
PARTIAL DIFFERENTIAL EQUATIONS ON
HYPERSURFACES

Roland DUDUCHAVA(1)

Dedicated to Mikheil Bashaleishvili on the occasion of his 80-th birthday anniversary

Abstract. We propose an approach which allows global representation of ba-
sic differential operators (such as Laplace-Beltrami, Hodge-Laplacian, Lamé,
Navier-Stokes, etc.) and of corresponding boundary value problems on a hyper-
surface S in Rn, in terms of the standard spatial coordinates in Rn. The tools
we develop also provide, in some important cases, useful simplifications as well
as new interpretations of classical operators and equations.

The obtained results are applied to the Dirichlet and Neumann boundary value
problems for the Laplace-Beltrami operator ΔC and to the system of anisotropic
elasticity on an open smooth hypersurface C ⊂ S with the smooth boundary
Γ := ∂C . We prove the solvability theorems for the Dirichlet and Neumann
BVPs on open hypersurfaces in the Bessel potential spaces.
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1 INTRODUCTION

The purpose of this work, which is based on the joint paper with D. Mitrea & M. Mitrea
[DMM1], is to provide a (relatively) simple calculus of Boundary value problems (BVP’s)
for partial differential equations (PDE’s) on hypersurfaces in Rn. Such BVPs arise in a
variety of situations and have many practical applications. See, for example, [Ha1, §72] for
the heat conduction by surfaces, [Ar1, §10] for the equations of surface flow, [Ci1], [AC1] for
the vacuum Einstein equations describing gravitational fields, [TZ1] for the Navier-Stokes
equations on spherical domains, as well as the references therein.

A hypersurface S in Rn has the natural structure of a (n− 1)-dimensional Riemannian
manifold and the aforementioned PDE’s are not the immediate analogues of the ones cor-
responding to the flat, Euclidean case, since they have to take into consideration geometric
characteristics of S such as curvature. Inherently, these PDE’s are originally written in local
coordinates, intrinsic to the manifold structure of S .

The main aim of this paper is to demonstrate the approach which allows representation
of the most basic partial differential operators (PDO’s), as well as their associated bound-
ary value problems, on a hypersurface S in R

n, in global form, in terms of the standard
spatial coordinates in Rn. It turns out that a convenient way to carry out this program is by
employing the the so-called Günter derivatives-the column of surface gradient

D := (D1,D2, ...,Dn)
� (1.1)

(cf. [Gu1], [KGBB1], [Du1]). Here, for each 1 ≤ j ≤ n, the first-order differential operator
Dj is the directional derivative along π ej , where π : Rn → TS is the orthogonal projection
onto the tangent plane to S and, as usual, ej = (δjk)1≤k≤n ∈ Rn, with δjk denoting the
Kronecker symbol.

The operator D is globally defined on (as well as tangential to) S , and has a relatively
simple structure. In terms of (1.1), the Laplace-Beltrami operator on S simply becomes (see
[MM1, pp. 2ff and p. 8.])

ΔS = D∗D on S . (1.2)

Alternatively, this is the natural operator associated with the Euler-Lagrange equations for
the variational integral

E [u] = −1

2

∫
S

‖Du‖2 dS. (1.3)

A similar approach, based on the principle that, at equilibrium, the displacement mini-
mizes the potential energy, leads to the derivation of the equation for the elastic hypersurface
(cf. [DMM1, Du3] for the isotropic case).

These results are useful in numerical and engineering applications (cf. [AN1], [Be1],
[Ce1], [Co1], [DL1], [BGS1], [Sm1]) and we plan to treat a number of special surfaces in
greater detail in a subsequent publication.



2. BRIEF REVIEW OF THE CLASSICAL THEORY OF HYPERSURFACES 3

The layout of the paper is as follows. In §2-§3 we review some basic differential-
geometric concepts which are relevant for the work at hand (e.g., hypersurfaces and different
methods of their identification). In §4-§5 we identify the most important partial differential
operators on hypersurfaces, such as gradient, divergence, Laplace-Beltrami operator. In §5,
starting from first principles, we identify the natural operator of anisotropic elasticity on a
general (elastic, linear) hypersurface S (see [DMM1] for the isotropic Lamé operator). Our
approach is based on variational methods.

In §7, §8 we study the Dirichlet and Neumann boundary value problems (BVPs) on
an open hypersurface. We apply two approaches-the functional-analytic based on the Lax-
Milgram Lemma, which requires less smoothness of the underlying hypersurface, and the
potential method, which appliues the fundamental solution and imposes the condition of
infinite smoothness on the hypersurface, also allows investigation of the equivalent boundary
pseudodifferential equations in the scale of Bessel potential spaces Hs

p(Γ), where |s| ≤ � and
1 < p <∞, provided the boundary Γ := ∂S is �-smooth.

The same project is carried out in §9-§12 for the equations of anisotropic elasticity and
we study the Dirichlet and Neumann BVPs for them on an open hypersurface.

2 BRIEF REVIEW OF THE CLASSICAL THEORY OF HYPERSURFACES

The next definition of a hypersurface is basic in the present chapter and we give two
further definitions later. The alternative definitions are very useful treating various problems
and later, in Lemma 2.5, we prove equivalence of all three definitions.

The next definition is most universal and can be used for manifolds.

Definition 2.1 A Subset S ⊂ Rn of the Euclidean space is called a hypersurface if it has
a covering S =

⋃M
j=1 Sj and coordinate mappings

Θj : ωj → Sj := Θj(ωj) ⊂ R
n, ωj ⊂ R

n−1, j = 1, . . . ,M, (2.1)

such that the corresponding differentials

DΘj(p) := matr [∂1Θj(p), . . . , ∂n−1Θj(p)] , (2.2)

have the full rank

rankDΘj(p) = n− 1 , ∀p ∈ Yj , k = 1, . . . , n , j = 1, . . . ,M ,

i.e. , all points of ωj are regular for Θj for all j = 1, . . . ,M .

Such mapping is called an immersion as well.

The hypersurface is called smooth if the corresponding coordinate diffeomorphisms Θj

in (2.1) are smooth (C∞-smooth). Similarly is defined a μ-smooth hypersurface.

Next we expose yet another definition of a hypersurface. Definition 2.1 is a particular
(canonical) case of a hypograph surface represented by a single coordinate function M = 1,
while Definition 2.2 deals with a general hypersurface.
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Definition 2.2 An open subset

ΩΦ =
{
(p = (p′, pn) ∈ R

n : p′ ∈ R
n−1 , pn ∈ R , pn < Φ(p′)

}
. (2.3)

in the Euclidean space Rn, generated by a real-valued function Φ : Rn−1 → R, is called a
hypograph domain.

The boundary

SΦ =
{
z ∈ R

n : z = (p′,Φ(p′)) , p′ ∈ ω ⊂ R
n−1
}

(2.4)

of a hypograph domain ΩΦ is called a hypograph surface. If Φ is μ-smooth, S is referred
to a μ-smooth hypersurface.

If Φ is a Lipschitz continuous

|Φ(p′) − Φ(q′)| ≤ L|p′ − q′| , p′, q′ ∈ R
n−1 . (2.5)

S is referred to as a Lipschitz hypersurface.

Definition 2.3 An open subset Ω ⊂ Rn (compact or with outlets at infinity) is called a
domain with smooth boundary (with a μ-smooth or with the Lipschitz boundary) if there
exists a finite family of open sets

{
Ωj

}N
j=1

such that:

i. each Ωj , j = 1, . . . , N can be transformed into a hypograph domain by an affine
transformation, i.e., by a rotation and a translation;

ii. Ω =
⋂N
j=1 Ωj and ∂Ω =

⋂N
j=1 ∂Ωj .

The Ck-smooth (the Lipschitz) boundary S := ∂Ω of a hypograph domain Ω ⊂ Rn is
called a hypograph surface.

The third definition of a hypersurface is implicit.

Definition 2.4 Let k ≥ 1 an ω ⊂ Rn be a compact domain. An implicit Ck-smooth (an
implicit Lipschitz) hypersurface in Rn is defined as the set

S =
{

X ∈ ω : ΨS (X ) = 0
}
, (2.6)

where ΨS : ω → R is aCk-mapping (or is a Lipschitz mapping) which is regular∇Ψ(X ) �=
0.

Note, that by taking a single function ΨS for the implicit definition of a hypersurface S
we does not restrict the generality: if

S =
M⋃
j=1

Sj , and Sj =
{

X ∈ ωj ⊂ R
n : Ψj(X ) = 0

}
,
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we pick up a partition of unity
{
ψj
}M
j=1

subordinated to the covering
{
Sj

}M
j=1

. The surface
S is then represented by formula (2.6) and a single implicit function

ΨS :=
M∑
j=1

ψjΨj. (2.7)

Lemma 2.5 Definition 2.1, Definition 2.3 and Definition 2.4 of a hypersurface S are all
equivalent.

Proof: Let us fix an arbitrary point p ∈ S = ∂Ω at the boundary. According the Defini-
tion 2.3 locally, after an affine transformation, which brings p to the origin p = 0 and the
tangential surface at p to the hyperplane pn = 0, a neighborhood ωj ⊂ S of the point p
is given by the surface equation ωj = {pn = Φj(p

′) : p′ ∈ Ωj ⊂ Rn−1}. Thus, modulo an
affine transformation, ωj =

{
(x′,Φ(x′)) : x′ ∈ Ωj ⊂ Rn−1

}
represents the image of the

mapping Θj(·) = (·,Φ(·)) : Ωj �→ Sj ⊂ S and, for some integer M ∈ N, S =
⋃M
j=1 Sj

is a hypersurface according the Definition 2.1.

Vice versa, let a hypersurface S in Rn be given by the definition 2.1. Fixing arbitrary
point p ∈ S we recall that the Jacoby matrixDΘj = ∇Θj of the coordinate diffeomorphism
has rank n − 1. We choose a non-degenerate (n − 1) × (n − 1) minor among n minors of
DΘj(p1, . . . , pn) and let gkj be the distinguished component of the vector-function Θj =(
g1
j , . . . , g

n
j

)�
not present in this minor. Due to the implicit function theorem (cf., e.g., [Ta2,

V. I]) there exists a small neighborhood ωj of p = 0 and the implicit function Φj(p
′) such

that gmj
(
Φj(p

′)
)

= pm, m = 1, . . . , k − 1, , k + 1, . . . , n for (p′, pn) ∈ ωj.

Next we shift the point p to the origin p = 0 and apply the rotation which interchanges
the distinguished variable pk with pn. Then, modulo an affine transformation of the variable
p, the part ωj of the surface S is represented as the graph

(
p′, gkj

(
Φj(p

′)
))�

, i.e. as pn =

Ψj(p) := gkj
(
Φj(p

′)
)

and S is a hypersurface according the Definition 2.3.

The implication Definition 2.3 =⇒ Definition 2.4 is trivial: a piece S j
Φ of a hypograph

surface SΦ defined by a function Φj ∈ Ck(V ), V ⊂ Rn−1, is an implicitly defined hyper-
surface and the corresponding function is

Ψj
S (Θ) := xn − Φj(x′) , x = (x′, xn) ∈ ωj := Vj × [−ε, ε] , (2.8)

ε > 0 , j = 1, . . . ,M .

How to convert a local implicit representation into a global one is shown in (2.7).

To complete the proof we only need check the implication: Definition 2.4 =⇒ Definition
2.3.

Let Sj be a part of a hypersurface S given implicitly by a single function Ψj ∈ Ck(ωj),
ωj ⊂ Rn and ∂kj

Ψj(x) �= 0. Due to the implicit function theorem there exists the implicit
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functions Φj ∈ Ck(Ωj), Ωj ⊂ Rn−1 such that

Ψ
(
x1, . . . , xkj−1,Φj(x1, . . . , xkj−1, xkj−1, . . . , xn), xkj−1, . . . , xn

)
≡ 0

∀x ∈ Uj , j = 1, . . . , n .

Then, modulo the affine transformation

(x1, . . . , xkj−1, xkj−1, . . . , xn) �→ (p1, . . . , pn−1) , pn = xkj
,

the part Sj := Uj ∩ S of the surface is represented as the graph pn = Φj(p
′) and S is a

hypersurface according the Definition 2.3.

Remark 2.6 Redefinition of a Ck-smooth hypograph hypersurface as an implicit hypersur-
face in (2.8) is not unique: we can also take

ΨS (Θ) := xn − Φ(x′) +G(x) , x = (x′, xn) ∈ ω := V × R , (2.9)

where G(X ) = 0 for ∀X ∈ S . Moreover, G(x) might be non-properly smooth G ∈ Cm(ω)
with m < k.

Definition 2.4 is a powerful source of hypersurfaces.

Example 2.7 For a fixed pair R > 0 and p ∈ Rn the set

S
n−1
R (p) :=

{
x = (x1, . . . , xn)

� ∈ R
n : ΨR,p(x) = |x− p|2 −R2 = 0

}
, (2.10)

defines the sphere of radius R centered at p.

Similarly, for a pair of vectors p ∈ Rn and of r = (r1, . . . , rn)
� with positive components

r1 > 0, . . . , rn > 0 the set

E n−1
r,p :=

{
x = (x1, . . . , xn)

� ∈ R
n : Ψr,p(x) =

n∑
j=1

(
xj − pj
rj

)2

− 1 = 0

}
(2.11)

defines the ellipsoid.

Both, S
n−1
R (p) and E n−1

r,p are hypersurfaces in Rn.

In some applications it is necessary to extend the outer unit vector field to a hypersurface
in a neighborhood of S , preserving some important features. For example, such extension
is needed to define correctly the normal derivative (the derivative along normal vector fields,
outer or inner). We consider here a natural extension based on implicit representation of a
surface S and note that another possible extension is based on the hypograph representation
(2.4).
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Lemma 2.8 Let S ⊂ Rn be a k-smooth hypersurface, k = 1, 2, . . ., given implicitly
ΨS (X ) = 0 by the function ΨS ∈ Ck(ΩS ) defined in a neighborhood ΩS of the surface
S ⊂ ΩS ⊂ Rn.

i. The unit vector field

N :=
∇ΨS

|∇ΨS | = {N1, . . . ,Nn}� , Nj =
∂jΨS

|∇ΨS | , j = 1, . . . , n (2.12)

is Ck−1-smooth and, for any (fixed) point x ∈ ΩS it is normal vector to the level
surface

SC := {y ∈ R
n : ΨS (y) = C := ΨS (x)} . (2.13)

In particular, on the initial surface S it coincides with the unit normal vector field

N (x) = ν(x) for all x ∈ S .

ii. If k ≥ 2 the following equality holds:

N (x) = ∇ΨS (x) − C

|∇ΨS (x)| or, componentwise, Nj(x) = ∂j
ΨS (x) − C

|∇ΨS (x)| , (2.14)

∀x ∈ SC , j = 1, . . . , n .

iii. The following equalities

∂jNk = ∂kNj hold for all j, k = 1, . . . , n. (2.15)

Proof: Let {Sj,Θj}Mj=1 be the atlas which defines S (cf. Definition 2.1). The pull-back
functions Ψ∗

j(x) = (Θj,∗ΨS )(x) = Ψj(Θj(x)), x ∈ ωj ⊂ Rn−1, are immersions: the
corresponding gradient has maximal rank

∇Ψ∗
j(x) := matr [∂1Ψ

∗
j(x), . . . , ∂n−1Ψ

∗
j(x)] ,

rank∇Ψ∗
j(x) = n− 1 ∀x ∈ ωj , j = 1, . . . ,M .

Since Ψ∗
j(x) ≡ 0 for x ∈ ωj, the chain rule provides

∂kΨ
∗
j(x) =

n−1∑
m=1

(∂mΨS )(Θj(x))(∂kΘj)m(x) = 0 , k = 1, . . . , n− 1

and justifies that the gradient of the hypograph function is orthogonal to all tangential vectors〈
∂kΘj(x), (∇ΨS )(Θj(x))

〉 ≡ 0 ∀x ∈ ωj , k = 1, . . . , n , j = 1, . . . ,M . (2.16)

Therefore, the normed gradient

ν(X ) =
(∇ΨS )(X )

|(∇ΨS )(X )| , X ∈ S (2.17)
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coincides with the outer normal vector on the surface (cf. Fig. 1).
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The same holds for the level surfaces SC , since this surface is defined by the implicit
function ΨS − C.

The equality (2.14) follows taking into account that ΨS (x) − C ≡ 0 for all x ∈ SC :

∂j
ΨS (x) − C

|∇ΨS (x)| =
(∂jΨS )(x)

|∇ΨS (x)| − (ΨS (x) − C)
∂j |∇ΨS (x)|
|∇ΨS (x)|2 =

(∂jΨS )(x)

|∇ΨS (x)| = Nj(x)

for all x ∈ SC .

Equalities (2.15) are simple consequences of (2.14).

Definition 2.9 Let S be a surface in Rn with unit normal ν. A vector filed N ∈ C1(ΩS )

in a neighborhood ΩS of S , will be referred to as a proper extension if N
∣∣∣
S

= ν , it is

unitary |N | = 1 in ΩS and if N satisfies the condition (2.15).

In the sequel we will dwell on a proper extension and apply the above properties of N .

Corollary 2.10 For any proper extension N (x), x ∈ ΩS ⊂ Rn of the unit normal vector
field ν to the surface S ⊂ ΩS the equality

∂N N (x) = 0 holds for all x ∈ ΩS . (2.18)

In particular, for the derivatives

Dk = ∂k − Nk∂N , k = 1, . . . , n , (2.19)
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which are extension into the domain ΩS of Günter’s derivatives Dk = ∂k − νk∂ν on the
surface S , we have the equality:

DkNj = ∂kNj − Nk∂N = ∂kNj j, k = 1, . . . , n. (2.20)

Proof: We apply (2.15) and proceed as follows:

∂N Nj =
n∑
k=1

Nk∂kNj =
n∑
k=1

Nk∂jNk =
1

2

n∑
k=1

∂jN
2
k = ∂j1 = 0

for all j = 1, . . . , n.

Remark 2.11 Lemma 2.8 was proved partly in [DMM1, § 3] for a particular implicit func-
tion representing the given hypersurface S , namely for the signed distance

ΨS (x) := −+dist(x,S ) x ∈ ΩS , (2.21)

where the signs “+” and “–” are chosen for x “above” (in the direction of the unit normal
vector) and “below” S , respectively.

Lemma 2.12 For an arbitrary unitary extension N (x) ∈ C 1(ΩS ), |N (x)| ≡ 1, of ν(X ),
in a neighborhood ΩS of S , the following conditions are equivalent:

i. ∂N N
∣∣
S

= 0, i.e., ∂N Nj(x) → 0 for x→ X ∈ S and j = 1, 2, ..., n;

ii. [∂kNj − ∂jNk]
∣∣
S

= Dkνj − Djνk = 0 for k, j = 1, 2, . . . , n.

Proof: The implication (ii) ⇒ (i) follows readily by writing

∂N N
∣∣
S

=

{
n∑
j=1

Nj∂jNk

}n

k=1

∣∣∣∣∣
S

=

{
n∑
j=1

Nj∂kNj

}n

k=1

∣∣∣∣∣
S

=
1

2
∇x|N |2

∣∣∣
S

=
1

2
∇x1 = 0 . (2.22)

As for the inverse implication, we first observe that, in general,

∂V N
∣∣∣
S

= 0 & N
∣∣∣
S

= ν imply ∂V N
∣∣∣
S

depends only on ν (2.23)

and does not depend on a particular extension N for arbitrary vector field V .

Let

πS : R
n → V (S ), πS (t) = I − ν(t)ν�(t) =

[
δjk − νj(t)νk(t)

]
n×n , t ∈ S (2.24)
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denote the canonical orthogonal projection π2
S = πS onto the space of tangential vector

fields to S at the point t ∈ S :

(ν, πS V ) =
∑
j

νjVj −
∑
j,k

ν2
j νkVk = 0 for all V = (V1, . . . , Vn)

� ∈ R
n .

In the sequel we shall tacitly assume that the projection πS is extended to the neighbor-
hood ΩS

π̃S (x) =
[
δjk − Nj(x)Nk(x)

]
n×n , π̃2

S = π̃S , x ∈ ΩS . (2.25)

Note that U = π̃S U + 〈U ,N 〉N for arbitrary field U in the neighborhood ΩS . Then

∂UN
∣∣∣
S

= ∂π̃S UN
∣∣∣
S

+ (U ,N )∂N N
∣∣∣
S

= ∂π̃S UN
∣∣∣
S

= ∂πS Uν ,

because ∂N N
∣∣∣
S

= 0 and πS U is a tangential field to S . Thus, we can dwell on the

particular extension (2.14) and observe

∂kNj |S = ∂k∂j
ΨS

|∇ΨS |
∣∣∣∣
S

= ∂j∂k
ΨS

|∇ΨS |
∣∣∣∣
S

= ∂jNk|S ,

which proves the implication (i) ⇒ (ii).

Remark 2.13 It is clear that a normal vector field and it’s (non-unique) extension exists for
arbitrary Lipschitz surface, but almost everywhere on S .

Moreover to enjoy the properties listed in Lemma 2.8, we have to consider smoother
than Lipschitz surfaces and assume C 2-smoothness of S .

3 GAUSS AND STOKE’S FORMULAE FOR DOMAINS IN Rn

In the present section we consider a hypersurface S , which is a boundary of some
domain Ω ⊂ Rn. We dwell on Definition 2.1 and 2.2 of a (hypograph) hypersurface S ,
which are most convenient for the present purposes.

The Gauß formula (3.1) is a basic result in calculus on surfaces. We refer to [Mc1] for
the simplest proof of the following proposition.

Proposition 3.1 (Gauß formula). Let Ω ⊂ Rn be a domain with the Lipschitz boundary
S := ∂Ω, ν(t) = (ν1(t), . . . , νn(t))

� be the outer unit normal vector to S and f ∈ W
1
1(Ω).

Then ∫
Ω

∂jf(y) dy =

∮
S

νj(τ)f(τ) dS (3.1)

in the following sense: the integral in the left hand side exists (since, by the condition,
∂jf ∈ L1(Ω)) and the integral in the right-hand side is defined by the above equality.
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Remark 3.2 The last statement of the foregoing Proposition 3.1 explains the traces γS ∂jf(X )

of f ∈ W1
1(Ω) despite, a well known theorem that the trace γS ∂jf(X ) = ∂jf(X )

∣∣∣
S

of a

function f ∈ W1
1(Ω) on the boundary surface S = ∂Ω does not exist for sure. The assertion

does not contradicts the trace theorem, because states existence of the trace in combination
with components of the normal vector νj(x)f(x).

Next we are going to derive some important consequences of the Gauß formula.

Corollary 3.3 Let Ω, S = ∂Ω and ν(τ) = (ν1(τ), . . . , νn(τ))
� be as in Lemma 3.1.

i. The divergence formula∫
Ω

divF (y) dy =

∮
S

〈ν(τ), F (τ)〉 dS (3.2)

holds for the divergence

divF (x) := ∂1f1(x) + · · ·+ ∂nfn(x) (3.3)

of a vector field F = (f1, . . . , fn)
� ∈ W

1(Ω).

ii. The integration by parts∫
Ω

∂jf(y)g(y) dy =

∮
S

νj(τ)f(τ)g(τ) dS −
∫

Ω

f(y)∂jg(y) dy (3.4)

holds for arbitrary f, g ∈ W1(S ).

Proof: Formula (3.2) is a direct consequences of the Gauß formula (3.1):∫
Ω

divF (y) dy =
∑
j

∫
Ω

∂jfj(y)dy =
∑
j

∮
S

νj(τ), fj(τ) dS =

∮
S

〈ν(τ), F (τ)〉 dS .

Since f, g ∈ W2
2(S ) implies fg ∈ W2

1(S ), we can apply the Gauß formula (3.1) to the
Leibnitz equality ∂j [ψ(y)ϕ(y)] = ϕ(y)∂jψ(y) + ψ(y)∂jϕ(y) and get (3.4) readily.

Let us consider the normal derivative

∂νϕ := ν · ∇ϕ =

n∑
j=1

νj∂jϕ , ϕ ∈ C1(Ω) . (3.5)

Corollary 3.4 (Green’s formula). Let Ω ⊂ Rn be a domain with Lipschitz boundary.

For the Laplace operator
Δ := ∂2

1 + · · ·+ ∂2
n (3.6)
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and functions ϕ, ψ ∈ W1
2(Ω) the following I and II Green formulae are valid:∫

Ω

(Δψ)(y)ϕ(y)dy =

∮
∂Ω

(∂νψ)(τ)ϕ(τ) dS −
n∑
j=1

∫
Ω

(∂jψ)(y)(∂jϕ)(y)dy (3.7)∫
Ω

(Δψ)(y)ϕ(y)dy =

∫
Ω

ψ(y)(Δϕ)(y)dy

+

∮
∂Ω

[
(∂νψ)(τ)ϕ(τ) + ψ(τ)(∂νϕ)(τ)

]
dS (3.8)

Proof: Let, for time being, ϕ, ψ ∈ C2(Ω). By applying (3.4) we prove I Green formulae in
(3.7).

By writing a similar formula∫
Ω

(ψ)(y)Δϕ(y)dy

=

∮
∂Ω

(∂νψ)(τ)ϕ(τ) dSS −
n∑
j=1

∫
Ω

(∂jψ)(y)(∂jϕ)(y)dy (3.9)

and taking the difference with (3.7), we prove II Green formulae in (3.8).

For arbitrary ϕ, ψ ∈ W1
2(Ω) the Green formulae (3.7) and (3.7) follow by approximation

ϕj → ϕ, ψj → ψ, ϕj, ψj ∈ C2(Ω).

Stoke’s derivatives are concrete examples of weakly tangential operators

MS := [Mjk]n×n , Mjk := νj∂k − νk∂j = ∂mj,k
. (3.10)

These derivatives are directional with respect to a tangential vector fields to S (cf. (4.8) and
(4.10)). Indeed, the directing vector mjk(X ) = νj(X )ek − νk(X )ej of Mjk, where {ej}nj=1

is the Cartesian frame in Rn, is tangential to S :

ν(X ) · mjk(X ) = νj(X )νk(X ) − νk(X )νj(X ) ≡ 0, X ∈ S . (3.11)

Therefore the Stoke’s derivative Mjk operator can be applied to functions defined on the
surface S only.

Corollary 3.5 Let Ω, S = ∂Ω and ν(τ) = (ν1(τ), . . . , νn(τ))
� be as in Lemma 3.1.

The following Stoke’s formulae∮
S

(Mjkf)(τ) dS = 0 (3.12)

holds for j, k = 1, . . . , n and for all f ∈ W1
1(S ).

The Stokes derivatives Mj,k are skew-symmetric:∮
S

(Mjkψ)(τ)ϕ(τ) dS = −
∮

S

ψ(τ)(Mjkϕ)(τ) dS (3.13)

for j, k = 1, . . . , n and for arbitrary pair ϕ, ψ ∈ W2
2(S ).
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Proof: We assume temporarily that f ∈ C1(S ) and extend this function into the domain
F ∈ C1(Ω)

⋂
C2(Ω) with the trace on the boundary F

∣∣
S

= f . Such extension is possible
since the boundary is a Lipschitz hypersurface. It is possible to construct a direct extension
by means of function theory (cf. E. Stein [St1]). But we consider here the following indirect
construction: consider the Dirichlet problem for the Laplace operator ΔF = 0 in Ω with
a boundary condition F

∣∣
S

= f . It is well known that the solution exists and, moreover,
F ∈ C∞(Ω) (cf., e.g., [Le1]). Herewith we have found the extension.

Now apply the Gauß formula (3.1) to a function ∂j∂kf = ∂k∂jf twice:∫
Ω

(∂j∂kF )(y) dy =

∮
S

νj(τ)(∂kf)(τ) dS ,∫
Ω

(∂k∂jF )(y) dy =

∮
S

νk(τ)(∂jf)(τ) dS .

By taking the difference we get (3.12) immediately.

Note that formula (3.12) is valid for arbitrary f ∈ C1(S ) without knowing an extension
F (x) of f(X ) into the domain Ω, because the Stoke’s derivative Mjk can be applied to a
function defined only on the surface.

For a function ψ ∈ W1
2(S ) formula (3.12) is proved by approximation (cf. the conclud-

ing part of the proof of Lemma 3.1).

Formula (3.13) follows from (3.12) Since Mjk is a linear differential operator

Mjk[ϕψ] = (Mjkϕ)ψ + ϕ(Mjkψ)

and by applying (3.12) we get

0 =

∮
S

(
Mjk[ψϕ]

)
(τ) dS =

∮
S

(
Mjkϕ

)
(τ)ψ(τ) dS +

∮
S

ϕ(τ)
(
Mjkψ

)
(τ) dS .

The obtained equality completes the proof of (3.13).

4 CALCULUS OF TANGENTIAL DIFFERENTIAL OPERATORS

The content of the present section partly follows [DMM1, § 4].

Throughout the present section we keep the following convention: S is a hypersurface
in R

n, given by an immersion

Θ : ω → S , ω ⊂ R
n−1 (4.1)

with a boundary Γ = ∂S , given by another immersion

ΘΓ : ω → Γ := ∂S , ω ⊂ R
n−2 , (4.2)
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ν(X ) is the outer unit normal vector field to S an N (x) denotes an extended unit field in
a neighborhood ωS of S (cf. Definition 2.9). νΓ(t) is the outer normal vector field to the
boundary Γ, which is tangential to S .

A curve on a smooth surface S is a mapping

γ : I �→ S , I := (a, b] ⊂ R , (4.3)

of a line interval I to S .

A vector field on a domain Ω in Rn is a mapping

U : Ω → R
n , U(x) =

n∑
j=1

Uj(x)e
j , (4.4)

where U j ∈ C∞
0 (Ω) and ej is the element of the natural Cartesian basis in Rn

e1 := (1, 0, . . . , 0), en := (0, . . . , 0, 1), (4.5)

in the Euclidean space Rn. {ej}nj=1 is also called the natural frame or the Cartesian frame.

By V (Ω) we denote the set of all smooth vector fields on Ω.

Let U ∈ V (Ω) and consider the corresponding ordinary differential equations (ODE):

y′ = U(y) , y(0) = x , x ∈ Ω . (4.6)

A solution y(t) of (4.6) is called an integral curve (or orbit) of the vector field U . The
mapping

y = y(t, x) = F t
U(x) : Ω → Ω (4.7)

is called the flow generated by the vector field U .

A vector field U ∈ V (Ω) defines the first order differential operator

Uf(x) = ∂Uf(x) := lim
h→0

f
(
F h

U(x)
)− f(x)

h
=

d

dt
f
(
F t

U(x)
)∣∣
t=0

. (4.8)

By applying the chain rule to (4.8) we get

∂Uf(x) = 〈U(x),∇f(x)〉 =

n∑
j=1

Uj(x)
∂f

∂xj
. (4.9)

By V (S ) we denote the set of all smooth vector fields, tangential to the hypersurface
S . Note that if the vector U is tangential, i.e., U ∈ V (S ), then its orbit can be chosen as
a curve on the surface S ,

F t
U(x) : I → S , I ⊂ ω ⊂ R

n−1. (4.10)

Then the derivative ∂U defined by (4.8) is applicable to a function f ∈ C1(S ) which is
defined on the surface S only.

Note, that if a function f is defined not only on the surface S , but also in a neighborhood
of S ⊂ Rn, formula (4.9) gives the rule for the differentiation of f along a vector field
U ∈ V (S ).
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Definition 4.1 A derivative ∂S
U : C1(S ) → C1(S ), U ∈ V (S ) is called covariant if it

is a linear automorphism of the space of tangential vector fields:

∂S
U : V (S ) −→ V (S ). (4.11)

If S is embedded in Rn, a directional derivative ∂U along a tangential vector field U ∈
V (S ) maps the space of tangential vector fields to the space of possibly non-tangential
vector fields

∂U : V (S ) �−→ V (S ) .

If composed with the projection

∂S
U V := πS ∂UV = ∂UV − 〈ν, ∂UV 〉ν (4.12)

(cf. (2.24)), it becomes an automorphism of the space of tangential vector fields (cf. (4.11)).

The Günter’s derivatives
{
Dj

}n
j=1

are tangent and represent a full system (cf. (4.37)-
(4.39)). But the derivative DjV is not covariant and maps the tangential vectors to non-
tangential ones Dj : V (S ) �→ V (S ). To improve this we just eliminate the normal com-
ponent of the vector by applying the canonical orthogonal projection πS onto V (S ) (cf.
(2.24))

DS
j V := πS DjV = DjV − 〈ν,DjV 〉ν = DjV + (∂V νj)ν , (4.13)

where ∂V ϕ :=
n∑
k=1

V 0
k ∂kϕ =

n∑
k=1

V 0
k Dkϕ

and obtain an automorphisms of the space of tangential vector fields

DS
j : V (S ) → V (S ) . (4.14)

To check the equalities in (4.13) we recall 〈ν,V 〉 =

n∑
j=1

νjV
0
j = 0 and proceed as follows

∂V ϕ=
n∑
k=1

V 0
k ∂kϕ =

n∑
k=1

V 0
k Dkϕ+

n∑
k=1

V 0
k νk∂νϕ =

n∑
k=1

V 0
k Dkϕ,

〈ν,DjV 〉=
n∑

m=1

νmDjV
0
m =

n∑
m=1

[
Dj(νmV

0
m) − V 0

mDjνm
]

=−
n∑

m=1

V 0
mDjνm = −

n∑
m=1

V 0
mDmνj = −∂V νj . (4.15)

Note that if UV (S ) is tangent then

U =
n∑
j=1

U0
j e

j =
n∑
j=1

U0
j d

j since
n∑
j=1

νjU
0
j = 〈ν,U〉 ≡ 0, (4.16)
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i.e. the system
{
dj
}n
j=1

is full in V (S ). Although this system is linearly dependent, the

representation of a tangential vector by
{
dj
}n
j=1

is unique.

Definition 4.2 A tangential vector field U ∈ V (S ) is called Killing’s field, if it generates
a flow consisting of isometries and preserves the metric on the surface S (cf. [Ta2, v. I, Ch.
2, § 3]).

In other words the metric g(V ,W ) is invariant under the flow F t
U generated by the

vector field U and can be recorded in terms of the Lie derivative LU (cf. [Ta2, v. I, Ch. 2],
[DMM1]) as follows:

LUg(V ,W ) ≡ 0 for all V ,W ∈ V (S ) . (4.17)

The representation matrix DefS U of the bilinear form

2(DefS (U )V ,W ) := LUg(V ,W ), ∀U ,V ,W ∈ V (S ) (4.18)

is called the deformation tensor (cf., e.g., [Ta2, V. I, Ch. 5, § 12]).

Note that the deformation tensor is the symmetrized covariant derivative (cf., e.g., [Ta2,
V. I, Ch. 5, § 12]).

(DefS U)(V ,W )=
1

2

{
〈∂V U ,W 〉 + 〈∂WU ,V 〉

}
=

1

2

{
〈∂S

V U ,W 〉 + 〈∂S
WU ,V 〉

}
, ∀V ,W ∈ V (S ). (4.19)

Let

dj := πS ej ∈ V , j = 1, . . . , n, (4.20)

be the projection of the Cartesian frame onto the tangent space V (S ) to the hypersurface
S . Obviously, the frame {dj}nj=1 is linearly dependent

〈ν,dj〉 =

n∑
j=1

νjdj = 0, j = 1, . . . , n.

Then any tangential vector field U ∈ V (S ) has the following representation

U =

n∑
j=1

U0
j e

j =

n∑
j=1

U0
j d

j ∈ V (S ) (4.21)

in the canonical Cartesian frame and its projection.
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Lemma 4.3 In Cartesian coordinates the deformation tensor DefS (U) =
[
D0
jk(U )

]
n×n

has order n and of type (0, 2) and

D0
jk(U)=(DefS (U))jk =

1

2

[
(DS

k U)j + (DS
j U)k

]
=

1

2

[
DjU

0
k + DkU

0
j + ∂U(νjνk)

]
, ∀ j, k = 1, . . . , n. (4.22)

where (DS
j U)k denotes the k − th component of the covariant derivative DS

j U .

Proof: For the proof we refer to [DMM1].

Remark 4.4 Let us introduce the linearly dependent but full system of vectors{
djk := dj ⊗ dk

}n
j=1
, dj = ej − νjν, j, k = 1, . . . , n (4.23)

in contrast to the system {
ejk := ej ⊗ ek

}n
j=1

. (4.24)

which is linearly independent. Then the deformation tensor can be written as follows

DefS (U)=
[
D0
jk(U)

]
n×n =

n∑
j,k=1

D0
jk(U)djk =

n∑
j,k=1

V 0
kW

0
j

[
(DS

k U)j + (DS
j U )k

]
=

n∑
j,k=1

V 0
kW

0
j

[
DkU

0
j + DjU

0
k + ∂Uνjνk

]
djk

=

n∑
j,k=1

V 0
kW

0
j

[
DkU

0
j + DjU

0
k

]
djk, (4.25)

since, due to (4.38)

n∑
j,k=1

∂U(νjνk)d
jk =

n∑
j,k,m=1

[
νjU

0
mDmνk + νkU

0
mDmνj

]
djk = 0.

The obtained formulae prompts the following representation for the entries of the deforma-

tion tensor Djk(U) =
1

2

[
(DjU)k+(DkU)j

]
, which is false since all rows of the deformation

tensor DefS (U) (and all columns-since the tensor is a tensor DefS (U) is symmetric) should
be tangent for U ∈ V (S ). This is the case if DefS (U) is written in the form (4.22).

Definition 4.5 Let S be a Lipschitz hypersurface in Rn and C ⊂ S be an open subsurface
with the Lipschitz boundary Γ = ∂C .

We say that a class of functions U (Ω) has the strong unique continuation property from
the boundary if a vector-function U ∈ U (Ω) which vanishes U(s) = 0, ∀ s ∈ γ on an open
subset of the boundary γ ⊂ Γ, vanishes on the entire C .
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Let R(S ) denote the linear space of all deformation-free tangential vector fields (or
Killing’s vector fields; see Lemma 4.3).

For the proof of the next Proposition 4.6 we refer to [Du3].

Proposition 4.6 The set of Killing’s vector fields R(S ) coincides with the set of all solu-
tions to the following system of partial differential equations

D0
jk(U) = (DS

j U)k + (DS
k U )j = DjU

0
k + DkU

0
j + ∂U(νjνk) ≡ 0 (4.26)

for 1 ≤ j ≤ k ≤ n

provided that 〈ν,U〉 =
∑n

j=1 νjU
0
j = 0 and is finite dimensional, i.e., dim R(S ) < ∞ (cf.

(4.21)) and R(S ) ⊂ C∞(S ) is the surface S is infinitely smooth.

If S is a C2-smooth hypersurface in Rn and C ⊂ S is an open C2-smooth subsurface,
the set R(S ) has the strong unique continuation property from the boundary.

Let us find a formally adjoint operator to Dj .

With (4.50) and with (2.15) we get

D∗
j ϕ== −∂jϕ +

n∑
k=1

∂k
(
νjνkϕ

)
= −∂jϕ+

n∑
k=1

[
νjνk∂kϕ+

(
νk∂kνj)ϕ+ νj

(
∂kνk

)
ϕ
]

=−Djϕ− νjH
0

Sϕ+ (∂ννj)ϕ , ϕ ∈ C1(ΩS ), (4.27)

since, like (2.22),

∂ννj =

n∑
k=1

νk∂kνj =

n∑
k=1

νk∂jνk =
1

2

n∑
k=1

∂jν
2
k =

1

2
∂j1 = 0 (4.28)

(cf. Lemma 2.12.ii). Here

H 0
S (X ) = −

n∑
k=1

Dkνk(X ) (4.29)

and (n− 1)−1H 0
S (X ) = HS (X ) is actually the mean curvature of the surface at X ∈ S .

It is obvious that the formal adjoint to the derivation ∂U with respect to the vector field

U ∈ V (S ) in Cartesian coordinates U =
n∑
j=1

U0
j d

j, can be written as follows

∂∗Uf =

[
n∑
j=1

U0
j Dj

]∗
f = −

n∑
j=1

D∗
j (U

0
j f) = −

n∑
j=1

(Dj + HS νj)(U
0
j f)

= −
n∑
j=1

Dj(U
0
j f) = −∂Uf − (divS U

)
f , (4.30)
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since D∗
j = −Dj − νjH 0

S (cf. (4.52)) and
n∑
j=1

HS νjU
0
j f = HS f〈ν,U〉 = 0. This further

entails that
(∂S

U )∗ = πS (∂U)∗ = −∂S
U − divS U , ∀U ∈ V (S ). (4.31)

In particular, for U = dj,(
∂S

dj

)∗
=
(
DS
j

)∗
= −DS

j − divS dj = −DS
j − νjH

0
S , j = 1, . . . , n, (4.32)

since

divS dj =
n∑
k=1

Dk(νjνk) =
n∑
k=1

[
νjDkνk + νkDkνj)

= νjdivS ν + ∂ννj = νjH
0

S .

The adjoint Def∗S to DefS is defined in Cartesian coordinates by

(Def∗SZ)k =
1

2
(DS

j )∗
[
Zjk + Zkj

]
(4.33)

for each tensor field Z =
[
Zjk
]

of type (0, 2). Indeed, by assuming S a closed surface, we
get ∫

S

〈DefS U , Z〉 dS =

∫
S

Tr
[
(DefS U)Z�] dS =

1

2

∑
j,k

∫
S

[
DkUj + DjUk

]
Zjk dS

=
1

2

∑
j,k

∫
S

Uk
[(

D∗
j Z

jk +
(
D∗
kZ

kj
]
dS =

∫
S

〈U ,Def∗SZ〉 dS

which holds for all tangential vectors U ∈ V (S ) and all tensor fields Z =
[
Zjk
]

of type
(0, 2) and Def∗S defined in (4.33).

Let

P (D)u =
n∑
j=1

aj∂ju+ bu , aj , b ∈ C1(Rm×m) (4.34)

be a first-order differential operator with real valued (variable) matrix coefficients, acting on
vector-valued functions u = (uβ)β in Rn and its principal symbol is given by the matrix-
valued function

σ(P ; ξ) :=
n∑
j=1

ajξj ξ =
{
ξj
}n
j=1

∈ R
n . (4.35)

Definition 4.7 We say that P is a weakly tangential operator to the hypersurface S , with
unit normal ν, provided that

σ(P ; ν) = 0 on the hypersurface S . (4.36)
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The most important weakly tangential differential operators to the hypersurface for us
are the following:

A. The weakly tangential Günter’s derivatives

Dj := ∂j − νj∂ν = ∂j − νj

n∑
k=1

νk∂k , j = 1, . . . , n ,

introduced in (2.19);

B. The weakly tangential Stoke’s derivatives Mjk = νj∂k − νk∂j , introduced in § 3.

The Günter’s and Stoke’s derivatives are tangent since their directing vector fields are
tangent

Dj := ∂dj = dj · ∇ , Mjk := ∂mjk
= mjk · ∇ ,

dj := πS ej = ej − νjν = ν ∧ (ν ∧ ej
)

=

n∑
k=1

(δjk − νjνk)e
k ,

mjk := νjek − νkej , 〈dj,ν〉 = 0 , 〈mjk,ν〉 = 0 , j, k = 1, . . . , n .

(4.37)

Here πS is the projection on the tangential space to the surface. Therefore Dj and Mjk can
be applied to functions which are defined on the surface S only.

The generating vector fields
{
dj
}n
j=1

{
mjk

}n
j,k=1

are not frame since they are linearly
dependent

n∑
j=1

νj(X )dj(X ) ≡ 0 , mjj = 0 , (4.38)

but both systems
{
dj
}n
j=1

and
{
mjk

}n
j,k=1

are complete in the space of all tangential vector
fields: any vector field U ∈ V (S ) is represented as follows

U(X ) =
n∑
j=1

U j(X )dj(X ) =
n∑

0≤j<k≤1

cjk(X )mjk(X ) . (4.39)

Let N be a proper extension of the unit normal vector field ν to S (cf. Definition 2.9).
Then each operator Dj and Mjk extends accordingly by setting (cf. (2.19))

Dj = ∂j − Nj∂N , Mjk := Nj∂k − Nk∂j , 1 ≤ j, k ≤ n (4.40)

In the sequel, we shall make no distinction between the operator Dj or Mjk on S and the
extended one in R

n given by (4.40).

Note that in a weakly tangential operator P (cf. (4.34)) the coordinate derivatives ∂j can
be replaced by the Günter’s derivatives Dj :

P (D)u =
n∑
j=1

aj∂ju+ bu =
n∑
j=1

ajDju+ σ(P ; ν)u = P (D)u . (4.41)
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Therefore, any weakly tangential operator P in (4.34) is strongly tangential to S , which
means the following: there exists an extended unit field N such that

σ(P ; N ) = 0 in an open neighborhood of S in R
n . (4.42)

In particular, the extended operators Dj and Mjk are strongly tangential.

For further reference, below we collect some of the most basic properties of this system
of differential operators.

Lemma 4.8 Let N be a proper extension of the unit vector field of normal vectors ν to S .
The following relations are valid for j, k = 1, . . . , n:

i. Mjj = 0, Mjk = −Mkj;

ii. ∂k =
∑n

j=1 NjMjk + Nk∂N = −∑n
k=1 NkMjk + Nj∂N ;

iii.
∑n

k=1 MjkNk = −NjH 0
S , where H 0

S (X ) = −divS ν(X ) and HS (X ) := (n −
1)−1H 0

S (X ) is the mean curvature at X ∈ S ;

iv. Dj =
n∑
k=1

NkMkj;

v. Mjk = NjDk − NkDj;

vi.
n∑
j=1

NjDj = 0;

vii.
m+1∑

r,j,k=m−1

σ(r, j, k)NiMjk = 2
∑

{r,j,k}⊂{(m−1),m,(m+1)}
σ(r, j, k)NiMjk = 0 for m = 2, . . . , n − 1,

where σ(r, j, k) is the permutation sign;

viii. [Dj ,Dk] =
n∑
r=1

(MjkNr)Dr +
[
Nj∂N Nk − Nk∂N Nj

]
∂N ;

ix. [Dj ,Dk] =

n∑
r=1

(MjkNr)Dr = Nk[DN , ∂j ] − Nj[DN , ∂k];

x. ∂jNk = DjNk = DkNj.

Proof: The identities (i)-(ii) and (iv)-(vii) are simple consequences of the definitions. For
the equality (iii) we have

n∑
k=1

MjkNk =

n∑
k=1

MjkNk =

n∑
k=1

(Nj∂k − Nk∂j)Nk

= Nj div N − 1

2
∂j(‖N ‖2) = −NjH

0
S ,

as claimed.
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To prove (viii) we calculate

DjDk=(∂j − Nj∂N )(∂k − Nk∂N ) = ∂j∂k − (∂jNk)∂N

−
n∑
r=1

[
Nk(∂jNr)∂r + NkNr∂r∂j + NjNr∂r∂k

]
+ Nj

(
∂N Nk

)
∂N + NjNk∂

2
N

=−
n∑
r=1

Nk(∂jNr)∂r + Nj(∂N Nk)∂N +Bjk

=−
n∑
r=1

Nk(∂jNr)Dr + Nj(∂N Nk)∂N +Bjk , (4.43)

since
n∑
r=1

Nk(∂jNr)Nr∂N =
1

2

n∑
r=1

Nk(∂jN
2
r )∂N =

1

2
Nk(∂j1)∂N = 0 .

The operator

Bjk = ∂j∂k − (∂jNk)∂N −
n∑
r=1

[
NkNr∂r∂j + NjNr∂r∂k

]
+ NjNk∂

2
N

is symmetric Bjk = Bkj and the desired commutator identity in (viii) follows from (4.43).

The first commutator identity in (ix) utilizes the facts that ∂N Nk = 0 (cf. Lemma (2.15))
and follows from the identity in (viii). The second commutator identity in (ix) applies the
same identity ∂N Nk = 0, the identity ∂jNk = ∂kNj (cf. (2.18)), and follows by a routine
calculations.

The identities in (x) are already proved in (2.15) and (2.20).

The next proposition generalizes Stoke’s formulae (3.12) and (3.13). Since the proof
applies some properties of differential forms on hypersurfaces, we drop the proof and refer
[Ta2, § 2.2, Theorem 2.1], where the case a compact Riemannian manifolds is considered.

Proposition 4.9 Let νΓ(ξ) =
(
ν1

Γ(ξ), . . . , νnΓ(ξ)
)�

be the unit tangential vector to S at the
boundary point ξ ∈ Γ := ∂S and outward (unit) normal vector to the boundary Γ = ∂S .
Then ∫

S

MjkϕdS =

∮
Γ

[
νjν

k
Γ − νkν

j
Γ

]
ϕ+ ds , (4.44)∫

S

DjϕdS =

∮
Γ

νjΓϕ
+ ds (4.45)

for any real-valued function ϕ ∈ C1(S ), its trace ϕ+ on the boundary Γ, and any j �= k,
j, k = 1, . . . , n.
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The formal adjoint in Rn to P in (4.34) is defined by

P ∗u = −
∑
j

∂ja
�
j u+ b�u (4.46)

Moreover, if Ω ⊂ Rn is a smooth, bounded domain, and if P is a first-order operator, weakly
tangential to ∂Ω, then, applying (3.4), P can be integrated by parts over Ω without boundary
terms, i.e.

(Pu, v)Ω :=

∫
Ω

〈Pu, v〉 dx =

∫
Ω

〈u, P ∗v〉 dx =: (u, P ∗v)Ω (4.47)

for all vector-valued sections of vector fields u, v ∈ C1(Ω̄).

For a weakly tangential differential operator P on a closed hypersurface S let Q∗
S

denote the “surface” adjoint:

(QSϕ, ψ)S :=

∮
S

〈QSϕ, ψ〉 dS =

∮
S

〈ϕ,Q∗
Sψ〉 dS = (ϕ,Q∗

Sψ)S (4.48)

∀ϕ, ψ ∈ C1(Ω̄).

Throughout the paper we use the following notation

(u, v)S :=

∮
S

u�(t)v(t)dS , (ϕ, v)Γ :=

∮
Γ

ϕ�(s) v(s)ds . (4.49)

Corollary 4.10 For a weakly tangential differential operator P in (4.34) the surface-adjoint
and the formally adjoint operators coincide, i.e.,

P ∗
Sϕ = P ∗ϕ = −

n∑
j=1

∂ja
�
j ϕ+ b�ϕ . (4.50)

In particular, the Stoke’s derivatives are skew-symmetric(
M ∗

jk

)
S

= M ∗
jk = −Mjk = Mkj ∀ j, k = 1, . . . , n , (4.51)

while the adjoint operator to the operator Dj is given by formula(
Dj

)∗
S
ϕ = D∗

j ϕ = −Djϕ− νjH
0

Sϕ , ϕ ∈ C1(S ) . (4.52)

For any real-valued function ϕ ∈ C1(S ), any 1 ≤ j < k ≤ n and for νΓ =(
ν1

Γ, . . . , ν
n
Γ

)�
being the the same as in Theorem 4.9 the following integration by parts for-

mula is valid: ∫
S

[
(Djϕ)ψ − ϕD∗

j ψ
]
dS =

∮
Γ

νjΓϕψ ds . (4.53)
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Proof: We start by proving (4.51): applying the The Stoke’s formulae (3.12) from § A.5, we
get ∮

S

(Mjkϕ)ψ dS =

∮
S

(Mjkϕψ) dS −
∮

S

ϕ(Mjkψ) dS = −
∮

S

ϕ(Mjkψ) dS

and the equality (
M ∗

jk

)
S

= −Mjk = Mkj (4.54)

follows. Moreover, note that the formal adjoint to Mjk = NjDk − NkDj is

M ∗
jkϕ=

(
Nj∂k − Nk∂j

)∗
ϕ = −∂j(Nkϕ) + ∂k(Njϕ)

=Nk∂jϕ− Nj∂kϕ+ (∂jNk)ϕ− (∂kNj)ϕ = −Mjkϕ

(cf. (2.15)), where ϕ ∈ C1(ΩS ) is defined in a neighborhood of S . (4.51) is proved.

To prove (4.50) we note that, on S ,

Pϕ=

n∑
j=1

aj∂jϕ+ bϕ =
∑
j

aj
[
Dj + νj∂ν

]
ϕ

=
n∑
j=1

ajDjϕ+ bϕ+ σ(P ; ν)∂νϕ =
n∑
j=1

ajDjϕ (4.55)

=

n∑
j,k=1

ajνkMkjϕ (4.56)

due to Lemma 4.8.iv and the weak tangentiality of P . The property postulated in (4.50)
follows from (4.56) and (4.51):

P ∗
Sϕ =

n∑
j,k=1

(Mkj)
∗
S a

�
j νkϕ+ b�ϕ =

n∑
j,k=1

(Mkj)
∗a�j νkϕ+ b�ϕ = P ∗ϕ .

(4.52) follows as in (4.27), since (cf. (2.18)) ∂N Nj = 0.

To prove (4.29) we apply (2.22) and proceed as follows

n∑
k=1

Dkνk =
n∑
k=1

(
∂kνk − νk

n∑
j=1

νj∂jνk

)
= −H 0

S −
n∑
j=1

νj
2
∂j1 = −H 0

S .

For the proof of the last formula (4.53) we apply Lemma 4.8.iv, (4.51), the equalities
n∑
k=1

ν2
k = 1,

n∑
k=1

νkν
k
Γ = 0 and proceed as follows:

∮
S

(Djϕ)ψ dS=
n∑
k=1

∮
S

νk(Mjkϕ)ψ dS −
n∑
k=1

∮
S

ψ(Mjkνkψ) dS

+
n∑
k=1

∮
Γ

(ν2
kν

j
Γ − νkνjν

k
Γ)ϕψ ds =

∮
S

ψ(D∗
j ψ) dS +

∮
Γ

νjΓϕψ ds .



4. CALCULUS OF TANGENTIAL DIFFERENTIAL OPERATORS 25

Lemma 4.11 Let P be, as in ((4.34)), a first-order differential operator with C 1-smooth
coefficients. P is weakly/strongly tangential if and only if the adjoint P ∗ operator is so.

If P is weakly tangential to S and P is defined in a neighborhood of S , then

(Pϕ)
∣∣∣
S

= P
(
ϕ|S

)
(4.57)

for every C1 function ϕ defined in a neighborhood of S . In particular,

Djϕ
∣∣
S

= Dj

(
ϕ
∣∣
S

)
, Mjkϕ

∣∣
S

= Mjk

(
ϕ
∣∣
S

)
, j, k = 1, . . . , n . (4.58)

Furthermore, (4.57) is true for the adjoint P ∗, and∫
S

〈Pϕ, ψ〉 dS =

∫
S

〈ϕ, P ∗ψ〉 dS +

∮
Γ

〈σ(P ; νΓ)ϕ, ψ〉 ds (4.59)

for any vector-valued functions ϕ, ψ ∈ S .

Proof: The first assertion follows since σ(P ∗; ξ) = −σ(P ; ξ)�, for each ξ ∈ Rn.

Due to the representation (4.55) it suffices to prove (4.57) for only the operator Dj = dj ·
∇, where dj = πS ej = N ∧(N ∧ej

)
is at least C1-smooth vector field in a neighborhood

ΩS of S , tangent to the surface S at surface points (cf. (4.37)). Thus, we have to justify
the following equality:

Djϕ
∣∣
S

=
(
dj · ∇)ϕ∣∣∣

S
= dj · ∇

(
ϕ
∣∣∣
S

)
= Dj

(
ϕ
∣∣∣
S

)
. (4.60)

The vector field dj(x) = dj(θ,X ) depends on the signed distance θ = dist(x,S ) =

−+|x− X | continuously (θ > 0 for the outer domain and θ > 0 for the inner one). Let F t
dj(·)

be the integral curve of the vector field dj and

F t
dj(·) : ΩS → ΩS , F t

dj(0,·) = F t
dj (·) : S → S (4.61)

be the flow generated by this vector field �θ in the neighborhood ΩS (cf. (4.7)). Since the
flow depends continuously on the parameter θ, we get(

dj(θ,X ) · ∇)ϕ∣∣∣
S

= lim
θ→0

d

dt
ϕ
(
F t

dj(θ,X )

)∣∣∣
t=0

=
d

dt
ϕ
(
F t

dj

)∣∣
t=0

= dj · ∇(ϕ∣∣
S

)
= Dj

(
ϕ
∣∣∣
S

)
and (4.60) is proved.

Next, using (4.55), (4.53) and integrating by parts we get∫
S

〈Pϕ, ψ〉 dS=

n∑
j=1

∫
S

〈ajDjϕ, ψ〉 dS +

∫
S

〈bϕ, ψ〉 dS

=
n∑
j=1

∫
S

〈ϕ,D∗
j a

�
j ψ〉 dS +

∫
S

〈ϕ, b�ψ〉 dS +
n∑
j=1

∮
Γ

〈ϕ, νjΓa�j ψ〉 dS

=

∫
S

〈ϕ, P ∗ψ〉 dS +

∮
Γ

〈σ(P ; νΓ)ϕ, ψ〉 ds
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and this completes the proof.

Based on the above formulae it is easy to write adjoint to a high order partial differential
operator

G(D) =
∑

|α|≤k
gα(X )Dα =

∑
|β|≤k

fβ(X )M β, X ∈ S

∇α
S := Dα1

1 . . .Dαn
n , α ∈ Nn

0 ,

M β
S := M β1

1 . . .M βm
m , β ∈ Nm

0 , m =
n(n− 1)

2

on a hypersurface S and find ample examples of self adjoint operators among them. Be-
low we will consider concrete examples of such self adjoint operators which encounter in
applications.

5 DIFFERENTIAL OPERATORS ON HYPERSURFACES IN R
n

Let us start by the definition of the surface divergence divS , the surface gradient ∇S

and the surface Laplace-Beltrami operator ΔS .

Consider the following differential 1-form

ωf(V ) := ∂V f =

n−1∑
k=1

V k∂kf for f ∈ C1(S ) , V =

n−1∑
k=1

V kgk ∈ V (S ), (5.1)

where V (S ) denotes the linear space of tangential vector fields to a surface S . The form
is well defined because the differential operator ∂V is tangential and can be applied to a
function f defined on the surface S only.

Due to the Riesz theorem for a given f there exists a vector field ∇S f ∈ V (S ) such
that

ωf(V ) := 〈∇S f,V 〉 for all V ∈ V (S ) , (5.2)

which is, according the classical differential geometry, the surface Gradient of a function
f ∈ C1(S ) and maps

∇S : C∞(S ) → V (S ) . (5.3)

The surface divergence
divS : V (S ) → C∞(S ) (5.4)

of a smooth tangential vector field V in (5.1) is, by the definition,

divS V :=

n−1∑
k=1

V j
;j , V j

;k := ∂kV
j +

n−1∑
m=1

ΓjkmV
m (5.5)
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where Γjkm denotes the Christoffel symbols:

Γjkm :=
1

2

n−1∑
k=1

gj� [∂mgk� + ∂kgm� − ∂�gkm] = Γjmk. (5.6)

divS is the negative dual to the surface gradient:

〈divS V , f〉 := −〈V ,∇S f〉 , ∀V ∈ V (S ) , ∀ f ∈ C1(S ) . (5.7)

The Laplace-Beltrami operator ΔS on S is defined as the composition

ΔS ψ=divS∇S ψ = −∇∗
S

(
∇Sψ

)
. (5.8)

Expressions of the surface divergence and gradient in intrinsic parameters of the surface S
(tangential vector fields, Metric tensor etc.) are rather complicated (cf. e.g., [Ta1]). We
suggests an alternative, much simpler interpretation.

Theorem 5.1 For any function ϕ ∈ C1(S ) we have

∇Sϕ =
{

D1ϕ,D2ϕ, ...,Dnϕ
}�
. (5.9)

Also, for a 1-smooth tangential vector field V =
∑n

j=1 V
jej ∈ V (S ),

divS V = −∇∗
S V :=

n∑
j=1

DjV
j . (5.10)

The Laplace-Beltrami operator ΔS on S takes the form

ΔS ψ =

n∑
j=1

D2
j ψ =

∑
j<k

M 2
jkψ =

1

2

n∑
j,k=1

M 2
jkψ ∀ψ ∈ C2(S ) . (5.11)

Proof: Any function ϕ ∈ C1(S ) is approximated,
∥∥ϕ − ϕk

∣∣C1(S )
∥∥ → 0 as k → ∞, by

a functions ϕk ∈ C1(US ), k = 1, 2, . . ., defined in a neighborhood US ⊂ Rn of S . Then,
from the definition of the surface gradient (5.2), follows

〈∇Sϕ,V 〉 := ωϕ(V ) := ∂V ϕ = lim
k→∞

∂V ϕk = lim
k→∞

n∑
j=1

V j∂jϕk = lim
k→∞

〈∇ϕk,V 〉

= lim
k→∞

〈πS∇ϕk,V 〉 for ϕ ∈ C1(S ) , V =

n−1∑
k=1

Ṽ
k
gk =

n∑
k=1

V kek ∈ V (S ),
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where πS denotes the orthogonal projection onto the tangential vector fields V (S ) (cf.
(2.24)); we get finally

∇Sϕ = lim
k→∞

πS∇ϕk = lim
k→∞

{
∂jϕk − νj

n∑
m=1

νm∂mϕk

}n

j=1

= lim
k→∞

(D1ϕk, . . . ,Dnϕk)
� = (D1ϕ, . . . ,Dnϕ)� .

Now we consider the divergence operator divS = ∇∗
S (cf. (5.4), (5.7)). Let a scalar

function ϕ and a tangential vector field V ∈ V (S ) be both smooth, S be non-closed
with the boundary ∂S �= ∅, and the supports have no intersections with the boundary
suppϕ

⋂
∂S = ∅, supp V

⋂
∂S = ∅. By applying the duality, the proved formulae

(5.9) and (4.52) for the dual (Dj)
∗
S , we get:

(divS V , ϕ)S =−(V ,∇Sψ)S =

∮
S

n∑
j=1

V j(X )Djϕ(X ) dS

=−
∮

S

n∑
j=1

(Dj)
∗
S V

j(X )ϕ(X ) dS =

∮
S

n∑
j=1

DjV
j(X )ϕ(X ) dS

+H 0
S

∮
S

n∑
j=1

νj(X )V j(X )ϕ(X ) dS =

n∑
j=1

(DjV
j , ϕ)S .

We applied above that V is tangent ν(X ) ·V (X ) =
n∑
j=1

νj(X )V j(X ) ≡ 0. Since the function

ϕ is arbitrary, (5.10) follows.

To prove (5.8) we apply (5.9), (4.52) and proceed as follows

ΔS ψ = divS∇S ψ = −
n∑
j=1

(Dj)
∗Djψ =

n∑
j=1

D2
j ψ + H 0

S

n∑
j=1

νjDjψ =
n∑
j=1

D2
j ψ ,

since ν · D =
n∑
j=1

νjDj = 0 (cf. Lemma 4.8.v)).

To prove the last equality (5.11) we note that (cf. (4.28))

n∑
j=1

νjDk(νjψ) = ν2Dkψ +
n∑
j=1

νj
(
Dkνj

)
ψ = Dkψ (5.12)
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and
n∑
j=1

νjDj = 0, Mjk = νjDk − νkDj for j, k = 1, . . . , n; (cf. Lemma 4.8.vi, 4.8.v). Then

1

2

n∑
j,k=1

M 2
jkψ=

1

2

n∑
j,k=1

[νjDk − νkDj ]
2 ψ =

1

2

n∑
j,k=1

[νjDkνjDkψ − νjDkνkDjψ

+ νkDjνkDjψ − νkDjνjDkψ] =
n∑

j,k=1

[νjDkνjDkψ − νjDkνkDjψ]

=

n∑
k=1

D2
kψ −

n∑
j,k=1

[
νjνkDkDjψ +

(
Dkνk

)
νjDjψ

]
=

n∑
k=1

D2
kψ = ΔSψ .

Lemma 5.2 Let S be μ–smooth and � ∈ N0, � ≤ μ. The Laplace-Beltrami operator ΔS is
elliptic on the hypersurface S and self adjoint, i.e.,

ΔS (t, ξ) ≡ |ξ|2 , ∀(t, ξ) ∈ T ∗(S ) , (ΔS )∗S = ΔS . (5.13)

For arbitrary � = 0, −+1, . . . the operator

−ΔS : W
1
2(S ) → W

−1
2 (S ) (5.14)

is positive definite (coercive) on non–constant functions

( − ΔSϕ, ϕ)L2(S ) =

n∑
k=1

(Dkϕ,Dkϕ)L2(S ) = ‖∇Sϕ
∣∣L2(S )‖ > 0 (5.15)

for ∀ϕ ∈ W
1
2(S ) , ϕ �= const .

Proof. Let us prove that ΔS is elliptic. We proceed straightforwardly:

ΔS (t, ξ) =
n∑
k=1

D2
k (t, ξ) =

n∑
k=1

[ξk − νk(t)(	ν(t), ξ)]
2

= |ξ|2 − 2(	ν(t), ξ)2 + |	ν(t)|2(	ν(t), ξ)2

= |ξ|2 − (	ν(t), ξ)2 = |ξ|2 for (t, ξ) ∈ T ∗(S ) . (5.16)

From the definition (5.8) and the property (5.7) it follows easily that ΔS is self adjoint
and non-negative:

(ΔSϕ, ϕ)W�
2(S ) = (∇Sϕ,∇Sϕ)W�

2(S ) = (ϕ,ΔSϕ)W�
2(S ) ,

(ΔSϕ, ϕ)W�
2(S ) = −(∇Sϕ,∇Sϕ)W�

2(S ) = ‖∇Sϕ
∣∣W�

2(S )‖ > 0

provided ϕ ∈ W
�+2
2 (S ) , ϕ �= const .
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The last assertion (5.15) also follows from the definition (5.8) and the property (5.7):

( − ΔSϕ, ϕ)L2(S ) = (∇Sϕ,∇Sϕ)L2(S ) = ‖∇Sϕ
∣∣W�

2(S )‖ > 0

for ϕ ∈ W
1
2(S ) , ϕ �= const .

We remind that the surface gradient ∇S maps scalar functions to the tangential vector
fields

∇S : C∞(S ) → V (S ) := C(S ,V (S )) (5.17)

and the scalar product with the normal vector vanishes everywhere on the surface S :

ν(X ) · ∇Sϕ(X ) ≡ 0 for all ϕ ∈ C1(S ) . (5.18)

Tangential derivatives can be applied to the definition of Sobolev spaces W�
p(S ) =

H�(S ), � ∈ N0, 1 ≤ p <∞ on an �-smooth surface S

H
�(S ) = W

�
p(S ) := {ϕ ∈ D′(S ) : ∇α

Sϕ ∈ Lp(S ) , ∀α ∈ N
n
0 , |α| ≤ �} . (5.19)

Equivalently, W�
p(S ) is the closure of the space C�(S with respect to the norm

‖ϕ ∣∣W�
p(S ) ‖ :=

⎡⎣∑
|α|≤�

‖Dαϕ
∣∣Lp(S )‖p

⎤⎦1/p

.

The space W�
p(S ) can also be understood in distributional sense: derivative Djϕ ∈

L2(S ) means that there exists a function in L2(S ) denoted by Djϕ such that

(Djϕ, ψ) := (ϕ,D∗
j ψ) :=

∫
S

ϕ(X )D∗
j ψ(X ) dS ∀ψ ∈ L2(S )

(cf. (4.52) for the formal dual D∗
m).

Moreover, W�
2(S ) is a Hilbert space with the scalar product

(ϕ, v)(�)S :=
∑
|α|≤�

∮
S

Dα
x ϕ)(X )Dα

x v(X )dS . (5.20)

Under the space W
−�
2 (S ) with a negative order −�, � ∈ N, is understood, as usual, the

dual space of distributions to the Sobolev space W
�
2(S ).

The following Proposition 5.3 accomplishes the definition of the Banach spaces Hm
p (S )

(cf. [Du3] for a simple proof).
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Proposition 5.3 For ϕ ∈ C1(S ) the surface gradient vanishes ∇Sϕ ≡ 0 if and only if
ϕ(X ) ≡ const.

Remark 5.4 For any smooth scalar function f , defined in a neighborhood of S , there holds
(see [DMM1]) (

ΔRnf
)∣∣∣

S
= ΔS (f |S ) + H 0

S (∂νf)|S + (∂2
νf)|S . (5.21)

In particular, for the case the unit sphere in Rn, i.e., S = Sn−1 one can choose ν(x) :=
x/‖x‖, x ∈ Rn \ 0, so that H 0

S := div ν = (n− 1)/‖x‖, and ∂ν =
∑

(xj/‖x‖)∂j = ∂/∂r,
the radial derivative in Rn. Then (5.21) becomes, after a rescaling, the classical formula

ΔRn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
ΔSn−1 .

A number of related identities, at least for n = 3 and special extensions of the unit
normal, can be found in [DL1], [Ce1], [Co1], [KGBB1], [MM1], [NDS1] [Ne1] and the
references therein.

6 THE EQUATION OF ANISOTROPIC ELASTIC HYPERSURFACE

One way of understanding the genesis of the Laplace-Beltrami operator (5.8) is to con-
sider the energy functional

E [u] :=

∫
S

‖∇ u‖2 dS, u ∈ C∞(S ). (6.1)

Then any minimizer u of the functional (6.1) should satisfy

0=
d

dt
E [u+ tv]

∣∣∣
t=0

=

∫
S

[〈∇ u,∇ v〉+ 〈∇ v,∇ u〉] dS

=2Re

∫
S

〈∇ u,∇ v〉 dS u ∈ C∞(S ), ∀ v ∈ C∞
0 (S ), (6.2)

which implies
Δu = 0 on S . (6.3)

In other words, (6.3) is the Euler-Lagrange equation associated with the integral func-
tional (6.1).

We assume that the closed hypersurface S is �-smooth and � ≥ 1.

Our aim is to adopt a similar point of view in the case of anisotropic (Lamé) system of
elasticity on S . The starting point is to consider the total free (elastic) energy

E [U ] :=

∫
S

E(y,DS U (y)) dS, DS U :=
[
(DS

j U)0
k

]
n×n , U ∈ V (S ), (6.4)
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ignoring at the moment the displacement boundary conditions (Koiter’s model). As before,
equilibria states correspond to minimizers of the above variational integral (see [NH1, §
5.2]). First we should identify the correct form of the stored energy density E(x,DS U (x)).
We shall restrict attention to the case of linear elasticity. In this scenario, E = (SS ,DefS )
depends bi-linearly on the stress tensor SS =

[
Sjk

]
n×n and the deformation (strain) tensor

DefS =
[
Djk

]
n×n ,

DjkU :=
1

2

[(
DS
k U

)
j
+
(
DS
j U

)
k

]
=

1

2

[
DjU

0
k + DkU

0
j + ∂U(νjνk)

]
=

1

2

[
DjU

0
k + DkU

0
j +

n∑
q=1

UqDq(νjνk)
]
, ∀ j, k = 1, . . . , n (6.5)

(cf. [DMM1]) which, according to Hooke’s law, satisfy SS = T DefS , for some linear,
fourth-order tensor T. If the medium is also homogeneous (i.e. the density and elastic para-
meters are position-independent), it follows that E depends quadratically on the covariant
derivative DS U , i.e.

E(x,DS U(x)) = 〈T DS U(x),DS U(x)〉 (6.6)

for a linear operator
T : Mn,n(R) −→ Mn,n(R), (6.7)

where Mn,n(R) stands for the vector space of all n× n matrices with real entries. Hereafter,
we organize Mn,n(R) as a real Hilbert space with respect to the inner product

〈A,B〉 := Tr(AB�) =
∑
i,j

aijbij , ∀A = [aij ]i,j , B = [bij ]i,j ∈ Mn,n(R), (6.8)

where B� denotes transposed matrix, and Tr is the usual trace operator for square matrices.

A linear operator (6.7) is a tensor of order 4, i.e., T =
[
cijk�

]
ijk�

, and

TA =

[∑
k,�

cijk�ak�

]
ij

, for A = [ak�]k� ∈ Mn,n(R) . (6.9)

T will be referred to in the sequel as the elasticity tensor. It is customary to assume that the
elasticity tensor (6.7) is self-adjoint

〈TA,B〉 = 〈A,TB〉 , A,B ∈ Mn,n(R) . (6.10)

The condition rescaling (6.10), written in coordinate notation, is equivalent to the following
equality

cijk� = ck�ij, ∀ i, j, k, � . (6.11)
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Indeed, the equality

Tr((TA)B�) =
∑
i,j,k,�

cijk�ak�bij =
∑
i,j,k,�

ck�ijak�bij = Tr(A(TB)�)

holds, for arbitrary A = [ak�]k� and B = [bk�]k�, if and only if (6.11) holds: by inserting the
delta functions ak� = δk�, bij = δij we get the equality (6.11).

It is also customary to impose a symmetry condition, presented with two natural options:

T (A�) = TA and (TA)� = TA ∀A ∈ Mn,n(R) . (6.12)

Then (6.12) amounts to the following symmetry in the indices of the elastic tensor:

cijk� = cij�k and cijk� = cjik� ∀ i, j, k, �, (6.13)

where the second (the first) equality follows already from (6.11) and the first (the second)
equality in (6.13).

Remark 6.1 The conditions (6.10) and the first equality in (6.12) imply the second equality
in (6.12) as well as the conditions (6.10) and the second equality in (6.12) imply the first
equality in (6.12). This is evident if we apply an equivalent formulation for corresponding
tensors and matrices: (6.11) and (6.13).

A linear operator T in the energy functional of anisotropic elasticity (6.6) satisfies the
symmetry conditions (6.10), and (6.12). Equivalently, the corresponding elasticity tensor
T =

[
cijk�

]
ijk�

has the symmetries (6.11), (6.13) and, therefore, might have n+n2(n−1)2/2
different entries only.

By inserting the value (6.5) of deformation tensor DefS U and applying the symmetry
properties (6.13), we obtain

4〈T DefS U(x),DefS U(x)〉 = 〈T DS U(x),DS U(x)〉 = E(x,DS U(x)) (6.14)

(cf. (6.6)) which means that the density of the elastic energy functional depends quadratically
also on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly positive for
the non-vanishing deformation tensor DefS U �= 0 (the energy conservation law!). This
leads to the following.

Lemma 6.2 There exists a constant C0 > 0 such that

〈T ζ, ζ〉 :=
∑
i,j,k,�

cijk�ζijζk� ≥ C0

∑
i,j

|ζi,j|2 := C0|ζ |2 (6.15)

for all symmetric and complex valued ζij = ζji ∈ C tensors ζ :=
[
ζij
]
n×n.
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Proof: The sum in the left hand side of (6.15) is real 〈T ζ, ζ〉 = 〈T ζ, ζ〉 (easy to check
applying the symmetry properties (6.13) of the real valued coefficients). Dividing equality
in (6.15) by |ζ |2 =

∑
lm |ζlm|2 we find that it suffices to prove

inf
|ζ|=1

∑
i,j,k,�

cijk�ζijζk� ≥ C0 > 0 . (6.16)

If otherwise C0 = 0, we select a sequence ζ(q)
jk = ζ

(q)
kj ∈ C, q = 1, 2, . . . such that

lim
m→∞

∑
i,j,k,�

cijk�ζ
(q)
ij ζ

(q)
k� = 0 , |ζ (q)| = 1 .

Since the space of tensors [ζ
(q)
jk ]n×n is finite dimensional, there exists a convergent subse-

quence ζ(qr)
k� → ζ

(0)
k� as r → ∞. Then we get an obvious contradiction∑

i,j,k,�

cijk�ζ
(0)
ij ζ

(0)
k� = 0 , |ζ (0)| = 1 .

which proves that C0 > 0.

Theorem 6.3 The total free (elastic) energy functional (cf. (6.4)) acquires the form

E [U ] :=

∫
S

〈T DS U(y),DS U(y)〉 dS = 4

∫
S

〈T DefS U(y),DefS U (y)〉 dS , (6.17)

U ∈ V (S )

and the Euler-Lagrange equation associated with the energy functional (6.17) for a linear
anisotropic elastic medium, reads

AS (t,D)U = Def∗S T DefS U (6.18)

=

{
n∑

j,k,m=1

[
−cjklmDm − H 0

S cjklmνj + νm

n∑
q=1

cjkqmDlνq

]
[DkUj + νk〈Djν,U〉]

}n

l=1

for U ∈ V (S ). Here again T =
[
cijk�

]
ijk�

is the elasticity tensor which is positive definite
(cf. (6.15)) and has the symmetry properties (6.11), (6.13).

Proof: The representation (6.17) follows from (6.4) and (6.14).

The Euler-Lagrange equation (6.18) is derived from (6.17) as a similar equation e3.3 is
derived from (6.1):

E [U ] :=4

∫
S

〈T DefS U(y),DefS U(y)〉 dS

= 4

∫
S

〈Def∗S T DefS U(y),U(y)〉 dS = 0
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if and only if U ∈ V (S ) is a solution of equation (6.18) due to the positive definiteness of
the elasticity tensor T (cf. (6.15)).

The vector-function U (t) = (U1(t), . . . , Un(t))
� denotes the tangential field of elastic

displacement. The strain (the deformation) tensor has the following mapping properties

DefS : H
θ
p(S ) := (Hθ

p)
n(S ) −→ (Hθ−1

p )n×n(S ) (6.19)

for arbitrary θ ∈ R, 1 ≤ p ≤ ∞ and maps displacement vector field to the tensors of order
2. The dual operator

Def∗Sw = {D∗
kw}nk=1 , (6.20)

D∗
kw =

1

2

[
n∑
j=1

D∗
k (wjk + wkj) +

n∑
j,m=1

wjmDk(νjνm)

]
for w = ‖wjk‖n×n

(cf. (4.33)) maps tensor functions to vector functions and has the following mapping prop-
erties

Def∗S : (Hθ
p)
n×n(S ) −→ (Hθ−1)np (S ) (6.21)

for arbitrary θ ∈ R, 1 ≤ p ≤ ∞. Moreover,

D∗
kw =

n∑
j=1

D∗
kwjk +

n∑
j,m=1

νm(∂jνk)wjm for symmetric wjk = wkj (6.22)

due to the curl-free condition ∂kνj = ∂jνk (see Lemma 2.12.ii). Then, by applying the
equality

n∑
j,k=1

cjklmDj,kU =
1

2

n∑
j,k=1

cjklm [DkUj + DjUk + 〈U ,∇C (νjνk)〉]

=
n∑

j,k=1

cjklm

[
DkUj + νk

n∑
q=1

(Djνq)Uq

]
=

n∑
j,k=1

cjklm [DkUj + νk〈Djν,U〉] , (6.23)

which exploits the symmetry of coefficients (6.13) and the symmetry properties of the defor-
mation tensor (6.22), we finally prove (6.18)

AS (t,D)U = Def∗S T DefS U = Def∗S

∥∥∥∥∥
n∑

j,k=1

cjklmDj,kU

∥∥∥∥∥
n×n

= Def∗S

∥∥∥∥∥
n∑

j,k=1

cjklm [DkUj + νk〈Djν,U〉]
∥∥∥∥∥
n×n

=

{
n∑

j,k,m=1

[
cjklmD∗

m + νm

n∑
q=1

cjkqmDlνq

]
[DkUj + νk〈Djν,U〉]

}n

l=1

=

{
n∑

j,k,m=1

[
−cjklmDm − H 0

S cjklmνj + νm

n∑
q=1

cjkqmDlνq

]
[DkUj + νk〈Djν,U〉]

}n

l=1

.
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since D∗
j = −Dj − νjH 0

S (cf. (4.52)).

If the surface S is isotropic, i.e., has the corresponding energy functional is invariant
with respect to any rotation, the elasticity tensor T has the properties

T (BAB−1) = B(TA)B−1, ∀A,B ∈ Mn,n(R) and unitary B� = B−1. (6.24)

Moreover, then the tensor T has the form

TA = λ (TrA)I + μ (A+ A�), A ∈ Mn,n(R), (6.25)

where λ, μ ∈ R are some constants. The corresponding lamé operator A(D) = LS (t,D)
(cf. (6.18)) on the hypersurface acquires the form

LS (t,D)=μ πS∇∗
S ∇S + (λ+ μ)∇S ∇∗

S − μH 0
S WS

=−μΔS − (λ+ μ)∇S divS − μH 0
S WS , WS = −[Djνk

]
n×n .(6.26)

For details of the formulated assertions we refer to [DMM1].

The next Proposition 6.4 is proved in [Du3, Theorem t4.2x] for a isotropic case. For the
anisotropic case the proof is similar.

Proposition 6.4 Let S be an �-smooth closed hypersurface in Rn. The operator AS )D)
for anisotropic/isotropic media (cf. (6.18) and (6.26)) is elliptic. Therefore the mapping

AS (t,D) : H
s+1
p (S ) → H

s−1
p (S ) (6.27)

is Fredholm and has the trivial index Ind AS (t,D) = 0 for all 1 < p < ∞ and all s ∈ R,
provided |s| ≤ �.

The kernel of the operator KerAS (t,D) ⊂ H
s
p(S ) is independent of the parameters p

and s, is finite dimensional dim R(S ) = dim KerAS (t,D) < ∞ and coincides with the
space of Killing’s vector fields

KerAS (t,D) = {U ∈ V (S ) : AS (t,D)U = 0} = R(S ). (6.28)

LS is non-negative on the space H1(S ) and positive definite on the orthogonal com-
plement H1

R(S ) to the kernel

(AS (t,D)U ,U )S ≥ 0 for all U ∈ H1(S ) , (6.29)

(AS (t,D)U ,U )S ≥ C
∥∥U ∣∣H1(S )

∥∥2
for all U ∈ H1

R(S ) , C > 0 ,(6.30)

where H1(S ) = H1
R(S ) ⊕ R(S ).

Moreover, the following Gåarding’s inequality

(AS (t,D)U ,U )S ≥ C1‖U |H1(S )‖2 − C0‖U |H−r(S )‖2 (6.31)

holds for all U ∈ H
1(S ), with arbitrary 0 < r ≤ � and positive constants C0 > 0, C1 > 0.
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7 BOUNDARY INTEGRAL EQUATIONS FOR THE LAPLACE-BELTRAMI OPERATOR

To apply the potential method to the investigation of BVPs (8.1) and (8.2) for the laplace-
Beltrami operator ΔC on an open hypersurface C in the next section, we need a fundamental
solution for ΔS when S is a closed hypersurface, which coincides with the Schwartz kernel
of the inverse operator (see [Du2]). Such fundamental solution might fail to exist and we
consider an alternative.

Theorem 7.1 Let S be μ-smooth and � ∈ N0, � ≤ μ. Assume H ∈ C�(Rn) is real valued
and non-negative H ≥ 0 with non-trivial support 0 �= mes supp H .

The perturbed Laplace-Beltrami operator

ΔS − H I : H
s+1
2 (S ) → H

s−1
2 (S ) (7.1)

is invertible for arbitrary s ∈ R, i.e. ΔS − H I has the fundamental solution.

Proof: As an elliptic operator on the closed hypersurface ΔS −H I in (7.1) is Fredholm
for s = 0, 1, . . .. On the other hand,

( − (ΔS − H )ϕ, ϕ)L2(S ) = ‖∇Sϕ
∣∣L2(S )‖ + H ‖ϕ∣∣L2(S )‖ ∀ϕ ∈ W

1
2(S ) . (7.2)

and, therefore, Ker (ΔS − H I) = ∅.

The same is true for the dual operator, which is the same and, therefore, Coker (ΔS −
H I) = ∅, which yields the invertibility.

The dual operator, which is again ΔS −H I , but between spaces W1
2(S ) → W

−1
2 (S ),

is also invertible. Then for non-integer s ∈ R the invertibility of the operator (7.1) follows
by the interpolation (see [Tr1]).

Remark 7.2 ΔS−H I is invertible as an operator between more general Sobolev-Slobodetski
spaces Ws+1

p (S ) → W−1
p (S ) and the Bessel potential spaces Hs+1

p (S ) → Hs−1
p (S ) for

arbitrary s ∈ R, 1 < p <∞.

In fact, for p = 2 this follows from Theorem 7.1. For arbitrary 1 < p <∞ the assertion
follows since the operator ΔS − H I has the same kernel and cokernel in all these spaces
(see [DNS1]).

Remark 7.3 The function

gμ(x, y) :=
1

cos (πμ)
Pμ−1/2(−x · y) , μ ∈ R , x, y ∈ S

2 , (7.3)

where Pγ(t), −1 ≤ t ≤ 1, is the Legendre special function of the first kind of order γ,
represents the fundamental solution to the Laplace-Beltrami equation(

Δ2
S + μ2 − 1

4

)
gμ(x, y) = δ(x− y) (7.4)
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on the unit sphere S2 :=
{
u ∈ R3 : || = 1

}
(cf. [BGS1, Sm1]).

Thus, gμ(x, y) is the fundamental solution to the perturbed Laplace-Beltrami operator
Δ2

S
+ μ2 − 1/4.

Now let C ⊂ S be a smooth subsurface of a closed hypersurface S and γ = ∂C �= ∅
be its smooth boundary ∂C = Γ (see Fig. 2).

Following [Tr1], by W̃s
p(C ) (and by H̃s

p(C )) we denote the subspace of Ws
p(S ) (of

H
s
p(S ), respectively) obtained by closure of the subset C∞

0 (C ). If s > 0, by an equivalent
definition,

W̃
s
p(C ) :=

{
u : u ∈ W̃

p
s(S ) , (∂kνu)

+(t) = 0 for k = 0, . . . , m, t �∈ S
}

(7.5)

where m = [s] is the integer part of s. Similar definition holds can be given for H̃s
p(C ),

s > 0.

W1
2(C ) and Hs

p(C ) denote the quotient spaces

W
s
p(C ) = W

s
p(S )/W̃s

p(S \ C ) ,

Hs
p(C ) = Hs

p(S )/H̃s
p(S \ C ) . (7.6)
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The next Corollary 7.4 is a standard consequence of the Stoke’s formulae (4.45).

Corollary 7.4 For the Laplace-Beltrami operator ΔC on the open hypersurface C with the
boundary ∂C := Γ the following Green formulae are valid

(ΔC (t,D)ϕ, ψ)C + (∇Cϕ,∇Cψ)C = −(D�νΓϕ
+, ψ+)Γ , (7.7)

(ΔC (t,D)ϕ, ψ)C − (D�νΓϕ
+, ψ+)Γ = (ϕ,ΔC (t,D)ψ)C − (ϕ+,D�νΓψ

+)Γ (7.8)
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for arbitrary ϕ, ψ ∈ C∞(C ), , where (ϕ, ψ)C and (ϕ, ψ)Γ denote the appropriate scalar
products (cf. (4.49)).

By continuity the Green formulae (7.7) and (7.8) are extended to arbitrary functions

ϕ ∈ W1
p(C ), ψ ∈ W1

p′(C ), 1 < p <∞, p′ :=
p

p− 1
.

Let us consider the following volume (Newton), the double and the single layer poten-
tials, respectively

(NC f)(t)ϕ(t) :=

∮
C

KΔ(t, t− τ)f(τ) dS ,

(WΓψ)(t) :=

∮
Γ

[
(D�νΓ(s)KΔ)(t, s− t)

]�
ψ+(s) ds , (7.9)

(V Γψ)(t) :=

∮
Γ

KΔ(t, t− s)ψ+(s) ds , t ∈ C ,

where KΔ)(t, τ) is a fundamental solution to the Laplace-Beltrami operator ΔS − H I
with some function H ∈ C∞(Rn).

Theorem 7.5 Let 1 < p < ∞, r ∈ R. Then the direct values of the double and the single
layer potential operators are bounded between the spaces:

NC : H
s
p(C ) −→ H

s+2
p (C ) ,

: W
s
p(C ) −→ W

s+2
p (C ) ∩ H

s+2
p (C ) ,

V Γ : H
s
p(Γ) −→ H

s+1+ 1
p

p (C ) ,

: W
s
p(Γ) −→ W

s+1+ 1
p

p (C ) ∩ H
s+1+ 1

p
p (C ) , (7.10)

WΓ : H
s
p(Γ) −→ H

s+ 1
p

p (C ) ,

: W
s
p(Γ) −→ W

s+ 1
p

p (C ) ∩ H
s+ 1

p
p (C ) .

The following Plemelj formulae for the layer potentials hold:

(WΓϕ)−+ (s) = −+
1

2
ϕ(s) + W0(s,Ds)ϕ(s) ,

(D�νΓV Γϕ)−+ (s) = +−1

2
ϕ(s) + W∗

0(s,Ds)ϕ(s) , (7.11)

(V Γϕ)−(s) = (V Γϕ)+(s) = V −1(s,Ds)ϕ(s) ,

(D�νΓWΓϕ)−(s) = (D�νΓWΓϕ)+(s) = V +1(s,Ds)ϕ(s) .
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Here Φ−(s) denotes the trace of Φ(t) on Γ from the hypersurface C c, complemented to C
(outer with respect of Γ, which is the common boundary Γ = ∂C = ∂C c). The operators
W0(s,Ds) and V −1(s,Ds) are the direct values of the corresponding double and the single
layer potentials on the boundary Γ and represent PsDOs of order −1. W∗

0(s,Ds) is the dual
(adjoint) PsDO to W0(s,Ds). V +1(s,Ds) is the direct values of the operator D�νΓWΓ on
the boundary Γ and represent a PsDO of order +1.

Proof. The proof is verbatim to the case of domains in Rn and we quote for details [Du2,
Fi1, KGBB1] etc.

By a standard approach it is proved that the operator

V −1 : H
s
p(Γ) −→ H

s+1
p (Γ) ,

: W
s
p(Γ) −→ W

s+1
p (Γ) (7.12)

is invertible for all s ∈ R, 1 < p < ∞ (is positive definite for p = 2, s = −1

2
) while the

operator

V +1 : H
s
p(Γ) −→ H

s−1
p (Γ) ,

: W
s
p(Γ) −→ W

s−1
p (Γ) (7.13)

has one dimensional kernel and cokernel for all s ∈ R, 1 < p < ∞, is non-negative for

p = 2, s =
1

2
(cf. [CS1, DNS1, DW1, MT1, MMT1] for a similar assertions). Theorem 8.2

follows from these results by standard arguments (see [CS1, DNS1, DW1, MT1, MMT1]).

Remark 7.6 The “indirect potential method” is also applicable: if we look for a solution
of the Dirichlet BVP (8.1) as the double layer potential and for a solution of the Neumann
BVP (8.2) as the single layer potential with unknown densities, from boundary conditions
we derive appropriate boundary integral equations, which are Fredholm integral equations.
These equations can be investigated by a standard procedure (see, e.g., [KGBB1]). We derive
Theorem 8.2 from these results.

In conclusion of the present section we formulate the following auxiliary assertions.

Lemma 7.7 (Lax-Milgram). Let B be a Banach space, A(ϕ, ψ) be a continuous, bilinear,
symmetric form

A(·, ·) : B × B → R (7.14)

and positive definite

A(ϕ, ϕ) ≥ C‖ϕ∣∣B‖2 ∀ϕ ∈ B, C > 0. (7.15)

Let L(·) : B → R be a continuous linear form (a functional).
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A linear equation
A(ϕ, ψ) = L(ψ) (7.16)

has a unique solution ϕ ∈ B for arbitrary ψ ∈ B. Moreover, the same ϕ minimizes the
functional

F (ψ) :=
1

2
A(ψ, ψ) − L(ψ), (7.17)

i.e., represents a unique solution to the following problem

min
ψ∈B

[
1

2
A(ψ, ψ) − L(ψ)

]
=

1

2
A(ϕ, ϕ) − L(ϕ) . (7.18)

Proof; For the proof we refer to [Ci2, § 6.3].

8 BOUNDARY VALUE PROBLEMS FOR THE LAPLACE-BELTRAMI OPERATOR

Let again C ⊂ S be a smooth subsurface of a closed hypersurface S and γ = ∂C �= ∅
be its smooth boundary ∂C = Γ (see Fig. 2). Let ΔC (t,D) be the laplace-Beltrami operator
restricted to the hypersurface C . Consider the Dirichlet{

(ΔC (t,D)ϕ)(t) = f(t), t ∈ C ,

ϕ+(s) = g(s), s ∈ Γ = ∂C
(8.1)

and the Neumann {
(ΔC (t,D)ϕ)(t) = f(t), t ∈ C ,

(D�νΓ(s)ϕ)+(s) = h(s), s ∈ Γ = ∂C
(8.2)

boundary value problems for the Laplace-Beltrami operator ΔC (see (5.11)) on the open
hypersurface C with the boundary Γ. The derivative D�νΓ(s) is defined as follows

D�νΓ(s) :=

n∑
k=1

νΓ,k(s)Dk, 	νΓ(s) := (νΓ,1(s), . . . , νΓ,n(s)) , s ∈ Γ, (8.3)

where D�νΓ(s) is a tangent derivative on the hypersurface C and the normal derivative with
respect to the boundary Γ.

Note, that BVPs (8.1) and (8.2) describe the stationary heat transfer process in a thin
conductor having the shape of the hypersurface (2) S (see [Ha1, § 72]).

Corollary 8.1 For arbitrary solution ϕ ∈ W1
p(C ) of the equation ΔSϕ = f , f ∈ W−1

p (C )

the trace (D�νΓϕ)+ exists and belongs to W
− 1

p
p (Γ).

(2)We consider the stationary heat conduction only for simplicity. For the time dependent process, which is
represented by a Hypoelliptic operator, similar results can be obtained.
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Proof: Let ϕ ∈ W1
p(C ) be a solution of the equation ΔSϕ = f , f ∈ W−1

p (C ) and ψ ∈
W

1
p′(C ) be arbitrary. Then (7.7) gives

(D�νΓϕ
+, ψ+)Γ = −(f, ψ)C − (∇Cϕ,∇Cψ)C , . (8.4)

Since the right-hand side in (7.8) is correctly defined and ψ+ ∈ W
1− 1

p′
p′ (Γ) = W

1
p

p′(Γ), the

functional in the left-hand side is defined correctly and the trace D�νΓϕ
+ ∈ W

− 1
p

p (S ) by
duality.

We impose the following constraints on the participating functions in BVPs (8.1) and
(8.2):

f ∈ Ws−2
p (C ) , ϕ ∈ Ws

p(C ) ,

g ∈ W
s− 1

p
p (Γ) , h ∈ W

s−1− 1
p

p (Γ) , 1 < p <∞ , s ≥ 1 .
(8.5)

Note that due to Corollary 7.4 the traces of solutions to the equation ΔCϕ = f in BVPs (8.1)
and (8.2) under constraints (8.5) are defined correctly.

In the perturbed Laplace-Beltrami operator ΔS −H I (see (7.1)) we choose the function
H ∈ C∞(Rn) which is supported in the complemented domain suppH ⊂ C c := S \ C .
Then any solution of the Dirichlet (8.1), (8.5) and the Neumann (8.2), (8.5) boundary value
problems is represented as follows

ϕ(t) = (NC f)(t) + (WΓϕ
+)(t) − (V Γ(D�νΓϕ)+)(t) , t ∈ C , (8.6)

where the potential operators are defined in (7.9).

The proof of (8.6) is standard: by inserting the solution ϕ of ΔCϕ = f and the funda-
mental solution ψ = KΔ(t, t− τ),

ΔC KΔ(t, t− τ) = χC (ΔS −H I)KΔ(t, t− τ) = χC δ(t− τ) = δ(t− τ) , t, τ ∈ C

truncated properly around the diagonal t = τ on the distance ε > 0, into the Green formula
(7.8), written for ΔC − H I , we get the representation formula (8.6) by sending ε→ 0.

Following the “direct potential method” we apply the representation formulae (8.6) and
note that one of the densities either ϕ+ or (D�νΓ(s)ϕ)+ is already known and given by the
boundary conditions in (8.1) or in (8.2), respectively. Applying also the appropriate Plemelj
formulae from (7.11) we get the following equivalent boundary pseudodifferential equations:

A. For the Dirichlet BVP (8.1)

V −1(s,Ds)ψ(s) = (NC (s,Ds)f)(s) − 1

2
g + (W0(s,Ds)g)(s) , s ∈ Γ , (8.7)

where ψ(s) := (D�νΓϕ)+(s) is the unknown function and the right-hand side is known.

B. For the Neumann BVP (8.2)

V +1(s,Ds)ω(s) = −(NC (s,Ds)f)(s) +
1

2
h+ (W∗

0(s,Ds)h)(s) , s ∈ Γ , (8.8)

where ω(s) := ϕ+(s) is the unknown function and the right-hand side is known again.
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Theorem 8.2 Let 1 < p < ∞, s ≥ 11. The Dirichlet problem (8.1), (8.5) has a unique

solution ϕ ∈ Ws
p(C ) for arbitrary right-hand side g ∈ W

s− 1
p

p (Γ).

The Neumann problem (8.2), (8.5) has a solution ϕ ∈ Ws
p(C ) only for those right-hand

sides h ∈ W
s−1− 1

p
p (Γ) which satisfy the condition∮

Γ

h(s) ds = 0 . (8.9)

If the condition (8.9) holds, the Neumann problem has a solution ϕ0 ∈ Ws
p(C ) and a

general solution reads ϕ = ϕ0 + const.

Proof. For the proof of existence in the restricted space settings (8.5) we recall that the
equivalent boundary pseudodifferential equations (8.7) and (8.8) to BVPs (8.1) and (8.2),
respectively, are Fredholm and have indices zero. Moreover, the operator in (8.7) is even
invertible, while the kernel and cokernel of the equation in (8.8) coincide with constants
(cf. (7.12) and (7.13)). Therefore, the Dirichlet BVP (8.1) is solvable uniquely, while for
solvability of the Neumann problem there must hold the orthogonality condition (8.9) for the
data with the solution v(t) ≡ const of the homogeneous equation.

9 BVPS FOR AN ELASTIC HYPERSURFACE AND GREEN’S FORMULAE

Throughout the present section S is an open C 2-smooth hypersurface the Lipschitz
boundary ∂C = Γ �= ∅,a subsurface of a closed C2-smooth hypersurface S . rC denotes the
restriction to the surface C from S and

AC (t,D) := rC AC (t,D), LC (t,D) := rC LC (t,D), .

Note that the imposed constraint on the surface C can not be relaxed, because in the defini-
tion of the equation

AC (D)U = F , U ∈ H
1(C ), F ∈ H̃

−1(C ), (9.1)

is participating the gradient ∇S ν = [Djνk]n×n of the unit normal vector field ν (cf. (6.18)
and (6.26)). ν(t) is defined almost everywhere on C is just C1-smooth.

Equation (9.1) is actually understood in a weak sense:

(AC (t,D)U ,V )C := (T DefC U ,DefC V )C = (F ,V )C , (9.2)

∀U ∈ H
1(C ),V ∈ H̃

1(C )

(cf. (6.18)). In particular, for the Lamé operator in isotropic medium we have

(LC (t,D)U ,V )C := λ(∇C U ,∇C V )C + (λ+ μ)(divC U , divC V )C = (F ,V )C , (9.3)

∀V ∈ H̃
1
2(S )
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(cf. (6.26)).

Let νΓ =
(
ν1

Γ, . . . , ν
n
Γ

)�
be the tangential to C and outer unit normal vector field to Γ.

If a tangential vector field U ∈ H
1
p(C ) ∩ V (C ) denotes the displacement, the natural

boundary value problems for LC are the following:

I. The Dirichlet problem when the displacement is prescribed on the boundary{
(AC (t,D)U)(t) = F (t), t ∈ C ,

U+(τ) = G(τ), τ ∈ Γ,
(9.4)

F ∈ H̃
−1(C ) , G ∈ H

1/2(Γ) , U ∈ H
1(C );

the first (basic) equation in the domain is understood in a weak sense (see (9.2), (9.3))
and

γ+
DU := U+ (9.5)

is the Dirichlet trace operator on the boundary.

II. The Neumann problem when the traction is prescribed on the boundary:{
(AC (t,D)U )(t) = F (t), t ∈ C ,

(TC (νΓ,D) U)+(τ) = H(τ), τ ∈ Γ ,
(9.6)

F ∈ H̃
−1(C ) , H ∈ H

−1/2(Γ), U ∈ H
1(C );

here

γ+
NU :=(TC (νΓ,D) U)+ (9.7)

and

TC (νΓ,D)U :=

[
n∑

k,m=1

cjklmν
j
Γ[DkUj + νk〈Djν,U〉]

]
n×n

. (9.8)

In particular, for an isotropic case,

TC (νΓ,D)U :=−λ(divC U)νΓ − 2μ
n∑
j=1

{
(νjΓ + H 0

C νj)Djk(U)
}n
k=1

= −μDνΓ
U − (λ+ μ)(divC U)νΓ (9.9)

is the Neumann trace operator on the boundary (the traction) with

DνΓ
ϕ :=

n∑
j=1

νjΓDjϕ. ϕ ∈ H
1(C ). (9.10)

The trace γ+
NU exists provided that U is a solution to the basic (first) equation in (9.6)

(see Corollary 9.2 below).
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Later we will relax constraints on the data and the solution and replace them by con-
straints in H

s
p-setting to gain some a priori smoothness of solution. On the other hand we

should raise constraints on the underlying hypersurface C and require the infinite smooth-
ness to apply the potential method.

A crucial role in the investigation of BVPs (9.4)-(9.6) belongs to the Green formula.

Lemma 9.1 For the operator AC (t,D) on the open hypersurface C the following Green
formulae are valid:

(AC (t,D)U ,V )C = E (U ,V ) + ((TC (νΓ,D)U )+,V +))Γ, (9.11)

(AC (t,D)U ,V )C − ((TC (νΓ,D)U)+,V +))Γ = (U ,AC (t,D)V )C

−(U+, (TC (νΓ,D)V )+))Γ (9.12)

for arbitrary U , V ∈ H1
p(S ). Here the traction operator in (9.8) (see (9.9) for an isotropic

case). The energy bilinear form E (U ,V ) is defined by the formulae

E (U ,V ) :=

∫
S

〈T DefS U (y),DefS U(y)〉 dS , U ∈ V (S ) (9.13)

(cf. (6.17)) and, in particular,

E (U ,V ) :=

∫
C

[
μ〈∇S U ,∇S V 〉 + (λ+ μ) 〈divC U , divC V 〉

]
dS (9.14)

for an isotropic case.

Proof: Using the first representation of AC (t,D) in (6.18) (for an isotropic case-in (6.26)),
the integration by parts on surfaces (Stoke’s formulae) (4.45) we get the following∮

C

[AC (t,D)U(t)]� V (t)dS =
(
TC (νΓ,DU)+,V +

)
Γ

+ E (U ,V ) , (9.15)

where is defined in (9.13) (in (9.14) for an isotropic case).

To find the expression for the traction operator TC (νΓ,D we apply the second represen-
tation of AC (t,D) in (6.18), the integration by parts on surfaces (Stoke’s formulae) (4.45)
and get the following:∮

C

[AC (t,D)U(t)]� V (t)dS =

∮
C

n∑
j,k,m,l=1

[
− cjklmDj − H 0

S cjklmνj

+νm(t)
n∑
q=1

cjkqmDlνq(t)
]
[DkUj(t) + νk〈Djν(t),U(t)〉]Vl(t)dS

=

∮
Γ

n∑
j,k,m,l=1

cjklmν
j
Γ(s)

[
(DkUj)

+(s) + νk〈Djν(s),U(s)〉]V +
l (s)ds

+E (U ,V ) =
(
(TC (νΓ,D)U)+,V +

)
Γ

+ E (U ,V ) .
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For an isotropic case we apply the representation of LS (t, D) in (6.26) and proceed simi-
larly.

Corollary 9.2 For arbitrary solution U ∈ H1
p(S ) to the equation AS (t,D)U = F , F ∈

H
−1
p (C ), the trace

(
TC (νΓ,D)U

)+
exists and belongs to W

− 1
p

p (S ).

Proof: The proof is based on (9.11) and is verbatim to the proof of Corollary 8.1.

Theorem 9.3 Let S be μ-smooth and � ∈ N0, � ≤ μ. Assume H ∈ C�(Rn) is real valued
and non-negative H ≥ 0 with non-trivial support 0 �= mes supp H .

The perturbed operator of anisotropic elasticity

AS (t,D) − H I : H
s+1
2 (S ) → H

s−1
2 (S ) (9.16)

is invertible for arbitrary s ∈ R, i.e. AS (t,D) − H I has the fundamental solution.

Proof: The proof is based on Proposition 6.4 and follows the proof of Theorem 7.1.

10 THE DIRICHLET BVP FOR THE EQUATION OF ANISOTROPIC ELASTICITY

Throughout this section C is a C 2-smooth hypersurface with the Lipschitz boundary
Γ = ∂C .

Theorem 10.1 The Dirichlet problem (9.4) has a unique solution U ∈ H1(C ) for arbitrary
data F ∈ H̃−1(C ) and G ∈ H1/2(Γ).

The proof will be exposed at the end of the section after we prove some auxiliary results.

Lemma 10.2 (Gårding’s inequality “with boundary condition”). The operator

AC (t,D) : H̃
1(C ) → H

−1(C ) (10.1)

is positive definite: there exists some constant C > 0 such that

(AC (t,D)U ,U )C ≥ C
∥∥U ∣∣H1(C )

∥∥2 ∀U ∈ H̃
1(C ). (10.2)

Proof: Due to (6.30) inequality (10.1) holds for all U ∈ H1
R(S ), i.e., for U ∈ H1(S ) and

U �∈ R(S ). Since U ∈ H̃1(C ) due to the strong unique continuation from the boundary
(cf. Proposition 4.6), all Killing’s vector fields K ∈ H̃1(C ) are identically 0. Therefore,
(6.30) holds for all U ∈ H̃1(C ).
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Corollary 10.3 The operator AC (t,D) in (10.1) is invertible.

Proof: From the inequality (10.2) follows that AC (t,D) is normally solvable (has the closed
range) and the trivial kernel Ker AC (t,D) = {0}. Since AC (t,D) is self adjoint, the co-
kernel (the kernel of the adjoint operator) is trivial as well Ker A∗

C (t,D) = Ker AC (t,D) =
{0}. Therefore AC (t,D) is invertible.

.

Definition 10.4 (see [LM1, Ch.2, § 1.4]). A partial differential operator

B(x,D) :=
∑
|α|≤m

aα(x)∇α
C , ∇α

Cu = Dα1
1 · · ·Dαn

n , aα ∈ C(C , CN×N) (10.3)

is called normal on Γ if

inf |detB0(t,ν(t))| �= 0, t ∈ Γ , |ξ| = 1 , (10.4)

where B0(x, ξ) is the homogeneous principal symbol of A

B0(x, ξ) :=
∑
|α|=m

aα(x)(−iξ)α, x ∈ C , ξ ∈ R
n. (10.5)

Definition 10.5 A system {Dj(t, Dt)}k−1
j=0 of differential operators with matrix N ×N coef-

ficients is called a Dirichlet system of order k if all participating operators are normal on Γ
(see Definition 10.4) and ordDj = j, j = 0, 1, . . . , k − 1.

Let us assume C is k-smooth and m ≤ k (m, k = 1, 2, . . .) and define the trace operator
(cf. (9.10)):

RmU := {γΓD1U , . . . , γΓDmU}� , U ∈ C
k
0(C ) . (10.6)

Proposition 10.6 Let C be k-smooth, 1 ≤ p ≤ ∞,m = 1, 2, . . .,m ≤ k andm < s−1/p �∈
N0. The trace operator

Rm : H
s
p(C ) → m⊗

j=0
W

s−1/p−j
p (Γ) , (10.7)

where W
r
p(C ) = B

r
p,p(C ) is the Sobolev-Slobodecki-Besov space (cf. [Tr1] for details) is a

retraction, i.e., is continuous and has a continuous right inverse, called a coretraction

(Rm)−1 :
m⊗
j=0

W
s−1/p−j
p (S ) → H

s
p(Ω)

Rm(Rm)−1Φ = Φ , ∀Φ ∈ m⊗
j=0

W
s−1/p−j
p (S ) .

(10.8)
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Proof: The result was proved in [Tr1, Theorem 2.7.2, Theorem 3.3.3] for a domain Ω ⊂
R
n−1 and the classical Dirichlet trace operator Rmu := {γΓ∂νu, . . . , γΓ∂

m
ν u}�. In [Du3]

the theorem was proved for a domain Ω ⊂ Rn−1 and for arbitrary trace operator Rmu.

A surface C = ∪Nj=1Cj is covered by a finite number of local coordinate charts κj :
Ωj → Cj , Ωj ⊂ Rn−1. After transformation, the Dirichlet trace operator Rmu on a portion
Cj of the surface transform into another Dirichlet trace operator on the coordinate domains
Ωj . Therefore, we prove the assertion locally on each coordinate chart Cj ⊂ C and, by
applying a partition of unity, extend it to the entire surface C .

Proof of Theorem 10.1: Let G̃ = (R0)
−1G ∈ H1(C ) be the continuation of the Dirich-

let boundary data G ∈ H1/2(Γ) from BVP (9.4) into the surface C from the boundary Γ,
found with the help of a coretraction from Proposition 10.6. Then the Dirichlet BVP{

(AC (t,D)Ũ)(t) = F 0(t), t ∈ C ,

Ũ
+
(τ) = 0, τ ∈ Γ,

(10.9)

F 0 := F − AC (t,D)G̃ ∈ H̃
−1(C ) ,

is an equivalent reformulation of BVP (9.4) and the solutions are related by the equality
Ũ := U − G̃. On the other hand, since

H̃
−1(C ) :=

{
U ∈ H

−1(C ) : U+ = 0
}
,

the solvability of BVP (10.9) is equivalent to the invertibility of the operator AC (t,D) in
(10.1). Now the unique solvability of BVP (10.9) (and of the equivalent BVP (9.4)) follows
from Corollary 10.3.

11 THE NEUMANN BVP FOR THE EQUATION OF ANISOTROPIC ELASTICITY

Throughout this section C is a C 2-smooth hypersurface with the Lipschitz boundary
Γ = ∂C .

Theorem 11.1 The Neumann problem (9.6) has a solution U ∈ H1(C ) only for those right-
hand sides F ∈ H̃

−1(Γ) and H ∈ H
−1/2(Γ) which satisfy the equality∫

C

F (t)K(t)dS =

∮
Γ

H(τ)γ+
DK(τ)ds ∀K ∈ R(C ) (11.1)

If the condition (11.1) holds, the Neumann problem has a general solution U = U 0 + K ∈
H1(C ), where U 0 ∈ H1(C ) is a particular solution and K ∈ R(C ) is a Killing’s vector
field.

The proof will be exposed at the end of the section after we prove some auxiliary results.
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Lemma 11.2 The condition (11.1) is necessary for the Neumann problem (9.6) to have a
solution U ∈ H

1(C ).

Proof: First note that for a Killing’s vector field K ∈ R(C ),

AC (t,D)K = 0 and γ+
NK =

(
TC (νΓ,D)K

)+
= 0. (11.2)

Indeed, if K ∈ R(C ) is naturally extended to K̃ ∈ R(S ), then AC (t,D)K(t) =

AC (t,D)K̃(t) = 0 for t ∈ C (cf. (6.28)) and the first equality follows.

The second equality in (11.2) follows from (9.9) if we recall that DefC (K) = 0 (see
4.26) and this implies

TC (νΓ,D)K = Def∗S (νΓ)T DefS (D)K = 0 , U ∈ V (S ). (11.3)

The latter formula can easily be seen analyzing (9.15).

From (9.13) and DefC (K) = 0 it follows

E (K,U) :=

∫
S

〈T DefS K(y),DefS U (y)〉 dS = 0 (11.4)

for all U ∈ H
1(C ) and all K ∈ R(C ).

Introducing into the Green formula (9.11) F = AC (t,D)U , V = K ∈ R(C ) and the
obtained equality, we get the claimed orthogonality condition (11.1).

Lemma 11.3 The bilinear form

AN (U ,V ) := (AC (t,D)U ,V )C − (γ+
NU , γ+

DV )Γ = E (U ,V ) (11.5)

is well defined, symmetric AN (U ,V ) = AN (V ,U ) for all U , V ∈ H1(C ) and non-negative
AN (U ,U ) ≥ 0 for U ∈ H1(S ) (cf. (9.13)). Moreover, the form is positive definite

AN (U ,U ) ≥M3

∥∥U ∣∣H1(S )
∥∥2 ∀U ∈ H

1
R(S ) (11.6)

on the orthogonal complement H1
R(S ) to the finite dimensional subspace of Killing’s vector

fields R(C ) in the Hilbert-Sobolev space H1(C ).

Proof: The proof is a direct consequence of the equality

AN (U ,V ) = E (U ,V ) := (T DefS U ,DefS U ) ∀U ∈ H
1(S ) (11.7)

(cf. (9.13)) if we recall that the tensor T is positive definite (cf. Lemma 6.2).

Proof of Theorem 11.1: The space of Killing’s vector fields R(S ) is finite dimensional
and consists of continuous vector-fields with bounded second derivatives (these fields are
actually as smooth as the surface C , i.e., are infinitely smooth if S is infinitely smooth;
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see Proposition 4.6). Let K1, . . . ,Km a the finite dimensional orthonormal basis in R(C ),
(Kj ,Kr)C = δjr, j, r = 1, . . . , m. Consider the finite rank smoothing operator

TU(X ) :=

m∑
j=1

(Kj ,U )S Kj(X ), X ∈ S . (11.8)

The operator T is symmetric and non-negative:

(TU ,V )C = (TV ,U )C . (TU ,U )C =

m∑
j=1

(U ,Kj)2C ≥ 0 (11.9)

∀U , V ∈ H
1(C ).

Consider the modified bilinear form

A
#
N (U ,V ) := ((AC (t,D) + T )U ,V )C − (γ+

NU , γ+
DV )Γ

= E (U ,V ) + (TU ,V )C U , V ∈ H
1(C ). (11.10)

The form is symmetric because both summands are

A
#
N (U ,V ) = E (U ,V ) + (TU ,V )C = E (V ,U) + (TV ,U )C = A

#
N (V ,U )

(cf. Lemma 11.3 and the first equality in (11.9)).

Moreover, the corresponding quadratic form is strongly positive

A
#
N (U ,U ) = E (U ,U) + (TU ,U )C ≥ C

∥∥U ∣∣H1(C )
∣∣‖ (11.11)

for some C > 0. Indeed, A
#
N (U ,U ) = 0 due to the positivity of the summands implies:

E (U ,U) = 0, and further U ∈ R(C ) (cf. Lemma 11.3), (TU ,U )C = 0 and further
(U ,Kj) = 0 for all j = 1, . . . , m. Then U =

∑m
j=1 (U ,Kj)Kj = 0. A non-negative

symmetric form with the property A
#
N (U ,U ) = 0 if and only if U = 0 is positive definite.

According to Lax-Milgram’s Lemma 7.7 the equation

A
#
N (U ,V ) = (F ,V )C − (H ,V +)Γ (11.12)

has a unique solution U ∈ H1(C ) for all V ∈ H1(C ). This solves the problem{
(AC (t,D)U)(t) + TU (t) = F (t), t ∈ C ,

(TC (νΓ,D) U)+(τ) = H(τ), τ ∈ Γ ,
(11.13)

which is a modified Neumann’s problem (9.6).

Now assume that the vector-functions F ∈ H̃−1(C ) and H ∈ H−1/2(Γ) satisfy the
orthogonality condition (11.1) from Theorem 11.1 and U 0 ∈ H

1(C ) be a solution of (11.13).
Since

(TU 0,Kk)C = (U 0,Kk)C , AN (U 0,Kk) = E (U 0,Kk) = 0 k = 1, 2, . . . , m
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(cf. (11.3)) from (11.12) we get

0 = (F ,Kk)C − (H ,Kk)Γ = A
#
N (U 0,Kk) = AN (U 0,Kk) + (TU 0,Kk)C

= (U 0,Kk)C k = 1, 2, . . . , m.

Therefore, TU 0 =
∑m

k=1 (U 0,Kk)C Kk = 0 and BVP (11.13), which is uniquely solv-
able, coincides with BVP (9.6) provided that the right hand sides satisfy the orthogonality
condition (11.1). Since the kernel of BVP (9.6) coincides with the space of Killing’s vector
fields R(C ), a general solution of BVP (9.6) has the form U = U 0 + K with arbitrary
K ∈ R(C ).

12 POTENTIAL METHOD AND BOUNDARY INTEGRAL EQUATIONS

In the present section we relax the constraints on the data for the BVPs in (9.4) and (9.6):

F ∈ W
s−2
p (C ) , U ∈ W

s
p(C ) ,

G ∈ W
s− 1

p
p (Γ) , H ∈ W

s−1− 1
p

p (Γ) , 1 < p <∞ , s ≥ 1 .
(12.1)

Note that due to Corollary 9.2 the traces of solutions to the equation AC (t,D)U = f in
BVPs (9.4) and (9.6) under constraints (12.1) are defined correctly.

To apply the potential method and relax constraints on the data of BVPs we have to
restrict ourselves with smooth hypersurfaces to ensure the existence of a fundamental so-
lution to the basic equation. Thus, throughout this section a hypersurface S will be infi-
nitely smooth and C will be a subsurface with the �-smooth boundary Γ = ∂C . A function
B ∈ C∞(C ) is supported in the complemented domain supp B ⊂ C c := S \ C and let
KA(t, t−τ) be the fundamental solution to the perturbed elasticity operator AS (t,D)+BI ,
which exists due to Theorem 9.3. Then any solution to the BVPs (9.4) and (9.6) is repre-
sented by the formulae

U(t) = (NC F )(t) + (WΓU+)(t) − (V Γ(TC (νΓ,D)U)+)(t) , t ∈ C , (12.2)

where the corresponding potential operators are defined as follows

(NC (t,D)ϕ)(t) :=

∮
C

KA(t, t− τ)ϕ(τ) dS ,

(WΓ(t,D)ϕ)(t) :=

∮
Γ

[(TC (νΓ(τ),Dτ )KA)(t, τ − t)]� ϕ(τ) ds , (12.3)

(V Γ(t,D)ϕ)(t) :=

∮
Γ

KA(t, t− τ)ϕ(τ) ds , t ∈ C .

The proof of (12.2) is standard: by inserting the solution U to AC (t,D)U = F and the
fundamental solution V = KA(t, t− τ),

AC KA(t, t− τ) = χC (AS − H I)KA(t, t− τ) = χC δ(t− τ) = δ(t− τ) , t, τ ∈ C
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truncated properly around the diagonal t = τ on the distance ε > 0, into the Green formula
(9.12) we get the representation formula (12.2) by sending ε→ 0.

Let us consider the following pseudodifferential operators on the boundary Γ, which
are direct values of potential operators and their compositions with the boundary operator
TΩε(νΓ,D) (cf. (9.9)):

V −1(t,D)U = V Γ(x,D)U
∣∣
S
, W∗

0(t,D)U := TΩε(νΓ,D)V Γ(x,D)U
∣∣
S
,

W0(t,D) := WΓ(x,D)U
∣∣
S
, V +1(τ,D) := TΩε(νΓ,D)WΓ(x,D)U

∣∣
S
.

(12.4)

For these operators we have the standard Plemelji formulae, proved in [Du3]:(
WΓϕ

)−+ (τ) = −+
1

2
ϕ(τ) + W0(τ,D)ϕ(τ) ,(

TC (νΓ,D)V Γϕ
)−+ (τ) = +−1

2
ϕ(τ) + W∗

0(τ,D)ϕ(τ) ,(
V Γϕ

)−
(τ) = (V Γϕ)+(τ) = V−1(τ,D)ϕ(τ) ,(

TC (νΓ,D)WΓϕ
)−

(τ) = (TC (νΓ,D)WΓϕ)+(τ) = V +1(τ,D)ϕ(τ) , τ ∈ Γ .

(12.5)

Moreover, if Γ is �-smooth and |s| ≤ �, 1 < p <∞, the pseudodifferential operators

V −1 = V −1(τ,D) : H
s
p(Γ) −→ H

s+1
p (Γ), (12.6a)

V +1 = V +1(τ,D) : H
s
p(Γ) −→ H

s−1
p (Γ), (12.6b)

W0 = W0(τ,D) : H
s
p(Γ) −→ H

s
p(Γ). (12.6c)

are bounded (cf. similar assertions in [Du1, DNS1, DW1]).

Lemma 12.1 The pseudodifferential operators V −1 is elliptic, positive definite (and, there-
fore, self adjoint)

(V −1U ,U )C ≥ C
∥∥U ∣∣H−1/2(Γ)

∥∥2
(12.7)

for some C > 0.

The pseudodifferential operators

V +1 = V +1(τ,D) : H
1/2(Γ) −→ H

−1/2(Γ), (12.8)

is elliptic, non-positive

−(V −1Z,Z)Γ ≥ 0, ∀Z ∈ H
1/2(Γ) (12.9)

and has the trivial index Ind V +1 = 0.

Proof: For the proof of (12.7) we refer to [CS1, DNS1, DW1, MT1, MMT1] where similar
assertions are proved.



12. POTENTIAL METHOD AND BOUNDARY INTEGRAL EQUATIONS 53

Corollary 12.2 Let Γ is �-smooth and |s| ≤ �, 1 < p <∞.

The pseudodifferential operators V −1 in (12.6a) is invertible.

The pseudodifferential operators V +1 in (12.6a) is Fredholm, has the trivial index, i.e.,
Ind V +1 = 0 and Killing’s vector fields all belong to the kernel R(S ) ⊂ Ker V +1.

Proof: For p = 2 the first two assertions are direct consequences of the inequalities (12.7),
(12.14) and of ellipticity of the corresponding ΨDOs. Concerning the last assertion about
the kernel-the proof is standard and we refer to [CS1, DNS1, DW1, MT1, MMT1] for such
proofs.

For arbitrary 1 < p < ∞ the we quote [DNS1] (also see [Ag1, Du2, Ka1]) where is
proved that an elliptic pseudodifferential operator on closed manifold have the same kernel
and cokernel in the spaces Hs

p(S ) for all |s| ≤ � and all 1 < p <∞.

As a byproduct we prove in the next Theorem 12.3 that the kernel Ker V +1 consists of
only Killing’s vector fields Ker V +1 = R(S ) (cf. Corollary 12.4.

Theorem 12.3 Let 1 < p <∞ and s ≥ 1.

The Dirichlet problem (9.4), (12.1) has a unique solution U ∈ Hs
p(C ) for arbitrary data

G ∈ H
s−1/p
p (Γ). This solution is written in the form

U(X ) = (NC F )(X ) + (WΓG)(X ) − (V ΓZ)(X ) , X ∈ C , (12.10)

where Z ∈ H
s−1/p−1
p (Γ) is a unique solution to the boundary pseudodifferential equation

(V −1Z)(t) = (NC F )(t) − 1

2
G + (W0G)(t), t ∈ Γ . (12.11)

The Neumann problem (9.6), (12.1) has a solution U ∈ H
s
p(C ) for those data H ∈

H
s−1/p−1
p (Γ) which satisfy the condition (11.1). If this is the case, a solution is written in the

form

U(X ) = (NC F )(X ) + (WΓZ)(X ) − (V ΓH)(X ) + V (X ) , X ∈ C , (12.12)

where V ∈ R(Γ) is arbitrary Killing’s vector field and Z ∈ H
s−1/p−1
p (Γ) is a solution to

the boundary pseudodifferential equation

(V +1Z)(t) = −(TC (νΓ,D)NC F
)
(t) +

1

2
H(t) + (W∗

0H)(t), t ∈ Γ. (12.13)

Proof: By introducing the representation of a solution (12.10) into the boundary condition
in (9.4), invoking Plemelji formulae (12.5), we obtain an equivalent boundary pseudodiffer-
ential equation (12.11). Since this boundary ΨDE is uniquely solvable (see Corollary 12.2),
the initial BVP has a unique solution, the first part of the theorem is proved.
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Similarly, by introducing the representation of a solution (12.12) into the boundary con-
dition in (9.6), invoking Plemelji formulae (12.5), we obtain an equivalent boundary integral
(pseudodifferential) equation (12.13). Due to the equivalence, the homogeneous equation
V +1Z = 0 has as solutions Killing’s vector fields Z ∈ R(C ) only. The solvability condi-
tion (11.1) is a consequence of the definition of a Fredholm operator.

Corollary 12.4 The pseudodifferential operators V +1 satisfies the Gårding’s inequality

−(V −1U ,U )C ≥ C1

∥∥U ∣∣H1/2(Γ)
∥∥2 − C2

∥∥U ∣∣H−r(Γ)
∥∥2

(12.14)

for some C1 > 0, C2 > 0 and arbitrary 0 < r ≤ �.

Proof: Let
{
Kj

}m
j=1

be a biorthogonal basis (K j,Kk)Γ = δjk in the finite dimensional
space of traces of Killing’s vector fields R(Γ) on the boundary Γ. Let us consider the
smoothing (infinitely smoothing if � = ∞) finite rank operator operator T : H−r(Γ) →
Hr(Γ) defined in (11.8). We remind that

{
Kj

}m
j=1

⊂ C�(Γ) is the orthonormal system of
Killing’s vector fields. Then, the operator

−V +1 + T : H
1/2(Γ) → H

−1/2(Γ)

is invertible and non-negative

((−V +1 + T )U ,U )Γ = −(V +1U ,U )Γ +
m∑
j=1

(Kj ,U )2Γ ≥ 0

(cf. (12.9)). This implies that −V +1 + T is positive definite

((−V +1 + T )U ,U )Γ ≥ C1

∥∥U ∣∣H1/2(Γ)
∥∥2

and we write

−(V +1U ,U )Γ := (−V +1 + TU ,U )Γ − (TU ,U )Γ ≥ C1

∥∥U ∣∣H1/2(Γ)
∥∥2 − (TU ,U )Γ

≥ C1

∥∥U ∣∣H1/2(Γ)
∥∥2 − C2‖U

∣∣H−r(Γ)
∥∥2
,

which proves (12.14).

Remark 12.5 Not only the pseudodifferential operator V −1 in (12.6a) is invertible for closed
surface Γ of codimension 2, but also for an open part of it ΓD ⊂ Γ:

rDV −1 : H̃
s
p(ΓD) → H

s+1
p (ΓD), (12.15)

provided that

1

p
− 1

2
< s <

1

p
+

1

2
, 1 < p <∞. (12.16)
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Here rD is the restriction of functions from Γ to the subsets ΓD.

The proof is standard and can be retrieved from [DNS1, DW1, NCS1] and other sources.

This assertion can be used for the investigation of the mixed type BVPs, associated with
(9.4) and (9.6).
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