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Abstract. We study convolution operators in Bessel potential spaces and
(fractional) Sobolev spaces over a finite interval. The main purpose of the
investigation is to find conditions on the convolution kernel or on a Fourier
symbol of these operators under which the solutions inherit higher regularity
from the data. We provide conditions which ensure the transmission property
for the finite interval convolution operators between Bessel potential spaces
and Sobolev spaces. These conditions lead to smoothness = preserving prop-
erties of operators defined in the above-mentioned spaces where the kernel,
cokernel and, therefore, indices do not depend on the order of differentiability.
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sentation of its inverse is presented in terms of the canonical factorization of
a related Fourier symbol matrix function.
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1. Introduction

It is well-known that the theory of convolution equations

o) + / k(e — 9)ey) dy = 3Df(z), = 0,al. (L1)

where k, € Li(] — a,a[), on semi-infinite intervals (¢ = 3Doo) is rather well
developed. In particular, the solvability theory of (1.1) is well-known (see, e.g.,
[11, 12, 15, 16, 21, 29, 30]) for various classes of kernel functions and different
space settings of Besov-Triebel-Lizorkin type (also weighted spaces).

The situation is completely different for convolution equations on finite inter-
vals (e.g., when 0 < a < +00), which one encounters in several applications [28]. A
part of the problems arises due to the difficulty of application of the Wiener-Hopf
method [33] to such convolution equations (cf. [11, 14, 25, 26]). Another part of
problems arises when we try to relate such equations to equations on the half-line:
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the appearance of semi-almost periodic terms leads to particular and cumbersome
difficulties (see, e.g., [2, 3, 4, 7, 9, 13, 19, 28]).

Here, we will work in the setting of Bessel potential spaces H(R) and (frac-
tional) Sobolev spaces W7 (IR). Using the Fourier transformation F, the space
H?(R), with s € R and p €]1,+o0[, is defined as the space of tempered distri-
butions ¢ such that

i IH (R)|| = 3D|F 5% - Fio [Ly(R)|| < +o0, (1.2)

for A(€) = 3D(1+¢2)'/?, ¢ € R. As is well-known, if s > 0, W5 (R) is the space of
elements in LP(R) such that

[s] P
s Dll(z) — DElp(y)
W5 @I7 =30 3 10"l + [ | PaEas  dwdy < o0

(where D denotes differentiation, [s] is the largest integer less or equal to s and
s = 3D[s] + {s}). For s < 0, W5(R) = 3D(W,*(R))’, where 1/p + 1/q = 3D1
assuming p, ¢ €]1, +oo[ (throughout this paper).

Moreover, we denote by ﬁ;(]O,a[) the closed subspace of H)(R) consisting
of those distributions which are supported in [0, a]. H?(]0,a[) denotes the space
of generalized functions on ]0,a][ which have extensions into R that belong to
H5(R). The space H(]0,a[) is endowed with the norm of the quotient space
H;(R) /ﬁ;(R\ [0,a]). Analogous spaces are considered if we start = with W7. For
1/p—1 < s < 1/p the spaces ﬁ;(]o, a[) and H3(]0, a[) as well as the corresponding
spaces for W7 can be identified. In particular, these definitions are valid for the
Lebesgue spaces and we use the notation L, (R4 ) for the space Hg(RJr).

For a Banach space Y, by [Y]" we denote the Banach space of n-tuples y =
3D(y1,-.-,Yn), with y1,...,y, € Y, endowed with the norm

n
lyll =3D > ly Y- (1.3)
j=3D1

JFrom now on, throughout the paper, we take 0 < a < +oo and use the
abbreviation X7 to represent indistinctly H) and W;.

First we recall a well-known boundedness property of the operator I, in
the left hand side of (1.1) for the case of the “tilde”-space domains. For this
purpose, let 7g_jo,q] denote the restriction operator from R to |0, a[ (acting between
corresponding spaces), let k € L;(R) denote any extension of k, from | — a,a[ to

the full line and & = 3DFk. Now let, for appropriate = function spaces,
W2 =3DF o F (1.4)

denote the translation invariant operator on the real axis R. The operator in the
left hand side of (1.1) can be written in the form

Ka = 3Drg_jo.aW) 3 (1.5)
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and does not depend on the particular choice of the extension k = 3D/¢k, € L;(R)
of k, (one can take even the extension by zero k = 3D/yk, where k(xz) = 3D0 for
lz] > a).

Proposition 1.1. If there is a positive constant C' such that
wa+E¢|X§(R)H <CO|BXE®)|  for all ¢ € X5(R)
(which reads: 1+ k is a p-multiplier; see (11, 31]) then
[Kael;(10,aD[| < € |[¢1%500,aD||  for alt € K5(10,al).
Proof. Let ¢ € X;(]O,a[). The result follows directly from the definition of the

norms in X7 (]0, a[) and X;(}O, a[) together with estimates for convolutions of L (R)
and L, (R) functions:

|Kap|X5(0,a])|| =3D

rajo.aF (L4 F) - FplX3 (00, ol
—3D inf Hzmﬁ]o’a[;r—lu +5) .f<p|x;(R)H

I

where 1) stands for any extension of ¢ into X3 (R) and the infimum is taken with
respect to all possible extensions. O

< eiRs00.aD

As a consequence the operator
Ko :X35(0,a]) — X35(10,a]),  s€R, pe]l,+odl, (1.6)

is bounded in the present space setting. Further it is known (see [11, Theorem 8.8],
[6, §2] and [24]) that the Fredholm property and its characteristics (defect numbers
and index) depend on the smoothness parameter s and on p as well.

Let us assume that equation (1.1) has a solution ¢ € X;(]O, al) for a given
[ € X(]0,a[). Now if the right hand side has an additional smoothness f €
XZ"‘"‘(}O, al), m = 3D1,2,..., for ensuring the same additional smoothness for the

solution ¢ € X;fm(]o, a[) we must impose m orthogonality conditions on f.

We can choose another option: consider a space setting different from (1.6) in
order to obtain a result which is independent of the smoothness order. Such results
are important for several reasons, including applications in numerical methods (see,
e.g., [23]).

For this purpose we change the space setting (1.6) to the following one

Ka = X5(]0,a[) — X5(]0, af), (1.7)
which is common in the theory of pseudodifferential equations on manifolds with
boundary (see [5, 12, 18, 27, 29]). Conditions on the symbols of the operators or on

the kernel which ensure boundedness of pseudodifferential operators in “non-tilde”
space settings are known in the literature as a transmission property.
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Therefore we have first to find conditions for the kernel function k, which
ensures the boundedness of the operator in (1.7). This will lead to a priori smooth-
ness ¢ €= X5(]0,a[) of the solution, whenever the right-hand side is = given
in the same space, f € X (]0,a[), and without = imposing any orthogonality
conditions on f.

Besides the boundedness and a priori smoothness, we will look for the Fred-
holm property and a representation of the inverse of K, provided it exists.

2. Relations with Wiener-Hopf Operators

In this section we present some auxiliary results. In particular, we will present
relations between the finite interval convolution operator X, and corresponding
Wiener-Hopf operators in the form of operator matrix identities. This will help us
later to extract and transfer information from the Wiener-Hopf operators to our
initial operator K,.

Theorem 2.1. Assume that we have non-critical space orders: 1 < p < o0, s —
1/p e R\Z and s = 3Ds' +s" > —1+ 1/p with s’ € Ng = 3D{0,1,2,...} and
s €] —1+1/p,1/pl.

Letk € Liy(R) and W = 3DW, ik, = 3D7"RHR+}'_1(1+%)-F€0 (XS (Ry) —
X5 (Ry) be bounded as a restriction (s > 0) or as a continuous extension (s <0),
respectively, from L,(Ry) where £y denotes the extension by zero into the full
line. Then finite interval convolution operator IC, (see (1.7)) is equivalent after
extension to the Wiener-Hopf operator

0 4

X Ry x (reor, Kp(R4)) — K3R4)P, (21)

I/V\I;’RJr :3D7‘RHR+]:_1\I/'.7|: ¢ 0 :|

where £ : X5 (R4 ) — X5(R) denotes any extension (i.e. the operator is independent
of that choice) and

A —S
= T_q O
¥ =3D (M) (2.2)
1+ % Ta
with A (&) = 3DE i and T14(€) = 3De*, for ¢ € R. This means, by defini-

tion [1], that there are additional Banach spaces Y and Z and invertible bounded
operators E and F so that

Ko 0 Wyr, O

F. (2.3)

] =3DFE

0 IY 0 IZ

In the present case, the extension by Iz can be omitted.
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Proof. According to the symmetric space setting, K, is equivalent to a = general
Wiener-Hopf operator [29]

Ko = 3DPW|pxs(r,)

where the projector P projects along rr g, TGX;(RJF) (with T, = 3DF ', = -F)
and W = 3Drg_g, F (1 + k) - Fl.
We can take the complementary projector as

Q =3DI-P = ?)I)T]RH]RJr TaAjrslforR*,RJr Ainag
because
X5(Ry) = 3Dre_p, X5(R) =3D rg_g, (TQA;S’eox;” (Ry) @ ToAT (X (R,))
=3D ImQ® KerQ
where A = 3DF 1)\ - F.

It is known (e.g. from [8, formula (4.6)]) that K, is equivalent after extension
to

T =3DPW +Q: X;(Ry) — XJ(Ry) (2.4)
which has the form of a paired operator on X5(R ).
Now, rewriting ) in the form of the following factorization
Q = 3DWy Wy = 3D (e, F AT 70 Flo ) (rew, A 70 - FU)
we obtain, by the extension method of [8, (4.6)-(4.12)], that T = 3DPW + W, Wy
is equivalent after extension to
Wy 0
W W

which obviously represents a bounded 2 x 2 matrix Wiener-Hopf operator with the
symbol

} X3 (Ry) X X8 (Ry) — X3 (Ry) x X3(R4) (2.5)

Uy = 3D

)\i T—a 0/ '
1+k A %7
At the end, lifting into the X3 (R, ) setting yields equivalence with

TRR A:Slfo 0 Wy 0 Ixs (Ry) 0
W, =3D * 4 /
R4 [ 0 IX; (R) w W 0 TRoR, Ai lo

P X3R4 X (reem, Kp(R1)) = X3R4 (26)

and the three factors amalgamate into the form of (2.1). The fact that E and F
in (2.3) are bounded invertible operators results from the assumption that W is
bounded. This is needed in (2.4) and (2.5) to guarantee that the relations (in brief)

PWP+Q =3D(I - PWQ)(PW + Q)
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RO H A EA N | e

(2.7
have bounded entries I — PWQ and —Ws(W — I), respectively (all other terms
contributing to E and F are bounded anyway). O

Remark 2.2. First let us note that the operator Wy g, does not depend on the
particular extension fi, € X;(R) that is taken for the first component ; €
X3 (R4).

Secondly, what happens, if we drop the boundedness of W from the assump-
tions in Theorem 2.1 ? Following the proof we find that (2.3) remains true in the
sense of a so-called algebraic equivalence after extension relation [9, 22] where E
and F' are not necessarily bounded but densely defined and injective operators
with dense images.

Proposition 2.3. Under the same assumptions, the operator Wy r, , introduced in
(2.1), is equivalent to the Wiener-Hopf operator

Wor, =3D rp_g, F'®- .7-'[ g 2) }
P XP(Ry) x X5 (Ry) = XP(Ry) x XP (R ),

where

1+k 1 kAT
®(¢) =3D . |, (2.8)
TakA 14k

is an invertible matriz of elements in the Wiener algebra provided = E/\i €
FL1(R).

Proof. For s = 3DO0, this result can be found e.g. in [13] (see also [25]).
Let us consider the following auxiliary bounded linear operators

_ ¢ 0
We. vy = 3D re—p, F G 'f[ 0 4 }

L X5(R,) x (TR%MX;(R@) LX) X X (R,

_ £ 0
WGL,RJF:?)D TRHRJRF 1G7 ‘7‘—|: 0 EO :|

PXE(Ry) x X5 (Ry) — X5(Ry) x X5(Ry),
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with
[ 1 Tq
G+ :3D ,
0 -
T ATTA) AT
G_ =3D
1 0

Evidently the operators Wg, r, are bounded invertible. Moreover, the struc-
ture of Wg, g, and Wg_ g, allows to prove by a straightforward computation the
identity

VVGﬂ]R{Jr W¢,R+ I/[/C,'+’]1§+ = 3DW\I}}R+’ (29)

which provides the equivalence between Wy g, and We R, . [l

3. The Boundedness of Convolution Operators with Transmission
Property

Let us recall a result from [12] (we will apply these definitions later). The spaces
defined below ensure a transmission property for the corresponding convolution
operators on the half-line.

Let 1 <p<oo,s>—1+41/p and define
TX;(R) =3D {p € Li(R) = [|¢ITX;(R)|| = 3Dl|plLy (R)] + ol < +ooff1)

P
where

0, if —1+1/p<s<l1/p

" n—1+1/p<s<n+1/p,

(s:p) — S—
el =3D 1 [lre—r. ol = X3 R, n=3D1,2,...

inf, s, ||re—r, o/ X5 7 HRy)||, if s=3Dn+1/p, n=3D0,1,...

Next we define similar spaces which ensure a transmission property for the
kernels on the interval | — a, a[. Let again 1 < p < 00, s > —1 + 1/p and define

TX, (] —a,a) =3D {(p eLi(] —a,al):

loITX5(0 — a.al)| = 3DlelLa(] - a, D + 9l < +o0 )
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where
0, if —1+1/p<s<l1/p
(s:p) _ s—1 . n—1+1/p<s<n+1/p,
lel? =300 el ~aa], i FZEMPS

inf,~ ||eX5" (] —a,a])||, if s=3Dn+1/p, n=3D0,1,...

Lemma 3.1. Let k, € TX)(] — a,a).

i. There exists k € TX}(R) such that ky = 3Drg_)_q qk-
ii. Further there exists a continuous linear extension operator

E; , : TX)(] — a,a]) — TX)(R)

with the property i. where k = 3DE} kq.
ili. Moreover all extensions can be chosen such that suppk C [—a — €,a + €],
for any given ¢ > 0.

Proof. Proposition i. follows from the extensibility of X (] — a, a[) = distributions
into X7 (IR) [31], e.g. with any compact support K DD | —a, a[ such that k € L, (R),
because L, (K) C Ly (K) for bounded = measurable K. Continuous extension opera-
tors can be constructed by the same argument, since they exist for X3 (] — a,a[). O

Remark 3.2. Explicit formulas for possible extension operators can be found for
instance in [31], namely extension operators of Fichtenholz-Hestenes or Triebel-
Lizorkin type. On the other hand, note that k& € TX}(R) is not sufficient to have
ko = 3Drg_)_q,qk € TX)(] — a,a]).

Thus, let us agree that if k, € TX} (] — a,a[) then its extension k = 3Dk, to
the real axis (k, = 3DTRﬂ],a’a[k‘), belongs to the appropriate spaces:

i. toLi(R) for =14+ 1/p<s<1/p;
ii. to X57I(R) forn —1+1/p<s<n+1/p,n=3D1,2,...;
iii. to Xy~!(R) for s = 3Dn +1/p, n =3D0,1,... and for some v > s

such that the corresponding norm in (3.1) is finite.

Theorem 3.3. Let k, € TX)(] — a,a[) and k € Ly(R) such that ky_, o = 3Dk,
with the above properties. Then K, € =L (X;(]O, a[)) and, moreover, the estimate

[KapX510, aD|| < € (1 + [|ka| TXZ(] — a. al)[]) [| X510, al)

L 62
holds for some positive constant C and all ¢ € X;(]0, a[).

Proof. According to Lemma 3.1 we may put k = 3DE;  k,, since K, does not

depend on the choice of the extension of k4. The operator W, ;5 - Xo(Ry) —
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X5 (Ry) is bounded, see [12]. Further, for the non-critical space orders, the two
operators are related by (2.1)-(2.3) (with Z = 3D{0}) which yields that

IKall < IEIIWaz Il IF]
< O (1 IWy g, 1)
< Oy (1+ K TX,(R)]])
< C (14 [|ka|TX5(] = a,a]])) -

Herein, C; contains (as factors) the norms of E, F' and the norms of the operators
due to the diagonal terms of (2.2) which are all bounded. The next estimate is
taken from [12, theorems 14 and 15] and the final one uses the boundedness of
E5 ., (but taking into account the last part of Remark 3.2).

We will now be concerned with the critical space orders (s,p) so that 1 <
p < oo and s — 1/p € Ny. In this case, we can look for the corresponding spaces
X5 (over any of the real sets considered above) as a complex interpolation space
resulting from an interpolation couple of spaces of the same nature but with non-
critical space orders (sg,p) and (s1,p). Namely, using the notation of Triebel [32,
§81.9, 2.4, 4.3] (for the present spaces), we have

X; = 3D X,

with 0 <0 < 1,0 <s=3D(1—-0)sp+0s1 ¢ N, 1 < p < oo. Thus, taking into
account our initial = convolution operator defined between spaces with critical
orders

Ka = 3Drgp_jooF L1+ k) - FE: X5(]0,a]) — X5(0,a)

and choosing non-critical orders (sg,p) and (s1,p) near of the critical one (s, p)
such that, e.g., sp < s < s1, it follows from the first part of the proof that if we take
ko € TX;!(]—a,al) and k € Ly (R) (with kjj_q qf = 3Dkq), then Ko € £ (X3(]0,al))
and, moreover, the estimate

IKall < Co(1+ ||kalTX (| — a,aD)|))' 7 (1 + ||l TS () = a,aD)]])°

holds for some positive constant Cy also depending on the parameter 6. Alter-
natively, a similar result can be obtained by applying methods of real interpola-
tion. O

We conclude this section by noting that the transmission property, formulated
above as a condition on the kernel function, e.g. in the Bessel potential space setting

ko € TH, (] — a,a), (3.3)

has an equivalent description in the form of conditions on a Fourier symbol of the
finite interval convolution operator.

In the case —1 +1/p < s < 1/p the Fourier transform k of the extension
by zero k = 3D{yk, to the real axis R falls into the Wiener algebra and vanishes
at infinity /I;(E) — 0 at co. Moreover, ei:iafﬁ(g) have holomorphic and uniformly
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bounded extensions in the corresponding complex half-planes £3m £ > 0, respec-
tively. This implies k(&) = 3DO(eFia€) = 3DO(e=2I%m¢l) as Sm & — +oo.

For p = 3D2, s > 1/2, the transmission property (3.3) is equivalent to the
existence of an extension £k, € Li(R) such that

—~ 1 1
EkaeLg(R,)\s_l): if n—§<s<n—|—§, n=3D1,2,...

and, for the remaining values of s, s = 3Dn + 1/2, n = 3D0,1,2,..., we can find
lk, such that
inf
v>s
The case p # 2 is much more complicated because we have to deal with the
p-multiplier space M, (R) instead of M2(R) = 3DL(R), cf. Remark 3.2.

A1 ik, |L2(R)H < .

4. Fredholm Property and Invertibility

As in [12], we consider the Banach subalgebra of the Wiener algebra
WX?(R) =3D {const +¢:F '¢e=TX;(R)}. (4.1)

Lemma 4.1 ([12]). The singular integral operator Sg, defined by

1 [tee
Srep(r) = 3DE/ Mdy,

—o YT

is bounded in WX (R).
Due to Lemma 4.1 the projector
1
Py =3D5(I + Sg)

is bounded in the algebra WXJ (R), which makes WX7 (R) a decomposing Banach
algebra [10].

Theorem 4.2. Let 1 <p < oo, —1+1/p < s < oo and k, € TX;(] — a,al).

i. The convolution operator K, presented in (1.7), = is a Fredholm operator
in the space X3(]0, a[) with zero Fredholm index.
ii. If IC, is left or right invertible, then it is invertible.

Proof. Due to the fact that we are working with an integrable kernel on a finite
interval, the convolution operator can be written as the identity operator plus a
compact operator. Therefore, this is a Fredholm operator and it has zero Fredholm
index in all spaces where it is bounded. The latter is obtained, e.g., by application
of the Krasnosel’skij theorem on interpolation of compact operators (see [20] and
[32, §61.10.1, 1.16.4]), from which follows that if an operator is compact in LL,, and
bounded in any X7, then it is compact in Xj. This = statements implies also the
assertion ii of the theorem. (|
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Remark 4.3. For the non-critical space orders and for ® in the Wiener algebra,
the foregoing theorem can also be derived from Theorem 2.1 and Proposition 2.3
which establish a direct connection between finite interval convolution operator
and a convolution operator on the half-line. This approach is interesting and useful
because it provides the possibility to obtain explicit invertibility conditions for
finite interval convolution operators and, moreover, to write down explicitly the
inverse operator (cf. Theorem 4.5). Although, for this we need to carry out the
factorization of the matrix symbol. An alternative proof proceeds as follows.

i) Being ® an invertible element of the algebra [WX? (R)]*** having determi-
nant minus one, it follows that a factorization

Ao =\" /A7
=300 diag[( ) () }q@
Ay At +

(in [W;(R)]zXQ), with K1 > kg, must have partial indices such that k1 +k2 = 3DO0.
Therefore, taking into account Theorem 2.1 and Proposition 2.3, we obtain

IndK, =3D dim KerX, — dim Coker I,
=3D —ky — K
=3D 0. (4.2)

ii) If dim Ker K, = 3D0 or dim Coker K, = 3D0, from (4.2) it immediately
follows that IC, is an invertible = operator.

Remark 4.4. Due to the operator relations presented in Theorem 2.1 and Propo-
sition 2.3, we have that our initial convolution = operator defined in (1.7) has the
same Fredholm indices as Wy g . Thus, the question of the existence of a (canon-
ical) factorization of ® in a decomposing algebra is independent of the particular
extension k that we may take for k,.

Theorem 4.5. Let k, € TX](] — a,al) for some non-critical space order and with
O (cf. (2.8)) in the Wiener algebra. The convolution operator Ko, defined in (1.7),
is invertible if and only if the matriz-valued function ® admits a canonical factor-
ization [10] in [W;(R)]zm.

Moreover, assuming that this is the case and that a canonical factorization

of ® is given by
14+ d, o,
o2 14+ @5,

1+ @ o,

& =3Dd_&, =3D
* o5, —1+0

)

with @iij(oo) =3D0 (fori,j =3D1,2), then the inverse of K, reads

K7 tola) = 3Do(a) + | (e y)ew)dy, (4.3)
0
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where

V(@,y) =3D wi(z —y) + wa(z —y —a)

min(z,y)
/ [wa(z — 2z —a)wi(z —y) —wi(x — 2 — a)wa(z — y)] dz,(4.4)
max(z,y)—a

with W1 = 3D®5, + 7_, P}, and We = 3DP5; + 7_, Py
Proof. We know, from Theorem 2.1 and Proposition 2.3, that X', and Ws g, are
invertible only at the same time. Therefore, the first statement follows if we take
into account the definition of [WX:3(R)]**? (cf. (4.1) and (3.1)).

For the second part, we will take advantage of the Gohberg-Sementsul for-
mula [17, 28]. For this purpose, we first observe that the existence of  is granted by
the canonical factorization of ® and that from (4.4) we obtain the representations

v(x,0) =3D ~v(a,a—z) =3D wy(r—a),
10,y) =3D ~(a—y,a) =3D wi(-y).
Thus, for z,y € [0, a], it follows

~(z,0) /k x—2)v(2,0)dz =3D —kq(x)

2(0,4) + / ku(z — )10, 2)dz =3D  —ko(—y),

which shows that the conditions of the Gohberg-Sementsul identity are satisfied
and therefore we arrive at formula (4.3), see [13, 17, 28]. Additionally, due to
ol e [WX;(R)}QX2 and the boundedness of the projector Pg, it remains to note
that

T =3DF ' Fly=rp_p, F'O®"-F

is a bounded operator on [L,(R)]* which preserves the smoothness order. O

Theorem 4.6. Let k, € TX) (] — a,al), for some non-critical space order, ® being in

the Wiener algebra and consider a generalized factorization of ® in [WX;(R)]QXQ,

®=3Dd_Dd,
1+®;, &
Dy 14Dy

Ao\
(2=)" o 1+0f,  of
A R2 )
o (%) of,  —1+05
with @iij(oo) =3D0 (fori,j =3D1,2) and partial indices k1 > Ka.
Then the convolution operator K., defined in (1.7), is generalized invertible
and a generalized inverse of it is given in the form

K: =3D P[(Wq> R) W (W‘g’@zlex;(R” (4.6)

(4.5)

where P is the projector introduced in the proof of Theorem 2.1,
Wi =3Drg_z, F ' = A "7, - Flo
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and the elements (W;R) N are defined by the generalized factorization (4.5) due
g
to the representation

(Wg,nx)ll (Wg,R> 2 | Z 3D . ]-'_1<I>_T_1PRD_1P]R‘I’:1 . F¥. (4.7)
(W‘I:’R>21 (W(I:’R)QQ +

Proof. Using the methods exposed in the proof of Theorem 2.1 and the comple-
mented projectors P and @ defined there, one can write the equivalence after
extension relation between IE; =3D = Pmpx;(R+) and T = 3DPW + Q in the
form

Ka 0
(PW4+Q). (4.8)

Ipxsry) —PWigxsr
:3D[ S(Ry) [ e

0 Jgxsmy) 0 Toxs s

In addition, for PW + @ one has the identity (2.7) and, according to relations
(2.6) and (2.9), we obtain

W2 0 TR_,R+ As_lf 0
=3D We_r, Wor,
w W 0 I

I 0
Wa, r, 0

’
TR_,R+A+S fo

where I = 3DIx; (g, ). Therefore, noting that (4.7) is a generalized inverse to We g,
we obtain the following generalized inverse of the operator in the left hand-side of
(2.7):

(PW+Q)” 0 - I I 0 I 0
= , —1
0 I L W2 (W — I) I 0 TRHR_FAiEO G+ R

(W‘I’v]@ 11 (W‘I’JR) 12 | w
(i), (wi),, )"

L PR/, PR/ oy

I TR_,R+A:S/ = EO 0 W2 -1 I W1 (4

I 0 I I 0 o I |

In addition, from (4.8), generalized invertibility of PW +@ also leads to generalized

invertibility of K,. Thus, = combining this with (4.9), the desired formula (4.6) is
proved. O
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