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Abstract. We prove the boundedness of the Cauchy singular integral oper-
ator in modified weighted Sobolev KWJ'(I', p), Hélder-Zygmund KZ) (T, p),
Bessel potential KH; (T, p) and Besov KBj, (T, p) spaces under the assump-
tion that the smoothness parameters m, u, s are large. The underlying contour
I" is piecewise smooth with angular points and even with cusps. We obtain
Fredholm criteria and an index formula for singular integral equations with
piecewise smooth coefficients and complex conjugation in these spaces pro-
vided the underlying contour has angular points but no cusps. The Fredholm
property and the index turn out to be independent of the integer parts of the
smoothness parameters m, u,s. The results are applied to an oblique deriv-
ative problem (the Poincaré problem) in plane domains with angular points
and peaks on the boundary.

Introduction

When considering a Cauchy singular integral equation with complex conjugation

Ap(t) = a(t)p(t) + %/‘Pﬁ‘ff + %/% —f(t), tel (0.1
T T

on a piecewise smooth contour I" (see §1 below) we are restricted in the choice of
the spaces where we can solve equation (0.1). Namely, the operator A in equation
(0.1) is not bounded in important spaces of smooth functions: in the usual weighted
Sobolev W7 (T', p), Hélder-Zygmund Z, (I, p), Bessel potential H(T", p) and Besov
B, 4 (T, p) spaces for large values of the smoothness parameters m =2,3,..., u > 1
and |s| > 141/p. These spaces cannot be even defined properly (i.e., independently
of the choice of a parametrization) if I" has knots, such as angular points or cusps.
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Matematica e Aplicagdes”, respectively.
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Even if I is sufficiently smooth and the spaces W'(T', p), Z, (L, p) etc. can
be defined properly, the problem arises again when we take piecewise smooth
coefficients a(t), b(t), ¢(t) with jumps at the knots (for conciseness we relate dis-
continuity points to the knots of ' as well).

On the other hand, especially in applications and numerical analysis, it is
important to establish additional smoothness properties for the solutions at least
outside the knots when the right-hand side f is sufficiently smooth.

We suggest the introduction of weighted spaces KWJ'(T',p), KZ,(T',p),
KH3 (T, p), and KBS (T, p) with the help of “Fuchs”-derivatives

I()dyp(t) == ﬁ(t)&giff) , where 9(t):= [] (t—t;) (0.2)
t;€Tr

and T is the collection of knots of T', instead of the usual derivatives 0;p(t) (see
Lemmata 1.2, 1.3, and 2.4). It turns out that the operator A in (0.1) with piecewise
smooth coefficients a, b, ¢ € PC™(T, 7r) (and even with a, b, c € KPC™(T', 7r); see
§1 for the definitions) is bounded in the modified spaces KW*(I', p), KZ, (T, p),
KHZ (T, p), and KB; (T, p) provided the smoothness parameters m, u and s are
sufficiently large (see Lemmata 1.2, 1.3, 2.4 and Theorem 3.1). Moreover, the
operator defined by (0.1) has one and the same kernel and cokernel in the spaces
KW (T, p), KZg(L', p) and KHZ(T', p), KBy (I, p) whatever the integer parts of
the smoothness parameters m = 0,...,m, 0 < g < pu, and |5] < s are (see
Theorem 3.2 and Remarks 3.4, 3.5).

The results on the Fredholm properties and also those on the boundedness of
the operator A in the usual (non-modified) weighted Bessel potential and Besov
spaces H3 (T, p) and B, (T, p) for small s, 1/p —1 < s < 1/p, when the mul-
tiplication by piecewise continuous functions represents a bounded operator (see
Theorem 2.3), are new.

Although the space KW (T', p) coincides with KH* (T, p) for any nonnegative
integer m, we formulate the results for the modified Sobolev space KW;(T', p)
because these spaces are more common in applications and the proofs are simpler.

It is well-known that the Bessel potential spaces are as natural in the the-
ory of pseudodifferential operators as the Sobolev spaces are in the theory of
partial differential operators. The norm in HJ(R?) is especially simple for even
s=2m,m=20,1,2,.. .

0? 02
= — + _—

dz3  Ox3
But in the theory of boundary value problems we cannot confine ourselves to the
Bessel potential spaces since the traces of functions ® € H;(Qi) on the bound-

IF 1 HE™ R = (|1 = )™ f[LpyRH], A

1
ary belong to the Besov spaces Bz,p" (T), provided the boundary T is sufficiently
smooth and s > 1/p.

The Besov spaces can be considered as the integral analogue of the Zygmund
spaces.
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In favor of the Holder-Zygmund spaces we remark that many important op-
erators, including singular integral operators, are unbounded in the spaces C™(T")
and in the Holder spaces H,,(I") but that they are bounded in Z,,(R™) for every
integer m € N := {1,2,...}. The Holder-Zygmund spaces are the natural exten-
sions of the scale of Holder spaces to integer values of the smoothness exponent
and have an important interpolation property (see §2).

In §4 we apply the obtained results to the oblique derivative problem for the
Laplacian in domains with piecewise smooth boundary.

The space L} 5(T') := KWL(T', Tp, |t — t1]°7") (i.e., the particular case where
m =1, Ir = {t;} and p(t) := |t — t1|°~!) was applied in [MS1] to the inves-
tigation of boundary integral equations. The anisotropic Bessel potential spaces
HE™™ (M), similar to KW?(T), were introduced in [CD1] for the multi-dimen-
sional case in which M = R’} or M is a manifold with smooth boundary. In [CD1]
the boundedness of a certain class of pseudodifferential operators was proved and a
Fredholm criterion for them was established. The spaces LV (R") and X?™(R™),
also similar to KW (R*, {0}), were used by J. Elschner in a spline approximation
method for convolution equations (see [Ell] and [PS1, Ch. 5]).

Some results of §§1-2 were already announced in [DS2].

1. Weighted Sobolev and Hoélder-Zygmund spaces

Let I' be a piecewise smooth curve that consists of a finite union of smooth arcs
which have in common at most endpoints, called knots:

N—

4
P=Jry, =t =titia, j=1,....n, tap1 =t
j=1

Let 7r := {t;} denote the collection of all different knots (i.e., all different end-
points of smooth arcs) of I'. The curve may contain cusps, i.e., the angles between
some arcs are allowed to be 0.

The closed arcs I'j, 7 = 1,...,n, between the knots are sufficiently smooth:
any parametrizations

wj 1 := [O, 1] — F]’, wj(O) = tj, wj(l) = tj+1 (11)

are p-smooth, w; € Z,(Z), p > 1, j = 1,...,n, where Z,(Z) denotes the Holder-
Zygmund space (see below).

Let us suppose, until formula (1.7), that T" is either a single smooth arc or a
single smooth closed contour and that the natural parametrization of I' with the
help of the arc length parameter 0 < s < /£,

t:[0,] —T, s t(s), t(0)=1t(L), (1.2)
is p-smooth, that is, ¢t(-) € Z,([0, £]).
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For 0 < v < p < 1, the Holder-Zygmund space Z, (T") is defined as the space
of functions with finite norm

A2
01 Zo(D)] = sup o)+ sup 2R (1.3
tel 0<s<t
h>0

App(s) = (s +h) —w(s),  Afp(s) = p(s +h) — 20(s) + (s — h).
Note that for ¥ = 1 the definition of Z;(T") requires that I' be smooth, ¢(-) €
C1([0,4]), and that " have no angular points: each knot ¢; € 7t is an endpoint of
a separate arc.
If I is y-smooth and
p=m+v>1, 0<v<1l, meNy:={0,1,...}, (1.4)

then angular points on I' are absent and the Holder-Zygmund space Z,(I") is
defined as a collection of all functions v (t) which have finite norm

1 1 Zu (D)} ==Y sup [ ™ (0)] + |9 |2, (D)]] (1.5)
kIOtGF

k X
o0 (x) = dhipla) = T

The Hoélder space H,(T") is defined as a collection of all functions ¢ (t) which
have finite norm

m (m)
o | Hu@) o= 3 suplp®(t) + sup 2 EEL )
oo t€T 0<s<t h¥
h>0

Ifpu=m+v¢&N={1,2,...} is not an integer, 0 < v < 1, the norms in (1.5)
and in (1.6) are equivalent and the spaces coincide: Z,(I") = H,(T") for p ¢ N (see
[St1]). Note that for an integer m = 1,2,... the spaces H,,(I') and Z,,(I") differ
essentially from each other and from the space C™(I') of smooth functions with
the natural norm

cmm) = 3 (k)
[y [ C™ (D] ’;Tél}glw (t)]

(see [St1]) and that we have the following proper embedding instead:
C™[T) C Hy(T) C Zy (1) (1.7)

For an arbitrary piecewise smooth curve I'; we denote by PX(I", 7r) the space
of piecewise smooth functions with jump discontinuities at the knots ¢; € 7r:

PX(I,Tr) :=={g e X(Ty) : j=1,...,n},

where X(I';) denotes one of the spaces C™(T';), H,(T;), or Z,(T;), j = 1,...,n.
For m = 0 we use the notation PC(T', 7r) instead of PC°(T', 7r).
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The Sobolev space W7*(Z) on the unit interval is defined as
WT) == {p eL,(T) : dFpelLy(T), k=0,...,m}

and is endowed with the norm

lo | W ||<Z|| Eo | Ly(T ||p> Z/| o)lPda

k=0

With the help of the parametrization (1.1) we define the Sobolev space
W7 (T';) on the smooth arcs I'; for 1 < p < oo and m < p as the space of all func-
tions ¢ for which p(w;(z)) is in W;*(Z). For the entire piecewise smooth curve T’
the space W' (I") can be defined only for m = 0, 1. In fact, for any parametrization

w:R:=[0,R —T (1.8)
of the entire curve I' (cf. (1.2)) the derivative (9;p)(w(z)) = [W'(z)] 1 0rp(w(z))
involves a piecewise continuous factor [w']~! € PC(R, Tr ), where

Tr = {J,‘j ER : w(xj) = tj S /TF}

is the set of all “knots” of R. Therefore, the second derivative (97p)(w(x)) is
not defined properly because the second derivative 92w(x) of the parametrization,
which participates as a factor, may contain delta functions:

n

Pw(z) = wi? (@) = Y W' (2 +0) — ' (2 — 0)]8 (), (1.9)
D e PCT AT, T),  wP(a; +0) = w® (x5 +£0) = (02w)(x; +0),
(0,90) :==1(x;), P e C(R), Vw(z;)=t; € Ir.

To prove (1.9) we represent w’(x) in the form

W (@) = wp(e) = Yo' (@) +0) = o (z; = 0)]x4(z — ), (1.10)

where w{(x) is continuous wj € C(R) N PC™ Y (R, Tr), dw)(z; £0) = '(z; +
0) and x4 (z) is the Heaviside function: x4 (z) = 0 for z < 0, x+(x) = 1 for
x > 0. It is easy to ascertain that the functions w’(x) and w{(z) differ by a
piecewise constant function with jumps at z;, w(z;) = t; € Tr and, therefore,
their derivatives coincide:

(Oa) (@) = (Bpwi) (x) = wP () Vo #a1,... 20
and even
(0,w") (£ 0) = (Bpwp)(z; £0) = wP(z; £0) Vji=1,...,n

Since x/, = J in the sense of distributions, from (1.10) we derive (1.9).
By the same reason a multiplication operator

I: W) — WHT), gePC™T,Tr) (1.11)
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is bounded only for m = 0 (i.e., in the Lebesgue space L, (I") only).

In order to treat finally singular integral equations for spaces of smooth func-
tions in an efficient way, we need the boundedness (j) of differential operators, (jj)
of multiplication operators (both were discussed before), and (jjj) of the Cauchy
singular integral operator (see Theorem 3.1 below).

To guarantee all three listed space properties, we suggest to consider a special
Sobolev space KW (T, p) with a power weight

p(t) == H(t —t;)%, a; €C, l1<p<oo (1.12)

Jj=1
defined as follows:

KW, p) := {QDE]LP(F,p) L OFp e Ly (T, p®), k:O,...7m},

p B (t) = ﬁ(t — )tk (1.13)
j=1

The space is endowed with a natural norm,

1
P

o | KW (C. )] = (Z ok u(npw)np)
k=0
(X [ewatepia |
k=01

which makes it a Banach space. It can be verified straightforwardly that the deriva-
tives

F()OFp(t) and 979" ()e(t)
(see (0.2) for ¥(t)) exist in the usual sense and that the following norms are equiv-
alent to the original norm in (1.14):

I | KWEHT, p)|l1 = (Z 1(90:)*¢ | Lp(F,p)l”> :

k=0

le | KWEHT, p)ll2 := <Z 1oy 9 ¢ | LARP)II”) : (1.15)
k=0

Let p=m + v be as in (1.4), ¥(t) be as in (0.2), and
KPZ, (T, Tr) = {g € PZ,(T) : ¥*0*g € PZ, (T, Tr) Vj=1,....m} . (1.16)

Let us prove that PZ,(I',7r) C KPZ,(T', 7r). In fact, from the definition of the
o-function and the above considerations it is clear that

(t—t,)0;(t) =0, j=1,....n (1.17)
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(see (1.9)). Therefore, tlintl 9(t)g’(t) = 0. Thus, dealing with “Fuchs” derivatives of
—t;

g € KWM(T', p), we can ignore the d-functions and take W*0Fg € PZy,—_x(T,Tr) C
PZ,(T,Tr) for all k =1,...,m.

Moreover, KPZ, (I, 7r) is a Banach algebra. In fact, for arbitrary g,h €
KPZ, (I', Tr) we have

k .
dokm =3 (1 )0l Tav @i epn )
§=0

for all k=0,1,...,m, which implies that g - h € KPZ,(T', 7r).

The space KPZ,(I', 7r) is essentially larger than PZ, (I, 7r): the first con-
tains, e.g., the functions g1 () + (t —t;)?g2(t) with a complex 7 such that Rey > 0
and g1, g2 € PZ, (T, Tr), which are absent in the second one.

Lemma 1.1. The space KPZ,(T',Tr), defined by (1.16), and the space KPC™(I',Tr),
defined similarly, are Banach algebras and the embeddings

PZ,(T,Tr) C KPZ,(T',Tr), PC™T,7r) C KPC™(T,Tr)
are proper.

As usual, for a negative m = —1,—2,... the space KW;T(R/)) is defined as
the dual space to KW ;™ (T, p~ 1), where p’ :=p/(p —1).

Lemma 1.2. Let T" be piecewise p-smooth, m = 0,+1,+2, ..., and |m| < p.

The space KW;T(F, p) is defined correctly and is independent of the choice of
parametrizations w; : T —T;, j=1,...,n of the arcs T'; (see (1.1)).

The multiplication operator gl is bounded in KW;”(F, p) for arbitrary g €
KPCI™|(T, 7r).

Proof. We have to consider the case m = 0,1,... only. For a negative m =
—1,—2... both assertions follow by duality. In fact, it suffices to prove that the
dual space is correctly defined and that the dual operator to gl is gl.

The equality

k .
D0k (ge) = ( : ) PO )07 (D) € WKL p), K =0.1,..m,

j=0
which is similar to (1.18), immediately implies that the multiplication operator g
is bounded in the space KW *(T', 7r).
,From the equalities

P00 (w) = F(Orp)(w)Dpw ,

D?070(w) = 9*(070) (W) (0sw)? + 9(Dep) (w)I 3w (1.19)
and similar formulas for higher derivatives and from the boundedness of the mul-
tiplication operators proved in the first part of the lemma it follows that the
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transformation operator
we t KW, p) — KWI(T,p0),  wip(e) = plw(z)),  (1.20)
wl=0)=w0+0)=t1, w(x;)=¢t;, j=2,...,n,

n

po() = 2% (z — 1) [ (@ — ;)

j=2
is a homeomorphism. Therefore the space KWZL(F, p) is independent of the choice
of the parametrization of I'. O

Let us consider the weighted Holder-Zygmund space
Zp(T,p) = {po = pp € Zu(T) : @o(t;) =0, k=0,...,m}, 0<pu<l,

which is endowed with a natural norm (cf. (1.3)):

le | Zu (@, p)ll = llpw | Zu(D)]]- (1.21)
For 0 < pu < 1, the weighted Holder-Zygmund space Z)(T', p) coincides with the
weighted Holder space H}(T, p) considered in [Dul, Du2, Du3]. As for the spaces
HY(T, p) and ZI(T, p), they are essentially different (see [St1]).

To give a straightforward definition of the Holder-Zygmund spaces Zg(I‘, )
for p = m+ v > 1 we need a p-smooth contour I'. For a piecewise smooth I" we
suggest the following modification of the Holder-Zygmund space without weight:

KZ,(T) :={p € Z,(T) : 90" € Z,(T), k=1,...,m},
provided 0 < v < 1 (i.e., u € N). For a weighted space we set
KZY(T, p) = {pp € Z,(T) : ¢i = p*dFp € Z,(I), (1.22)
op(t;)) =0, k=0,....m, j=0,...,n}.
We endow these spaces with the following natural norms (cf. (1.3) and (1.21)):

m—1
lo | KZ, (D)) := Sup (95 () e(t)] + [97m0™ ¢ | Z, (D],
k=0

m—1

lo | KZ,(T, p)l| == ) julrjlwk(t)l + llem [ Z, (D) - (1.23)
k=0

Equivalent norms can be written down as in (1.15).

Lemma 1.3. The spaces KZ,(T') for p ¢ N and KZg(F,p) for arbitrary p > 0
are correctly defined and are independent of the choice of the parametrizations
wj : IT—-Ty,7=1,...,n of the curve " (see (1.1)).

The multiplication operator gl is bounded in the space KZg(F, p) for arbitrary
g € KPZ,(T, Tr).

Proof. The proof follows word for word the proof of the preceding Lemma 1.2 with
obvious modifications. O
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2. Weighted Bessel potential and Besov spaces

It is possible to define new spaces by interpolation. Without going into the details
of interpolation theory (we refer the reader to [Trl] for that) let us note that
interpolation assigns to a pair of Banach spaces Xy, X; embedded in a bigger
Banach space, Xp,X; C X (an interpolation pair), a new space Xy := [Xo, X1]y,
0 < ¥ <1 (an interpolated space), with a comfortable interpolation property,
stated in the next lemma. This lemma summarizes results on interpolation of
operators by different methods exposed, e.g., in [Tr1, §§1.10.1, 1.16.4].

Lemma 2.1. (Interpolation Property). If the operator

A X0—>Y0
X1—>Y1

is bounded in both pairs, then A is bounded between pairs of interpolated spaces
A Xy = [Xo, Xq]y — Yy :=[Yo, Yi]y
for all0 <9 <1 and, for some positive constant Cly,
JA|X, — Yoll < CyllA|Xo — Yol |l A[X1 — Y4|1”.

Moreover, if Yo = Y1 or Xg = Xy and the operator A : X, — Yy is
compact for k = 0 or for k = 1, then A : Xy — Yy is compact for all'
0<d¥<l.

The Bessel potential space H ('), s > 0, 1 < p < oo, where
s=m+17, meN, 0<9<1, (2.1)

can be defined as the result of complex interpolation of Sobolev spaces (cf. [Tr1,
§1.9, §2.3]),
H; (L) = (W' (D), Wyt () , (2.2)
while the Besov space B,  (I') is the result of real interpolation (cf. [Tr1, §1.3,
§2.3]),
By (L) = (W (T), W)y, 1<g<o0. (2.3)
Similar definitions are valid for the spaces H;(Qi), B ,(QF).
We note that the spaces can also be defined rigorously if I" is only s-smooth.
Therefore, for piecewise smooth I" we can take s <1 (or, even, s < 1+ 1/p).
For the definition of equivalent norms in Bessel potential and Besov spaces
we need some standard definitions and notations.
S(R™) denotes the space of rapidly decreasing smooth functions and S’(R™) is

the space of tempered distributions, i.e., the space of continuous linear functionals
on S(R™).

IThe first result on interpolation of compact operators was obtained, to our knowledge, by
M. Krasnosel’skij [Kr1] in 1960. This reference is missing in H. Triebel’s fundamental monograph
[Tr1, §1.16.4]; he only cites papers devoted to the subject since 1964.
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The direct and the inverse Fourier transforms F and F~! are defined as
follows:
Fol)i= [ opa) s, geR,
| (2.4)
Fl) = @0 [ ds,  ser
R7Z
For the Euclidean space R™, the Bessel potential space H‘;(R”) (seR, 1<
p < 00) is the subset of S'(R™) (s € R, 1 < p < o0) consisting of the elements f
with finite norm
If[H, (R = [F~HE) F f I Ly (RM)],
where .
() = (14 |z*)®, zeR". (2.5)
The Besov space By  (R™) (s =m +19 >0, 1 < p,q < o) is equipped with
the norm
1830 L, R an
s n m(mn OLf Lp(R™)||7 dh
1 £IBS o (R = | F[W R+ > . hﬁqp T

lal=m \ gn

for 1 < ¢ < oo and with the obvious “esssup” modification (instead of the integra-
tion) when ¢ = oc.

For domains QF C R2, the spaces ]HI;(Q*) and IB;q(Qi) are defined as the re-
strictions of H(R?) and BS  (R?) to O while ﬁ;(ﬂi) and IE%}SW (%) are subspaces
of the corresponding spaces on R? and consist of functions which are supported in
O+,

The space W;(Qi) = IB%;p(Qi) is also known as the Sobolev-Slobodetskij
space.

Similarly we define the spaces H;(Z), By ,(Z) (as the restrictions of Hj(R),
B, ,(R) to the interval Z C R) and fPV]I;(I), @;,q(I) (as the subspaces of H(R),
B, ,(R) of functions which are supported in the closed interval Z = [0, 1]).

Using the parametrizations (1.1), (1.2) we define the spaces Hj(I';),...,
IE;q (T;) in a standard way.

The weighted spaces H(T', p) and B; (T, p) consist of all functions o(t) for
which pp € H> (T') and pp € By ,(T'), respectively.

Since the spaces H; (I, p) and ]ﬁI;,S(I’,p_l) (seR,p :=p/(p—1)) are dual
(adjoint), see [Tr1], it is natural to define the spaces B; (T’ p) and I@I@;Vq(lﬂ, p) for a
negative s < 0 as the dual spaces for I@;fq, (T, p~ ') and IB%;,fq(I‘, p~ 1), respectively.

The notation Hj, ignoring the weight function and the domain of definition,
will be used if the subsequent proposition is valid for any weight and any of the
domains R", QF, T'; and I'. Moreover, when writing X(QF, p) we mean any of the
spaces HS (Q%, p), ]B%;,q(Qi, ), W;(Qi, p), Zs(QF, p) while X(QF, p) stands for the
“tilde-spaces”.
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The Besov space BY ,, = W7, and the Holder-Zygmund space Z; are iso-
morphic and coincide.

The equality H5 = B3, holds for all s € R and, in particular, H5(R") =
W5 (R™) for all s > 0.

For a non-negative integer m € Ny the Bessel potential space Hj" and the
Sobolev space W' can be identified.

Theorem 2.2. (Interpolation Theorem; [Trl, §§2.4, 3.3]). Let

50,51€R, O<19<17 1Sp07plal/7qo’lI1§OO7

1 1-9 ¢ 1 1-9 9
— + —, = + —, 52(1—19)80+1981.
p Po b1 q q0 q1

For the real (-, )g,p, complex (-,-)g, and modified complex [-, -]y interpolation func-
tors we have the following:

i (Hp ,H2 )op =Hy provided 1 < po, p1 < 0o;

P

i, [Hpo, Ht |y = (Hp9, Ht )y = Hy provided 1 < po, p1 < 00;

iii. (Hye,H;')y,, =B;, provided so # s1, 1 <r < oo;

iv. (B, B, )., =By, provided so # s1, 1 <1 < ooy

v. (B 0> Byt 4 )e =By .5 if in addition, 1 < po, p1 < oo and either gy # oo
or q1 # oo, then [By . B>t |9 =B; ;

Vi (Zy, Zt))0.00 = (Zty,Zey )9 = Zy provided to,t1 > 0,0 < ¥ < 1, t =
(1 —9)to + Ot

The next theorem addresses the boundedness of a multiplication operator
and of the Cauchy singular integral operator, which are of a special importance
for the theory of the equations in study (see §§3-4).

Theorem 2.3.
i. If T is sufficiently smooth and if

S for s=0,£1,...

|s|
[s] for s#£0,%1,..., (2.6)

Vol

seR, 1<p<oo, and u{

then the multiplication operator gI with g € H,,(T") is bounded in the space
H (T, p).
ii. If T is sufficiently smooth and if

seR, 1<pg<oo, and u>]|s|, (2.7)

then the multiplication operator gI with g € H, (I") is bounded in the space
Bpq(Tsp)-

iii. The spaces Hy (R, z%), f[-v]IZ (R% 2%) and the spaces By (R, z%), @Z’q(Rﬁ %)
are pairwise isomorphic and can be identified (extending the restricted
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functions by 0) provided
1 1
-——l<v<—, l<p<oo. (2.8)
p p

iv. If T is piecewise smooth and p > |v|, then the multiplication operator
gl with g € PZ,(I',Tr) is bounded in the spaces Hy (I, p) and By (T, p)
provided condition (2.8) holds.

Proof. For the proofs of assertion i we refer to [Tr1, § 3] (see also [MSh1]). Assertion
ii follows from assertion i and Theorem 2.2.iii. Assertion iii is a slight modification
of the corresponding assertion from [Trl, §2.10] (see also [MShl]). Namely, it
suffices to prove the equivalent boundedness of the multiplication operator xI
by a characteristic function of the half-line in H} (R, z%) and in B} (R, z%). By
the definition of the weighted spaces, this is equivalent to the boundedness of the
operator = *x+x*I = x4 in the unweighted spaces Hi;(R) and B,  (R), which is
proved in [Trl, §2.10].

To prove assertion iv we recall the definition of the weighted Bessel potential
space on a piecewise smooth contour. Due to assertion iii, under condition (2.8)
the space Hy (I, p) can be identified with the space

HY(T,p) = {yp : pp € HY(T;) Vj=1,....n}. (2.9)
On the other hand, any function g € PZ,(T', 7r) can be represented as a finite sum

g(t)zzgj(t)Xj(t), 9 €Z,I), j=1,...,n,

where x;(t) is the characteristic function of the smooth arc I'; C T', and due to
assertion i it suffices to consider only the case g(t) = x;(?).

We are left to prove that x;I is bounded in Iﬁl; (T, p) or, as in assertion iii, in
H ('), which is a simple exercise.

For the space Bz,q(I’, p) the result can be proved similarly or obtained from
the proved assertion by interpolation. O

From Theorem 2.3.iii we easily find that if " is piecewise smooth, then
the spaces H; (I, p) and B; (T, p) can be defined rigorously, provided conditions
(2.8) hold. As we have already noted above, the definition cannot be extended
to large |s|. We must impose restrictions on s to ensure the boundedness of a
multiplication operator by a piecewise smooth function and of the Cauchy singular
integral operator (see Theorems 2.3 and 3.1).

Therefore we suggest to consider the following spaces: if

s=m+v, m € Ny (2.10)
and (2.8) holds, we define
KHS (T, p) = {p € H(T', p) : 90" € HY(T,p), k=0,...,m}, (2.11)

KBS (T, p) = {@ € B, (T,p) : 9*0"p e B (T',p), k=0,...,m} (2.12)
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(see (0.2) for ¥(t)). The spaces are endowed with natural norms:
1

lle | KHG (T, p)|| := (Zlﬂkaffw | HZ(RP)II”) :

k=0

m v
e | KBy (T p) := (Z 19*0F ¢ | BZ,q(F,p)p> :

k=0
which make them be Banach spaces. It can be verified straightforwardly that
equivalent norms can be defined analogously as in (1.15).

For a negative s < 0, the spaces KH? (T, p) and KB; (T, p) are defined as
the dual spaces to ]KH;,S(F,p_l) and KB* (T, p~ 1Y), respectively, where p’ :=
p/(p=1), ¢ =4q/(¢—1).

Lemma 2.4. Let T be piecewise p-smooth and |s| < p.

The spaces KH; (T, p) and KB; (', p) are defined correctly and are indepen-
dent of the choice of the parametrizations w; : T —1';, 5 =1,...,n of the curve I’
(see (1.1)).

The multiplication operator gl is bounded in KH (T, p) and in KBy (T, p)
for arbitrary g € KPZ,(T', Ir).

Proof. The proof is similar to the proof of Lemma 1.2. O

3. Singular integral equations in weighted spaces

If T is an m-smooth closed contour and m € N, then the Cauchy singular integral

operator

Sre(t) == %/‘pT(T_)iT, terl (3.1)
is bounded in the spaces H3(T'), B;,qa‘), and Z4(T") provided

1<p,g<oo, seR, s<m. (3.2)

In fact, let us recall that Sr is bounded in the Holder spaces H, (I") = Z, (T")
for 0 < v < 1 (the Privalov Theorem; see [Dul, Du2, Mul, St1]) and in the
Lebesgue spaces L,(T') (the Riesz Theorem; see [GK1, Khl, St1]). Since

(& Srp)(t) = (Srd’p)(t)  VjEN, (3-3)
we get

k k
ISeeXFF (D)) = Y 107 Sre] X (D) = D 1Srd e |X (D)l

Jj=0 J=0

A

k
CY_Ne[X (D) = Cllo|g* (@), keN.

=0
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This implies the boundedness in the Sobolev spaces X*(I') := Wk(I') = H(T') for
all integers k = 0,...,m and in the Holder-Zygmund spaces Z,(I") for all non-
integers = k+v, 0 < v < 1. Due to the Interpolation Theorems 2.2.i, 2.2.iii and
2.2.vi, Sr is bounded in the spaces Hy(I'), B ('), and Z,(T') if conditions (3.2)
hold.

If T is piecewise smooth, the boundedness result (3.1)-(3.2) does not hold any
more, especially for the weighted spaces. Instead we can prove the following.

Theorem 3.1. The Cauchy singular integral operator with a weight,

Staelt) = = | LI = [[E -t (34)

i) w(r) T—t

j=1
is bounded in the following spaces:
i. in the modified weighted Sobolev space KW' (T, p), m € Ny provided

1 1 .
—Z;<0¢j—|—ﬁj<1—};, ji=1,....,n, 1<p<oo; (3.5)

ii. in the modified weighted Hélder-Zygmund space KZ?L(I‘, p) provided
p=m+v, meNy, 0<v<1,
O<a;+B;j—v<l, j=1,...,n; (3.6)
iii. in the modified weighted Bessel potential KH (T, p) and Besov KB, (T, p)
spaces, with s = m + v for any integer m, provided that (2.8) holds and
—% <a;j+B;j—v, a;+06; < 1—%, j=1,...,n, 1<pg<oo. (3.7)

Proof. First let us prove the assertions for m = 0: the operator

St 5 X(T,p) — X(T, ) (3.5)
is bounded provided
X(T, p) =L,(T, p) and (3.5) holds,
X(T,p)=2Z,(T,p) and (3.6) holds, (3.9)
X(T, p) = Hy(T', p) and (3.7) holds, '
X(T, p) =B, (T, p) and (3.7) holds.

In fact, for the weighted Lebesgue space X(I', p) = L, (T, p) the boundedness
result (3.8) is well known (and first proved in [Khl], see also [GK1] and [BK1]).

For the weighted Holder space X(T', p) = H, (T, p), the boundedness result
(3.8) is proved in [Dul, Du2] (see also [GK1]) under the constraint 0 < v < 1. In the
case v = 1, the boundedness result can be proved similarly using the boundedness
of St in Z1(T') (see (3.1)-(3.2)).

The operator Sr ,, is bounded in the space H} (T', p) = ﬁZ(F, p) if and only if
the operators X;Sr w,Xxx are bounded in H(T"), where x;(t) is the characteristic
function of the smooth arc I'; C I', j = 1,...,n. By rectification of the smooth
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arcs we easily derive the required boundedness property from the boundedness of
the operators

1 7 2\ o(y)dy 1 7 dy
Sﬂ(g—)@(‘x) = */ (> 7( ) s N( = — B

i y y—x i y— ey’

0 0

S, NEY ¢ Y (RT) = HY(RT) — HY(RY), (3.10)
1 1 1 1
——l<v<=, ——<a-v,a<l—=, 0<|yl<~r.
p p p p

To prove the boundedness of the operators in (3.10) we will first consider the
operator

A= —isinTacosTa + sin® ra Spr : L,(RT) — L,(RT). (3.11)

This operator represents a Mellin convolution:
A=Y o A, (&) := —isinma cosma + sin Ta coth (; + f) . (3.12)
where
Mop(x) =ML, {a(©)My—c[ew)]} (), z€RT, £€R, (3.13)

and M*! = zmgﬂm are the Mellin transforms

oo

1_y dy
Mo(€) = / oY ceR,
Y
0 o (3.14)
M) = (2m) ! / PERGE) dE, w e RY

— 00

(see [Du6, Du9, Dub, DLS1]). Therefore the operator A = Sﬁ&p in (3.11) is invert-
ible if and only if

1 1

(note that A,(&£) = 0 only for £ = 0).
Let us prove that the Mellin convolution operator

B= Sﬂ%’? —icotmal = E)JTOBP ) (3.16)

Bpy(§) := cothm (; + i +§) —icot T
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is the inverse of A. Indeed,
) 1
B,(§) :=cothw (Z + i —|—§> —icot T = —1 [cotﬂ < +a— if) — cot Wa}
p p

1+ cot? o sin~? o 1

=A,7(9)

~ oot w(1/p —i&) + cot ma B Zcot7r(1/p — &) 4 cot T

and hence we get AB=BA=9M" _, =M)=1.
ApAp

The operator A in (3.11) can also be regarded as a Fourier convolution op-
erator:

A= —isinmacosTa + sin® ra Sg+ = W, ]ﬁ;(F) =Hy(RT) — Hy(RY),

ap(€) = —isin o cos a — sin® Ta sign & (3.17)
(see [Du6, Lemma 1.35]). Here
Woe(r) == F {a©Fymele@)]} (2), z€R (3.18)

is a convolution on R (F*! = th_lw are the Fourier transformations; see (2.4)).
W, i=r, W0 : X(RT) — X(RT)

is the restriction of WY to the positive half-line (7, denotes the restriction of a
function from R to RT).
It is well known that the operators W2 and Y are isomorphic:

me =z 'woz,
Z : Ly(RY) — L,R),  Zp(x)=e r"p(c™),
Z': L,(R) — Ly(RY), Z () =t r(—logt)

(see [Dub, §38]).
Next we apply a lifting procedure to the operator A in (3.17). For this we
recall that the Bessel potential operators

AL =W Hy(RY) — Hy "(RY), X = (€ +4)7,
reAT L= Wy 00 HE(RT) — HS"(RT), X(&)=(£—i)", (3.19)

where ¢ denotes an arbitrary extension from R to R, arrange isomorphisms of the
indicated spaces for arbitrary s, € R (see, e.g., [Dub, DS1, Esl, St1]) and that

ry A EWop = Warr ¢, Wari AL =Warr ¢, x+A e =Alp  (3.20)
for ¢ € ]ﬁ;(R*) In particular, we have the isomorphisms
ALY Ly(RY) — HY(RY),

ry AV L Hy (RT) — riLy(R), (3.21)
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and since the spaces 7. L,(R) and L,(R™) can be identified (extending functions
¢ € Ly(RT) by 0), we can lift the operator A = W, in (3.17). As a result we get
the equivalent operator

v E—i\"
P ALY =Wy =War s =0l (E15) - (22
Since
(+00) 2¢~ ™ gin? oy
apy(+0) = —— |
12 elra _|_efwra
_ 2¢im(@=2v) gin? 1o
a;D,V(_OO) - eiﬂ—a + e—i‘n’(l/, ’
2¢1m gin? oy
+(0-0) = ————, 3.23
ap(0-0) = TP (3.23)
2e~ ™ gin? oy
+(04+0) = —,
ap» ( + ) elra + e—ima
we get
1 .
- arg Ap,p (TO) (+OO) — arg eQﬂ'(V—a)z =v—a,
ap o(— ) 27
0+0 1 )
arg ( ) - arge—ZTraz =—a,

2 ap V(O 0) 27

and the conditions in the third line of (3.10) ensure the invertibility of the lifted
convolution operator (3.22) in L,(R*) (see [Du6, Lemma 4.1, Theorem 4.2]).
Therefore, conditions (3.15) guarantee the invertibility of the operator A = W,
n (3.17), and since B in (3.16) is its inverse, B is a bounded operator in Hy (R™).
Thus, SD(@T) = B —icotmyI is a bounded operator in HY(R™).

To prove the boundedness of the operator NH(Q,)W

to consider the operator N+ . := Nﬂgi) N in Hp (RT, %), due to the definition of
the weighted spaces. 7

Let us apply the trick described in [Scl]: there exists a sufficiently small and
negative 0 < 0 such that

(see (3.10)) it is equivalent

1 1
—§<a+ﬁ—y,a+ﬁ<1—‘;. (3.24)

As already proved, these conditions ensure the boundedness of the operator Sﬂ(g—%iﬂ)

in Hy (R*,2%), because ||SH(£+m)H = ||SD(£)H for all ¥ € R. So the operator

e~ 1 / ei(m=7)(B+i9) S(B+i9) 49
2 sin 7(3 +iv) R

— 00

RR+;’Y =

is also bounded in HY(R",z) because the integral is absolutely convergent (cf.
the last inequality in (3.10)).
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Let 0 < t < 1. By changing the order of integration and applying the residue
theorem in the right complex half-plane Re w(8 + i) > 0, where the integrand
has simple poles at § = 0,1,..., one finds that

1 7 x y)dy
RR+,%0(35) = por /K <y> (Z(_)xa
0

ey =1 T 1B+id gi(r—)(B+i0) o
t =
®) 2 / sin m(8 + i)

— 00

} T B0 gi(m—) (B+i0) —iy _ 1 & 9itkei(m—k
:i(e_”—l)/ L ¥ Y 5 Yy oo

eim(B+i9) _ g—im(B+id) (_1)k+1ﬂ-
0o k=0
> 1- e’i
— (1 — —iy tk —ivk _
( ) ; ¢ 1—te~

If 1 <t < oo, one can apply the residue theorem in the left complex half-
plane Re 7(8 + i) < 0, where the integrand has simple poles at § = —1,-2,....
Similarly to the foregoing case we get

T §B+id i(m—)(B+i0)

e —1
_ —z'y —k z*yk
K(t) 5 / snr(Gra0) W Zt

— 0o
e (1l—e)  1—e™
N L—t-lerr 1 —te ™
Therefore,
T 1—e w(y)dy
R 3.25
R+ (T m/l_fe T h— (3.25)
0

and hence, by virtue of the equality Rg+ , = Ng+ , — e~ Sp+, the boundedness
of Ng+ - in the space HY(RT, z%) follows.

To prove that the operator St ,, is bounded in the modified weighted Besov
space @Z’q(F, p) =B} (L', p) we can employ the interpolation method: if conditions
(3.7) hold, the operator St 4, is bounded not only in Hy (I'), but also in Hgie (T, p)
for a small € > 0. Due to the Interpolation Theorem 2.2.iii, St ., is bounded in
B (') and, therefore, St ., is bounded in B (T, p).

Now we will prove the boundedness result for a positive integer m € N. The
assertions can be reformulated as follows: the operator

St XM, wp) — X™(T, wp) (3.26)
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is bounded provided

XL, wp) = KWK (T, wp) and (3.5) holds,
X™(T, wp) = KZ2, ., (T, wp) and (3.6) holds, (3.27)
X™(T,wp) = KHZ (T, wp) and (3.7) holds, '
X™(T,wp) = KBy (T, wp) and (3.7) holds.
The following is easy to verify (cf. (3.3)):
k
(9°0F)(Sr)(t) = V" (Srore)(t) = Sr (0 Ofe) () + 3 (Bjre)(®),  (3.28)
7,r=0

where the functionals

Bji « X™(T,wp) — C, i=1,...k,

th 19k
Bjrp = (1) T O p(T)dr
)
r
are bounded (note that even if I contains open arcs, partial integration in (3.28)
does not generate any summands at the boundary points, because these summands
are eliminated by the factor ¥*(¢)).
In fact, from the corresponding conditions (3.5)-(3.7) we conclude that
0% € X" HT, wp) C Ly (T)

and that the embedding is continuous, i.e.,

OFeLi(D)]| < Crl107 0| X™ (L, wp)|| < Cille[X™ (T, wp)]| -

Thus,
1Bjrgl < Cjlle|X™(T,p)l  Vi=1,....,m. (3.29)
Since the singular integral operator
Sr : X(T,wp) := XU, wp) — X(T, wp) (3.30)

is bounded (see the first part of the proof) and, by definition, 9*9Fp € X™ =¥, wp),
from (3.28)-(3.30) we get

ISre | X™(T,wp)| = > 950 Sre | X(T, wp)|

k=0
< ZIISFﬂ’“ast | X(I, wp) || +ZZ\BJ kP

k=07=0
< CZ\W’“@Z“@ | X(T, wp)|| = Clle [ X™ (L, wp)||. (3.31)

k=0
The boundedness of St ,, in the modified spaces KX™ (T, p) for negative m =
—1,-2,... (excluding the Hoélder-Zygmund KZ?L(R p) spaces, which are defined
only for positive p > 0) follows by duality.
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In fact, let the operator Sr,, be bounded in the modified weighted spaces
KW7H(T, p), in KH(T', p), or in KB}, (T", p) and suppose that the conditions (3.5)-
(3.7) hold. The dual operator, St -1, to St is defined by the bilinear form

(62 Sraw1®) = (St ), (p10) i /F o(r)dr,  (332)

and is thus bounded in the dual spaces KW_"(T,p~"), KH,™(T,p~"), and
KIB%;,TZ, (T, p~ 1), respectively, because —m € N is already positive and the pa-
rameters p’, ¢', —a;, —f; satisfy the corresponding conditions (3.5)-(3.7). O

Theorem 3.1 enables us to establish a Fredholm criterion and an index for-
mula for a singular integral operator with complex conjugation:

Ap :=ap +bSrp+cVSrVo=f, V() = o), (3.33)
a,b,c € KPC™ (T, Tr)

for ¢, f € X™(T,p) = KW}'(T, p), KH;" (T, p), KBy, (T, p),
a,b,c € KPZp, 1, (T, Tr) for ¢, feX™T,p)=KZ) (T, p),

where X™(T', p) is defined by (3.27).

Although the coefficients of the operator A are N x N matrix functions
and equation (3.33) is considered in weighted N-vector spaces, we use the same
notation for spaces and classes of functions as in the scalar case N = 1 for the
sake of simplicity.

Also for conciseness, we assume that I' is a closed piecewise smooth curve
with smooth arcs I';_1, I';, having in common the knot ¢; where they meet under
the interior angle 7y; (measured from the bounded domain Q% enclosed by I').
Therefore, 0 < ; < 2, 7 = 1,...,n, while the values v; = 0,2 correspond to a
cusp at t;. This assumption simplifies the symbol of operator (3.33). In the general
case the symbol can be written down in a similar but more complicated form (see
[Du3, Du4, Du5, DLS1, RS1])).

When I' has no cusps, 0 < v; < 2, the symbol of the operator A in the space
X™(T, p) is defined as follows:

AX”"(F,p) (ta g) = 5(t) + g(t)SX’"(F,p) (tv 5) + E(t)SX’”(F,p) (tv _5) ) (334)
where

b (6 g) em (=1 (iB:+8)
coth(if; + -
sinh 7w (i6; + &)
SXWL(F’p) (t,f) = eﬂ(l—’Yt)(iﬁt"’&) 5 f S R, (335)
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1/p+a;—v if tel, X™(T, p) = KH;* (T, p),
KBy (T p)
1/p if t#tlv"'vtnv Xm(rvp):KWgL(va)V
B = . m o (3.36)
1/2 if t#t1,...,tn, X™T, p) =KZy, (T, p),
1/p—|— a; if t= tj, X’”(Rp) = KW?(RpL
o — v if t=t;, X™(T, p) =KZ%, ., (T, p),
~ d(t+0) 0
d(t) := , dePC(I,Tr), tel,
0 dt—0)
1 if  t#Ft,..t,
A = . (3.37)
i if t:tj.

Let us note that the symbol would be a full matrix function if the corre-
sponding operator contains the terms V.St, Val, aV, or StV (see Remark 3.5).

Due to assumptions (3.5)-(3.7) and (3.27) we have 0 < 8, < 1 for all t € T’
and the symbol Axm r,,)(t, £) represents a piecewise continuous uniformly bounded
function of the variables (¢,£) € I' x R.

Theorem 3.2. Let ' have no cusps, i.e., 0 <v; <2, j=1,...,n and let X"(T, p)
be defined by (3.27). Then equation (3.33) is Fredholm in the space X™ (T, p) if and
only if

terl‘l,léfER |detAxm (1 ) (£, €)] > 0. (3.38)

If condition (3.38) holds, then

1 n
IndA = ~5- [arg det Axm (r,p) (t, qLoo)}F + Z [arg det Axm (1, p) (tj,f)]R

j=1

If, in particular, ¢ = 0 and the operator A = al 4+ bST has scalar coefficients
(N =1), then A is invertible in X™ (L', p) from the left or the right in dependence
on whether Ind A <0 or Ind A > 0, respectively.

Proof. If a singular integral operator is bounded in the space X°(T', p), it is bounded
in X™(T, p) (see Theorem 3.1). This is also valid for any inverse operator and any
regularizer to the canonical operator A = al + bSp. The same is true if I' = R and
p(x) =1, or I' =R* and p(z) = z°.

A similar simultaneous boundedness property, for all values of the parameter
m € Ny, holds also for Mellin convolution operators E)ﬁg in the spaces X™ (R, z%)
(for general boundedness of Mellin convolution operators we refer to J. Elschner’s
results in [Ell] and in [PS1, Ch. 5]).
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Thus, it suffices to prove the theorem for m = 0. For this case we apply
quasi-localization (see [Du5, DLS1, Sil, Spl, Ral]). Note that localization in the
weighted Holder space is a special case (see [Pol, Scl]). Let us expose here a short
description of the approach. If £(X) denotes the algebra of all bounded operators
in a Banach space X and &(X) C £(X) is the ideal of all compact operators, then
in the quotient algebra £(X)/&(X) (the Calkin algebra) the essential norm of an
operator,

IBlE) = inf 1B +T|£X)]. (3.39)

defines a norm of the coset which contains this operator.

K. Kuratowski introduced the measure of non-compactness ||Y||; (the Kura-
towski measure) of a bounded set Y C X as the minimal value of all numbers ¢ for
which Y can be covered by an e-net of a finite number of elements. The Kuratowski
measure of the image of the unit sphere under an operator B,

IBIL(X)[la = [|BBx(0,1)]|,  Bx(0,1):={z €X : ||z =1}, (3.40)
is called the measure of non-compactness of the operator B (see [AKPRS1]). Ob-
viously, || B|L(X)la < [[[B|L£(X)]]|, while the equality ||B|£(X)|la = |||B|LX)]]|
holds for X = L, and does not hold for the Holder-Zygmund spaces, where we have
the inequality |[|B|L(X)||| < C||B|L(X)|q with some constant C independent of
the operator B (see [AKPRSI, Pol]).

In [Pol], R. Poltz proved that the Kuratowski measure of a multiplication

operator gI, g € H,(T), in the weighted Holder space HO(T, p) coincides with the
Supremum-norim,

llgZ[LCHT, p))II| < CllgI|LH)T, p)lla (3.41)
lgZ|L(H(T, p))lla = g|C(D)]| = iglglg(t)l,
although for the usual norm we have the inequality

.....

Property (3.21) enables a localization of coefficients similar to the case of the
space L, (T, p), exposed in [DLSI1] (see also [Du7, RS1]).
A local quasi-equivalent representative of A at a point tg € I' has the form

~ SR+ —N]R+7_ +
Ay, = alto) + b(to) o ]

R+)"/t0 _SR+
~ Sg+ —NR+7_%O
+C(to)V|: NR+7%O _S]R+ Vv
~ SR+ *NR-*-)* + S — N
= a(to)_[—f—b(to) [ o ] —E(to) |: N R+ R+’7t0
Rhg Sk R~ et
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i y—x m ) y—ez’

1 Oow(y)dy 1T e(y)dy +
Sp+p(z) = — , Npryo(x)=— | —=—=, z€R (3.42)
O/ /

(see, e.g., [DLS1]). We prove that the local quasi-equivalent representative Ay, is
locally invertible in the space L, (R™, %) for the Sobolev space, in H, (R™, %)
for the weighted Holder space, and in H;(R*,xa%) for the weighted Bessel po-
tential space. Let us consider these cases separately and, afterwards, the case of
Besov spaces.

I. The weighted Lebesgue space Ly(RT, z%0).

Since the operator A,, is dilation invariant, i.e.,
DAty = Aty Da s Drp(x) == p(Az), YA\ xR, (3.43)

Ay, is locally invertible at 0 € R* if and only if it is invertible in L, (R™, z%0)
(see [Du8]).

Next we replace Ay, by the equivalent operator

1 — _1 ~ re ~
Agﬁ = 1'041,0""11141501’ Yo" [ = a(to)l + b(to)mgxnwnp)(to’_) + C(to)mgxmmm

0
- mAxm(r,p)(to,') (344)

in the weighted space L,(RT,27!) (see [Du5, DLS1] and [RS1]). We recall that
the Mellin convolution operator 9 is invertible in L, (R*,z~") if and only if the
symbol ¢(§), which belongs to the L,-multiplier class M,(R), does not vanish,
inf [g(§)| # 0 for £ € R, and that the inverse is 93?2,1 (see [Du6, DLS1, RS1)).
The proof is completed in a standard way by application of the local principle:
condition (3.38) is necessary and sufficient for A to have the Fredholm property
in L, (T, p). The index formula is proved by a standard homotopy argument (see
[DLS1]).
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I1. The weighted Bessel potential space HZ(R+,J,‘Q‘O), 1/p—1<v—ay, <1/p.

We apply the lifting procedure (see (3.19)-(3.22)). As a result we get an equivalent
operator,

v _ NV
~ >~ R+ RE,—v¢
AIiAtOA_T_V = a(to)l+b(to) [ y ; Tto ]
Rt y¢q _SR+
v —_ NV
+ + e
_g(to)[ o " 1 , (3.45)
NR*,—’yto TR+
ﬁJr = AZS]RJFAIV, 1§+7th = A’:NRJW"H,O A;V .

It is known that all Mellin convolution operators (e.g., NR+7%O) belong to
the Banach algebra generated by the Fourier convolution operators W, with sym-
bols discontinuous at infinity 2, i.e., a(—oc) # a(+00). Moreover, the algebra
M(L,(RT,x*0)) of all Mellin convolution operators in L,(R*, %) is generated
by only two operators: by the identity I and by the Cauchy singular integral op-
erator, which is, at the same time, a convolution operator:

Sar =M = W e gp<f>:—cothw<;+g), CER  (3.46)

(see (3.22) and [Du9, Lemma 2.2]).
Since we need only the local invertibility of the lifted convolution operator

NWAT = Wi (0= (£11) © €ER (3.47)

at 0 € RT, we can work with any local representative and its symbol. Since the
operator gWj, with g(£o0) = h(£oo) = 0 is compact in L,(R) (see, e.g., [Du9)),
and 7, (—00) = e~ 2™ 30,(+00) = 1, it is easy to ascertain the local equivalence

Warey ¥ Way s ay =€ 2™a_x_(€) + apx+(€), (3.48)

2We have already proved, by a different method, that all four entries of the lifted matrix operator
A Ay ATV in (3.45) belong to the algebra generated by Sg+ and I (see (3.10)-(3.16) and (3.24)-
(3.25) above).

3This result is proved in [Du9, Lemma 2.2] for p = 2, but extends easily to arbitrary 1 < p < oo
because the closed sub-algebra M(Lp(RT,2%%0)) C M(L2(RT,z%%0)) is generated by the same
operators I and Sg+ .
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where x4 (£) are the characteristic functions of the half-lines R* and a(+o00) = a.
The symbol W, (&) of W, is
W, (&) = e 2™ a_ [1 + coth7Z] + a, [1 — coth 7] (3.49)
=Gp(&){a- [l + cothm (E — vi)] + ay [1 — cothw (2 — vi)]} ,
e~ ™isinh 7 (2 — vi)

Gp(§) = = 40, £€R,  Gy(foo)=e™  (3.50)

sinh 7=

== L oy, +€,

p
and (3.50) holds since 0 < 1/p + ay, and 1/p + azy, — v < 1.

As can be seen from (3.49), (3.50), to write down the symbol of the lifted
operator A BAT", where B belongs to the Banach algebra generated by convolu-
tions, we should detach the common non-vanishing factor G,(¢) and replace 1/p by
1/p—v in the definition of the symbol. This can also be interpreted as considering
operators in the weighted space L, (RT, 2%t ") instead of L,(R™*, 2%t ). The same
holds for all four entries of the lifted operator A¥ A, A" in (3.45), and the symbol
of this operator acquires the form described in (3.34)-(3.37) as the symbol of A in
the weighted Bessel potential space KHy (I, p). The index formula is proved by a
standard homotopy argument (see [DLS1]).

1. The weighted Hélder space HO(RT,z%0), 0 <v < 1, v < oy, < v + 1.
The weighted Holder space on the half-line is defined as follows:

H)(RF, 2%0) := {pg = a0 p € H,(R") : ¢0(0) =0},
|1/J(CU2) - ¢($1)|

¢ | H,(RT)|| := sup [(z)]+  sup 7. (3.51)
zeRt m17m2€R+ ) _ T
T1FT2 Tro + 7 xr1 + 7

Absolutely similar to the case of weighted L,-spaces we prove that the op-
erators SD(Q) and Nﬂgg)ﬁ (see (3.10)) belong to the Banach algebra of operators in
the space HO(R*,2%%) generated by the two operators Si and I provided the
conditions

O<a+day, —v, oy <1, 0<ly|<m (3.52)
hold (see (3.10)-(3.16) and (3.24)-(3.25)).

The symbol of the singular integral operator Sg, (see (3.42)) in the space
HY(R*, z%0), given in [Du3, Dud], can be rewritten in the equivalent form

SHo®+ 20y = coth(i(ag, — v +if)), EeER, (3.53)

where t = tg, 0, = at, — v (cf. the diagonal terms in (3.35); this corresponds to
the symbol of Sg+ in L,(RT) with p = (ay, — v)71). It is easy to ascertain that
the symbols of the entries Ng+ z,, in (3.45) are exactly those which are inserted
as the off-diagonal terms at ¢ = ¢y in the symbol of SZ‘;(Rp) in (3.35). Obviously,
VSp+V = —Sg+ and VI Ng+ ,V = —Ng+ _,. Therefore we can easily write the
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symbol Ay, (€) of the operator A;, in HO(RT, 2% ), which coincides with the sym-
bol Azo (r ) (to,&) in (3.34). This accomplishes the proof for the Holder-Zygmund
space Z\ (I, p) because the condition inf | det Az (r,p)(to,€)| # 0 provides the cri-
terion of the invertibility of the local operator A, in the local space HO(RT, z%)
for all ¢ty € I'. By the local principle, this coincides with the Fredholm criterion of
A in H(T, p) and, by the above considerations, in Z5 (T, p). The index formula is
proved by a standard homotopy argument (see [DLS1]).

IV. The weighted Besov space B}, (T, p).

Let condition (3.38) for the space X™(I', p) = By (I, p), p = m + v, hold. Then,
as already proved, A is Fredholm in H (T, p). Hence A has a regularizer R: AR =
I+T,, RA=1+1T,in H (T, p), where T}, T; are compact operators. There exists
a sufficiently small € > 0 such that A has a regularizer in Hgis (T, p). This implies
that R and the operators T, Ty are all bounded in the spaces Hgie (T, p) and, due
to the Interpolation Theorem 2.2.iii, R, T, and T, are all bounded in the space
B} (I, p). Moreover, due to the interpolation property of compact operators (see
Lemma 2.1), T}, Ty are both compact in B} (T',p). Therefore, A is Fredholm in
the space B} (T, p).

If appropriate conditions hold and A is invertible in Hj (I, p), then A is
invertible in HgiE(I‘, p) for a sufficiently small € and the inverse A~! is bounded
in By ,(I',p) (see the foregoing case). Therefore the operator A is invertible in
B} (I, p). The index formula is proved, again, by a standard homotopy argument
(see [DLS1]). O
Corollary 3.3. Let

1 ap — ay
AO = aOI+a15’p = (ao + al)(P+ + G.Pf), P:t = *(I:‘: SF), Gi=—.
2 ag + ay
Then condition (3.38) holds if and only if the following two conditions are satisfied:
i. %glﬁ lao(t) £ a1 (t)| > 0;

ii’. =270, < argggt —0)

J
t; + 0)
by (3.36).

Furthermore, condition ii’ is equivalent to the following:

<2m(1—p), j=1,...,n, where B, is defined

ii”. G(t) has the representation

G(t) = Go(t) [[(t=20);7, GoeC(T),

€N, =B, <v;<1-0;, j=1,...,n
and (t — Zo);j is taken as a branch of (t — z9)"? which has a jump only at
the point t; € T
If conditions i and ii’ (or i and ii”) hold, then Ind Ag = ind G.
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Remark 3.4. ;From Theorem 3.2 we find that the Fredholm properties and the
index of the operator A (see (3.33)) in the space X™(T, p) are independent of the
smoothness parameter m € Ng. This means that if equation (3.33) has a solution
¢ € XU(T, p) for a given f € X™(T, p), then automatically ¢ € X™(T, p).

Remark 3.5. Equations more general than (3.33), such as
Ap = ap+bVy+cSrp +dVSrp+ eSStV + gVSrVe = f (3.54)

are linear in the space X™ (I, p) over the field of the real numbers R. After “dou-
bling” the equation by adding the composition VAp = V f and introducing new
vector-functions @ := (p, Vo), F := (f,V f), we get the equivalent equation

a b
b a

which is linear (the same as in (3.33)) and can be treated in the space X™ (T, p) over
the field of complex numbers C (see [DL1, Lil]). We will only indicate the symbol
of the operator A because the Fredholm properties and the index are defined by
the symbol as in Theorem 3.2 (note that we do not need to double the size of
the symbol of the operator A as this was done for the operator A in order to
characterize the Fredholm property and the index of A). Namely,

Asn(r,p) (£,€) 1= A(E) + b(E)V + E() S (1, (£, €)
+d(t)V S (1,0 (8, €) + E(1) St (r,) (1, )V + GV Sxm(r ) (1 E)V, (3.56)

where, in addition to (3.34)-(3.37), we have to indicate the symbol V = Vxm (r )
of the complex conjugate operator:

lo 1]
V= ,
10

which is independent of the point ¢ € T and the space X™ (T, p).
Note that if Byxm ) (t,&) is the symbol of B, the symbol for the operator
VBV is

c €

D+ Srd + VSiVe =F, (3.55)

g

€ C

(VBY)xtm (r,p) (¢, €) = B(t, =€)
(see [DLS1, §1]). Therefore, VSxm ) (t,§)V = Sxm(r,p)(t, =) (cf. (3.35)).

Remark 3.6. The readers familiar with [Du3, Dub, DLS1] will find differences in
writing the symbol of the operators A (cf. (3.34)-(3.37)): the symbol of the operator
Ap defined in [Du3, Du5, DLS1] has a block-diagonal form

(Ao)xm (r,p) (£, ) 0

Asxem(r,p) (,6) =
0 (Ao)scm (1) (t, =€)
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It turns out that it is sufficient to consider only the first block as a symbol of Ag.
It is obvious that this does not influence the Fredholm criterion

inf det (.AO)XTIL(F’p) (t, g) 7é O7
while for the index formula with Axm ) (t,&) we need to add the factor 1/2.

4. Application: an oblique derivative problem for the Laplacian in
a domain with a piecewise smooth boundary

Throughout this section T' is a closed, oriented, simple (i.e., without self-inter-

sections), piecewise Ljapunov curve in the complex plane C, which borders a

bounded domain Q1 as well as an unbounded domain Q~ and has knots at
Tr := {t1,...,tp} C T. The boundary I' = QT = 9O~ consists of n arcs
N—

T := [tj,tj41] =tjtj41, 7 = 1,...,n, which are p-smooth (see §1) and oriented,
with p as in (1.4). Let 7y; be the interior angle with respect to I between I'j_4
and I'; at the knot t; € 70 (0 <~; <2, j=1,...,n). When v; =0 or y; = 2, the
domain O has an outward or an inward peak, respectively, or, what is the same,
the boundary curve I" has a cusp. As usual, 7(t) := (v1(t), v2(t)) denotes the outer
unit normal vector to Q" at the point ¢ € T'\ 7r.

The main objective of the present section is to study the following boundary
value problem (BVP): find a harmonic function

Au(z) =0, ze€Q* (4.1)
with given oblique derivative (also known as the Poincaré problem)

Oppw* () +c(t)u™(t) = f(t), teTl, (4.2)

Ay = la(t)0r, + La(1) O,
where the coeflicients are piecewise smooth such that
Im ¢;(t) = Im £5(t) = Im ¢(t) =0, ly,ls,c € KPC™(T', Tr) , (4.3)

and the space KPC™ (T, 7r, ) of piecewise m-smooth functions is defined similarly
to (1.16).

It is common to write the oblique derivative boundary condition (4.2) in the
form

a(t)(Bpeyu) * (8) + (1) (Dsyuw) ™ (1) + c(t)u™ (1) = f(t),  t€T, (4.4)
where
a(t) = 01(t) cosVy + La(t) sin ¥y b(t) = —£1(t) sin ¥y + £o(t) cos ¥y,  (4.5)
and

Op(ty = cos V40, +sin 40y, , Og(t) = —sin 40y, + cos V404, (4.6)
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are the normal and the tangential derivatives, respectively, i.e., the derivatives
with respect to the outer unit normal vector and the positively directed tangent
vector at t € T,

U(t) := (cos ¥, sinty) , §(t) := (—sin ¢, cosvy) . (4.7)

As usual, ¥; denotes the inclination of the outer unit normal vector with respect
to the abscissa axis (see, e.g., [Mul, § 74] and the recent book [Pal]).

—

In the particular case where the oblique derivative vector £(t) = (¢1(t), ¢2(t))

coincides with the outer unit normal vector £(t) = #(t) and c(t) = 0, we get the

Neumann BVP. If £(t) = 0 and ¢(t) = 1 we have the Dirichlet BVP.
It is known that the usual function spaces, W(Q%) for the solutions and

W, z (T") for the right-hand sides, cannot ensure solvability and uniqueness of so-
lutions of BVPs in domains with outward peaks (see [DS1]). To describe suit-
able function spaces for the solutions and boundary data we recall the modified
Smirnov-Sobolev space KW," (QF, p). This space consists of all functions in QF
which have finite norm

[ [V (QF, p)|| := sup [|[KWHTO, p)],
0<r<1

where I'") := {z = w(r() : |¢| =1} are the images of the concentric circles of
radius 7 under the conformal mapping of the unit disk D; onto the domain QF,
w: D — QF. (4.8)

The weight function p(t) is defined by (1.12) and we assume that the following
conditions hold:

1 1
l<p<oo, m=0,%£1,...,, ——<o;<1l—-=, j=1,...,n. (4.9)
p p

An equivalent definition of the modified Smirnov-Sobolev spaces ICVV;,”(Qii7 0)
is the following: ® € KW, (QF, p) if and only if ®(z) is represented by the Cauchy
integral in the form

(D(Z) =co+ OFSD(Z) , Co=const, @¢c KW}T(Fa p) ’

1 o(T)dr
o) =57 [ 07
r

€0, (4.10)

and for a compact Q1 one can take co = 0 (cf. [Pvl]).

We know that a function ® € V\V;"(Qii7 p) in general has traces ®* on the
boundary T only for m > 1, see [Trl]; the same is true for the modified spaces ®
€ Kwp (OF, p). In contrast to this fact, a function from the modified Smirnov-
Sobolev space ® € KW, (T', p), represented by the Cauchy integral in (4.10), has
the traces

1 1
OE(t) = co £ () + 5 Srp(t), T € KW(T,p) (4.11)
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for arbitrary m = 0,41,..., 1 < p < oo provided p(t) is defined in (1.12) and
conditions (4.9) hold. For a negative m = —1,—2,..., the space KW;"(Qi,p) is
defined as the dual space to KW;,m(Qi, p~ 1), where p’ :=p/(p — 1).

The Sokhotski-Plemelj [Mul] formulae (4.11) are well known for Holder con-
tinuous (see [Mul]) and Lebesgue integrable functions (see [GK1]) and for func-
tions p € KW}'(T', p), which follows from Theorem 3.1.i since the mentioned spaces
are dense in KW (T, p) under the asserted conditions.

-

If ¢(t) # 0 we take the right-hand side of (4.2) in the modified Sobolev space
KW;”_I(I‘, p) and look for the solutions in the corresponding Smirnov-Sobolev

space KW™ _ (Q*, p),

p,loc
fERKWI YT, p),  uwekKWI(QT,p) for QF, (4.12)

uwe KW (Q7,p), u(z)=0(Q1) as |z] >o0 for Q

We suppose that p(t) is defined by (1.12) and that conditions (4.9) hold.

—

If £(t) = 0 we get the Dirichlet problem and replace (4.12) by

f e KWI(T, p), u e KW Qt,p) for QF, (4.13)

u € KW,,.(27,p), u(x)=0(1) as |z —o0 for Q

If the domain Q% has no outward peak, conditions (4.12) can be replaced by
the following equivalent conditions, which are simpler:

m—1 m O+
FEeRKW (T, p), u € KW;(Q*, p) for Qr,

ue€ KW2,.(Q7,p0), wu(@)=0(1) as |z —o00 for Q,
and similarly for (4.13) (see [DSil]).

Theorem 4.1. Let I' be piecewise C™-smooth, let the weight function p(t) be defined
by (1.12) and let conditions (4.9) be satisfied. Let {1,¢5,c € KPC™(T') (see (4.3))
and introduce G(t) := {1 (t) + ila(t).

Further, let T := {( € C : || = 1} be the unit circle and Ty = {(; :
w(C) =t;, 7 =1,...,n} (see (4.3)) be the pre-image of all knots (the angular
points and peaks) of T under the conformal mapping w(z) of (4.8).

The oblique derivative problem (4.1), (4.4) (or (4.1), (4.2)) is Fredholm if and
only if one of the following conditions A or B is satisfied.

A. %nlﬁ |G(t)| # 0, conditions (4.12) hold, and the following singular integral
€

equation on the unit circle is Fredholm:

Pfo(Q)+ F(QOPre(C) = fo¢), (€T, (4.14)
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where
PTi = %(IiST), fo, ¢ € KW™ (T, Tp),
F(¢) = pw(¢) GG W(O))p@O)) W' (O W77, (4.15)
Fo(€) = 2[GW())]) o)W ()7 f(w(C), CeT. (4.16)

B. G(t) =0, tlglf: lc(t)| # 0, conditions (4.13) hold and the following singular

integral equation on the unit circle is Fredholm:

PEA(0) + PP + T = i) = o). (417)

F(¢) = pwO) @) W' (OIF W77, fo, ¥ € KWT, Tr),
Fo(¢) = 2[e(w(Q))] T pw(O)W' ()7 fw(C), CEeT.

If one of these two conditions is satisfied we have furthermore in the corresponding
case:
A. The indices of the BVP (4.1), (4.4) and of the integral equation (4.14) are
equal.
The coefficient F(¢) in (4.14) is piecewise smooth, i.e., F s in
KPC™(T, 71) (see Remark 4.2).
If c(t) = 0, the BVP (4.1), (4.4) and the modified (with the help of
the one-dimensional operator Ky) integral equations

P (0) + F(O)Pr 2(C) = Jo(C).

Kop(€) 12%/@’(6”)@9:0, for Q7 (4.18)

—T

PEO(Q) + FOP o0 + D 0 = 10(0), for *

are equivalent in the sense that there is a one-to-one correspondence be-
tween their solutions.

B. The indices of the BVP (4.1), (4.4) and of the integral equation (4.17)
are equal and, moreover, they are equivalent in the sense that there is a
one-to-one correspondence between their solutions.

The coefficient F(() in (4.17) is piecewise smooth, that is, F is in
KPC™(T, 7I1) (see Remark 4.2).

Proof. The oblique derivative problem (4.1), (4.4) (or (4.1), (4.2)) can also be
written as follows (see [Mul, §§74,75]):

Re [G(t)(W)*(t) +c(t)T* ()] = f(t), teT,
u(z) =Re¥(z), ¥e ICWZ’,”(QT, p), €0t (4.19)
G(t) = £1(t) + ila(t) = e™ra(t) + e b(t) = era(t) 4 "2 T b(t)
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(see (4.5)). Indeed, since
) T ,  Ou . Ou 1T
U =u+ive KW (QF, p), \IJ::%fza—yGICWp Q% p),

with the help of (4.5) and (4.6) we get

Re [G(t)(F)5(t) + c(t)TF(1)] = G(t)(Opu)* () + La(t) (D)™ (1) + c(t)u™ (1)
= a(t) Do) (2) + b(E) Osieyw) = (£) + c(tyu (1)

and (4.19) follows.

The case B. Thus, we suppose G(t) = 0 and follow the scheme of [DSil, Theorem
1.16]. The analytic function defined by

p(w(2))[w'(2)]7 T (w(2)) for [z <1,

UCOFO ) o

belongs to the space KW (Dy,7Tr). This can be verified straightforwardly with
the help of the following property of the conformal mapping w:

I (= = ¢)fokw € C(Dy) (4.21)

(€O

for all k =1,...,m, where m € N. Notice that property (4.21) was already proved
in [DSi2, Theorem 5.1].

For the analytic function ®(z) in (4.20) the boundary condition (4.19) ac-
quires the form

c(w(Q)
2

Re [c(w(¢) ¥ (w(0)] = = f(w(0),

Q) ) ]
PO Q)7 @) (Q)]7

which can also be written as follows:

F() = F(O27(0) = foQ), CE€T, (4.22)

with F(¢) and fo(¢) defined by (4.17). It is easy to verify by having recourse to
(4.21) that fo € KW (T, 7Tr).
Since ® € KW, (D, Tr), it has a representation of the form

1 Y(T)dT
= | 2= ux)
|7]=1

B() = ~ 3 Kov + Criv(2) =~ [ w(c)ao +

for all |z| # 1 with a density ¢, v € KW3*(T,77). If we apply the Sokhotski-
Plemelj formulae for the boundary values of ® (see (4.11)) we obtain (for a density
)

1 1

Q) = — Ko 1 [9(0) £ Sr(0)] = 3 Ko PEU(Q), CeT,
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and inserting this into (4.22) we get (4.17) for the density ¢» € KW3*(T, 7).

Let us remind that we need only the real-valued solution ¢ = Re ) of (4.17).
To this end let us verify that if 1) € KW*(T, 7t) is a solution, then ¢ is a solution
as well. In fact, applying the relations
- 1 1 dr dr

(==, [l=1, 7==, dr=-—, =id) for T=¢", —rT<¥<T
¢ T T
we find that
FO=F10, folQ)=F 1 ()f() since ?:f,
SE L s 1 w(T)E_g Cy(
PG -007 o [ AL / .
Irl=1 =1
—PFQ £ 5 [ W?ﬂmoim. (1.21)

I7|=1
Now, if 19 € KW} (T, 7r) is a solution of equation (4.17), taking the complex
conjugate and 1nv0k1ng (4.24) we get the same equality for 1)

PEBo(O)+ FOPE B0 + TS iy = o), ceT.

Therefore, the real-valued function v := Rev) = %(1/10 + 1) is a solution that we
look for.

With a solution ¢ = Re ) of (4.17) at hand we find ®(z) from (4.22), but the
latter has the following symmetry property:
1

B.(2) =D (Z

as it follows from the definition (4.20). This property can be verified similarly to
(4.24):

>:<I>(z)7 2eQtUQ,

B 1\ i 1 Y(r)dr 1 z Y(rT)dr
[T|=1 |7]=1
=gkt [ U0 oK icne) = 0. (429)

\TI 1

Inserting ®(z) in (4.20) we find first ¥(z) and afterwards u = Re 0.

Conversely, if ¢(¢) is a solution of (4.17) we easily ascertain that ¥(z) defined
by (4.23) and (4.20) solves the BVP (4.19) and u(z) = Re ¥(z) solves the Dirichlet
BVP (4.1), (4.2), (4.13) with £ = 0.

The case A. In this case we can ignore c¢(t) (take c¢(t) = 0) because, after equiva-
lent reduction, the corresponding summand in the integral equation has a weakly
singular kernel (the corresponding operator is compact) and has no influence on
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the Fredholm property and the index of the equation. In the rest of the proof we
follow the scheme of [DSil, Theorem 1.17].
The analytic function

p(w(2))[w'(2)]7 ¥ (w(2)) for |z <1,

LEOFO] ) e

belongs to the space KWf_l(ﬁ, Tr). This can be verified straightforwardly with
the help of (4.21).
For the analytic function ®(z) in (4.26) we get the following BVP:

() = F(O2™(¢) = fo¢), CET, (4.27)

where fp(¢) and F({) are defined in (4.15)-(4.16). It is easy to see, by applying
(4.21), that fo € KW~ !(T, Tr).
Since ¢ € ICW;"*(ﬁ, Tr), it has a representation by the Cauchy integral

: ; i f i 1 T)dt
®(2) = —5 Koy + Crip(z) = - — / p(e™)dv + 5 / % (4.28)

Ir=1

for all |z| # 1 with the density ip, ¢ € ]K\W;”fl(’]l‘7 Tr). If we apply the Sokhotski-
Plemelj formulae for the boundary values (see (4.11)) we get equation (4.18).

Note that for the domain 2~ we have to require in addition (see the condition
in (4.18)) that

1
Kop = — NdY = 0.
wo =5 [ ele)an =0

To justify this we remind that ¥ € ICW;"(@, p) and that the derivative must
vanish at infinity, i.e., ¥’'(c0) = 0 (see (4.12)); therefore (see (4.26), (4.28))

s

[ o(e)d0 = 28(0) = 2mp((0) [ (O ¥ (w(0) =0
because w(0) = 0.

Since we need only real-valued solutions ¢ = Rep of (4.18), we verify by
analogy to (4.24) that, together with ¢, equations (4.18) have the solution @g.
Therefore the real-valued solution ¢ := Re ¢y = %((po + o) is the one we look for.

The function ®(z) in (4.28) must have the symmetry property @.(z) = ®(z)
(cf. (4.25) and (4.26)). This can also be verified with the help of properties similar
to (4.24) (see (4.25)).

Conversely, if ¢ = Rep is a real-valued solution of (4.18), then the function
®(z) defined by (4.26) solves the BVP (4.27), which implies that u(z) := Re ®(z)
solves the BVP (4.1), (4.2) and (4.12) with ¢(t) = 0. O
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Remark 4.2. The coefficient F(¢) in (4.14) and in (4.17) is piecewise smooth,
namely F' € KPC™(T, 7). Moreover, we can indicate the jumps at the knots:

F(G—-0) _ Gt + 0>Mp<w(cj - 0>>M

F(G+0)  G(t; —0) [G(t; +0)] p(w(¢ +0)) [p(w(¢; —0))
V(G- 0)]7 [@(&+0)]7
* L}’(Cj +0)} [w’(g - 0)]
= exp {Qi[arg G(t; +0) —arg G(t; — 0)] — 27 (11) + aj> (1— ”yj)} (4.29)

27 1
= exp {2i[arg G(t; +0) —arg G(t; — 0)] — % — 2mia; + 27 (p + aj> 'yj} ,

where 77, is the interior angle at the knot ¢; € 7r and «; is the exponent of the
weight at the same ¢;. In fact,

_ ‘ wle™=¢) —w() 1™
pw(C; —0)) lim [w(elscj) _ tj]aj . el — G
=0 | w(e=(;) —t; T =0 | w(eG) — w(¢)
e =

r] = exp[—2mia; (1 — ;)]

pw(G +0))

_ [w'@j ~0)
w’(Cj + 0)

(From (4.29) and Corollary 3.3 it is clear that even if G(t) is continuous at
one of the outward peaks,

G(t; —0)=G(t; +0) when ~; =0,

then the corresponding singular integral operator in (4.14) and (4.17) is not Fred-
holm (moreover, is not normally solvable, i.e., has non-closed image).

Due to Theorem 4.1 we are able to apply Theorem 3.2 to the oblique deriv-
ative problem (4.1), (4.4) (or to (4.1), (4.2); cf. [DSi1]).

Acknowledgement. The authors would like to thank Albrecht Béttcher for various
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