviously true for the operators intro-
duced before, cf. [?]. Moreover, we have the local quasi-equivalence of Lpr

x0
in

x0 ∈ Γ and L
〈pr〉
x0,0 as well as Lpr

x0,0 in 0 (we will apply both concepts later):

|||Gx0,δ

(
Lpr

x0
− TκL

〈pr〉
x0,0Tκ−1

)
||| = |||

(
Lpr

x0
− TκL

〈pr〉
x0,0Tκ−1

)
Gx0,δ||| < ε ,

|||Gx0,δ

(
Lpr

x0
− TκLpr

x0,0Tκ−1

) ||| = ||| (Lpr
x0
− TκLpr

x0,0Tκ−1

)
Gx0,δ||| < ε ,

(3.5)
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where we define the operators Tκ in the following way.
If x0 ∈ Uj , κ = κj and ϕ ∈ X = H2m+l(Ω), let

Tκϕ(x) =

{
ϕ(κj(x)) , x ∈ Ω ∩ Uj

0 , x ∈ Ω \ Uj

(3.6)

If X is the image space of L, we modify Tκ in the sense of (??) and T −1
κ is

defined similarly in the corresponding space settings.
Further we call the above operators locally Fredholm in x0 if there exist local

left and right regularizers Rl
x0

, Rr
x0

such that

||| (Rl
x0

L− I
)
Gx0,δ||| = 0

|||Gx0,δ

(
LRr

x0
− I

) ||| = 0
(3.7)

for suitable Gx0,δ ∈ Mx0 .
On the plane IR2 we consider the “pull-back” localizing classes

M′
z0

= {G′z0,δ(z) = Gx0,δ(κ−1(z)) : Gx0,δ ∈ Mx0} , z0 = κ(x0) ∈ IR2 (3.8)

and define locally equivalent and locally Fredholm operators by analogy.

THEOREM 3.2. Let L be the operator (??) associated to a mixed BVP (??).
The following assertions are equivalent:

(i) L is Fredholm;
(ii) L is locally Fredholm in x0, for all x0 ∈ Ω ;

(iii) L
〈pr〉
x0,0 is locally Fredholm in κ(x0), for all x0 ∈ Ω .

Proof. In brief: The equivalence of the conditions (i) and (ii) follows from a
general localization principle described in [?] – modified for the present settings.
Namely, if (i) L is Fredholm, there exist (global) regularizers Rl and Rr acting
in spaces inversely to (??) such that RlL− I and LRr − I are compact in the

corresponding spaces. This implies (??) for any g ∈ C∞(
•
IR2), i.e. condition (ii).

Conversely, if (ii) is satisfied, since {Mx0}x0∈Ω is a covering system of localizing
classes in all Bessel potential spaces, from the collection {Gx0,δ}x0∈Ω,δ>0 of
operators Gx0,δ ∈ Mx0 , which provide localization in (??), we can select a finite
collection {{Gxj ,δj}j=1,...,N , such that

∑
j=1,...,N Gxj ,δj is invertible. Therefore,

Rl =
N∑

j=1

Rl
xj

Gxj ,δj

is a left regularizer of L because

RlL− I =
N∑

j=1

Rl
xj

Gxj ,δj L− I

=
N∑

j=1

(
Rl

xj
LGxj ,δj −Gxj ,δj

)
+ compact
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Localization and normalization of mixed boundary value problems 9

is compact. Here we used that Gxj ,δj
L = LGxj ,δj

up to lower order terms
which are compact according to the well-known embedding theorems in spaces
of Bessel potentials. The same argument holds for the right global and local
regularizers.

The equivalence of (ii) and (iii) is an obvious consequence of the fact that
operators which are of local type and locally quasi-equivalent in x0 ∈ Ω and
z0 = κ(x0) ∈ IR2, like L and L

〈pr〉
x0 , are simultaneously locally Fredholm in x0

and in z0 = κ(x0) or not, respectively.

REMARK 3.3. The same reasoning implies the equivalence of the local Fred-
holm property of the operators Lx0 , Lpr

x0
, L

〈pr〉
x0 and Lpr

x0,0, respectively, in each
x0 ∈ Ω. But these conditions are less important for our purposes.

THEOREM 3.4. If the BVP (??) is piecewise elliptic, the associated operator
L is Fredholm if and only if L

〈pr〉
x0,0 is Fredholm for x0 ∈ {x1, x2}.

Proof. First, for the operator L
〈pr〉
x0,0, the Fredholm property and the local

Fredholm property in 0 amount to the same. This is a consequence of the fact
that L

〈pr〉
x0,0 is locally Fredholm anyway in all other points of IR × IR+ and at

infinity due to the assumption of piecewise ellipticity [?].
Considering Theorem ?? we have to prove the “if” part, i.e., assuming that

the BVP (??) is piecewise elliptic and that L
〈pr〉
x0,0 is Fredholm for x0 ∈ {x1, x2},

we like to construct a two-sided regularizer of L.
First we think of local regularizers in x0 ∈ Ω and x0 ∈ Γ1. The BVP

Au = f ∈ H l(Ω) = Y0

B̃1u = g ∈ ∏m
j=1 H2m+l−m1

j−1/2(Γ) = Y1

(3.9)

is elliptic for u ∈ H2m+l(Ω) = X. Thus

L̃1 =

(
A

B̃1

)
: X → Y0 × Y1 (3.10)

has a regularizer R̃1 =
(
R̃11, R̃12

)
: Y0 × Y1 → X. Putting

R1 =
(
R̃11, R̃12EΓ1→Γ, 0

)
: Y0 × Y1|Γ1 × Y2|Γ2 → X (3.11)

where EΓ1→Γ : Y1|Γ1 → Y1 is a continuous extension operator (of local type),
with obvious space identifications, we obtain a local regularizer Rx0 = R1 of L
for all x0 ∈ Ω ∪ Γ1.

By analogy we have local regularizers for x0 ∈ Γ2. Together with the second
assumption and Theorem ??, we get a family of local regularizers for all x0 ∈ Ω
and can construct a global regularizer as in the proof of Theorem ??.
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10 L.P. Castro, R. Duduchava, F.–O. Speck

4. Reduction to semi-homogeneous problems

In the present section we study the localized operator L
〈pr〉
x0,0 for x0 ∈ {x1, x2}

in Theorem ?? and (??) in detail.

6x2
Au = f in IR× IR+

B2u = g2

on Γ2 ∼= IR+

B1u = g1

on Γ1 ∼= IR− 0
-

x1

Figure 4.1: Canonical mixed BVP.

It is the operator associated with the canonical mixed BVP for the upper
half-plane where now, abbreviating the previous notation, the operators A and
Bk have constant coefficients. Figure 4.1 corresponds with the quasi-localization
in x0 = x1 in Figure 1.1 and the roles of B1 and B2 are exchanged, if we consider
x0 = x2.

We also consider the two BVPs where the mixed boundary condition is
replaced either by B1

IRu = g on the full line Γ = {(x1, x2) : x2 = 0} = Γ1 ∪
{(0, 0)} ∪ Γ2 ∼= IR or by B2

IRu = g in the corresponding spaces, i.e. associated
with the operators (in short notation)

Lk
IR =

(
A

Bk
IR

)
: H2m+l(IR× IR+) →

{
H l(IR× IR+)

×∏m
j=1 H2m+l−mk

j−1/2(IR).
(4.1)

Both are elliptic (see Section ??) and admit therefore the following results.

PROPOSITION 4.1. The elements of kerA are represented by

u(x1, x2) = F−1
ξ 7→x1

{(
û11(ξ) + x2û12(ξ) + · · ·+ xµ1−1

2 û1µ1(ξ)
)

exp[−t1(ξ)x2]

+ · · ·+
(
ûκ1(ξ) + x2ûκ2(ξ) + · · ·+ xµκ−1

2 ûκµκ(ξ)
)

exp[−tκ(ξ)x2]
}

(4.2)

where κ is the number of square roots t1, . . . , tκ with positive real part of the
characteristic polynomial A(iξ, z) with respect to z, the numbers µ1, . . . , µκ are
the corresponding multiplicities,

∑κ
λ=1 µλ = m, and

uλ,ν ∈ H2m+l−ν+1/2, ν = 1, . . . , µλ, λ = 1, . . . , κ. (4.3)

Proof. Making use of the characterization of elliptic PDOs [?, p. 150], the
representation formula (??) is a consequence of partial Fourier transformation
with respect to the first variable and solution of a homogeneous ODE by an
exponential ansatz. (??) results from estimates in spaces of Bessel potentials,
see [?] for the case of second order PDEs.
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Localization and normalization of mixed boundary value problems 11

PROPOSITION 4.2. The operators

Bk
IR : ker A 7→ Y k

1 =
m∏

j=1

H2m+l−mk
j−1/2(IR) (4.4)

and Lk
IR in (??) are homeomorphisms.

Proof. kerA as a closed subspace of H2m+l is toplinear isomorphic to the
topological product space of the data (??), which are in one-to-one (homeo-
morphic) correspondence with the data space Y k

1 by means of linear algebra
and elementary estimates in Bessel potential spaces. Together with the Fred-
holm property of Lk [?] and elementary space decomposition, this implies the
statement.

These results allow the following interpretations.

COROLLARY 4.3. In short, the operators Lk
IR can be written as

Lk
IR =

(
A

Bk
IR

)
: X →

{
Y0

×Y k
1

= Y k (4.5)

where Bk
IR is a retraction [?], i.e. right invertible by an extension (or co-

retraction) operator Ek.
The data (product) space Y 0

1 given by (??) is the image of a particular
boundary operator B0

IR of an elliptic BVP due to L0 = (A,B0
IR)T .

The spaces Y k
1 , k = 0, 1, 2, are isomorphically connected by translation

invariant operators

Y 1
1 ←− Y 0

1 −→ Y 2
1

B− B+
(4.6)

where the Fourier symbols Ψ± of B± = F−1Ψ± · F are rational m×m matrix
functions of the variables ξ, t1(ξ), . . . , tκ(ξ).

Proof. This is a consequence of the well-posedness of the two elliptic BVPs
in combination with Proposition ?? and Proposition ??.

Coming to the question of reducing BVPs to semi-homogeneous BVPs,
where Au = 0 instead of Au = f , we study bounded linear operators in Banach
spaces of the form

L =
(

A
B

)
: X → Y =

(
Y0

Y1

)
(4.7)

and like to relate L to

L0 = B|X0 : X0 → Y1 (4.8)

mbvp250302.tex; 9/02/2005; 14:58; p.11



12 L.P. Castro, R. Duduchava, F.–O. Speck

where X0 = kerA. The question is, if the two operators are toplinear equivalent
after extension (in brief: equivalent after extension) i.e. [?, ?, ?] if there exist
Banach spaces Z1, Z2 and homeomorphisms E1, E2 such that

(
L0 0
0 IZ1

)
= E1

(
L 0
0 IZ2

)
E2 (4.9)

which yields that the two operators have similar properties (invertibility etc.)
and various explicit results (representation of generalized inverses and normal-
ization, e.g.) can be obtained from corresponding results for the other (simpler)
one. Here we have:

LEMMA 4.4. Assuming (??) where A is right invertible, i.e. surjective and
X0 = kerA is complemented, then the operators (??) and (??) are toplinear
equivalent after extension.

Proof. It is sufficient to observe that
(

L0 0
0 IY0

)
=

(
L0 0
0 A

) (
I 0
0 R̃

)

:
(

Y1

Y0

)
←

(
X0

X1

)
←

(
X0

Y0

)
(4.10)

provided AR̃ = IY0 , X1 = im R = RAX, R̃ = Rst R : Y0 → X1 (i.e. image
restricted) and the first factor on the right is equivalent to L (coincides up to
homeomorphisms).

REMARK 4.5. For this step, only properties of A (not of B) are important.
Here a right inverse is obtained by continuous extension of H l(IR2

+) to H l(IR2),
inversion of the PDO A (with constant coefficients) on IR2, and restriction to
the half-space.

Evidently the same arguments hold when B stands for a “mixed boundary
operator”.

PROPOSITION 4.6. Consider the operator in Theorem ?? defined by (??)
and now abbreviated by

LM =




A
B1

B2


 : X →




Y0

r−Y 1
1

r+Y 2
1


 . (4.11)

This operator is toplinear equivalent after extension to each of the following:

L0
M =

(
B1

B2

)

|X0

: X0 = ker A →
(

r−Y 1
1

r+Y 2
1

)
(4.12)

L0
0 = B2

|X0
0

: X0
0 = X0 ∩ kerB1 → r+Y 2

1 . (4.13)
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Localization and normalization of mixed boundary value problems 13

Proof. The first equivalence relation is clear from the foregoing considera-
tion. A right inverse of the differential operator A with constant coefficients,
see (??) and (??), is obtained by

R = rF−1Φ−1
A · F`

where ` : H l(IR× IR+) → H l(IR2) denotes a continuous extension operator, ΦA

is the Fourier symbol of A, and r : H2m+l(IR2) → H2m+l(IR× IR+) stands for
the restriction to the half-plane.

The second relation follows similarly by Lemma ??. B1 is right invertible,
since a right inverse is obtained by continuous extension from r−Y 1

1 to Y 1
1 ,

inversion of the operator L1,0 associated to the (non-mixed, semi-homogeneous)
BVP due to (A,B1) in IR2

+ by Corollary ??, and restriction to the half-line IR+.

5. The Fredholm property

Now we focus on the two operators L
〈pr〉
x0,0, x0 ∈ {x1, x2}, in (??) which are both

directly associated to the mixed canonical BVP described in Section ??.
Let Wxk denote the two Wiener-Hopf operators of the form

Wxk = r+B+B−1
− :

m∏

j=1

H
2m+l−mk

j−1/2

+ → H2m+l−m3−k
j

−1/2(IR+) (5.1)

where k = 1, 2 and B± are the operators of (??) resulting from the operator
L
〈pr〉
xk,0

of (??), k = 1, 2 (or the corresponding mixed canonical BVP described
in Figure 3.1 for k = 1).

PROPOSITION 5.1. The operator L0
0,xk defined by (??) in the case of LM =

L
〈pr〉
xk,0

, is equivalent to Wxk (in the sense of toplinear [?] equivalent or isomor-
phic [?] or just equivalent [?] operators in Banach spaces).

Proof. Let us consider k = 1, the situation corresponding to Figure 4.1.
The elements of X0 = kerA can be represented in the form (??) due to

Proposition ??, in particular the elements of X0
0 = X0 ∩ kerB1 can be written

in this form. Proposition ?? implies that the restriction of the operator L1
IR

given by (??) on the space X0
0 , acting into its image, i.e.

RstL1
IR =

(
A

B1
IR

)
: X0

0 →




{0}

×∏m
j=1 H

2m+l−m1
j−1/2

+

(5.2)

is a homeomorphism according to Proposition ?? and to the fact that X0
0 is

a complemented subspace of H2m+l(IR2
+). With the corresponding restrictions

of the boundary operators

RstB1
IR : X0

0 → Hr
+, r = (2m + l −m1

j − 1/2)
j=1,...,m

RstB2 : X0
0 → Hs(IR+), s = (2m + l −m2

j − 1/2)
j=1,...,m

(5.3)
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14 L.P. Castro, R. Duduchava, F.–O. Speck

we have the composition of toplinear mappings

Wx1 = Rst B2 ◦ P−1 ◦ P ◦ (
RstB1

IR

)−1
: Hr

+ → X0
0 → Y 0

1 → X0
0 → Hs(IR+)

(5.4)
where P is the Poisson operator defined by (??) and we put B+ = Rst B2◦P−1,
B− = RstB1

IR ◦ P−1 in accordance with (??).

THEOREM 5.2. Let L be the operator (??) associated with the mixed BVP
(??). Then L is a Fredholm operator if and only if the two operators Wxk

of (??) are Fredholm.

Proof. This result connects Theorem ?? with Proposition ?? via Proposi-
tion ??.

COROLLARY 5.3. The Fourier symbols Φk of

Wxk = r+F−1Φk · F : Hrk

+ → Hsk

(IR+) (5.5)

are regular, i.e. F−1Φk · F : Hrk → Hsk

are bijective, and they are m × m
matrices of functions from R (ξ, t1(ξ), . . . , tκ(ξ)), i.e. they are rational in these
variables.

Proof. Let us assume firstly that x1 = (0, 0) and ∂Ω is locally like Figure 4.1
near the origin. The principle parts of the Fourier symbols Ψk

IR of Rst B1
IR ◦P−1

and Rst B2 ◦ P−1 are computed from (??) and (??) as
(
Ψk

IR

)
(λ,ν),j

=
∑

|σ|=mk
j

bk
j,σ(0) (iξ)σ1 Dσ2

x2
(xν

2 exp(−tλx2))|x2=0 (5.6)

showing the dependence of the Fourier transformed principal parts of the data
in terms of the ansatz functions ûλ,ν by a multiplication operator.

Thus the orders of the mappings result from the increase orders of the
symbols, bijectivity from the one-to-one correspondence in appropriate Banach
spaces, see Proposition ?? and Corollary ??, and the algebraic form is obvious
from (??) and (??). The localization does not effect the above properties and
the case k = 2 holds by analogy.

COROLLARY 5.4. The two operators Wxk are (toplinear) equivalent to the
lifted operators

Wxk,0 = r+F−1Φk
0 · F :

(
L2

+

)m → L2(IR+)
m

(5.7)

where

Φk
0 = λsk

− Φkλ−rk

+

λs
±(ξ) = diag ((ξ ± i)s1 , . . . , (ξ ± i)sm)

(5.8)

for s = (s1, . . . , sm) ∈ IRm.
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Localization and normalization of mixed boundary value problems 15

Proof. See e.g. [?, ?, ?].

REMARK 5.5. Instead of λ±(ξ) = ξ±i one can apply ξ±k0 where =mk0 > 0 or
different functions of this type in different places of the matrices (??) in order to
reduce the “algebraic complexity” of Φk

0 [?]. For instance, if t1 = t2 = · · · = tκ
in (??) (Apr being a power of the Laplacian, e.g.) and l ∈ IN0 (see the original
BVP in Section ??), then

Φk
0(ξ) ∈ R (ξ, t1(ξ))

m×m
, t1(ξ) = (ξ2 + 1)

1/2
(5.9)

taking the usual branch due to a vertical cut between ±i over infinity. But, in
any case, we have the following result:

(
ξ − i

ξ + i

)−l

Φk
0(ξ) ∈ R (ξ, t1(ξ), . . . , tκ(ξ))m×m

, k = 1, 2. (5.10)

COROLLARY 5.6. The Fourier symbols of the two lifted Wiener-Hopf opera-
tors Wxk,0 due to the two locally quasi-equivalent operators L

〈pr〉
xk,0

of Theorem ??
are regular elements of the algebra of Hölder continuous m×m matrix functions
defined on the two-point compactification of IR:

Φk
0 ∈ GCµ(

••
IR)

m×m

, µ ∈]0, 1[ (5.11)

with a possible jump at infinity.

Proof. This is an elementary consequence of the form of Φk
0 discussed before,

cf. [?].

THEOREM 5.7. Let the mixed BVP (??) be piecewise elliptic. Then it is
Fredholm if and only if the two (for short) assigned Wiener-Hopf operators
Wxk,0 from (??) have symbols which satisfy

det
(
λΦk

0(−∞) + (1− λ)Φk
0(+∞)

) 6= 0, λ ∈ [0, 1], k = 1, 2. (5.12)

If this condition is violated, the operator L associated with the mixed bound-
ary value problem, is not normally solvable: im L is not closed but the defect
numbers are finite:

α(L) = dim ker L < ∞
β(L) = codim im L < ∞.

(5.13)

Proof. The question of the BVP (??) to be Fredholm was already reduced
before to the corresponding question for the operators (??) with symbols (??).
But the Fredholm criterion is known for Wiener-Hopf (matrix) operators in
L2 spaces with piecewise continuous symbols [?]. Considering L in dependence
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16 L.P. Castro, R. Duduchava, F.–O. Speck

of the smoothness parameter l ≥ 0, say L(l) in (??), we have evidently the
monotony property

α (L(l1)) ≤ α (L(l2))

β (L(l1)) ≥ β (L(l2))

}
for l1 > l2 (5.14)

and the set of non-Fredholm points of L(l) on the l-semi-axis is locally finite
due to (??), i.e.

#SNF ([a, b]) = # {l ∈ [a, b] : L(l) is not Fredholm} < ∞ (5.15)

for any 0 ≤ a < b < ∞. This yields (??).

6. Normalization – the basic idea

The normalization problem for a single bounded linear operator T : X0 → Y0,
which is not normally solvable in given Banach spaces X0, Y0 can be formulated
as to find another pair of Banach spaces X1, Y1 such that T maps X0∩X1 into
Y1, X0 ∩ X1 is dense in X1 and the operator T restricted on X0 ∩ X1, as an
operator into Y1, has a continuous extension on X1, in brief

T = Ext T|X0∩X1 : X1 → Y1 (6.1)

and such that T is normally solvable. Then we say that the pair (X1, Y1) ∈
N (T ) solves the normalization problem for T . See [?, ?, ?, ?] for details,
modifications and generalizations of the concept.

For mixed BVPs (??) we get the following result immediately from Theo-
rem ??.

COROLLARY 6.1. Let L(l) denote the operator associated to the mixed BVP
(??) and L(l0) be not normally solvable for some l0 ≥ 0. Then there exists an
ε > 0 such that L(l) : X(l) → Y (l), abbreviating the spaces in (??), is Fredholm
for l ∈ Iε =]l0 − ε, l0 + ε[∩[0,∞[\{l0}, i.e. (X(l), Y (l)) ∈ N (L(l0)). Further ε
can be chosen such that both defect numbers α(L(l)) and β(L(l)) have only one
jump within Iε, namely at l0.

As we saw in the second item of Examples ??, and for various other rea-
sons [?, ?, ?], it may be interesting, not to change the topologies of both spaces,
X0 and Y0, simultaneously. This leads to the question whether a normalization
problem is solvable under the additional assumptions

X1 = X0, Y1 ⊂ Y0 or X1 ⊃ X0, Y1 = Y0 (6.2)

respectively. We call these minimal normalization problems [?, ?] and denote
the corresponding normalized operators by

<

T= Rst T : X0 → Y1 and
>

T= Ext T : X1 → Y0 (6.3)

provided (X0, Y1) ∈ N (T ) or (X1, Y0) ∈ N (T ) holds, respectively. The first one
is referred to as image normalization, the second as domain normalization.
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Localization and normalization of mixed boundary value problems 17

PROPOSITION 6.2. If a Banach space operator T ∈ L(X0, Y0) is not nor-
mally solvable, but kerT and im T are complemented, then the two minimal
normalization problems are uniquely solvable up to isomorphy of the spaces in
question.

Proof. For the image normalization decompose

X0 = kerT ⊕ X̃0

Y0 = imT ⊕ Ỹ0.
(6.4)

Since Rst T : X̃0 → im T is bijective (but not bounded invertible with respect
to the given norms of X0 and Y0), we choose

Y1 = imT ⊕ Ỹ0 (6.5)

with the norm, for y = z + ỹ due to this decomposition,

‖y‖Y1
=

∥∥∥(Rst T )−1
z
∥∥∥

X0

+ ‖ỹ‖Y0
. (6.6)

The desired properties of Y1 are evident. Uniqueness follows from considering
two analogous decompositions of normalized space pairs and the isomorphy
of finite dimensional spaces with the same dimension and their complements,
respectively. The case of domain normalization is left as an exercise.

REMARK 6.3. The assumptions of Proposition ?? are satisfied for Hilbert
space operators (every closed subspace is complemented) or in the case where
the defect numbers (??) of T are finite.

In order to solve the two concrete minimal normalization problems for mixed
BVPs, we now start with normalizing the assigned Wiener-Hopf operators (??)
in the scalar case m = 1 corresponding with a second order PDE in (??). So
we study (dropping the dependence on xk) operators of the form

W0 = r+F−1Φ0 · F : L2
+ → L2(IR+) (6.7)

where

Φ0 ∈ GCµ(
••
IR), µ ∈]0, 1[. (6.8)

It is convenient to study simultaneously the restrictions for s > 0 and contin-
uous extensions for s < 0 of W0, briefly denoted by

Ws = r+F−1Φ0 · F : Hs
+ → Hs(IR+). (6.9)

LEMMA 6.4 ([?, ?]). Putting “the complex winding number”

w = w (Φ0) =
1

2πi

∫

IR

d log Φ0 = σ + iτ (6.10)

σ =
1
2π

∫

IR

d arg Φ0, τ =
1
2π

log
∣∣∣∣
Φ0(−∞)
Φ0(+∞)

∣∣∣∣
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18 L.P. Castro, R. Duduchava, F.–O. Speck

we can write any Φ0 ∈ GCµ(
••
IR) in the form

Φ0 =
(

λ−
λ+

)w

Ψ (6.11)

where

Ψ ∈ GCµ(
•
IR)

indΨ =
1
2π

∫

IR

d arg Ψ = 0 (6.12)

Ψ(+∞) = Ψ(−∞) = Φ(+∞).

Let us recall that the spaces of Bessel potentials [?] were introduced by [?]
and [?] as convolutions of Lp-integrable functions with modified Bessel func-
tions of the third kind for s > 0. With the help of the Fourier transformation the
spaces Hs can be written, more rigorously, as images of the so-called [?, ?, ?]
Bessel potential operators

Λ−s = F−1λ−s · F : L2 → Hs, s ∈ IR (6.13)

where λ(ξ) =
(
ξ2 + 1

)1/2 and, moreover,

Λw
± = F−1λw

± · F : Hs → Hs−<ew (6.14)

where λ±(ξ) = ξ ± i, s ∈ IR, w ∈C and

RstΛw
+ : Hs → Hs−<ew

r+Λw
−`(s) : Hs(IR+) → Hs−<ew(IR+)

(6.15)

are isomorphisms, `(s)ϕ denoting any extension of ϕ ∈ Hs(IR+) to `(s)ϕ ∈ Hs,
see [?]. So it is natural to consider the following modified spaces as images
of combined Bessel potential operators which are not normally solvable in the
above-mentioned spaces Hs

± and Hs(IR±), cf. [?, Definition 2.1].

DEFINITION 6.5. For every w ∈C, let

<

Hw (IR+) = r+Λ−w−1/2
− H

−1/2
+ = r+Λ−w−1/2

− Λ1/2
+ L2

+ (6.16)

⊂ H<ew(IR+)

equipped with the norm induced by H
−1/2
+ , namely with

‖ψ‖ <

Hw(IR+)
= ‖`0ϕ‖H−1/2 (6.17)

where ϕ = r+Λw+1/2
− `(<ew)ψ and `(<ew)ψ denotes any extension from IR+ to IR

within the space H<ew (note that the extension of ϕ by zero within the space
H−1/2 is possible due to the given form of ϕ). Further, we define for w ∈C,

>

Hw
+ = clos

{
ψ ∈ H<ew

+ : ‖ψ‖ >

Hw
+

= ‖r+Λw−1/2
+ ψ‖

H1/2(IR+)

}
. (6.18)
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Localization and normalization of mixed boundary value problems 19

It is known [?, Corollary 2.2, Corollary 2.4] (i) that the embeddings

<

Hw (IR+) ⊂ H<ew(IR+),
>

Hw
+ ⊃ H<ew

+ (6.19)

are proper, dense and continuous for any w ∈C, (ii) that

<

H−k−1/2 (IR+) = r+H
−k−1/2
+ , r+

>

H
k+1/2
+ = H

k+1/2
0 (IR+) (6.20)

for k ∈ IN0 (where the last space is the closure of D(IR+) = C∞0 (IR+) in
Hk+1/2(IR+)), and (iii) that the following operators are homeomorphisms for
any w1, w2 ∈C:

Rst r+Λw1−w2− `(<ew1) :
<

Hw1 (IR+) →
<

Hw2 (IR+)

ExtΛw1−w2
+ |H<ew1

+
:

>

Hw1
+ →

>

Hw2
+ .

(6.21)

Finally, we need the basic result about normalization from [?, Theorem 2.5]:

THEOREM 6.6. Let Φ0 ∈ GCµ(
••
IR), µ ∈]0, 1[ and w = σ + iτ be defined by

(??). Then Ws given by (??) is not normally solvable if and only if

κ = s + σ +
1
2
∈ ZZ. (6.22)

In this case
(

Hs
+,

<

Hs−iτ (IR+)
)

,

( >

Hs−iτ (IR+), Hs(IR+)
)
∈ N (Ws) . (6.23)

Moreover, each of the normalized operators is one-sided invertible with index

Ind
<

Ws= −κ, Ind
>

Ws= −κ + 1 (6.24)

respectively, and one-sided inverses are explicitly obtained by factorization of
the Fourier symbols of Ws±ε, ε ∈]0, 1[, and extension or restriction of the
corresponding one-sided inverses of Ws±ε, respectively (see [?] for details).

Now, the basic idea is, to normalize the original mixed BVP “consequently”
provided it is piecewise elliptic and not Fredholm.

REMARK 6.7. In the system’s case, there are corresponding solutions of the
minimal normalization problem based upon a representation of the (multiplica-

tive) jump of Φ0 ∈ GCµ(
••
IR)

m×m

at infinity in normal Jordan form

Φ−1
0 (+∞)Φ0(−∞) = M−1JΦ0M (6.25)

where M ∈ GCm×m and the quasidiagonal matrix

JΦ0 = diag
(
J1, . . . , Jm̃

)
(6.26)
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has Jordan blocks of size lj × lj in the diagonal given by

Jj =




µj 1 0 · · · 0
0 µj 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · µj




(6.27)

which yields

Φ0(ξ) = Φ0(−∞)M−1


 diag




(
λ−(ξ)
λ+(ξ)

)ω̃j


JΦ0 + Ψ0(ξ)


 M (6.28)

where the elements of Ψ0(ξ) are decreasing of order |ξ|−µ at infinity, see [?,
Section 6].

For the sake of shortness we shall not work out the system’s case here
in detail but like to point out that the corresponding results for the scalar
(or diagonal) case can be obtained by analogy including explicit factorization,
which is a different and subtle problem in general, already in the case m = 2,
see [?].

REMARK 6.8. As shown in [?] there is a direct connection between an image
normalization of an elliptic Wiener-Hopf equation in Lp space with a piecewise-
continuous symbol (having a jump at infinity) which is not Fredholm (the
Widom-Gohberg-Krupnik arc crosses the origin) and the corresponding image
normalization of a related Wiener-Hopf equation with continuous symbol which
has a zero of order 1 at a finite point. The normalized space is defined in both
cases by integral operators of Cesaro type (for details see [?, §3.1–3.3]). These
results can be modified for the present setting of Bessel potential spaces in
order to obtain useful characterizations of the normalized spaces.

7. Minimal normalization in the scalar case

Here we consider the case m = 1, which is easily extended to the case m > 1
when we have diagonal (or triangular, at least) Wiener-Hopf operators such
that we can normalize component-wise.

Let us focus on the image normalization of a mixed BVP (??) that is
piecewise elliptic but not Fredholm, and work it out, step by step, starting
with the assigned Wiener-Hopf operators Wxk,0. At least one of them violates
the Fredholm condition (??), say, only if k = 1, for simplicity.

As seen before, its symbol

Φx1,0 ∈ GR
(

ξ,

√
ξ − i

ξ + i

)
, (7.1)
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because Φx1 ∈ GR
(
ξ,

√
ξ2 + 1

)
and Wx1 acts between spaces of order r1 =

2m+ l−m1−1/2 and s1 = 2m+ l−m2−1/2, i.e. of order l±1/2 (since m = 1,

mk ∈ {0, 1}). Thus, Φx1,0 ∈ G Cµ(
••
IR) and we can apply Theorem ?? with s = 0

and σ = 1/2 mod ZZ. Therefore Wx1,0 : L2
+ → L2(IR+) is normalized by

<

Wx1,0 : L2
+ →

<

H−iτ(IR+) (7.2)

where τ results from the modulus jump of Φx1,0 at infinity (the integer part of
the winding number does not matter and the fractional real part is guilty for
non-Fredholmness), see (??) and (??).

According to Corollary ?? and property (??) of the Bessel potential opera-
tors, the unlifted operator Wx1 : Hr1

+ → Hs1
(IR+) is normalized by

<

Wx1= r+Λ−s1

− `
<

Wx1,0 Λr1

+ : Hr1

+ → r+Λ−s1+iτ−1/2
− Λ1/2

+ L2
+ =

<

Hw (IR+) (7.3)

where w = s1 − iτ .
Now we modify the boundary operator B2 into

<

B2: H2m+l(Ω) →
<

Hs1(
Γ2, x1

)
(7.4)

imposing the local behavior of
<

Hw(IR+) near zero by transformation in the
image of B2 near x1; more precisely

<

Hs1(
Γ2, x1

)
=

{
ϕ ∈ Hs1 (

Γ2
)

: `0
(
(ωϕ) ◦ κ−1

x1

) ∈
<

Hw(IR+)
}

(7.5)

where ω ∈ C∞
(
Γ2

)
, 0 ≤ ω ≤ 1, ω = 1 in Bε(x1)∩Γ2, ω = 0 in Bε(x2)∩Γ2, κx1

is the transformation from (??) and `0 denotes zero extension to IR+ which
represents a continuous operator according to the smooth cut-off by ω. The
induced norm is given by

‖ϕ‖ <

Hs1(Γ2,x1)

=
∥∥`0

(
(ωϕ) ◦ κ−1

x1

)∥∥
<

Hw(IR+)
+

∥∥`0
(
((1− ω)ϕ) ◦ κ−1

x1

)∥∥
Hs1(IR+)

.

(7.6)
Finally, the image of L has to be adapted, in order to end up with a

normalized operator due to (??). Starting again with localization of

<

L=




A

B1

<

B2


 : H2m+l(Ω) →





H l(Ω)

×Hr1(
Γ1

)

×
<

Hs1(
Γ2, x1

)
(7.7)

we obtain similar results due to local behavior, continuous embedding and com-

pactness criteria, ending up with the fact that
<

L is Fredholm in the described
situation. The modification for the case where Wx2,0 violates (??) is obvious.
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Domain normalization runs analogously. Various details follow directly from
the fact that the normalized spaces are images of Bessel potential operators,
e.g. the local type property [?, Prop. 1.3] of the normalized operators and
compactness of lower order terms etc. So we proved the following result (up to
analogous conclusions).

THEOREM 7.1. Consider the mixed BVP (??) that is piecewise elliptic, see
(??), (??), suppose m = 1 (i.e. the PDE is of second order) and l ≥ 0. Let
Wxk,0(l) denote the two assigned (scalar) Wiener-Hopf operators from (??) and
wk(l) = σk(l) + iτk(l) the numbers defined in (??) due to the Fourier symbols
Φk

0(l) of Wxk,0(l). Then the BVP (??), i.e. the associated operator L in (??),
is Fredholm for all l ≥ 0 up to a set

SNF (IR+) =
(
l1 + IN1

) ∪ (
l2 + IN1

)
(7.8)

where lk ∈ [0, 1[. More precisely

wk(l) = wk(0) + l

lk = − (
σk(0) + 1

2

)
modZZ

(7.9)

for k = 1, 2. For the critical orders l ∈ SNF (IR+) (where the BVP is not
Fredholm), the image of L is not closed, but the defect numbers are finite, and L
can be normalized as follows: If l1 6= l2 and l ∈ (

l1 + IN1

)
, the image normalized

operator (??) of L is Fredholm, and, for l ∈ l2 + IN1, an obvious normalization
of B1 helps. If l1 = l2 and l ∈ SNF (IR+) the image normalization is given by
simultaneous image normalization of B1 and B2. Completely analogous results
hold for the domain normalization (based upon Theorem ??).

EXAMPLE 7.2. The full scale of normalized spaces
<

Hw(IR+) (scalar case)
appears already for the following class of mixed canonical problems given in
Figure 7.1, where a, b and c are complex constants.

6x2
(I −∆)u = f in IR× IR+

au + bux1 + cux2 = g2

on Γ2 ∼= IR+

u = g1

on Γ1 ∼= IR− 0
-

x1

Figure 7.1: Mixed BVP with an oblique derivative boundary condition.

Consider only the semi-homogeneous problem due to f = 0, g1 = 0 (cf.
Section ??). The representation formula for u ∈ ker(I −∆) in the upper half-
plane

u(x) = F−1
ξ 7→x1

û0(ξ) exp[−x2t(ξ)] (7.10)
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gives us the Wiener-Hopf operator (see Section ??)

W = r+F−1 (a− ibξ − ct) · F : H
2+l−1/2
+ → H2+l−3/2(IR+) (7.11)

and the lifted operator W0 : L2
+ → L2(IR+) with symbol

Φ0 =
(

ξ − i

ξ + i

)l+1/2
a− ibξ − ct

ξ + i
(7.12)

and the condition for (piecewise) ellipticity:

a− ibξ − ct(ξ) 6= 0, ξ ∈ IR. (7.13)

We compute the complex winding number

w =
1

2πi

∫

IR

d log Φ0 = σ + iτ (7.14)

and find a non-Fredholm operator for σ = 1
2 mod ZZ, i.e., thinking of Φ0(+∞)=

−c− ib, Φ0(−∞) = (c− ib) exp[−2πi(l + 1
2 )], for

l + arg
−c− ib

c− ib
∈ ZZ. (7.15)

This condition has plenty of realizations, e.g.:
Case 1. Let l = 0 and b, c ∈ IR, then c = 0 suffices, i.e. the principle part of
the oblique derivative is tangential (and not really oblique);
Case 2. Let l = 0, b, c ∈ C and (−c− ib)/(c− ib) = p > 0; this is satisfied for
c = ib(p + 1)/(p− 1), i.e. an imaginary ratio of the coefficients b and c; and so
on for other l /∈ IN0.

8. Concluding remarks

The case m > 1 can be treated with the idea of Remark ?? and yields, in
general, rather complicated formulas. Then, the compatibility conditions for
the data that result from image normalization, cf. (??), are not necessarily
“local”. For instance, in the canonical problem treated in Section ??, thinking
of the Bi-Laplacian for A and higher order boundary operators, one can meet
conditions which combine data after application of convolution type operators
on the boundary.

Various generalizations are possible: for three - or n-dimensional configu-
rations, systems of PDE (as resulting from Maxwell’s and Lamé’s equations),
pseudodifferential equations, weak formulations (l < 0), less smooth boundaries
and other spaces of Besov-Triebel-Lizorkin type [?, ?].

Beside of the interpretation of image normalization in terms of compatibility
conditions, one can understand the domain normalization in some cases as
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imposing a transmission property [?]. A simple case is an operator in (??) of
the form

W = r+B : H
l+1/2
+ → H l+1/2(IR+), l ∈ IN0 (8.1)

where B = I + c · Λ−ε
+ with ε > 0 which maps H

l+1/2
+ onto r+H

l+1/2
+ ⊂

H l+1/2(IR+) and is not Fredholm.
In the case l = 0 the embedding r+H

1/2
+ ⊂ H1/2(IR+) is proper and

dense [?]. Thus
>

W can be identified with (is equivalent to)

>

W `0 = Ext W`0 : H1/2(IR+) → H1/2(IR+) (8.2)

which obviously has the transmission property [?].
If l = 1, 2, 3, . . ., the closure of r+H

l+1/2
+ in H l+1/2(IR+) has codimension

l [?], thus the operator

W̃ = r+B`l+1/2 : H l+1/2(IR+) → H l+1/2(IR+) (8.3)

with arbitrary extension `l+1/2 into H l+1/2, which has the transmission prop-

erty, coincides with
>

W` (defined on that closure) up to an operator of charac-
teristic l, i.e. is equivalent after extension by finite dimensional operators.

Further interesting studies may be based on the characterization of the
normalizing conditions (compatibility or transmission property, respectively)
in terms of integral conditions and resulting conclusions for the asymptotic

behavior of solutions. For instance, due to (??), the elements ψ ∈
>

H
l+1/2
+ , l ∈

IN0, are characterized by
∥∥r+Λl

+ψ
∥∥

H1/2(IR+)
< ∞ (8.4)

which is equivalent to ψ ∈ `0H1/2(IR+) with

Djψ(0) = 0, j = 0, . . . , l − 1
∫∞
0

1
x

∣∣Dlψ(x)
∣∣2dx < ∞,

(8.5)

see [?, p. 11].
Some of these questions will be treated in a forthcoming paper.
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26. S. Prössdorf: Some Classes of Singular Equations, North-Holland Mathematical
Library 17, North-Holland Publishing Company, Amsterdam, 1978.

27. V.S. Rabinovich: Pseudodifferential operators on a class of noncompact mani-
folds, Math. USSR, Sbornik 18 (1972), 45–59.

28. T. Runst and W. Sickel: Sobolev Spaces of Fractional Order, Nemytskij Operators
and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear
Analysis and Applications 3, de Gruyter, Berlin, 1996.

29. C. Sadosky and M. Cotlar: On quasi-homogeneous Bessel potential operators,
Proc. Sympos. Pure Math. 10 (1967), 275–287.

30. I.B. Simonenko: A new general method of investigating linear operator equations
of the type of singular integral equations, Sov. Math., Dokl. 5 (1964), 1323–1326;
translation from Dokl. Akad. Nauk SSSR 158 (1964), 790–793.

31. F.-O. Speck: Mixed boundary value problems of the type of Sommerfeld’s half-
plane problem, Proc. R. Soc. Edinburgh, Sect. A 104 (1986), 261–277.

32. F.-O. Speck and R. Duduchava: Bessel potential operators for the quarter-plane,
Appl. Anal. 45 (1992), 49–68.

33. F.S. Teixeira: Wiener-Hopf Operators in Sobolev Spaces and Applications to
Diffraction Theory (in Portuguese), Ph.D. thesis, I.S.T., Technical University of
Lisbon, 1989.

34. H. Triebel: Theory of Function Spaces II, Monographs in Mathematics 84,
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