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Abstract. We prove the boundedness of the Cauchy singular integral oper-
ator in modified weighted Sobolev KWm

p (Γ, ρ), Hölder-Zygmund KZ0
µ(Γ, ρ),

Bessel potential KHs
p(Γ, ρ) and Besov KBs

p,q(Γ, ρ) spaces under the assump-
tion that the smoothness parameters m, µ, s are large. The underlying contour
Γ is piecewise smooth with angular points and even with cusps. We obtain
Fredholm criteria and an index formula for singular integral equations with
piecewise smooth coefficients and complex conjugation in these spaces pro-
vided the underlying contour has angular points but no cusps. The Fredholm
property and the index turn out to be independent of the integer parts of the
smoothness parameters m, µ, s. The results are applied to an oblique deriv-
ative problem (the Poincaré problem) in plane domains with angular points
and peaks on the boundary.

Introduction

When considering a Cauchy singular integral equation with complex conjugation

Aϕ(t) ≡ a(t)ϕ(t) +
b(t)
πi

∫

Γ

ϕ(τ)dτ

τ − t
+

c(t)
πi

∫

Γ

ϕ(τ)dτ

τ − t
= f(t) , t ∈ Γ (0.1)

on a piecewise smooth contour Γ (see § 1 below) we are restricted in the choice of
the spaces where we can solve equation (0.1). Namely, the operator A in equation
(0.1) is not bounded in important spaces of smooth functions: in the usual weighted
Sobolev Wm

p (Γ, ρ), Hölder-Zygmund Zµ(Γ, ρ), Bessel potential Hs
p(Γ, ρ) and Besov

Bs
p,q(Γ, ρ) spaces for large values of the smoothness parameters m = 2, 3, . . ., µ > 1

and |s| > 1+1/p. These spaces cannot be even defined properly (i.e., independently
of the choice of a parametrization) if Γ has knots, such as angular points or cusps.
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U.T.L., and Universidade de Aveiro, Portugal, in May-July 2001. The work was supported by
“Fundação para a Ciência e a Tecnologia” through “Centro de Matemática Aplicada” and “UI&D
Matemática e Aplicações”, respectively.
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Even if Γ is sufficiently smooth and the spaces Wm
p (Γ, ρ), Zµ(Γ, ρ) etc. can

be defined properly, the problem arises again when we take piecewise smooth
coefficients a(t), b(t), c(t) with jumps at the knots (for conciseness we relate dis-
continuity points to the knots of Γ as well).

On the other hand, especially in applications and numerical analysis, it is
important to establish additional smoothness properties for the solutions at least
outside the knots when the right-hand side f is sufficiently smooth.

We suggest the introduction of weighted spaces KWm
p (Γ, ρ), KZµ(Γ, ρ),

KHs
p(Γ, ρ), and KBs

p,q(Γ, ρ) with the help of “Fuchs”-derivatives

ϑ(t)∂tϕ(t) := ϑ(t)
∂ϕ(t)

∂t
, where ϑ(t) :=

∏

tj∈TΓ

(t− tj) (0.2)

and TΓ is the collection of knots of Γ, instead of the usual derivatives ∂tϕ(t) (see
Lemmata 1.2, 1.3, and 2.4). It turns out that the operator A in (0.1) with piecewise
smooth coefficients a, b, c ∈ PCm(Γ, TΓ) (and even with a, b, c ∈ KPCm(Γ, TΓ); see
§ 1 for the definitions) is bounded in the modified spaces KWm

p (Γ, ρ), KZµ(Γ, ρ),
KHs

p(Γ, ρ), and KBs
p,q(Γ, ρ) provided the smoothness parameters m,µ and s are

sufficiently large (see Lemmata 1.2, 1.3, 2.4 and Theorem 3.1). Moreover, the
operator defined by (0.1) has one and the same kernel and cokernel in the spaces
KWem

p (Γ, ρ), KZeµ(Γ, ρ) and KHesp(Γ, ρ), KBesp,q(Γ, ρ) whatever the integer parts of
the smoothness parameters m̃ = 0, . . . , m, 0 < µ̃ ≤ µ, and |s̃| ≤ s are (see
Theorem 3.2 and Remarks 3.4, 3.5).

The results on the Fredholm properties and also those on the boundedness of
the operator A in the usual (non-modified) weighted Bessel potential and Besov
spaces Hs

p(Γ, ρ) and Bs
p,q(Γ, ρ) for small s, 1/p − 1 < s < 1/p, when the mul-

tiplication by piecewise continuous functions represents a bounded operator (see
Theorem 2.3), are new.

Although the spaceKWm
p (Γ, ρ) coincides withKHm

p (Γ, ρ) for any nonnegative
integer m, we formulate the results for the modified Sobolev space KWm

p (Γ, ρ)
because these spaces are more common in applications and the proofs are simpler.

It is well-known that the Bessel potential spaces are as natural in the the-
ory of pseudodifferential operators as the Sobolev spaces are in the theory of
partial differential operators. The norm in Hs

p(R2) is especially simple for even
s = 2m,m = 0, 1, 2, . . .:

‖f |H2m
p (R2)‖ = ‖(I −∆)mf

∣∣Lp(R2)‖, ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

.

But in the theory of boundary value problems we cannot confine ourselves to the
Bessel potential spaces since the traces of functions Φ ∈ Hs

p(Ω
±) on the bound-

ary belong to the Besov spaces B
s− 1

p
p,p (Γ), provided the boundary Γ is sufficiently

smooth and s > 1/p.
The Besov spaces can be considered as the integral analogue of the Zygmund

spaces.
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In favor of the Hölder-Zygmund spaces we remark that many important op-
erators, including singular integral operators, are unbounded in the spaces Cm(Γ)
and in the Hölder spaces Hm(Γ) but that they are bounded in Zm(Rn) for every
integer m ∈ N := {1, 2, . . .}. The Hölder-Zygmund spaces are the natural exten-
sions of the scale of Hölder spaces to integer values of the smoothness exponent
and have an important interpolation property (see § 2).

In § 4 we apply the obtained results to the oblique derivative problem for the
Laplacian in domains with piecewise smooth boundary.

The space L1
p,β(Γ) := KW1

p(Γ, TΓ, |t− t1|β−1) (i.e., the particular case where
m = 1, TΓ = {t1} and ρ(t) := |t − t1|β−1) was applied in [MS1] to the inves-
tigation of boundary integral equations. The anisotropic Bessel potential spaces
H(s,ν),m

p (M), similar to KWm
p (Γ), were introduced in [CD1] for the multi-dimen-

sional case in which M = Rn
+ or M is a manifold with smooth boundary. In [CD1]

the boundedness of a certain class of pseudodifferential operators was proved and a
Fredholm criterion for them was established. The spaces Lp,m(R+) and Xp,m

ρ (R+),
also similar to KWm

p (R+, {0}), were used by J. Elschner in a spline approximation
method for convolution equations (see [El1] and [PS1, Ch. 5]).

Some results of §§ 1-2 were already announced in [DS2].

1. Weighted Sobolev and Hölder-Zygmund spaces

Let Γ be a piecewise smooth curve that consists of a finite union of smooth arcs
which have in common at most endpoints, called knots:

Γ =
⋃̀

j=1

Γj , Γj := [tj , tj+1] =

)

tjtj+1, j = 1, . . . , n, tn+1 = t1.

Let TΓ := {tj} denote the collection of all different knots (i.e., all different end-
points of smooth arcs) of Γ. The curve may contain cusps, i.e., the angles between
some arcs are allowed to be 0.

The closed arcs Γj , j = 1, . . . , n, between the knots are sufficiently smooth:
any parametrizations

ωj : I := [0, 1] −→ Γj , ωj(0) = tj , ωj(1) = tj+1 (1.1)

are µ-smooth, ωj ∈ Zµ(I), µ ≥ 1, j = 1, . . . , n, where Zµ(I) denotes the Hölder-
Zygmund space (see below).

Let us suppose, until formula (1.7), that Γ is either a single smooth arc or a
single smooth closed contour and that the natural parametrization of Γ with the
help of the arc length parameter 0 < s ≤ `,

t : [0, `] −→ Γ , s 7−→ t(s) , t(0) = t(`), (1.2)

is µ-smooth, that is, t(·) ∈ Zµ([0, `]).
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For 0 < ν ≤ µ ≤ 1, the Hölder-Zygmund space Zν(Γ) is defined as the space
of functions with finite norm

‖ψ | Zν(Γ)‖ := sup
t∈Γ

|ψ(t)|+ sup
0<s≤`

h>0

|∆2
hψ(t(s))|

hν
, (1.3)

∆hϕ(s) := ϕ(s + h)− ϕ(s) , ∆2
hϕ(s) := ϕ(s + h)− 2ϕ(s) + ϕ(s− h) .

Note that for ν = 1 the definition of Z1(Γ) requires that Γ be smooth, t(·) ∈
C1([0, `]), and that Γ have no angular points: each knot tj ∈ TΓ is an endpoint of
a separate arc.

If Γ is µ-smooth and

µ = m + ν ≥ 1 , 0 < ν ≤ 1 , m ∈ N0 := {0, 1, . . .} , (1.4)

then angular points on Γ are absent and the Hölder-Zygmund space Zµ(Γ) is
defined as a collection of all functions ψ(t) which have finite norm

‖ψ | Zµ(Γ)‖ :=
m∑

k=0

sup
t∈Γ

|ψ(k)(t)|+ ‖ψ(m)
∣∣Zν(Γ)‖ , (1.5)

ϕ(k)(x) := ∂k
xϕ(x) =

∂kϕ(x)
∂xk

.

The Hölder space Hµ(Γ) is defined as a collection of all functions ψ(t) which
have finite norm

‖ψ | Hµ(Γ)‖ :=
m∑

k=0

sup
t∈Γ

|ψ(k)(t)|+ sup
0<s≤`

h>0

|∆hψ(m)(t(s))|
hν

. (1.6)

If µ = m+ν 6∈ N = {1, 2, . . .} is not an integer, 0 < ν < 1, the norms in (1.5)
and in (1.6) are equivalent and the spaces coincide: Zµ(Γ) = Hµ(Γ) for µ 6∈ N (see
[St1]). Note that for an integer m = 1, 2, . . . the spaces Hm(Γ) and Zm(Γ) differ
essentially from each other and from the space Cm(Γ) of smooth functions with
the natural norm

‖ψ | Cm(Γ)‖ :=
m∑

k=0

sup
t∈Γ

|ψ(k)(t)|

(see [St1]) and that we have the following proper embedding instead:

Cm(Γ) ⊂ Hm(Γ) ⊂ Zm(Γ) . (1.7)

For an arbitrary piecewise smooth curve Γ, we denote by PX(Γ, TΓ) the space
of piecewise smooth functions with jump discontinuities at the knots tj ∈ TΓ:

PX(Γ, TΓ) := {g ∈ X(Γj) : j = 1, . . . , n} ,

where X(Γj) denotes one of the spaces Cm(Γj), Hµ(Γj), or Zµ(Γj), j = 1, ..., n.
For m = 0 we use the notation PC(Γ, TΓ) instead of PC0(Γ, TΓ).
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The Sobolev space Wm
p (I) on the unit interval is defined as

Wm
p (I) :=

{
ϕ ∈ Lp(I) : ∂kϕ ∈ Lp(I), k = 0, . . . , m

}

and is endowed with the norm

‖ϕ |Wm
p (I)‖ :=

(
m∑

k=0

‖∂k
xϕ | Lp(I)‖p

) 1
p

=




m∑

k=0

1∫

0

|∂k
xϕ(x)|pdx




1
p

.

With the help of the parametrization (1.1) we define the Sobolev space
Wm

p (Γj) on the smooth arcs Γj for 1 < p < ∞ and m ≤ µ as the space of all func-
tions ϕ for which ϕ(ωj(x)) is in Wm

p (I). For the entire piecewise smooth curve Γ
the spaceWm

p (Γ) can be defined only for m = 0, 1. In fact, for any parametrization

ω : R := [0, R] −→ Γ (1.8)

of the entire curve Γ (cf. (1.2)) the derivative (∂tϕ)(ω(x)) = [ω′(x)]−1∂xϕ(ω(x))
involves a piecewise continuous factor [ω′]−1 ∈ PC(R, TR), where

TR := {xj ∈ R : ω(xj) = tj ∈ TΓ}
is the set of all “knots” of R. Therefore, the second derivative (∂2

t ϕ)(ω(x)) is
not defined properly because the second derivative ∂2

xω(x) of the parametrization,
which participates as a factor, may contain delta functions:

∂2
xω(x) = ω

(2)
0 (x)−

n∑

j=1

[ω′(xj + 0)− ω′(xj − 0)]δj(x) , (1.9)

ω
(2)
0 ∈ PCm−2(Γ, TΓ), ω

(2)
0 (xj ± 0) = ω(2)(xj ± 0) = (∂2

xω)(xj ± 0) ,

〈δj , ψ〉 := ψ(xj) , ψ ∈ C(R) , ∀ω(xj) = tj ∈ TΓ .

To prove (1.9) we represent ω′(x) in the form

ω′(x) = ω′0(x)−
n∑

j=1

[ω′(xj + 0)− ω′(xj − 0)]χ+(x− xj) , (1.10)

where ω′0(x) is continuous ω′0 ∈ C(R) ∩ PCm−1(R, TR), ∂ω′0(xj ± 0) = ω′(xj ±
0) and χ+(x) is the Heaviside function: χ+(x) = 0 for x < 0, χ+(x) = 1 for
x > 0. It is easy to ascertain that the functions ω′(x) and ω′0(x) differ by a
piecewise constant function with jumps at xj , ω(xj) = tj ∈ TΓ and, therefore,
their derivatives coincide:

(∂xω′)(x) = (∂xω′0)(x) = ω(2)(x) ∀x 6= x1, . . . , xn

and even

(∂xω′)(xj ± 0) = (∂xω′0)(xj ± 0) = ω(2)(xj ± 0) ∀ j = 1, . . . , n .

Since χ′+ = δ in the sense of distributions, from (1.10) we derive (1.9).
By the same reason a multiplication operator

gI : Wm
p (Γ) −→Wm

p (Γ) , g ∈ PCm(Γ, TΓ) (1.11)
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is bounded only for m = 0 (i.e., in the Lebesgue space Lp(Γ) only).
In order to treat finally singular integral equations for spaces of smooth func-

tions in an efficient way, we need the boundedness (j) of differential operators, (jj)
of multiplication operators (both were discussed before), and (jjj) of the Cauchy
singular integral operator (see Theorem 3.1 below).

To guarantee all three listed space properties, we suggest to consider a special
Sobolev space KWm

p (Γ, ρ) with a power weight

ρ(t) :=
n∏

j=1

(t− tj)αj , αj ∈ C , 1 < p < ∞ (1.12)

defined as follows:

KWm
p (Γ, ρ) :=

{
ϕ ∈ Lp(Γ, ρ) : ∂kϕ ∈ Lp(Γ, ρ(k)), k = 0, . . . , m

}
,

ρ(k)(t) :=
n∏

j=1

(t− tj)αj+k . (1.13)

The space is endowed with a natural norm,

‖ϕ | KWm
p (Γ, ρ)‖ :=

(
m∑

k=0

‖∂k
t ϕ | Lp(Γ, ρ(k))‖p

) 1
p

:=




m∑

k=0

∫

Γ

|ρ(k)(t)∂k
t ϕ(t)|p|dt|




1
p

, (1.14)

which makes it a Banach space. It can be verified straightforwardly that the deriva-
tives

ϑk(t)∂k
t ϕ(t) and ∂k

t ϑk(t)ϕ(t)
(see (0.2) for ϑ(t)) exist in the usual sense and that the following norms are equiv-
alent to the original norm in (1.14):

‖ϕ | KWm
p (Γ, ρ)‖1 :=

(
m∑

k=0

‖(ϑ∂t)kϕ | Lp(Γ, ρ)‖p

) 1
p

,

‖ϕ | KWm
p (Γ, ρ)‖2 :=

(
m∑

k=0

‖∂k
t ϑkϕ | Lp(Γ, ρ)‖p

) 1
p

. (1.15)

Let µ = m + ν be as in (1.4), ϑ(t) be as in (0.2), and

KPZµ(Γ, TΓ) :=
{
g ∈ PZν(Γ) : ϑk∂kg ∈ PZν(Γ, TΓ) ∀j = 1, . . . , m

}
. (1.16)

Let us prove that PZµ(Γ, TΓ) ⊂ KPZµ(Γ, TΓ). In fact, from the definition of the
δ-function and the above considerations it is clear that

(t− tj)δj(t) = 0 , j = 1, . . . , n (1.17)
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(see (1.9)). Therefore, lim
t→tj

ϑ(t)g′(t) = 0. Thus, dealing with “Fuchs” derivatives of

g ∈ KWm
p (Γ, ρ), we can ignore the δ-functions and take ϑk∂k

t g ∈ PZm−k(Γ, TΓ) ⊂
PZν(Γ, TΓ) for all k = 1, . . . , m.

Moreover, KPZµ(Γ, TΓ) is a Banach algebra. In fact, for arbitrary g, h ∈
KPZµ(Γ, TΓ) we have

ϑk∂k
t (gh) =

k∑

j=0

(
j
k

)
ϑk−j(∂k−j

t g)ϑj(∂j
t h) ∈ PZµ(Γ, TΓ) (1.18)

for all k = 0, 1, . . . , m, which implies that g · h ∈ KPZµ(Γ, TΓ).
The space KPZµ(Γ, TΓ) is essentially larger than PZµ(Γ, TΓ): the first con-

tains, e.g., the functions g1(t)+(t− tj)γg2(t) with a complex γ such that Re γ > 0
and g1, g2 ∈ PZµ(Γ, TΓ), which are absent in the second one.

Lemma 1.1. The space KPZµ(Γ,TΓ), defined by (1.16), and the space KPCm(Γ,TΓ),
defined similarly, are Banach algebras and the embeddings

PZµ(Γ, TΓ) ⊂ KPZµ(Γ, TΓ) , PCm(Γ, TΓ) ⊂ KPCm(Γ, TΓ)

are proper.

As usual, for a negative m = −1,−2, . . . the space KWm
p (Γ, ρ) is defined as

the dual space to KW−m
p′ (Γ, ρ−1), where p′ := p/(p− 1).

Lemma 1.2. Let Γ be piecewise µ-smooth, m = 0,±1,±2, . . ., and |m| < µ.
The space KWm

p (Γ, ρ) is defined correctly and is independent of the choice of
parametrizations ωj : I → Γj, j = 1, . . . , n of the arcs Γj (see (1.1)).

The multiplication operator gI is bounded in KWm
p (Γ, ρ) for arbitrary g ∈

KPC|m|(Γ, TΓ).

Proof. We have to consider the case m = 0, 1, . . . only. For a negative m =
−1,−2 . . . both assertions follow by duality. In fact, it suffices to prove that the
dual space is correctly defined and that the dual operator to gI is gI.

The equality

ϑk∂k
t (gϕ) =

k∑

j=0

(
j
k

)
ϑk−j(∂k−j

t g)ϑj(∂j
t ϕ) ∈Wm−k

p (Γ, ρ) , k = 0, 1, . . . ,m ,

which is similar to (1.18), immediately implies that the multiplication operator gI
is bounded in the space KWm

p (Γ, TΓ).
¿From the equalities

ϑ∂xϕ(ω) = ϑ(∂tϕ)(ω)∂xω ,

ϑ2∂2
xϕ(ω) = ϑ2(∂2

t ϕ)(ω)(∂xω)2 + ϑ(∂tϕ)(ω)ϑ∂2
xω (1.19)

and similar formulas for higher derivatives and from the boundedness of the mul-
tiplication operators proved in the first part of the lemma it follows that the
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transformation operator

ω∗ : KWm
p (Γ, ρ) −→ KWm

p (I, ρ0) , ω∗ϕ(x) := ϕ(ω(x)) , (1.20)

ω(1− 0) = ω(0 + 0) = t1 , ω(xj) = tj , j = 2, . . . , n ,

ρ0(x) := xα1(x− 1)α1

n∏

j=2

(x− xj)αj

is a homeomorphism. Therefore the space KWm
p (Γ, ρ) is independent of the choice

of the parametrization of Γ.

Let us consider the weighted Hölder-Zygmund space

Z0
µ(Γ, ρ) := {ϕ0 := ρϕ ∈ Zµ(Γ) : ϕ0(tj) = 0 , k = 0, . . . ,m} , 0 < µ ≤ 1 ,

which is endowed with a natural norm (cf. (1.3)):

‖ϕ | Z0
µ(Γ, ρ)‖ = ‖ρϕ | Zµ(Γ)‖ . (1.21)

For 0 < µ < 1, the weighted Hölder-Zygmund space Z0
µ(Γ, ρ) coincides with the

weighted Hölder space H0
µ(Γ, ρ) considered in [Du1, Du2, Du3]. As for the spaces

H0
1 (Γ, ρ) and Z0

1(Γ, ρ), they are essentially different (see [St1]).
To give a straightforward definition of the Hölder-Zygmund spaces Z0

µ(Γ, ρ)
for µ = m + ν ≥ 1 we need a µ-smooth contour Γ. For a piecewise smooth Γ we
suggest the following modification of the Hölder-Zygmund space without weight:

KZµ(Γ) := {ϕ ∈ Zν(Γ) : ϑk∂kϕ ∈ Zν(Γ) , k = 1, . . . ,m} ,

provided 0 < ν < 1 (i.e., µ 6∈ N). For a weighted space we set

KZ0
µ(Γ, ρ) := {ρϕ ∈ Zν(Γ) : ϕk := ρ(k)∂kϕ ∈ Zν(Γ), (1.22)

ϕk(tj) = 0 , k = 0, . . . , m , j = 0, . . . , n} .

We endow these spaces with the following natural norms (cf. (1.3) and (1.21)):

‖ϕ | KZµ(Γ)‖ :=
m−1∑

k=0

sup
t∈Γ

|ϑk(t)∂k
t ϕ(t)|+ ‖ϑm∂mϕ | Zν(Γ)‖ ,

‖ϕ | KZ0
µ(Γ, ρ)‖ :=

m−1∑

k=0

sup
t∈Γ

|ϕk(t)|+ ‖ϕm | Zν(Γ)‖ . (1.23)

Equivalent norms can be written down as in (1.15).

Lemma 1.3. The spaces KZµ(Γ) for µ 6∈ N and KZ0
µ(Γ, ρ) for arbitrary µ > 0

are correctly defined and are independent of the choice of the parametrizations
ωj : I → Γj, j = 1, . . . , n of the curve Γ (see (1.1)).

The multiplication operator gI is bounded in the space KZ0
µ(Γ, ρ) for arbitrary

g ∈ KPZµ(Γ, TΓ).

Proof. The proof follows word for word the proof of the preceding Lemma 1.2 with
obvious modifications.
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2. Weighted Bessel potential and Besov spaces

It is possible to define new spaces by interpolation. Without going into the details
of interpolation theory (we refer the reader to [Tr1] for that) let us note that
interpolation assigns to a pair of Banach spaces X0, X1 embedded in a bigger
Banach space, X0,X1 ⊂ X (an interpolation pair), a new space Xϑ := [X0,X1]ϑ,
0 ≤ ϑ ≤ 1 (an interpolated space), with a comfortable interpolation property,
stated in the next lemma. This lemma summarizes results on interpolation of
operators by different methods exposed, e.g., in [Tr1, §§ 1.10.1, 1.16.4].

Lemma 2.1. (Interpolation Property). If the operator

A : X0 −→ Y0

: X1 −→ Y1

is bounded in both pairs, then A is bounded between pairs of interpolated spaces

A : Xϑ := [X0,X1]ϑ −→ Yϑ := [Y0,Y1]ϑ

for all 0 ≤ ϑ ≤ 1 and, for some positive constant Cϑ,

‖A
∣∣Xϑ → Yϑ‖ ≤ Cϑ‖A

∣∣X0 → Y0‖1−ϑ‖A
∣∣X1 → Y1‖ϑ .

Moreover, if Y0 = Y1 or X0 = X1 and the operator A : Xk −→ Yk is
compact for k = 0 or for k = 1 , then A : Xϑ −→ Yϑ is compact for all 1

0 < ϑ < 1.

The Bessel potential space Hs
p(Γ), s ≥ 0, 1 ≤ p ≤ ∞, where

s = m + ϑ , m ∈ N , 0 < ϑ ≤ 1 , (2.1)

can be defined as the result of complex interpolation of Sobolev spaces (cf. [Tr1,
§ 1.9, § 2.3]),

Hs
p(Γ) = (Wm

p (Γ),Wm+1
p (Γ))ϑ , (2.2)

while the Besov space Bs
p,q(Γ) is the result of real interpolation (cf. [Tr1, § 1.3,

§ 2.3]),
Bs

p,q(Γ) = (Wm
p (Γ),Wm+1

p (Γ))ϑ,q , 1 ≤ q ≤ ∞ . (2.3)

Similar definitions are valid for the spaces Hs
p(Ω

±), Bs
p,q(Ω

±).
We note that the spaces can also be defined rigorously if Γ is only s-smooth.

Therefore, for piecewise smooth Γ we can take s ≤ 1 (or, even, s ≤ 1 + 1/p).
For the definition of equivalent norms in Bessel potential and Besov spaces

we need some standard definitions and notations.
S(Rn) denotes the space of rapidly decreasing smooth functions and S ′(Rn) is

the space of tempered distributions, i.e., the space of continuous linear functionals
on S(Rn).

1The first result on interpolation of compact operators was obtained, to our knowledge, by
M. Krasnosel’skij [Kr1] in 1960. This reference is missing in H. Triebel’s fundamental monograph
[Tr1, § 1.16.4]; he only cites papers devoted to the subject since 1964.
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The direct and the inverse Fourier transforms F and F−1 are defined as
follows:

Fϕ(ξ) :=
∫

Rn

eiξxϕ(x) dx, ξ ∈ Rn,

F−1ψ(x) = (2π)−n

∫

Rn

e−ixξψ(ξ) dξ, x ∈ Rn .
(2.4)

For the Euclidean space Rn, the Bessel potential space Hs
p(Rn) (s ∈ R, 1 ≤

p ≤ ∞) is the subset of S ′(Rn) (s ∈ R, 1 < p < ∞) consisting of the elements f
with finite norm

‖f ∣∣Hs
p(Rn)‖ := ‖F−1〈ξ〉sFf |Lp(Rn)‖,

where
〈x〉 =

(
1 + |x|2)

1
2 , x ∈ Rn . (2.5)

The Besov space Bs
p,q(Rn) (s = m + ϑ > 0, 1 ≤ p, q ≤ ∞) is equipped with

the norm

‖f
∣∣Bs

p,q(Rn)‖ := ‖f
∣∣Wm

p (Rn)‖+
∑

|α|=m




∫

Rn

‖∆2
h∂αf

∣∣Lp(Rn)‖q

hϑq

dh

hn




1/q

for 1 ≤ q < ∞ and with the obvious “esssup” modification (instead of the integra-
tion) when q = ∞.

For domains Ω± ⊂ R2, the spaces Hs
p(Ω

±) and Bs
p,q(Ω

±) are defined as the re-
strictions of Hs

p(R2) and Bs
p,q(R2) to Ω±, while H̃s

p(Ω
±) and B̃s

p,q(Ω
±) are subspaces

of the corresponding spaces on R2 and consist of functions which are supported in
Ω±.

The space Ws
p(Ω

±) = Bs
p,p(Ω

±) is also known as the Sobolev-Slobodetskij
space.

Similarly we define the spaces Hs
p(I), Bs

p,q(I) (as the restrictions of Hs
p(R),

Bs
p,q(R) to the interval I ⊂ R) and H̃s

p(I), B̃s
p,q(I) (as the subspaces of Hs

p(R),
Bs

p,q(R) of functions which are supported in the closed interval I = [0, 1]).
Using the parametrizations (1.1), (1.2) we define the spaces Hs

p(Γj), . . . ,
B̃s

p,q(Γj) in a standard way.
The weighted spaces Hs

p(Γ, ρ) and Bs
p,q(Γ, ρ) consist of all functions ϕ(t) for

which ρϕ ∈ Hs
p(Γ) and ρϕ ∈ Bs

p,q(Γ), respectively.
Since the spaces Hs

p(Γ, ρ) and H̃−s
p′ (Γ, ρ−1) (s ∈ R, p′ := p/(p − 1)) are dual

(adjoint), see [Tr1], it is natural to define the spaces Bs
p,q(Γ, ρ) and B̃s

p,q(Γ, ρ) for a
negative s < 0 as the dual spaces for B̃−s

p′,q′(Γ, ρ−1) and B−s
p′,q(Γ, ρ−1), respectively.

The notation Hs
p, ignoring the weight function and the domain of definition,

will be used if the subsequent proposition is valid for any weight and any of the
domains Rn, Ω±, Γj and Γ. Moreover, when writing X(Ω±, ρ) we mean any of the
spaces Hs

p(Ω±, ρ), Bs
p,q(Ω±, ρ),Ws

p(Ω±, ρ), Zs(Ω±, ρ) while X̃(Ω±, ρ) stands for the
“tilde-spaces”.
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The Besov space Bs
∞,∞ = Ws

∞ and the Hölder-Zygmund space Zs are iso-
morphic and coincide.

The equality Hs
2 = Bs

2,2 holds for all s ∈ R and, in particular, Hs
2(Rn) =

Ws
2(Rn) for all s ≥ 0.

For a non-negative integer m ∈ N0 the Bessel potential space Hm
p and the

Sobolev space Wm
p can be identified.

Theorem 2.2. (Interpolation Theorem; [Tr1, §§ 2.4, 3.3]). Let

s0, s1 ∈ R, 0 < ϑ < 1, 1 ≤ p0, p1, ν, q0, q1 ≤ ∞,

1
p

=
1− ϑ

p0
+

ϑ

p1
,

1
q

=
1− ϑ

q0
+

ϑ

q1
, s = (1− ϑ)s0 + ϑs1.

For the real (·, ·)ϑ,p, complex (·, ·)ϑ, and modified complex [·, ·]ϑ interpolation func-
tors we have the following:

i. (Hs
p0

,Hs
p1

)ϑ,p = Hs
p provided 1 < p0, p1 < ∞;

ii. [Hs0
p0

,Hs1
p1

]ϑ = (Hs0
p0

,Hs1
p1

)ϑ = Hs
p provided 1 < p0, p1 < ∞;

iii. (Hs0
r ,Hs1

r )ϑ,ν = Bs
r,ν provided s0 6= s1, 1 < r < ∞;

iv. (Bs0
r,q0

,Bs1
r,q1

)ϑ,ν = Bs
r,ν provided s0 6= s1, 1 ≤ r ≤ ∞;

v. (Bs0
p0,q0

,Bs1
p1,q1

)ϑ = Bs
p,q; if in addition, 1 < p0, p1 < ∞ and either q0 6= ∞

or q1 6= ∞, then [Bs0
p0,q0

,Bs1
p1,q1

]ϑ = Bs
p,q;

vi. (Zt0 ,Zt1)ϑ,∞ = (Zt0 ,Zt1)ϑ = Zt provided t0, t1 > 0, 0 < ϑ < 1, t =
(1− ϑ)t0 + ϑt1.

The next theorem addresses the boundedness of a multiplication operator
and of the Cauchy singular integral operator, which are of a special importance
for the theory of the equations in study (see §§ 3-4).

Theorem 2.3.

i. If Γ is sufficiently smooth and if

s ∈ R, 1 < p < ∞, and µ

{
= |s| for s = 0,±1, . . . ,
> |s| for s 6= 0,±1, . . . ,

(2.6)

then the multiplication operator gI with g ∈ Hµ(Γ) is bounded in the space
Hs

p(Γ, ρ).
ii. If Γ is sufficiently smooth and if

s ∈ R, 1 ≤ p, q ≤ ∞, and µ > |s| , (2.7)

then the multiplication operator gI with g ∈ Hµ(Γ) is bounded in the space
Bs

p,q(Γ, ρ).
iii. The spaces Hν

p(R+, xα), H̃ν
p(R+, xα) and the spaces Bν

p,q(R+, xα), B̃ν
p,q(R+, xα)

are pairwise isomorphic and can be identified (extending the restricted
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functions by 0) provided
1
p
− 1 < ν <

1
p

, 1 < p < ∞ . (2.8)

iv. If Γ is piecewise smooth and µ > |ν|, then the multiplication operator
gI with g ∈ PZµ(Γ, TΓ) is bounded in the spaces Hν

p(Γ, ρ) and Bν
p,q(Γ, ρ)

provided condition (2.8) holds.

Proof. For the proofs of assertion i we refer to [Tr1, § 3] (see also [MSh1]). Assertion
ii follows from assertion i and Theorem 2.2.iii. Assertion iii is a slight modification
of the corresponding assertion from [Tr1, § 2.10] (see also [MSh1]). Namely, it
suffices to prove the equivalent boundedness of the multiplication operator χ+I
by a characteristic function of the half-line in Hν

p(R, xα) and in Bν
p,q(R, xα). By

the definition of the weighted spaces, this is equivalent to the boundedness of the
operator x−αχ+xαI = χ+I in the unweighted spaces Hν

p(R) and Bν
p,q(R), which is

proved in [Tr1, § 2.10].
To prove assertion iv we recall the definition of the weighted Bessel potential

space on a piecewise smooth contour. Due to assertion iii, under condition (2.8)
the space Hν

p(Γ, ρ) can be identified with the space

H̃ν
p(Γ, ρ) := {ϕ : ρϕ ∈ H̃ν

p(Γj) ∀ j = 1, . . . , n} . (2.9)

On the other hand, any function g ∈ PZµ(Γ, TΓ) can be represented as a finite sum

g(t) =
n∑

j=1

gj(t)χj(t) , gj ∈ Zµ(Γ) , j = 1, . . . , n ,

where χj(t) is the characteristic function of the smooth arc Γj ⊂ Γ, and due to
assertion i it suffices to consider only the case g(t) = χj(t).

We are left to prove that χjI is bounded in H̃ν
p(Γ, ρ) or, as in assertion iii, in

H̃ν
p(Γ), which is a simple exercise.

For the space Bν
p,q(Γ, ρ) the result can be proved similarly or obtained from

the proved assertion by interpolation.

¿From Theorem 2.3.iii we easily find that if Γ is piecewise smooth, then
the spaces Hs

p(Γ, ρ) and Bs
p,q(Γ, ρ) can be defined rigorously, provided conditions

(2.8) hold. As we have already noted above, the definition cannot be extended
to large |s|. We must impose restrictions on s to ensure the boundedness of a
multiplication operator by a piecewise smooth function and of the Cauchy singular
integral operator (see Theorems 2.3 and 3.1).

Therefore we suggest to consider the following spaces: if

s = m + ν , m ∈ N0 (2.10)

and (2.8) holds, we define

KHs
p(Γ, ρ) :=

{
ϕ ∈ Hν

p(Γ, ρ) : ϑk∂kϕ ∈ Hν
p(Γ, ρ), k = 0, . . . , m

}
, (2.11)

KBs
p,q(Γ, ρ) :=

{
ϕ ∈ Bν

p,q(Γ, ρ) : ϑk∂kϕ ∈ Bν
p,q(Γ, ρ), k = 0, . . . , m

}
(2.12)
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(see (0.2) for ϑ(t)). The spaces are endowed with natural norms:

‖ϕ | KHs
p(Γ, ρ)‖ :=

(
m∑

k=0

‖ϑk∂k
t ϕ | Hν

p(Γ, ρ)‖p

) 1
p

,

‖ϕ | KBs
p,q(Γ, ρ)‖ :=

(
m∑

k=0

‖ϑk∂k
t ϕ | Bν

p,q(Γ, ρ)‖p

) 1
p

,

which make them be Banach spaces. It can be verified straightforwardly that
equivalent norms can be defined analogously as in (1.15).

For a negative s < 0, the spaces KHs
p(Γ, ρ) and KBs

p,q(Γ, ρ) are defined as
the dual spaces to KH−s

p′ (Γ, ρ−1) and KB−s
p′,q′(Γ, ρ−1), respectively, where p′ :=

p/(p− 1), q′ := q/(q − 1).

Lemma 2.4. Let Γ be piecewise µ-smooth and |s| < µ.
The spaces KHs

p(Γ, ρ) and KBs
p,q(Γ, ρ) are defined correctly and are indepen-

dent of the choice of the parametrizations ωj : I → Γj, j = 1, . . . , n of the curve Γ
(see (1.1)).

The multiplication operator gI is bounded in KHs
p(Γ, ρ) and in KBs

p,q(Γ, ρ)
for arbitrary g ∈ KPZµ(Γ, TΓ).

Proof. The proof is similar to the proof of Lemma 1.2.

3. Singular integral equations in weighted spaces

If Γ is an m-smooth closed contour and m ∈ N, then the Cauchy singular integral
operator

SΓϕ(t) :=
1
πi

∫

Γ

ϕ(τ)dτ

τ − t
, t ∈ Γ (3.1)

is bounded in the spaces Hs
p(Γ), Bs

p,q(Γ), and Zs(Γ) provided

1 < p, q < ∞ , s ∈ R , s ≤ m. (3.2)

In fact, let us recall that SΓ is bounded in the Hölder spaces Hν(Γ) = Zν(Γ)
for 0 < ν < 1 (the Privalov Theorem; see [Du1, Du2, Mu1, St1]) and in the
Lebesgue spaces Lp(Γ) (the Riesz Theorem; see [GK1, Kh1, St1]). Since

(∂jSΓϕ)(t) = (SΓ∂jϕ)(t) ∀ j ∈ N , (3.3)

we get

‖SΓϕ
∣∣Xk+ν(Γ)‖ =

k∑

j=0

‖∂jSΓϕ
∣∣Xν(Γ)‖ =

k∑

j=0

‖SΓ∂jϕ
∣∣Xν(Γ)‖

≤ C

k∑

j=0

‖∂jϕ
∣∣Xν(Γ)‖ = C‖ϕ∣∣Xk+ν(Γ)‖ , k ∈ N .
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This implies the boundedness in the Sobolev spaces Xk(Γ) := Wk
p(Γ) = Hk

p(Γ) for
all integers k = 0, . . . , m and in the Hölder-Zygmund spaces Zµ(Γ) for all non-
integers µ = k + ν, 0 < ν < 1. Due to the Interpolation Theorems 2.2.i, 2.2.iii and
2.2.vi, SΓ is bounded in the spaces Hs

p(Γ), Bs
p,q(Γ), and Zµ(Γ) if conditions (3.2)

hold.
If Γ is piecewise smooth, the boundedness result (3.1)-(3.2) does not hold any

more, especially for the weighted spaces. Instead we can prove the following.

Theorem 3.1. The Cauchy singular integral operator with a weight,

SΓ,wϕ(t) :=
1
πi

∫

Γ

w(t)
w(τ)

ϕ(τ)dτ

τ − t
, w(t) :=

n∏

j=1

(t− tj)βj , (3.4)

is bounded in the following spaces:
i. in the modified weighted Sobolev space KWm

p (Γ, ρ), m ∈ N0 provided

−1
p

< αj + βj < 1− 1
p

, j = 1, . . . , n , 1 < p < ∞ ; (3.5)

ii. in the modified weighted Hölder-Zygmund space KZ0
µ(Γ, ρ) provided

µ = m + ν, m ∈ N0 , 0 < ν ≤ 1 ,

0 < αj + βj − ν < 1 , j = 1, . . . , n ; (3.6)

iii. in the modified weighted Bessel potential KHs
p(Γ, ρ) and Besov KBs

p,q(Γ, ρ)
spaces, with s = m + ν for any integer m, provided that (2.8) holds and

−1
p

< αj + βj − ν , αj + βj < 1− 1
p

, j = 1, . . . , n , 1 < p, q < ∞ . (3.7)

Proof. First let us prove the assertions for m = 0: the operator

SΓ,w : X(Γ, ρ) −→ X(Γ, ρ) (3.8)

is bounded provided

X(Γ, ρ) = Lp(Γ, ρ) and (3.5) holds ,

X(Γ, ρ) = Zν(Γ, ρ) and (3.6) holds ,

X(Γ, ρ) = Hν
p(Γ, ρ) and (3.7) holds ,

X(Γ, ρ) = Bν
p,q(Γ, ρ) and (3.7) holds .

(3.9)

In fact, for the weighted Lebesgue space X(Γ, ρ) = Lp(Γ, ρ) the boundedness
result (3.8) is well known (and first proved in [Kh1], see also [GK1] and [BK1]).

For the weighted Hölder space X(Γ, ρ) = Hν(Γ, ρ), the boundedness result
(3.8) is proved in [Du1, Du2] (see also [GK1]) under the constraint 0 < ν < 1. In the
case ν = 1, the boundedness result can be proved similarly using the boundedness
of SΓ in Z1(Γ) (see (3.1)-(3.2)).

The operator SΓ,w is bounded in the space Hν
p(Γ, ρ) = H̃ν

p(Γ, ρ) if and only if
the operators χjSΓ,wρχk are bounded in Hν

p(Γ), where χj(t) is the characteristic
function of the smooth arc Γj ⊂ Γ, j = 1, . . . , n. By rectification of the smooth
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arcs we easily derive the required boundedness property from the boundedness of
the operators

S
(α)
R+ ϕ(x) :=

1
πi

∞∫

0

(
x

y

)α
ϕ(y)dy

y − x
, N

(α)
R+,γϕ(x) :=

1
πi

∞∫

0

(
x

y

)α
ϕ(y)dy

y − eiγx
,

S
(α)
R+ , N

(α)
R+,γ : H̃ν

p(R+) = Hν
p(R+) −→ Hν

p(R+) , (3.10)

1
p
− 1 < ν <

1
p

, −1
p

< α− ν, α < 1− 1
p

, 0 < |γ| < π .

To prove the boundedness of the operators in (3.10) we will first consider the
operator

A := −i sin πα cos πα + sin2 πα SR+ : Lp(R+) −→ Lp(R+) . (3.11)

This operator represents a Mellin convolution:

A = M0
Ap

, Ap(ξ) := −i sin πα cos πα + sin2 πα cothπ

(
i

p
+ ξ

)
, (3.12)

where

M0
aϕ(x) := M−1

ξ→x {a(ξ)My→ξ[ϕ(y)]} (x) , x ∈ R+ , ξ ∈ R , (3.13)

and M±1 := M±1
ξ→x are the Mellin transforms

Mϕ(ξ) :=

∞∫

0

y
1
p−iξϕ(y)

dy

y
, ξ ∈ R,

M−1ψ(x) = (2π)−1

∞∫

−∞
xiξ− 1

p ψ(ξ) dξ, x ∈ R+

(3.14)

(see [Du6, Du9, Du5, DLS1]). Therefore the operator A = M0
Ap

in (3.11) is invert-
ible if and only if

Ap(ξ) 6= 0 ⇐⇒ −1
p

< α < 1− 1
p

(3.15)

(note that Ap(ξ) = 0 only for ξ = 0).
Let us prove that the Mellin convolution operator

B = S
(α)
R+ − i cot παI = M0

Bp
, (3.16)

Bp(ξ) := coth π

(
i

p
+ iα + ξ

)
− i cot πα
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is the inverse of A. Indeed,

Bp(ξ) := coth π

(
i

p
+ iα + ξ

)
− i cot πα = −i

[
cot π

(
1
p

+ α− iξ

)
− cot πα

]

= i
1 + cot2 πα

cot π(1/p− iξ) + cot πα
= i

sin−2 πα

cot π(1/p− iξ) + cot πα
= A−1

p (ξ)

and hence we get AB = BA = M0
ApA−1

p
= M0

1 = I.

The operator A in (3.11) can also be regarded as a Fourier convolution op-
erator:

A := −i sin πα cosπα + sin2 πα SR+ = Wap : H̃ν
p(Γ) = Hν

p(R+) −→ Hν
p(R+) ,

ap(ξ) = −i sin πα cos πα− sin2 πα sign ξ (3.17)

(see [Du6, Lemma 1.35]). Here

W 0
a ϕ(x) := F−1

ξ→x {a(ξ)Fy→ξ[ϕ(y)]} (x) , x ∈ R (3.18)

is a convolution on R (F±1 = F±1
ξ→x are the Fourier transformations; see (2.4)).

Wa := r+W 0
a : X̃(R+) −→ X(R+)

is the restriction of W 0
a to the positive half-line (r+ denotes the restriction of a

function from R to R+).
It is well known that the operators W 0

a and M0
a are isomorphic:

M0
a = Z−1W 0

aZ ,

Z : Lp(R+) −→ Lp(R) , Zϕ(x) = e−
1
p xϕ(e−x) ,

Z−1 : Lp(R) −→ Lp(R+) , Z−1ψ(t) = t−
1
p ψ(− log t)

(see [Du6, § 8]).
Next we apply a lifting procedure to the operator A in (3.17). For this we

recall that the Bessel potential operators

Λr
+ := W 0

λr
+

: H̃s
p(R+) −→ H̃s−r

p (R+) , λr
+(ξ) = (ξ + i)r ,

r+Λr
−` := Wλr

−` : Hs
p(R+) −→ Hs−r

p (R+) , λr
−(ξ) = (ξ − i)r , (3.19)

where ` denotes an arbitrary extension from R+ to R, arrange isomorphisms of the
indicated spaces for arbitrary s, r ∈ R (see, e.g., [Du5, DS1, Es1, St1]) and that

r+Λr
−`Waϕ = Waλr

−ϕ , War+Λr
+ϕ = Waλr

+
ϕ , χ+Λr

+ϕ = Λr
+ϕ (3.20)

for ϕ ∈ H̃s
p(R+). In particular, we have the isomorphisms

Λ−ν
+ : Lp(R+) −→ H̃ν

p(R+) ,

r+Λν
−` : Hν

p(R+) −→ r+Lp(R) , (3.21)
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and since the spaces r+Lp(R) and Lp(R+) can be identified (extending functions
ϕ ∈ Lp(R+) by 0), we can lift the operator A = Wap in (3.17). As a result we get
the equivalent operator

r+Λν
−`WapΛ−ν

+ = Wλν
−apλ−ν

+
= Wap,ν , ap,ν(ξ) = ap(ξ)

(
ξ − i

ξ + i

)ν

. (3.22)

Since

ap,ν(+∞) =
2e−iπα sin2 πα

eiπα + e−iπα
,

ap,ν(−∞) =
2eiπ(α−2ν) sin2 πα

eiπα + e−iπα
,

ap,ν(0−0) =
2eiπα sin2 πα

eiπα + e−iπα
, (3.23)

ap,ν(0+0) =
2e−iπα sin2 πα

eiπα + e−iπα
,

we get
1
2π

arg
ap,ν(+∞)
ap,ν(−∞)

=
1
2π

arg e2π(ν−α)i = ν − α ,

1
2π

arg
ap,ν(0 + 0)
ap,ν(0− 0)

=
1
2π

arg e−2παi = −α ,

and the conditions in the third line of (3.10) ensure the invertibility of the lifted
convolution operator (3.22) in Lp(R+) (see [Du6, Lemma 4.1, Theorem 4.2]).
Therefore, conditions (3.15) guarantee the invertibility of the operator A = Wap

in (3.17), and since B in (3.16) is its inverse, B is a bounded operator in Hν
p(R+).

Thus, S
(−γ)
R+ = B − i cot πγI is a bounded operator in Hν

p(R+).

To prove the boundedness of the operator N
(α)
R+,γ (see (3.10)) it is equivalent

to consider the operator NR+,γ := N
(0)
R+,γ in Hν

p(R+, xα), due to the definition of
the weighted spaces.

Let us apply the trick described in [Sc1]: there exists a sufficiently small and
negative β < 0 such that

−1
p

< α + β − ν, α + β < 1− 1
p

. (3.24)

As already proved, these conditions ensure the boundedness of the operator S
(β+iϑ)
R+

in Hν
p(R+, xα), because ‖S(β+iϑ)

R+ ‖ = ‖S(β)
R+ ‖ for all ϑ ∈ R. So the operator

RR+,γ :=
e−iγ − 1

2

∞∫

−∞

ei(π−γ)(β+iϑ)

sin π(β + iϑ)
S

(β+iϑ)
R+ dϑ

is also bounded in Hν
p(R+, xα) because the integral is absolutely convergent (cf.

the last inequality in (3.10)).
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Let 0 < t < 1. By changing the order of integration and applying the residue
theorem in the right complex half-plane Re π(β + iϑ) > 0, where the integrand
has simple poles at β = 0, 1, . . ., one finds that

RR+,γϕ(x) =
1
πi

∞∫

0

K

(
x

y

)
ϕ(y)dy

y − x
,

K(t) =
e−iγ − 1

2

∞∫

−∞

tβ+iϑei(π−γ)(β+iϑ)

sin π(β + iϑ)
dϑ

= i(e−iγ − 1)

∞∫

−∞

tβ+iϑei(π−γ)(β+iϑ)

eiπ(β+iϑ) − e−iπ(β+iϑ)
dϑ = πi

e−iγ − 1
2

∞∑

k=0

2itkei(π−γ)k

(−1)k+1π

= (1− e−iγ)
∞∑

k=0

tke−iγk =
1− e−iγ

1− te−iγ
.

If 1 < t < ∞, one can apply the residue theorem in the left complex half-
plane Re π(β + iϑ) < 0, where the integrand has simple poles at β = −1,−2, . . ..
Similarly to the foregoing case we get

K(t) =
e−iγ − 1

2

∞∫

−∞

tβ+iϑei(π−γ)(β+iϑ)

sin π(β + iϑ)
dϑ = (e−iγ − 1)

∞∑

k=1

t−keiγk

= − t−1eiγ(1− e−iγ)
1− t−1eiγ

=
1− e−iγ

1− te−iγ
.

Therefore,

RR+,γϕ(x) =
1
πi

∞∫

0

1− e−iγ

1− x
y e−iγ

ϕ(y)dy

y − x
(3.25)

and hence, by virtue of the equality RR+,γ = NR+,γ − e−iγSR+ , the boundedness
of NR+,γ in the space Hν

p(R+, xα) follows.
To prove that the operator SΓ,w is bounded in the modified weighted Besov

space B̃ν
p,q(Γ, ρ) = Bν

p,q(Γ, ρ) we can employ the interpolation method: if conditions
(3.7) hold, the operator SΓ,wρ is bounded not only in Hν

p(Γ), but also in Hν±ε
p (Γ, ρ)

for a small ε > 0. Due to the Interpolation Theorem 2.2.iii, SΓ,wρ is bounded in
Bν

p,q(Γ) and, therefore, SΓ,w is bounded in Bν
p,q(Γ, ρ).

Now we will prove the boundedness result for a positive integer m ∈ N. The
assertions can be reformulated as follows: the operator

SΓ : Xm(Γ, wρ) −→ Xm(Γ, wρ) (3.26)
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is bounded provided

Xm(Γ, wρ) = KWm
p (Γ, wρ) and (3.5) holds ,

Xm(Γ, wρ) = KZ0
m+ν(Γ, wρ) and (3.6) holds ,

Xm(Γ, wρ) = KHm+ν
p (Γ, wρ) and (3.7) holds ,

Xm(Γ, wρ) = KBm+ν
p,q (Γ, wρ) and (3.7) holds .

(3.27)

The following is easy to verify (cf. (3.3)):

(ϑk∂k
t )(SΓϕ)(t) = ϑk(SΓ∂k

τ ϕ)(t) = SΓ(ϑk∂k
τ ϕ)(t) +

k∑

j,r=0

(Bj,rϕ)(t) , (3.28)

where the functionals

Bj,k : Xm(Γ, wρ) −→ C , j = 1, . . . , k ,

Bj,kϕ := (−1)j tk−j

πi

∫

Γ

τ j−1∂k
τ ϕ(τ)dτ ,

are bounded (note that even if Γ contains open arcs, partial integration in (3.28)
does not generate any summands at the boundary points, because these summands
are eliminated by the factor ϑk(t)).

In fact, from the corresponding conditions (3.5)-(3.7) we conclude that

∂k
τ ϕ ∈ Xm−k(Γ, wρ) ⊂ L1(Γ)

and that the embedding is continuous, i.e.,

‖∂k
τ ϕ

∣∣L1(Γ)‖ ≤ C ′k‖∂k
τ ϕ

∣∣Xm−k(Γ, wρ)‖ ≤ Ck‖ϕ
∣∣Xm(Γ, wρ)‖ .

Thus,
|Bj,kϕ| ≤ Cj‖ϕ

∣∣Xm(Γ, ρ)‖ ∀ j = 1, . . . , m . (3.29)
Since the singular integral operator

SΓ : X(Γ, wρ) := X0(Γ, wρ) −→ X(Γ, wρ) (3.30)

is bounded (see the first part of the proof) and, by definition, ϑk∂k
t ϕ ∈ Xm−k(Γ, wρ),

from (3.28)-(3.30) we get

‖SΓϕ | Xm(Γ, wρ)‖ =
m∑

k=0

‖ϑk∂k
t SΓϕ | X(Γ, wρ)‖

≤
m∑

k=0

‖SΓϑk∂k
t ϕ | X(Γ, wρ)‖+

m∑

k=0

k∑

j=0

|Bj,kϕ|

≤ C

m∑

k=0

‖ϑk∂k
t ϕ | X(Γ, wρ)‖ = C‖ϕ | Xm(Γ, wρ)‖ . (3.31)

The boundedness of SΓ,w in the modified spaces KXm(Γ, ρ) for negative m =
−1,−2, . . . (excluding the Hölder-Zygmund KZ0

µ(Γ, ρ) spaces, which are defined
only for positive µ > 0) follows by duality.
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In fact, let the operator SΓ,w be bounded in the modified weighted spaces
KWm

p (Γ, ρ), in KHm
p (Γ, ρ), or in KBm

p,q(Γ, ρ) and suppose that the conditions (3.5)-
(3.7) hold. The dual operator, SΓ,w−1 , to SΓ,w is defined by the bilinear form

(ϕ, SΓ,w−1ψ) := (SΓ,wϕ,ψ) , (ϕ, ψ) :=
∫

Γ

ϕ(τ)ψ(τ)dτ , (3.32)

and is thus bounded in the dual spaces KW−m
p′ (Γ, ρ−1), KH−m

p′ (Γ, ρ−1), and
KB−m

p′,q′(Γ, ρ−1), respectively, because −m ∈ N is already positive and the pa-
rameters p′, q′, −αj ,−βj satisfy the corresponding conditions (3.5)-(3.7).

Theorem 3.1 enables us to establish a Fredholm criterion and an index for-
mula for a singular integral operator with complex conjugation:

Aϕ := aϕ + bSΓϕ + cV SΓV ϕ = f , V ϕ(t) := ϕ(t) , (3.33)

a, b, c ∈ KPCm+1(Γ, TΓ)

for ϕ, f ∈ Xm(Γ, ρ) = KWm
p (Γ, ρ), KHm+ν

p (Γ, ρ) , KBm+ν
p,q (Γ, ρ) ,

a, b, c ∈ KPZm+ν(Γ, TΓ) for ϕ, f ∈ Xm(Γ, ρ) = KZ0
m+ν(Γ, ρ) ,

where Xm(Γ, ρ) is defined by (3.27).
Although the coefficients of the operator A are N × N matrix functions

and equation (3.33) is considered in weighted N -vector spaces, we use the same
notation for spaces and classes of functions as in the scalar case N = 1 for the
sake of simplicity.

Also for conciseness, we assume that Γ is a closed piecewise smooth curve
with smooth arcs Γj−1, Γj , having in common the knot tj where they meet under
the interior angle πγj (measured from the bounded domain Ω+ enclosed by Γ).
Therefore, 0 ≤ γj ≤ 2, j = 1, . . . , n, while the values γj = 0, 2 correspond to a
cusp at tj . This assumption simplifies the symbol of operator (3.33). In the general
case the symbol can be written down in a similar but more complicated form (see
[Du3, Du4, Du5, DLS1, RS1]).

When Γ has no cusps, 0 < γj < 2, the symbol of the operator A in the space
Xm(Γ, ρ) is defined as follows:

AXm(Γ,ρ)(t, ξ) := ã(t) + b̃(t)SXm(Γ,ρ)(t, ξ) + c̃(t)SXm(Γ,ρ)(t,−ξ) , (3.34)

where

SXm(Γ,ρ)(t, ξ) :=




cothπ(iβt + ξ) − eπ(γt−1)(iβt+ξ)

sinh π(iβt + ξ)
eπ(1−γt)(iβt+ξ)

sinh π(iβt + ξ)
− cothπ(iβt + ξ)


 , ξ ∈ R , (3.35)
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βt :=





1/p + αj − ν if t ∈ Γ , Xm(Γ, ρ) = KHm+ν
p (Γ, ρ) ,

KBm+ν
p,q (Γ, ρ) ,

1/p if t 6= t1, . . . , tn , Xm(Γ, ρ) = KWm
p (Γ, ρ) ,

1/2 if t 6= t1, . . . , tn , Xm(Γ, ρ) = KZ0
m+ν(Γ, ρ) ,

1/p + αj if t = tj , Xm(Γ, ρ) = KWm
p (Γ, ρ) ,

αj − ν if t = tj , Xm(Γ, ρ) = KZ0
m+ν(Γ, ρ) ,

(3.36)

d̃(t) :=

[
d(t + 0) 0

0 d(t− 0)

]
, d ∈ PC(Γ, TΓ) , t ∈ Γ ,

γt :=

{
1 if t 6= t1, . . . , tn ,

γj if t = tj .
(3.37)

Let us note that the symbol would be a full matrix function if the corre-
sponding operator contains the terms V SΓ, V aI, aV , or SΓV (see Remark 3.5).

Due to assumptions (3.5)-(3.7) and (3.27) we have 0 < βt < 1 for all t ∈ Γ
and the symbolAXm(Γ,ρ)(t, ξ) represents a piecewise continuous uniformly bounded
function of the variables (t, ξ) ∈ Γ× R.

Theorem 3.2. Let Γ have no cusps, i.e., 0 < γj < 2, j = 1, . . . , n and let Xm(Γ, ρ)
be defined by (3.27). Then equation (3.33) is Fredholm in the space Xm(Γ, ρ) if and
only if

inf
t∈Γ, ξ∈R

∣∣detAXm(Γ,ρ)(t, ξ)
∣∣ > 0 . (3.38)

If condition (3.38) holds, then

IndA = − 1
2π





[
arg detAXm(Γ,ρ)(t,+∞)

]
Γ

+
n∑

j=1

[
arg detAXm(Γ,ρ)(tj , ξ)

]
R



 .

If, in particular, c = 0 and the operator A = aI + bSΓ has scalar coefficients
(N = 1), then A is invertible in Xm(Γ, ρ) from the left or the right in dependence
on whether Ind A ≤ 0 or Ind A ≥ 0, respectively.

Proof. If a singular integral operator is bounded in the space X0(Γ, ρ), it is bounded
in Xm(Γ, ρ) (see Theorem 3.1). This is also valid for any inverse operator and any
regularizer to the canonical operator A = aI + bSΓ. The same is true if Γ = R and
ρ(x) ≡ 1, or Γ = R+ and ρ(x) = xα.

A similar simultaneous boundedness property, for all values of the parameter
m ∈ N0, holds also for Mellin convolution operators M0

g in the spaces Xm(R+, xα)
(for general boundedness of Mellin convolution operators we refer to J. Elschner’s
results in [El1] and in [PS1, Ch. 5]).
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Thus, it suffices to prove the theorem for m = 0. For this case we apply
quasi-localization (see [Du5, DLS1, Si1, Sp1, Ra1]). Note that localization in the
weighted Hölder space is a special case (see [Po1, Sc1]). Let us expose here a short
description of the approach. If L(X) denotes the algebra of all bounded operators
in a Banach space X and S(X) ⊂ L(X) is the ideal of all compact operators, then
in the quotient algebra L(X)/S(X) (the Calkin algebra) the essential norm of an
operator,

|||B∣∣L(X)||| := inf
T∈S(X)

‖B + T
∣∣L(X)‖ , (3.39)

defines a norm of the coset which contains this operator.
K. Kuratowski introduced the measure of non-compactness ||Y||d (the Kura-

towski measure) of a bounded set Y ⊂ X as the minimal value of all numbers ε for
which Y can be covered by an ε-net of a finite number of elements. The Kuratowski
measure of the image of the unit sphere under an operator B,

||B
∣∣L(X)||d := ||BBX(0, 1)|| , BX(0, 1) := {x ∈ X : ‖x‖ = 1}, (3.40)

is called the measure of non-compactness of the operator B (see [AKPRS1]). Ob-
viously, ‖B

∣∣L(X)‖d ≤ |||B
∣∣L(X)|||, while the equality ||B

∣∣L(X)||d = |||B
∣∣L(X)|||

holds for X = Lp and does not hold for the Hölder-Zygmund spaces, where we have
the inequality |||B

∣∣L(X)||| ≤ C‖B
∣∣L(X)‖d with some constant C independent of

the operator B (see [AKPRS1, Po1]).
In [Po1], R. Pöltz proved that the Kuratowski measure of a multiplication

operator gI, g ∈ Hν(Γ), in the weighted Hölder space H0
ν (Γ, ρ) coincides with the

supremum-norm,

|||gI
∣∣L(H0

ν (Γ, ρ))||| ≤ C‖gI
∣∣L(H0

ν (Γ, ρ))‖d , (3.41)

‖gI
∣∣L(H0

ν (Γ, ρ))‖d = ‖gI
∣∣C(Γ)‖ := sup

t∈Γ
|g(t)| ,

although for the usual norm we have the inequality

‖gI
∣∣L(H0

ν (Γ, ρ))‖ ≤ ‖g∣∣PHν(Γ, TΓ)‖ := max
j=1,...,n

‖g∣∣Hν(Γj)‖ .

Property (3.21) enables a localization of coefficients similar to the case of the
space Lp(Γ, ρ), exposed in [DLS1] (see also [Du7, RS1]).

A local quasi-equivalent representative of A at a point t0 ∈ Γ has the form

At0 := ã(t0)I + b̃(t0)

[
SR+ −NR+,−γt0

NR+,γt0
−SR+

]

+c̃(t0)V
[

SR+ −NR+,−γt0

NR+,γt0
−SR+

]
V

= ã(t0)I + b̃(t0)

[
SR+ −NR+,−γt0

NR+,γt0
−SR+

]
− c̃(t0)

[
SR+ −NR+,γt0

NR+,−γt0
−SR+

]
,
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SR+ϕ(x) :=
1
πi

∞∫

0

ϕ(y)dy

y − x
, NR+,γϕ(x) :=

1
πi

∞∫

0

ϕ(y)dy

y − eiγx
, x ∈ R+ (3.42)

(see, e.g., [DLS1]). We prove that the local quasi-equivalent representative At0 is
locally invertible in the space Lp(R+, xαt0 ) for the Sobolev space, in Hν(R+, xαt0 )
for the weighted Hölder space, and in Hν

p(R+, xαt0 ) for the weighted Bessel po-
tential space. Let us consider these cases separately and, afterwards, the case of
Besov spaces.

I. The weighted Lebesgue space Lp(R+, xαt0 ).

Since the operator At0 is dilation invariant, i.e.,

DλAt0 = At0Dλ , Dλϕ(x) := ϕ(λx) , ∀ λ, x ∈ R+ , (3.43)

At0 is locally invertible at 0 ∈ R+ if and only if it is invertible in Lp(R+, xαt0 )
(see [Du8]).

Next we replace At0 by the equivalent operator

A0
t0 := xαt0+ 1

p At0x
−αt0− 1

p I = ã(t0)I + b̃(t0)M0
SXm(Γ,ρ)(t0,·) + c̃(t0)M0

SXm(Γ,ρ)(t0,·)

= M0
AXm(Γ,ρ)(t0,·) (3.44)

in the weighted space Lp(R+, x−1) (see [Du5, DLS1] and [RS1]). We recall that
the Mellin convolution operator M0

g is invertible in Lp(R+, x−1) if and only if the
symbol g(ξ), which belongs to the Lp-multiplier class Mp(R), does not vanish,
inf |g(ξ)| 6= 0 for ξ ∈ R, and that the inverse is M0

g−1 (see [Du6, DLS1, RS1]).
The proof is completed in a standard way by application of the local principle:
condition (3.38) is necessary and sufficient for A to have the Fredholm property
in Lp(Γ, ρ). The index formula is proved by a standard homotopy argument (see
[DLS1]).
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II. The weighted Bessel potential space Hν
p(R+, xαt0 ), 1/p− 1 < ν − αt0 < 1/p.

We apply the lifting procedure (see (3.19)-(3.22)). As a result we get an equivalent
operator,

Λν
−At0Λ

−ν
+ = ã(t0)I + b̃(t0)

[
Sν
R+ −Nν

R+,−γt0

Nν
R+,γt0

−Sν
R+

]

−c̃(t0)

[
Sν
R+ −Nν

R+,γt0

Nν
R+,−γt0

−Sν
R+

]
, (3.45)

Sν
R+ := Λν

−SR+Λ−ν
+ , Nν

R+,γt0
:= Λν

−NR+,γt0
Λ−ν

+ .

It is known that all Mellin convolution operators (e.g., NR+,γt0
) belong to

the Banach algebra generated by the Fourier convolution operators Wa with sym-
bols discontinuous at infinity 2, i.e., a(−∞) 6= a(+∞). Moreover, the algebra
M(Lp(R+, xαt0 )) of all Mellin convolution operators in Lp(R+, xαt0 ) is generated
by only two operators: by the identity I and by the Cauchy singular integral op-
erator,3 which is, at the same time, a convolution operator:

SR+ = M0
gp

= W− sign ξ , gp(ξ) := coth π

(
i

p
+ ξ

)
, ξ ∈ R (3.46)

(see (3.22) and [Du9, Lemma 2.2]).
Since we need only the local invertibility of the lifted convolution operator

Λν
−WaΛ−ν

+ = Waκν , κν(ξ) :=
(

ξ − i

ξ + i

)ν

, ξ ∈ R (3.47)

at 0 ∈ R+, we can work with any local representative and its symbol. Since the
operator gWh with g(±∞) = h(±∞) = 0 is compact in Lp(R) (see, e.g., [Du9]),
and κν(−∞) = e−2πiν , κν(+∞) = 1, it is easy to ascertain the local equivalence

Waκν

0∼ Waν , aν = e−2πiνa−χ−(ξ) + a+χ+(ξ) , (3.48)

2We have already proved, by a different method, that all four entries of the lifted matrix operator
Λν
−At0Λ−ν

+ in (3.45) belong to the algebra generated by SR+ and I (see (3.10)-(3.16) and (3.24)-

(3.25) above).
3This result is proved in [Du9, Lemma 2.2] for p = 2, but extends easily to arbitrary 1 < p < ∞
because the closed sub-algebra M(Lp(R+, xαt0 )) ⊂ M(L2(R+, xαt0 )) is generated by the same

operators I and SR+ .
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where χ±(ξ) are the characteristic functions of the half-lines R± and a(±∞) = a±.
The symbol Waν (ξ) of Waν is

Waν (ξ) = e−2πiνa− [1 + coth πΞ] + a+ [1− coth πΞ] (3.49)
= Gp(ξ) {a− [1 + coth π (Ξ− νi)] + a+ [1− cothπ (Ξ− νi)]} ,

Gp(ξ) :=
e−πνi sinhπ (Ξ− νi)

sinhπΞ
6= 0 , ξ ∈ R , Gp(±∞) = e−πνi , (3.50)

Ξ :=
i

p
+ iαt0 + ξ ,

and (3.50) holds since 0 < 1/p + αt0 and 1/p + αt0 − ν < 1.
As can be seen from (3.49), (3.50), to write down the symbol of the lifted

operator Λν
−BΛ−ν

+ , where B belongs to the Banach algebra generated by convolu-
tions, we should detach the common non-vanishing factor Gp(ξ) and replace 1/p by
1/p−ν in the definition of the symbol. This can also be interpreted as considering
operators in the weighted space Lp(R+, xαt0−ν) instead of Lp(R+, xαt0 ). The same
holds for all four entries of the lifted operator Λν

−At0Λ
−ν
+ in (3.45), and the symbol

of this operator acquires the form described in (3.34)-(3.37) as the symbol of A in
the weighted Bessel potential space KHν

p(Γ, ρ). The index formula is proved by a
standard homotopy argument (see [DLS1]).

III. The weighted Hölder space H0
ν (R+, xαt0 ), 0 < ν < 1, ν < αt0 < ν + 1.

The weighted Hölder space on the half-line is defined as follows:

H0
ν (R+, xαt0 ) := {ϕ0 = xαt0 ϕ ∈ Hν(R+) : ϕ0(0) = 0} ,

‖ψ | Hν(R+)‖ := sup
x∈R+

|ψ(x)|+ sup
x1,x2∈R+

x1 6=x2

|ψ(x2)− ψ(x1)|∣∣∣∣
x2

x2 + i
− x1

x1 + i

∣∣∣∣
ν . (3.51)

Absolutely similar to the case of weighted Lp-spaces we prove that the op-
erators S

(α)
R+ and N

(α)
R+,γ (see (3.10)) belong to the Banach algebra of operators in

the space H0
ν (R+, xαt0 ) generated by the two operators S+

R and I provided the
conditions

0 < α + αt0 − ν, αt0 < 1 , 0 < |γ| < π (3.52)
hold (see (3.10)-(3.16) and (3.24)-(3.25)).

The symbol of the singular integral operator SR+ (see (3.42)) in the space
H0

ν (R+, xαt0 ), given in [Du3, Du4], can be rewritten in the equivalent form

SH0
ν(R+,x

αt0 ) := coth π(i(αt0 − ν + iξ)) , ξ ∈ R , (3.53)

where t = t0, βt0 = αt0 − ν (cf. the diagonal terms in (3.35); this corresponds to
the symbol of SR+ in Lp(R+) with p = (αt0 − ν)−1). It is easy to ascertain that
the symbols of the entries NR+,∓γt0

in (3.45) are exactly those which are inserted
as the off-diagonal terms at t = t0 in the symbol of SZ0

µ(Γ,ρ) in (3.35). Obviously,
V SR+V = −SR+ and V NR+,γV = −NR+,−γ . Therefore we can easily write the
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symbol At0(ξ) of the operator At0 in H0
ν (R+, xαt0 ), which coincides with the sym-

bol AZ0
µ(Γ,ρ)(t0, ξ) in (3.34). This accomplishes the proof for the Hölder-Zygmund

space Z0
µ(Γ, ρ) because the condition inf | detAZ0

µ(Γ,ρ)(t0, ξ)| 6= 0 provides the cri-
terion of the invertibility of the local operator At0 in the local space H0

ν (R+, xαt0 )
for all t0 ∈ Γ. By the local principle, this coincides with the Fredholm criterion of
A in H0

ν(Γ, ρ) and, by the above considerations, in Z0
µ(Γ, ρ). The index formula is

proved by a standard homotopy argument (see [DLS1]).

IV. The weighted Besov space Bν
p,q(Γ, ρ).

Let condition (3.38) for the space Xm(Γ, ρ) = Bµ
p,q(Γ, ρ), µ = m + ν, hold. Then,

as already proved, A is Fredholm in Hν
p(Γ, ρ). Hence A has a regularizer R: AR =

I + Tr, RA = I + T` in Hν
p(Γ, ρ), where Tr, T` are compact operators. There exists

a sufficiently small ε > 0 such that A has a regularizer in Hν±ε
p (Γ, ρ). This implies

that R and the operators Tr, T` are all bounded in the spaces Hν±ε
p (Γ, ρ) and, due

to the Interpolation Theorem 2.2.iii, R, Tr and T` are all bounded in the space
Bν

p,q(Γ, ρ). Moreover, due to the interpolation property of compact operators (see
Lemma 2.1), Tr, T` are both compact in Bν

p,q(Γ, ρ). Therefore, A is Fredholm in
the space Bν

p,q(Γ, ρ).
If appropriate conditions hold and A is invertible in Hν

p(Γ, ρ), then A is
invertible in Hν±ε

p (Γ, ρ) for a sufficiently small ε and the inverse A−1 is bounded
in Bν

p,q(Γ, ρ) (see the foregoing case). Therefore the operator A is invertible in
Bν

p,q(Γ, ρ). The index formula is proved, again, by a standard homotopy argument
(see [DLS1]).

Corollary 3.3. Let

A0 = a0I + a1SΓ = (a0 + a1)(P+ + GP−), P± :=
1
2
(I ± SΓ), G :=

a0 − a1

a0 + a1
.

Then condition (3.38) holds if and only if the following two conditions are satisfied:
i. inf

t∈Γ
|a0(t)± a1(t)| > 0;

ii′. −2πβtj < arg
G(tj − 0)
G(tj + 0)

< 2π(1 − βtj ), j = 1, . . . , n, where βtj is defined

by (3.36).
Furthermore, condition ii’ is equivalent to the following:

ii′′. G(t) has the representation

G(t) = G0(t)
n∏

j=1

(t− z0)
νj

tj
, G0 ∈ C(Γ) ,

z0 ∈ Ω+ , −βtj < νj < 1− βtj , j = 1, . . . , n

and (t− z0)
νj

tj
is taken as a branch of (t− z0)νj which has a jump only at

the point tj ∈ Γ.
If conditions i and ii’ (or i and ii”) hold, then Ind A0 = ind G .
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Remark 3.4. ¿From Theorem 3.2 we find that the Fredholm properties and the
index of the operator A (see (3.33)) in the space Xm(Γ, ρ) are independent of the
smoothness parameter m ∈ N0. This means that if equation (3.33) has a solution
ϕ ∈ X0(Γ, ρ) for a given f ∈ Xm(Γ, ρ), then automatically ϕ ∈ Xm(Γ, ρ).

Remark 3.5. Equations more general than (3.33), such as

Ãϕ := aϕ + bV ϕ + cSΓϕ + dV SΓϕ + eSΓV ϕ + gV SΓV ϕ = f , (3.54)

are linear in the space Xm(Γ, ρ) over the field of the real numbers R. After “dou-
bling” the equation by adding the composition V Ãϕ = V f and introducing new
vector-functions Φ := (ϕ, V ϕ), F := (f, V f), we get the equivalent equation

[
a b

b a

]
Φ +

[
c e

d g

]
SΓΦ +

[
g d

e c

]
V SΓV Φ = F , (3.55)

which is linear (the same as in (3.33)) and can be treated in the space Xm(Γ, ρ) over
the field of complex numbers C (see [DL1, Li1]). We will only indicate the symbol
of the operator Ã because the Fredholm properties and the index are defined by
the symbol as in Theorem 3.2 (note that we do not need to double the size of
the symbol of the operator Ã as this was done for the operator A in order to
characterize the Fredholm property and the index of A). Namely,

AXm(Γ,ρ)(t, ξ) := ã(t) + b̃(t)V + c̃(t)SXm(Γ,ρ)(t, ξ)

+d̃(t)VSXm(Γ,ρ)(t, ξ) + ẽ(t)SXm(Γ,ρ)(t, ξ)V + g̃VSXm(Γ,ρ)(t, ξ)V , (3.56)

where, in addition to (3.34)-(3.37), we have to indicate the symbol V = VXm(Γ,ρ)

of the complex conjugate operator:

V :=

[
0 1

1 0

]
,

which is independent of the point t ∈ Γ and the space Xm(Γ, ρ).
Note that if BXm(Γ,ρ)(t, ξ) is the symbol of B, the symbol for the operator

V BV is
(VBV)Xm(Γ,ρ)(t, ξ) = B(t,−ξ)

(see [DLS1, § 1]). Therefore, VSXm(Γ,ρ)(t, ξ)V = SXm(Γ,ρ)(t,−ξ) (cf. (3.35)).

Remark 3.6. The readers familiar with [Du3, Du5, DLS1] will find differences in
writing the symbol of the operators A (cf. (3.34)-(3.37)): the symbol of the operator
A0 defined in [Du3, Du5, DLS1] has a block-diagonal form

AXm(Γ,ρ)(t, ξ) =




(A0)Xm(Γ,ρ)(t, ξ) 0

0 (A0)Xm(Γ,ρ)(t,−ξ)


 .
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It turns out that it is sufficient to consider only the first block as a symbol of A0.
It is obvious that this does not influence the Fredholm criterion

inf det (A0)Xm(Γ,ρ)(t, ξ) 6= 0,

while for the index formula with AXm(Γ,ρ)(t, ξ) we need to add the factor 1/2.

4. Application: an oblique derivative problem for the Laplacian in
a domain with a piecewise smooth boundary

Throughout this section Γ is a closed, oriented, simple (i.e., without self-inter-
sections), piecewise Ljapunov curve in the complex plane C, which borders a
bounded domain Ω+ as well as an unbounded domain Ω− and has knots at
TΓ := {t1, . . . , tn} ⊂ Γ. The boundary Γ = ∂Ω+ = ∂Ω− consists of n arcs

Γj := [tj , tj+1] =

)

tjtj+1, j = 1, . . . , n, which are µ-smooth (see § 1) and oriented,
with µ as in (1.4). Let πγj be the interior angle with respect to Γ between Γj−1

and Γj at the knot tj ∈ TΓ (0 ≤ γj ≤ 2, j = 1, ..., n). When γj = 0 or γj = 2, the
domain Ω+ has an outward or an inward peak, respectively, or, what is the same,
the boundary curve Γ has a cusp. As usual, ~ν(t) := (ν1(t), ν2(t)) denotes the outer
unit normal vector to Ω+ at the point t ∈ Γ \ TΓ.

The main objective of the present section is to study the following boundary
value problem (BVP): find a harmonic function

∆u(x) = 0 , x ∈ Ω± (4.1)

with given oblique derivative (also known as the Poincaré problem)

(∂~̀(t)u)±(t) + c(t)u±(t) = f(t) , t ∈ Γ, (4.2)

∂~̀(t) := `1(t)∂t1 + `2(t)∂t2 ,

where the coefficients are piecewise smooth such that

Im `1(t) ≡ Im `2(t) ≡ Im c(t) ≡ 0 , `1, `2, c ∈ KPCm(Γ, TΓ) , (4.3)

and the space KPCm(Γ, TΓ1) of piecewise m-smooth functions is defined similarly
to (1.16).

It is common to write the oblique derivative boundary condition (4.2) in the
form

a(t)(∂~ν(t)u)±(t) + b(t)(∂~s(t)u)±(t) + c(t)u±(t) = f(t) , t ∈ Γ , (4.4)

where

a(t) = `1(t) cos ϑt + `2(t) sin ϑt , b(t) = −`1(t) sin ϑt + `2(t) cos ϑt , (4.5)

and

∂~ν(t) := cos ϑt∂t1 + sin ϑt∂t2 , ∂~s(t) := − sin ϑt∂t1 + cos ϑt∂t2 (4.6)
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are the normal and the tangential derivatives, respectively, i.e., the derivatives
with respect to the outer unit normal vector and the positively directed tangent
vector at t ∈ Γ,

~ν(t) := (cos ϑt, sin ϑt) , ~s(t) := (− sin ϑt, cosϑt) . (4.7)

As usual, ϑt denotes the inclination of the outer unit normal vector with respect
to the abscissa axis (see, e.g., [Mu1, § 74] and the recent book [Pa1]).

In the particular case where the oblique derivative vector ~̀(t) = (`1(t), `2(t))
coincides with the outer unit normal vector ~̀(t) = ~ν(t) and c(t) ≡ 0, we get the
Neumann BVP. If ~̀(t) ≡ 0 and c(t) ≡ 1 we have the Dirichlet BVP.

It is known that the usual function spaces, W1
2(Ω

±) for the solutions and

W− 1
2

2 (Γ) for the right-hand sides, cannot ensure solvability and uniqueness of so-
lutions of BVPs in domains with outward peaks (see [DS1]). To describe suit-
able function spaces for the solutions and boundary data we recall the modified
Smirnov-Sobolev space KWm

p (Ω±, ρ). This space consists of all functions in Ω±

which have finite norm

‖ψ
∣∣KWm

p (Ω±, ρ)‖ := sup
0<r<1

‖ψ
∣∣KWm

p (Γ(r), ρ)‖ ,

where Γ(r) := {z = ω(rζ) : |ζ| = 1} are the images of the concentric circles of
radius r under the conformal mapping of the unit disk D1 onto the domain Ω±,

ω : D1 −→ Ω± . (4.8)

The weight function ρ(t) is defined by (1.12) and we assume that the following
conditions hold:

1 < p < ∞ , m = 0,±1, . . . , , −1
p

< αj < 1− 1
p

, j = 1, . . . , n . (4.9)

An equivalent definition of the modified Smirnov-Sobolev spaces KWm
p (Ω±, ρ)

is the following: Φ ∈ KWm
p (Ω±, ρ) if and only if Φ(z) is represented by the Cauchy

integral in the form

Φ(z) = c0 + CΓϕ(z) , c0 = const , ϕ ∈ KWm
p (Γ, ρ) ,

CΓϕ(z) :=
1

2πi

∫

Γ

ϕ(τ)dτ

τ − z
, z ∈ Ω± , (4.10)

and for a compact Ω+ one can take c0 = 0 (cf. [Pv1]).
We know that a function Φ ∈ Wm

p (Ω±, ρ) in general has traces Φ± on the
boundary Γ only for m ≥ 1, see [Tr1]; the same is true for the modified spaces Φ
∈ KWm

p (Ω±, ρ). In contrast to this fact, a function from the modified Smirnov-
Sobolev space Φ ∈ KWm

p (Γ, ρ), represented by the Cauchy integral in (4.10), has
the traces

Φ±(t) = c0 ± 1
2
ϕ(t) +

1
2
SΓϕ(t) , Φ± ∈ KWm

p (Γ, ρ) (4.11)
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for arbitrary m = 0,±1, . . ., 1 < p < ∞ provided ρ(t) is defined in (1.12) and
conditions (4.9) hold. For a negative m = −1,−2, . . ., the space KWm

p (Ω±, ρ) is
defined as the dual space to KW−m

p′ (Ω±, ρ−1), where p′ := p/(p− 1).
The Sokhotski-Plemelj [Mu1] formulae (4.11) are well known for Hölder con-

tinuous (see [Mu1]) and Lebesgue integrable functions (see [GK1]) and for func-
tions ϕ ∈ KWm

p (Γ, ρ), which follows from Theorem 3.1.i since the mentioned spaces
are dense in KWm

p (Γ, ρ) under the asserted conditions.

If ~̀(t) 6≡ 0 we take the right-hand side of (4.2) in the modified Sobolev space
KWm−1

p (Γ, ρ) and look for the solutions in the corresponding Smirnov-Sobolev
space KWm

p,loc(Ω±, ρ),

f ∈ KWm−1
p (Γ, ρ) , u ∈ KWm

p (Ω+, ρ) for Ω+ , (4.12)

u ∈ KWm
p,loc(Ω−, ρ) , u(x) = O(1) as |x| → ∞ for Ω− .

We suppose that ρ(t) is defined by (1.12) and that conditions (4.9) hold.
If ~̀(t) ≡ 0 we get the Dirichlet problem and replace (4.12) by

f ∈ KWm
p (Γ, ρ) , u ∈ KWm

p (Ω+, ρ) for Ω+ , (4.13)

u ∈ KWm
p,loc(Ω−, ρ) , u(x) = O(1) as |x| → ∞ for Ω− .

If the domain Ω± has no outward peak, conditions (4.12) can be replaced by
the following equivalent conditions, which are simpler:

f ∈ KWm−1
p (Γ, ρ) , u ∈ KWm

p (Ω+, ρ) for Ω+ ,

u ∈ KWm
p,loc(Ω−, ρ) , u(x) = O(1) as |x| → ∞ for Ω− ,

and similarly for (4.13) (see [DSi1]).

Theorem 4.1. Let Γ be piecewise Cm-smooth, let the weight function ρ(t) be defined
by (1.12) and let conditions (4.9) be satisfied. Let `1, `2, c ∈ KPCm(Γ) (see (4.3))
and introduce G(t) := `1(t) + i`2(t).

Further, let T := {ζ ∈ C : |ζ| = 1} be the unit circle and TT := {ζj :
ω(ζj) = tj , j = 1, . . . , n} (see (4.3)) be the pre-image of all knots (the angular
points and peaks) of Γ under the conformal mapping ω(z) of (4.8).

The oblique derivative problem (4.1), (4.4) (or (4.1), (4.2)) is Fredholm if and
only if one of the following conditions A or B is satisfied.

A. inf
t∈Γ

|G(t)| 6= 0, conditions (4.12) hold, and the following singular integral

equation on the unit circle is Fredholm:

P+
T ϕ(ζ) + F (ζ)P−T ϕ(ζ) = f0(ζ) , ζ ∈ T , (4.14)
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where

P±T :=
1
2
(I ± ST) , f0, ϕ ∈ KWm−1(T, TT) ,

F (ζ) := ρ(ω(ζ))G(ω(ζ))[G(ω(ζ))ρ(ω(ζ))]−1[ω′(ζ)]
1
p [ω′(ζ)]−

1
p , (4.15)

f0(ζ) := 2[G(ω(ζ))]−1ρ(ω(ζ))[ω′(ζ)]
1
p f(ω(ζ)) , ζ ∈ T . (4.16)

B. G(t) ≡ 0, inf
t∈Γ

|c(t)| 6= 0, conditions (4.13) hold and the following singular

integral equation on the unit circle is Fredholm:

P+
T ψ(ζ) + F (ζ)P−T ψ(ζ) +

F (ζ)− 1
2

K0ψ(ζ) = f0(ζ) , (4.17)

F (ζ) := ρ(ω(ζ))[ρ(ω(ζ))]−1[ω′(ζ)]
1
p [ω′(ζ)]−

1
p , f0, ψ ∈ KWm

p (T, TT) ,

f0(ζ) := 2[c(ω(ζ))]−1ρ(ω(ζ))[ω′(ζ)]
1
p f(ω(ζ)) , ζ ∈ T .

If one of these two conditions is satisfied we have furthermore in the corresponding
case:

A. The indices of the BVP (4.1), (4.4) and of the integral equation (4.14) are
equal.

The coefficient F (ζ) in (4.14) is piecewise smooth, i.e., F is in
KPCm(T, TT) (see Remark 4.2).

If c(t) ≡ 0, the BVP (4.1), (4.4) and the modified (with the help of
the one-dimensional operator K0) integral equations



P+
T ϕ(ζ) + F (ζ)P−T ϕ(ζ) = f0(ζ) ,

K0ϕ(ζ) :=
1
2π

π∫

−π

ϕ−(eiϑ)dϑ = 0 ,
for Ω− , (4.18)

P+
T ϕ(ζ) + F (ζ)P−T ϕ(ζ) +

F (ζ)− 1
2

K0ϕ(ζ) = f0(ζ) , for Ω+

are equivalent in the sense that there is a one-to-one correspondence be-
tween their solutions.

B. The indices of the BVP (4.1), (4.4) and of the integral equation (4.17)
are equal and, moreover, they are equivalent in the sense that there is a
one-to-one correspondence between their solutions.

The coefficient F (ζ) in (4.17) is piecewise smooth, that is, F is in
KPCm(T, TT) (see Remark 4.2).

Proof. The oblique derivative problem (4.1), (4.4) (or (4.1), (4.2)) can also be
written as follows (see [Mu1, § § 74,75]):

Re [G(t)(Ψ′)±(t) + c(t)Ψ±(t)] = f(t) , t ∈ Γ ,

u(x) = ReΨ(x) , Ψ ∈ KWm
p (Ω±, ρ) , x ∈ Ω± ,

G(t) = `1(t) + i`2(t) = eiϑta(t) + ieiϑtb(t) = eiϑta(t) + ei π
2 +iϑtb(t)

(4.19)



136 L. P. Castro, R. Duduchava, F.-O. Speck

(see (4.5)). Indeed, since

Ψ = u + iv ∈ KWm
p (Ω±, ρ) , Ψ′ :=

∂u

∂x
− i

∂u

∂y
∈ KWm−1

p (Ω±, ρ) ,

with the help of (4.5) and (4.6) we get

Re
[
G(t)(Ψ′)±(t) + c(t)Ψ±(t)

]
= `1(t)(∂t1u)±(t) + `2(t)(∂t2u)±(t) + c(t)u±(t)

= a(t)(∂~ν(t)u)±(t) + b(t)(∂~s(t)u)±(t) + c(t)u±(t)

and (4.19) follows.

The case B. Thus, we suppose G(t) ≡ 0 and follow the scheme of [DSi1, Theorem
1.16]. The analytic function defined by

Φ(z) :=





ρ(ω(z))[ω′(z)]
1
p Ψ(ω(z)) for |z| < 1 ,

ρ

(
ω

(
1
z

))[
ω′

(
1
z

)] 1
p

Ψ
(

ω

(
1
z

))
for |z| > 1

(4.20)

belongs to the space KWm
p (D1, TT). This can be verified straightforwardly with

the help of the following property of the conformal mapping ω:
∏

ζj∈Θ

(z − ζj)k∂k
z ω ∈ C(D1) (4.21)

for all k = 1, . . . ,m, where m ∈ N. Notice that property (4.21) was already proved
in [DSi2, Theorem 5.1].

For the analytic function Φ(z) in (4.20) the boundary condition (4.19) ac-
quires the form

Re [c(ω(ζ))Ψ±(ω(ζ))] =
c(ω(ζ))

2

[
Φ+(ζ)

ρ(ω(ζ))[ω′(ζ)]
1
p

− Φ−(ζ)

ρ(ω(ζ))[ω′(ζ)]
1
p

]
= f(ω(ζ)) ,

which can also be written as follows:

Φ+(ζ)− F (ζ)Φ−(ζ) = f0(ζ) , ζ ∈ T , (4.22)

with F (ζ) and f0(ζ) defined by (4.17). It is easy to verify by having recourse to
(4.21) that f0 ∈ KWm

p (T, TT).
Since Φ ∈ KWm

p (D1, TT), it has a representation of the form

Φ(z) = − i

2
K0ψ + CTiψ(z) = − i

4π

π∫

−π

ψ(eiϑ)dϑ +
1
2π

∫

|τ |=1

ψ(τ)dτ

τ − z
(4.23)

for all |z| 6= 1 with a density iψ, ψ ∈ KWm
p (T, TT). If we apply the Sokhotski-

Plemelj formulae for the boundary values of Φ (see (4.11)) we obtain (for a density
ψ)

Φ±(ζ) = −1
2
K0ψ ± 1

2
[ψ(ζ)± STψ(ζ)] = −1

2
K0ψ ± P±T ψ(ζ) , ζ ∈ T ,
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and inserting this into (4.22) we get (4.17) for the density ψ ∈ KWm
p (T, TT).

Let us remind that we need only the real-valued solution ψ = Re ψ of (4.17).
To this end let us verify that if ψ ∈ KWm

p (T, TT) is a solution, then ψ is a solution
as well. In fact, applying the relations

ζ =
1
ζ

, |ζ| = 1 , τ =
1
τ

, dτ = −dτ

τ2
,

dτ

τ
= idϑ for τ = eiϑ , −π < ϑ < π

we find that

F (ζ) = F−1(ζ) , f0(ζ) = F−1(ζ)f0(ζ) since f = f ,

P±T ψ(ζ) =
1
2
ψ(ζ)∓ 1

2πi

∫

|τ |=1

ψ(τ)dτ

τ − ζ
=

1
2
ψ(ζ)∓ 1

2πi

∫

|τ |=1

ζ

τ

ψ(τ)dτ

τ − ζ

= P∓T ψ(ζ)± 1
2πi

∫

|τ |=1

ψ(τ)
dτ

τ
= P∓T ψ(ζ)±K0ψ . (4.24)

Now, if ψ0 ∈ KWm
p (T, TT) is a solution of equation (4.17), taking the complex

conjugate and invoking (4.24) we get the same equality for ψ0:

P+
T ψ0(ζ) + F (ζ)P−T ψ0(ζ) +

F (ζ)− 1
2

K0ψ0 = f0(ζ) , ζ ∈ T .

Therefore, the real-valued function ψ := Re ψ = 1
2 (ψ0 + ψ0) is a solution that we

look for.
With a solution ψ = Re ψ of (4.17) at hand we find Φ(z) from (4.22), but the

latter has the following symmetry property:

Φ∗(z) := Φ
(

1
z

)
= Φ(z) , z ∈ Ω+ ∪ Ω− ,

as it follows from the definition (4.20). This property can be verified similarly to
(4.24):

Φ∗(z) = Φ
(

1
z

)
=

i

2
K0ψ +

1
2π

∫

|τ |=1

ψ(τ)dτ

τ − 1
z

=
i

2
K0ψ +

1
2π

∫

|τ |=1

z

τ

ψ(τ)dτ

τ − z

= − i

2
K0ψ +

1
2π

∫

|τ |=1

ψ(τ)dτ

τ − z
= − i

2
K0ψ + iCTψ(z) = Φ(z) . (4.25)

Inserting Φ(z) in (4.20) we find first Ψ(z) and afterwards u = ReΨ.
Conversely, if ψ(ζ) is a solution of (4.17) we easily ascertain that Ψ(z) defined

by (4.23) and (4.20) solves the BVP (4.19) and u(z) = Re Ψ(z) solves the Dirichlet
BVP (4.1), (4.2), (4.13) with ~̀≡ 0.

The case A. In this case we can ignore c(t) (take c(t) ≡ 0) because, after equiva-
lent reduction, the corresponding summand in the integral equation has a weakly
singular kernel (the corresponding operator is compact) and has no influence on
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the Fredholm property and the index of the equation. In the rest of the proof we
follow the scheme of [DSi1, Theorem 1.17].

The analytic function

Φ(z) :=





ρ(ω(z))[ω′(z)]
1
p Ψ′(ω(z)) for |z| < 1 ,

ρ

(
ω

(
1
z

))[
ω′

(
1
z

)] 1
p

Ψ′
(

ω

(
1
z

))
for |z| > 1 ,

(4.26)

belongs to the space KWm−1
p (D1, TT). This can be verified straightforwardly with

the help of (4.21).
For the analytic function Φ(z) in (4.26) we get the following BVP:

Φ+(ζ)− F (ζ)Φ−(ζ) = f0(ζ) , ζ ∈ T , (4.27)

where f0(ζ) and F (ζ) are defined in (4.15)-(4.16). It is easy to see, by applying
(4.21), that f0 ∈ KWm−1

p (T, TT).
Since Φ ∈ KWm−1

p (D1, TT), it has a representation by the Cauchy integral

Φ(z) = − i

2
K0ϕ + CTiϕ(z) = − i

4π

π∫

−π

ϕ(eiϑ)dϑ +
1
2π

∫

|τ |=1

ϕ(τ)dτ

τ − z
(4.28)

for all |z| 6= 1 with the density iϕ, ϕ ∈ KWm−1
p (T, TT). If we apply the Sokhotski-

Plemelj formulae for the boundary values (see (4.11)) we get equation (4.18).
Note that for the domain Ω− we have to require in addition (see the condition

in (4.18)) that

K0ϕ =
1
2π

π∫

−π

ϕ(eiϑ)dϑ = 0 .

To justify this we remind that Ψ ∈ KWm
p (Ω±, ρ) and that the derivative must

vanish at infinity, i.e., Ψ′(∞) = 0 (see (4.12)); therefore (see (4.26), (4.28))
π∫

−π

ϕ(eiϑ)dϑ = 2πΦ(0) = 2πρ(ω(0))[ω′(0)]
1
p Ψ′(ω(0)) = 0

because ω(0) = ∞.
Since we need only real-valued solutions ϕ = Re ϕ of (4.18), we verify by

analogy to (4.24) that, together with ϕ0, equations (4.18) have the solution ϕ0.
Therefore the real-valued solution ϕ := Re ϕ0 = 1

2 (ϕ0 +ϕ0) is the one we look for.
The function Φ(z) in (4.28) must have the symmetry property Φ∗(z) = Φ(z)

(cf. (4.25) and (4.26)). This can also be verified with the help of properties similar
to (4.24) (see (4.25)).

Conversely, if ϕ = Re ϕ is a real-valued solution of (4.18), then the function
Φ(z) defined by (4.26) solves the BVP (4.27), which implies that u(x) := Re Φ(z)
solves the BVP (4.1), (4.2) and (4.12) with c(t) ≡ 0.
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Remark 4.2. The coefficient F (ζ) in (4.14) and in (4.17) is piecewise smooth,
namely F ∈ KPCm(T, TT). Moreover, we can indicate the jumps at the knots:

F (ζj − 0)
F (ζj + 0)

=
G(tj + 0)
G(tj − 0)

[
G(tj − 0)
G(tj + 0)

]
ρ(ω(ζj − 0))
ρ(ω(ζj + 0))

[
ρ(ω(ζj + 0))
ρ(ω(ζj − 0))

]

×
[
ω′(ζj − 0)
ω′(ζj + 0)

] 1
p

[
ω′(ζj + 0)
ω′(ζj − 0)

] 1
p

= exp
{

2i[arg G(tj + 0)− arg G(tj − 0)]− 2πi

(
1
p

+ αj

)
(1− γj)

}
(4.29)

= exp
{

2i[arg G(tj + 0)− arg G(tj − 0)]− 2πi

p
− 2πiαj + 2πi

(
1
p

+ αj

)
γj

}
,

where πγj is the interior angle at the knot tj ∈ TΓ and αj is the exponent of the
weight at the same tj . In fact,

ρ(ω(ζj − 0))
ρ(ω(ζj + 0))

= lim
ε→0

[
ω(e−iεζj)− tj
ω(eiεζj)− tj

]αj

= lim
ε→0




ω(e−iεζj)− ω(ζj)
e−iεζj − ζj

ω(eiεζj)− ω(ζj)
eiεζj − ζj




αj

=
[
ω′(ζj − 0)
ω′(ζj + 0)

]αj

= exp[−2πiαj(1− γj)] .

¿From (4.29) and Corollary 3.3 it is clear that even if G(t) is continuous at
one of the outward peaks,

G(tj − 0) = G(tj + 0) when γj = 0 ,

then the corresponding singular integral operator in (4.14) and (4.17) is not Fred-
holm (moreover, is not normally solvable, i.e., has non-closed image).

Due to Theorem 4.1 we are able to apply Theorem 3.2 to the oblique deriv-
ative problem (4.1), (4.4) (or to (4.1), (4.2); cf. [DSi1]).

Acknowledgement. The authors would like to thank Albrecht Böttcher for various
helpful suggestions during the preparation of the manuscript.
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Basel 1991.

[Ra1] V. Rabinovich, Pseudodifferential equations in unbounded regions, Sov. Math.
Dokl. 12 (1971), 452–456 (translation from Dokl. Akad. Nauk SSSR 197 (1971),
284–287.

[RS1] S. Roch, B. Silbermann, The Calkin image of algebras of singular integral oper-
ators, Integral Equations and Operator Theory 12 (1989), 854–897.

[Sc1] H. Schulze, On singular integral operators on weighted Hölder spaces, Wiss. Z.
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