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Abstract. We propose an approach which allows global representation of ba-
sic differential operators (such as Laplace-Beltrami, Hodge-Laplacian, Lamé,
Navier-Stokes, etc.) and of corresponding boundary value problems on a hyper-
surface . in R™, in terms of the standard spatial coordinates in R™. The tools
we develop also provide, in some important cases, useful simplifications as well
as new interpretations of classical operators and equations.

The obtained results are applied to the Dirichlet and Neumann boundary value
problems for the Laplace-Beltrami operator A« and to the system of anisotropic
elasticity on an open smooth hypersurface 4 C . with the smooth boundary
[' := 0%. We prove the solvability theorems for the Dirichlet and Neumann
BVPs on open hypersurfaces in the Bessel potential spaces.
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1 INTRODUCTION

The purpose of this work, which is based on the joint paper with D. Mitrea & M. Mitrea
[DMM1], is to provide a (relatively) simple calculus of Boundary value problems (BVP’s)
for partial differential equations (PDE’s) on hypersurfaces in R™. Such BVPs arise in a
variety of situations and have many practical applications. See, for example, [Hal, §72] for
the heat conduction by surfaces, [Arl, §10] for the equations of surface flow, [Cil], [AC1] for
the vacuum Einstein equations describing gravitational fields, [TZ1] for the Navier-Stokes
equations on spherical domains, as well as the references therein.

A hypersurface . in R™ has the natural structure of a (n — 1)-dimensional Riemannian
manifold and the aforementioned PDE’s are not the immediate analogues of the ones cor-
responding to the flat, Euclidean case, since they have to take into consideration geometric
characteristics of . such as curvature. Inherently, these PDE’s are originally written in local
coordinates, intrinsic to the manifold structure of ..

The main aim of this paper is to demonstrate the approach which allows representation
of the most basic partial differential operators (PDO’s), as well as their associated bound-
ary value problems, on a hypersurface . in R", in global form, in terms of the standard
spatial coordinates in R™. It turns out that a convenient way to carry out this program is by
employing the the so-called Giinter derivatives-the column of surface gradient

D = (D1, Ds,.... D))" (1.1)

(cf. [Gul], [KGBB1], [Dul]). Here, for each 1 < j < n, the first-order differential operator
2; is the directional derivative along 7 e;, where 7 : R" — T'.% is the orthogonal projection
onto the tangent plane to .#” and, as usual, e; = (d;x)1<k<, € R", with §;; denoting the
Kronecker symbol.

The operator Z is globally defined on (as well as tangential to) ., and has a relatively
simple structure. In terms of (1.1), the Laplace-Beltrami operator on . simply becomes (see
[MM1, pp. 2ff and p. 8.])

Ay =97 on 7. (1.2)

Alternatively, this is the natural operator associated with the Euler-Lagrange equations for
the variational integral

&l :—%/jﬂ]\@uHQdS. (1.3)

A similar approach, based on the principle that, at equilibrium, the displacement mini-
mizes the potential energy, leads to the derivation of the equation for the elastic hypersurface
(cf. [DMML1, Du3] for the isotropic case).

These results are useful in numerical and engineering applications (cf. [AN1], [Bel],
[Cel], [Col], [DL1], [BGS1], [Sm1]) and we plan to treat a number of special surfaces in
greater detail in a subsequent publication.
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The layout of the paper is as follows. In §2-§3 we review some basic differential-
geometric concepts which are relevant for the work at hand (e.g., hypersurfaces and different
methods of their identification). In §4-§5 we identify the most important partial differential
operators on hypersurfaces, such as gradient, divergence, Laplace-Beltrami operator. In §5,
starting from first principles, we identify the natural operator of anisotropic elasticity on a
general (elastic, linear) hypersurface . (see [DMML1] for the isotropic Lamé operator). Our
approach is based on variational methods.

In §7, §8 we study the Dirichlet and Neumann boundary value problems (BVPs) on
an open hypersurface. We apply two approaches-the functional-analytic based on the Lax-
Milgram Lemma, which requires less smoothness of the underlying hypersurface, and the
potential method, which appliues the fundamental solution and imposes the condition of
infinite smoothness on the hypersurface, also allows investigation of the equivalent boundary
pseudodifferential equations in the scale of Bessel potential spaces H; (I"), where |s| < ¢ and
1 < p < oo, provided the boundary I' := 9. is ¢-smooth.

The same project is carried out in §9-§12 for the equations of anisotropic elasticity and
we study the Dirichlet and Neumann BVPs for them on an open hypersurface.

2 BRIEF REVIEW OF THE CLASSICAL THEORY OF HYPERSURFACES

The next definition of a hypersurface is basic in the present chapter and we give two
further definitions later. The alternative definitions are very useful treating various problems
and later, in Lemma 2.5, we prove equivalence of all three definitions.

The next definition is most universal and can be used for manifolds.

Definition 2.1 A Subset . C R™ of the Euclidean space is called a hypersurface if it has
acovering.# = |J;Z, .#; and coordinate mappings

0, : w; = 7 =0;w;) CR", w; CR™ j=1,..., M, (2.1)
such that the corresponding differentials
DO;(p) := matr [010;(p), . . ., 0.—10;(p)], (2.2)
have the full rank
rank DO;(p) =n—1, VpeY;, k=1,...,n, j=1,....M,

i.e., all pointsof w; areregular for ©; for all j =1,..., M.
Such mapping is called an immersion aswell.

The hypersurface is called smooth if the corresponding coordinate diffeomorphisms © ;
in (2.1) are smooth (C'*°-smooth). Similarly is defined a x-smooth hypersurface.

Next we expose yet another definition of a hypersurface. Definition 2.1 is a particular
(canonical) case of a hypograph surface represented by a single coordinate function M = 1,
while Definition 2.2 deals with a general hypersurface.
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Definition 2.2 An open subset

Qo ={(p=0' pn) ER" : P eR" p, eR,p, <O(p)} . (2.3)
in the Euclidean space R", generated by a real-valued function ® : R"~! — R, iscalleda
hypograph domain.

The boundary

Fo={2z€R" : z=(p,0(p), pewcR""} (2.4)

of a hypograph domain €24 is called a hypograph surface. If ® is u-smooth, . isreferred
to a u-smooth hypersurface.

If & isa Lipschitz continuous
() = @) < LIp' —¢|, p.d eR". (2.5)

< isreferred to as a Lipschitz hypersurface.

Definition 2.3 An open subset 2 C R™ (compact or with outlets at infinity) is called a
domain with smooth boundary (with a p-smooth or with the Lipschitz boundary) if there
exists a finite family of open sets {Qj}j,vzl such that:

I. each Q;, 7 = 1,..., N can be transformed into a hypograph domain by an affine
transformation, i.e., by a rotation and a trandlation;

i Q=L Q andoQ = N, 99;.

The C*-smooth (the Lipschitz) boundary .7 := 992 of a hypograph domain 2 C R" is
called a hypograph surface.

The third definition of a hypersurface is implicit.

Definition 2.4 Let £ > 1 anw C R" be a compact domain. An implicit C'*-smooth (an
implicit Lipschitz) hypersurfacein R™ is defined as the set

Y:{%'Ew : xpy(gz):o}, (2.6)

where U, : w — RisaC*-mapping (or isaLipschitzmapping) whichisregular V W (') #
0.

Note, that by taking a single function W ., for the implicit definition of a hypersurface ./
we does not restrict the generality: if

M
Y:U%, and %:{%ijCR":\I/j(%'):O},

J=1
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we pick up a partition of unity {@Z)j}j]‘il subordinated to the covering {fg}ﬁl The surface
. is then represented by formula (2.6) and a single implicit function

M
Wy i= a0 (2.7)
Jj=1

Lemma 2.5 Definition 2.1, Definition 2.3 and Definition 2.4 of a hypersurface . are all
equivalent.

Proof: Let us fix an arbitrary point p € . = 90X at the boundary. According the Defini-
tion 2.3 locally, after an affine transformation, which brings p to the origin p = 0 and the
tangential surface at p to the hyperplane p,, = 0, a neighborhood w; C .# of the point p
is given by the surface equation w; = {p, = ®;(p') : p’ € Q; C R"~'}. Thus, modulo an
affine transformation, w; = {(«/, ®(2’)) : 2’ € Q; C R} represents the image of the
mapping ©;(-) = (-, ®()) : Q; — . C .# and, for some integer M € N, . = L, .7,
is a hypersurface according the Definition 2.1.

Vice versa, let a hypersurface . in R™ be given by the definition 2.1. Fixing arbitrary
point p € . we recall that the Jacoby matrix DO ; = VO, of the coordinate diffeomorphism
has rank n — 1. We choose a non-degenerate (n — 1) x (n — 1) minor among n minors of
DOj(py,...,p,) and let gf be the distinguished component of the vector-function ©, =

(g}, o ,gy)T not present in this minor. Due to the implicit function theorem (cf., e.g., [Ta2,
V. 1]) there exists a small neighborhood w; of p = 0 and the implicit function ®;(p’) such
thatg;-”(cbj(p’)) =pmym=1,... k=1 k+1,... ,nfor(p,p,) € wj.

Next we shift the point p to the origin p = 0 and apply the rotation which interchanges
the distinguished variable p,. with p,,. Then, modulo an affine transformation of the variable
p. the part w; of the surface . is represented as the graph (p/, g% (®; (p’)))T, i.e. as p, =
U,(p) == gf(CDj (p')) and . is a hypersurface according the Definition 2.3.

J
The implication Definition 2.3 = Definition 2.4 is trivial: a piece 5”(1{ of a hypograph
surface .5 defined by a function ®; € C*(V), V. c R"~, is an implicitly defined hyper-
surface and the corresponding function is
¥ ,(0) =z, — BI(2), r= (2, x,) €Ew;:=V; x[—¢,¢], (2.8)
e>0, j=1,...,M.

How to convert a local implicit representation into a global one is shown in (2.7).

To complete the proof we only need check the implication: Definition 2.4 —> Definition
2.3.

Let .~; be a part of a hypersurface .7 given implicitly by a single function ¥; € C*(w;),
w;j C R™and 0, ¥;(z) # 0. Due to the implicit function theorem there exists the implicit
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functions ®; € C*(2;), Q;  R"~! such that

0

lI’<9517 sy Tl -1, ‘I)j(%, sy Thyj—1, Lhj—1, - - - 733n)7$kj717 e ,l’n>
v.fL'EUj, jzl,,n
Then, modulo the affine transformation

(T1, .0 Thym 1y Thym1s - o5 T) = (P1y oy Pet) Pn = Tk,

the part .7; := U; N .7 of the surface is represented as the graph p, = ®;(p") and .7 is a
hypersurface according the Definition 2.3. |

Remark 2.6 Redefinition of a C*-smooth hypograph hypersurface as an implicit hypersur-
facein (2.8) isnot unique: we can also take

Uy (0):=xz, — )+ G(x), r=(2,z,) Ew:=V xR, (2.9)

where G(2) = 0 for V2~ € .. Moreover, G(x) might be non-properly smooth G € C™(w)
withm < k.

Definition 2.4 is a powerful source of hypersurfaces.

Example 2.7 For afixed pair R > 0 and p € R" the set

Si M (p) = {o = (@1, m) ERY Wpy(e) = o —pf — B2 =0}, (210)

defines the sphere of radius R centered at p.

Smilarly, for apair of vectorsp € R™ andof r = (ry,...,r,)" with positive components
ri>0,...,r, > 0theset

n 2
cg’;’;l = {x = (z1,...,2,) ER" : U, (2) = Z (%ij) 1= O} (2.11)
=1

defines the ellipsoid.
Both, S%*(p) and & " are hypersurfacesin R”.

In some applications it is necessary to extend the outer unit vector field to a hypersurface
in a neighborhood of .&, preserving some important features. For example, such extension
is needed to define correctly the normal derivative (the derivative along normal vector fields,
outer or inner). We consider here a natural extension based on implicit representation of a
surface . and note that another possible extension is based on the hypograph representation
(2.4).
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Lemma 2.8 Let .¥ C R" be a k-smooth hypersurface, £ = 1,2,..., given implicitly
VU, (2) = 0 by the function ¥, € C*(Q) defined in a neighborhood €2~ of the surface
S CQy CR™

i. Theunit vector field

A7

_ _ 0y
A 22

VAT

(M, oM j=1,....n (2.12)

is C*~'-smooth and, for any (fixed) point = € Q. it is normal vector to the level
surface
Fo={yeR"” : UVy(y)=C:=Vy(x)}. (2.13)

In particular, on the initial surface.# it coincides with the unit normal vector field
N (z) = v(z) forall x € ..

ii. If & > 2 the following equality holds:

N () = vozl®) = C

\I/y(x) -C
V()]

V()]
Vee S, j=1,...,n.

or, componentwise, .4;(z) = 0; , (2.14)

iii. The following equalities
0; M, =0, hodforall j k=1, n (2.15)
Proof: Let {.},0,}}, be the atlas which defines . (cf. Definition 2.1). The pull-back

functions W (z) = (0;.V)(z) = V;(0;(2)), + € w; C R*, are immersions: the
corresponding gradient has maximal rank

VWi(z) := matr [0,V (x),...,0,1V}(z)],
rank Vui(z) =n—-1 Vrzew;, j=1,...,M.

Since V¥ (x) = 0 for z € w;, the chain rule provides

n—1

V() = (0nVs)(0;(2))(0kO))m(z) =0, k=1,...,n—1

m=1

and justifies that the gradient of the hypograph function is orthogonal to all tangential vectors
(0:9;(2), (VU»)(0;(x))=0 Veew;, k=1,...,n, j=1,...,M. (2.16)

Therefore, the normed gradient

v(z) = VL) v e (2.17)
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coincides with the outer normal vector on the surface (cf. Fig. 1).

X2

Fig. 1

The same holds for the level surfaces .7, since this surface is defined by the implicit
function ¥, — C.

The equality (2.14) follows taking into account that ¥ (z) — C' = 0 for all x € S

V() - C (00
VU@ V()

N G L DI
- O R T W) - W

forall z e 7.

0,

Equalities (2.15) are simple consequences of (2.14). [ |

Definition 2.9 Let .7 be a surfacein R™ with unit normal v. A vector filed 4" € C'(Q5)
in a neighborhood 2 o of ., will be referred to as a proper extension if .4/ , =V itis
unitary | 4| = 1in Q. and if .4 satisfies the condition (2.15). E

In the sequel we will dwell on a proper extension and apply the above properties of 1.

Corollary 2.10 For any proper extension .4 (x), z € Q. C R" of the unit normal vector
field v to the surface . C ) o the equality

Oy N(x)=0 holds for all z € Q. (2.18)

In particular, for the derivatives

.@k:ak—f/%ca/y, l{:L...,n, (219)
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which are extension into the domain €2 of Gunter’s derivatives ¥, = 0, — 1,0, on the
surface ., we have the equality:

D N; = Op N — NOy = Op N Jok=1,...,n. (2.20)
Proof: We apply (2.15) and proceed as follows:
n n 1 n
Oy N =) MON; =D MM, = 5 > oM =0;1=0
k=1 k=1 k=1

forall j=1,...,n. [ ]

Remark 2.11 Lemma 2.8 was proved partly in [DMM1, § 3] for a particular implicit func-
tion representing the given hypersurface ., namely for the signed distance

Uy (x) = tdist(x,.”) €Ny, (2.21)
wherethesigns“ +” and “—" are chosen for x “ above” (in the direction of the unit normal

vector) and “ below” ., respectively.

Lemma 2.12 For an arbitrary unitary extension .4/ (z) € C'(Qy), |4 (x)| = 1, of v(2),
in a neighborhood €2 .~ of ., the following conditions are equivalent:

i. Oy N]|,=0,ie,dyHx)—0fors —2ecSadj=12 . n
i, [0 ] — O3 M) |, = Drovy — Dive =0 fork, j=1,2,...,n.

Proof: The implication (ii) = () follows readily by writing

opN|, = {Z%aj«%} = {Zf/’?@k«/’?}
=1 j=1

k=1

1 2

n

7 k=11

1
=_V.1=0. 2.22
L =5Val=0 (2.22)

As for the inverse implication, we first observe that, in general,
oy N = 0 & A Pt s imply 6V</I/’/ depends onlyon v (2.23)

and does not depend on a particular extension .4” for arbitrary vector field V.
Let

Ty R =V (S), ma(t)=1—-vt)w' (t)= [0 —v;{t)v(t)] te. (2.24)

nxn’
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denote the canonical orthogonal projection 73, = 7 onto the space of tangential vector
fields to . at the point ¢t € .

W V)= vVi=> vuVe=0 foral V=(,... V)" eR".
J Ik

In the sequel we shall tacitly assume that the projection 7 o is extended to the neighbor-
hood €2 »

%,S//(x> = [53 - «/16($)e/%g($)} %_2)(; = 7?5//, T € ny . (225)

nxn’

Note that U = 7,U + (U, .#").# for arbitrary field U in the neighborhood €2.». Then

8U,/V’y - a@U,/V]y +(, L/V)aﬂ,/vly — a@Uf/V}y -

because a//,/i/’ = 0 and 7»U is a tangential field to .#. Thus, we can dwell on the
7
particular extension (2.14) and observe

\I/ 3
— ajakiy

5
— 9Nl
!V‘I’y\’y i Ml

which proves the implication (i) = (ii). n

Remark 2.13 Itisclear that a normal vector field and it’s (non-unigque) extension exists for
arbitrary Lipschitz surface, but almost everywhere on ..

Moreover to enjoy the properties listed in Lemma 2.8, we have to consider smoother
than Lipschitz surfaces and assume C2-smoothness of .. |

3 GAUSS AND STOKE’S FORMULAE FOR DOMAINS IN R"

In the present section we consider a hypersurface ./, which is a boundary of some
domain Q@ C R"™. We dwell on Definition 2.1 and 2.2 of a (hypograph) hypersurface .7,
which are most convenient for the present purposes.

The Gaul? formula (3.1) is a basic result in calculus on surfaces. We refer to [Mc1] for
the simplest proof of the following proposition.

Proposition 3.1 (Gaul® formula). Let 2 C R™ be a domain with the Lipschitz boundary
S =00, v(t) = (vi(t),...,v.(t))" betheouter unit normal vector to.# and f € W1(Q).
Then

[oswan=§ vwieas 31

in the following sense: the integral in the left hand side exists (since, by the condition,
0;f € Ly1(Q)) and the integral in the right-hand side is defined by the above equality. [ |
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Remark 3.2 Thelast statement of the foregoing Proposition 3.1 explainsthetracesy 0, f (')
of f € Wi(Q) despite, a well known theorem that the trace v50; f(2) = 9;f(2) , of a

function f € W!(2) on the boundary surface.s” = 92 does not exist for sure. The assertion
does not contradicts the trace theorem, because states existence of the trace in combination
with components of the normal vector v;(z) f(x).

Next we are going to derive some important consequences of the GauR formula.

Corollary 3.3 LetQ, . = 9Q and v(7) = (v1(7),...,v.(7))" beasin Lemma 3.1.

i. The divergence formula

/ div F(y) dy = 7{ (v(r), F(1))dS (3.2)
Q

7

holds for the divergence
of avector fielld ' = (f1,..., f.)" € WHQ).

ii. Theintegration by parts

/ 93 f(y)g(y) dy = 7{ vi(T)f(7)g(T) dS — / f(Y)0;9(y) dy (3.4)
Q S Q
holds for arbitrary f, g € W!().

Proof: Formula (3.2) is a direct consequences of the Gaul? formula (3.1):
/divF(y) dy = Z/ajfj(y)dy _ Zf vi(7), f5(7) dS :f (w(r), F(r)) dS.
Q FRRAY T s %

Since f, g € W3(.”) implies fg € W?(.), we can apply the GauR formula (3.1) to the
Leibnitz equality 0;[¢(y)¢(y)] = ©(y)0;4(y) + 1 (y)d;(y) and get (3.4) readily. m

Let us consider the normal derivative

pi=v-Vo=) vip, peC (). (35)
j=1
Corollary 3.4 (Green’s formula). Let 2 € R™ be a domain with Lipschitz boundary.

For the Laplace operator
A=07+ -+ (3.6)
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and functions ¢, ) € Wi(Q) thefollowing | and Il Green formulae are valid:

/Q (M) (w)ply)dy = fgﬂ(&/@/})(ﬂw(f) a5 - Z / 0,0 ) O0) W)y (3.7)

[ @owewin= [ vwaoma
+ [0ae0) + @] ds 69
o0

Proof: Let, for time being, ¢, € C?*(Q). By applying (3.4) we prove | Green formulae in
(3.7).
By writing a similar formula

/Q (V) (y)Ap(y)dy
- ]f @A)T)p(r) S - Z / (0:0)(4) (030) (v)dy (3.9)

and taking the difference with (3.7), we prove Il Green formulae in (3.8).
For arbitrary o, v € W1 (Q) the Green formulae (3.7) and (3.7) follow by approximation

;= oy — P, 5,15 € CHAQ). u
Stoke’s derivatives are concrete examples of weakly tangential operators
%y) = [%k]an y %jk = y]@k — l/kaj = 8mj’k . (310)

These derivatives are directional with respect to a tangential vector fields to .& (cf. (4.8) and
(4.10)). Indeed, the directing vector mjy.(27) = v;(2)e* — vy (2)e’ of Ay, where {€’}_,
is the Cartesian frame in R", is tangential to .

v(z) mj(2) =vi(2)w(2) —v(2)v(2) =0, 2e.7. (3.11)

Therefore the Stoke’s derivative ., operator can be applied to functions defined on the
surface . only.

Corollary 3.5 Let Q, .7 = 0Q and v(7) = (v1(7),...,v,(7))" beasin Lemma 3.1.
The following Stoke’s formulae

f (A1 f)(T)dS =0 (3.12)
5

holdsfor j,k = 1,...,nandfor all f € Wi(.%).
The Stokes derivatives .#; ;, are skew-symmetric:

]fy (M) (T)p(r) dS = — f’; B() (M) (7) dS (3.13)

for j,k =1,...,n andfor arbitrary pair ¢, € W2(.%).
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Proof: We assume temporarily that f € C'(.#) and extend this function into the domain
F e C'(Q) N C?*(Q) with the trace on the boundary F'| , = f. Such extension is possible
since the boundary is a Lipschitz hypersurface. It is possible to construct a direct extension
by means of function theory (cf. E. Stein [St1]). But we consider here the following indirect
construction: consider the Dirichlet problem for the Laplace operator AF" = 0 in € with
a boundary condition F]y = f. Itis well known that the solution exists and, moreover,
F € C>(9Q) (cf., e.g., [Lel]). Herewith we have found the extension.

Now apply the Gaul® formula (3.1) to a function 0,0, f = 0,0, f twice:

/Q (0,0 F)(y) dy = 74 vy (P)(OF) () dS,

L@orw = ¢ neenmas.

By taking the difference we get (3.12) immediately.

Note that formula (3.12) is valid for arbitrary f € C''(.’) without knowing an extension
F(x) of f(2) into the domain €2, because the Stoke’s derivative .}, can be applied to a
function defined only on the surface.

For a function ¢ € W1(.) formula (3.12) is proved by approximation (cf. the conclud-
ing part of the proof of Lemma 3.1).

Formula (3.13) follows from (3.12) Since .#;;, is a linear differential operator

M| oY) = (M) + (M)

and by applying (3.12) we get

0= j{(ﬂ (///Jk[wSOD(T) ds = f; (%k@) (T)(7)dS +7§ o(7) (///JMM (r)dS.

S

The obtained equality completes the proof of (3.13). |

4 CALCULUS OF TANGENTIAL DIFFERENTIAL OPERATORS

The content of the present section partly follows [DMML, § 4].

Throughout the present section we keep the following convention: . is a hypersurface
in R™, given by an immersion

0:w—.97, wC R 4.1)
with a boundary I' = 0., given by another immersion

Or : w—1:=07, wCR"™?, 4.2)
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v (=) is the outer unit normal vector field to . an .4"(x) denotes an extended unit field in
a neighborhood w & of .7 (cf. Definition 2.9). vr(t) is the outer normal vector field to the
boundary I', which is tangential to ..

A curve on a smooth surface . is a mapping
v IS 4 = (a,b] CR, (4.3)

of a line interval .7 to ..
A vector field on a domain €2 in R™ is a mapping

U:Q-R',  Ul)=> Ulx)e, (4.4)
j=1
where U7 € C5°(Q) and €’ is the element of the natural Cartesian basis in R
et :=(1,0,...,0), e":=(0,...,0,1), (4.5)

in the Euclidean space R". {e;}"_, is also called the natural frame or the Cartesian frame.
By 7(Q2) we denote the set of all smooth vector fields on €.
Let U € 7/(£2) and consider the corresponding ordinary differential equations (ODE):

y =Ul(y), y(0) ==z, x e . (4.6)

A solution y(t) of (4.6) is called an integral curve (or orbit) of the vector field U. The
mapping
y=y(t,r) = FLx) : Q—Q 4.7
is called the flow generated by the vector field U'.
A vector field U € 7/(Q2) defines the first order differential operator
[ (F@) — flx) d
Uf(xr)=0yf(x):=lim (F5(2)) ~ (@) = — [ (FL(@)|,, - (4.8)
h—0 h dt
By applying the chain rule to (4.8) we get

() = U ). V1 (@) = S Us(a) 32

j=1

(4.9)

By 7(.#) we denote the set of all smooth vector fields, tangential to the hypersurface
<. Note that if the vector U is tangential, i.e., U € ¥ (.¥), then its orbit can be chosen as
a curve on the surface .,

FL(x) « I — S, S CwcCcR"L (4.10)
Then the derivative 0y, defined by (4.8) is applicable to a function f € C*(”) which is
defined on the surface . only.

Note, that if a function f is defined not only on the surface .#, but also in a neighborhood
of ¥ C R", formula (4.9) gives the rule for the differentiation of f along a vector field
Uec?(Y).
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Definition 4.1 Aderivative 97, : C'() — C1(¥), U € ¥ () iscalled covariant if it
isalinear automor phism of the space of tangential vector fields:

oG = V() — V(L. (4.11)

If .7 is embedded in R"™, a directional derivative 0y along a tangential vector field U €
¥ () maps the space of tangential vector fields to the space of possibly non-tangential
vector fields

Oy : V(F) /= V(F).

If composed with the projection
oGV :=n,00V = 0yV — (v,0uV)v (4.12)

(cf. (2.24)), it becomes an automorphism of the space of tangential vector fields (cf. (4.11)).

The Gunter’s derivatives {@j};;l are tangent and represent a full system (cf. (4.37)-
(4.39)). But the derivative Z;V is not covariant and maps the tangential vectors to non-
tangential ones Z; : ¥ (.) /4 ¥ (). To improve this we just eliminate the normal com-
ponent of the vector by applying the canonical orthogonal projection 7 onto ¥ (.#) (cf.
(2.24))

DIV =1,V =DV — (v, D Vv = DV + (Ovv;)v, (4.13)
where Oy = Z V00wp = Z V2D
k=1 k=1

and obtain an automorphisms of the space of tangential vector fields

97 - V(S) =V (S). (4.14)

To check the equalities in (4.13) we recall (v, V') = Z z/jvjo = 0 and proceed as follows

J=1

Ivip= Z Viohy = Z Vi Do + Z Vevilup = Z Vi Diep,
k=1 k=1

Z VmD; VO = Z [@j(umv,g) — Vg@jl/m]

m=1
=— Z Vo Divm == Y _ VS Dv; = =0y . (4.15)
m= m=1

Note that if U7 (.7) is tangent then

U = ZUOe] ZUOdJ since ZVJUO =0, (4.16)
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i.e. the system {dj}?:1 is full in 7/ (). Although this system is linearly dependent, the
representation of a tangential vector by {dj}?:1 IS unique.

Definition 4.2 A tangential vector field U € 7/ () iscalled Killing’s field, if it generates
a flow consisting of isometries and preserves the metric on the surface . (cf. [Ta2, v. |, Ch.
2! § 3])'

In other words the metric ¢(V, W) is invariant under the flow .7/, generated by the
vector field U and can be recorded in terms of the Lie derivative £y (cf. [Ta2, v. |, Ch. 2],
[DMM1]) asfollows:

Log(V,W)=0  forall VW e ¥ (Y). (4.17)
The representation matrix Def - U of the bilinear form
2(Defo (U)V, W) := Lyg(V, W), VYU, V.W € ¥ () (4.18)

is called the deformation tensor (cf., e.g.,[Ta2, V. 1, Ch. 5, § 12]).

Note that the deformation tensor is the symmetrized covariant derivative (cf., e.g., [Ta2,
V. 1, Ch. 5, § 12]).

(Def, U)(V, W)= %{@VU, W) + (dwU., V)}
:%{@‘%U, W) + (95U, V)}, YV, W € ¥ (7). (4.19)
Let
d=nge; €V, j=1,...n, (4.20)

be the projection of the Cartesian frame onto the tangent space ¥ (.#) to the hypersurface
. Obviously, the frame {d;}7_, is linearly dependent

<I/,dj>:Zdej:O, jzl,,n
j=1
Then any tangential vector field U € ¥ (.) has the following representation
U=> Ule =) Uld € V() (4.21)
j=1 i=1

in the canonical Cartesian frame and its projection.
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Lemma 4.3 In Cartesian coordinates the deformation tensor Def o (U) = [@?k(U)}
has order n and of type (0, 2) and

nxn

1. ,
95, (U) = (Defy (U))x = 3 [(27U0);+ (27 U)y]
1
=3 (2,00 + D.U) + 0u(vjm)] . Vi k=1,....n (4.22)

where (2 U ). denotesthe k — th component of the covariant derivative 27" U .

Proof: For the proof we refer to [DMML1]. |

Remark 4.4 Let usintroduce the linearly dependent but full system of vectors
{d" =d ® dk}?zl, d=e —vv, jk=1,...n (4.23)
in contrast to the system
e i mn
{e] =e'®e }j=1' (4.24)
which islinearly independent. Then the deformation tensor can be written as follows

=Y DU = VIWP(Z/U); + (77 U]

jk=1 jk=1

Def., (U) = [0 (U)]

nxn
— Z VkOW]Q [.@kUjO + .@]UIS —+ Gqul/k} djk
k=1
=Y WW/ 2] + 2,00 d", (4.25)
k=1

since, dueto (4.38)

Z du(viu,)d’* = Z [ujUg.@muk + VkU%@muj}djk =0.

jk=1 j.k,m=1
The obtained formulae prompts the following representation for the entries of the deforma-
. 1 I : :
tiontensor © ;,(U) = 3 [(2;U)+(2:U),|, whichisfalse sinceall rowsof the deformation

tensor Def »(U') (and all columns-sincethetensor isatensor Def o (U ) issymmetric) should
be tangent for U € ¥/(.7). Thisisthe caseif Def (U ) iswritten in the form (4.22).

Definition 4.5 Let . be a Lipschitzhypersurfacein R™ and ¢ C . be an open subsurface
with the Lipschitz boundary I' = 0%'.

We say that a class of functions % (£2) has the strong unique continuation property from
the boundary if a vector-function U € %/ (€2) which vanishesU (s) = 0, Vs € ~y on an open
subset of the boundary ~ C I, vanishes on the entire % .
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Let Z(.~) denote the linear space of all deformation-free tangential vector fields (or
Killing’s vector fields; see Lemma 4.3).

For the proof of the next Proposition 4.6 we refer to [Du3].

Proposition 4.6 The set of Killing's vector fields Z(.#) coincides with the set of all solu-
tions to the following system of partial differential equations

99, (U) = (@fU)k +(Z7U); = DU + DU + 0y (vjv) =0 (4.26)
for 1<j<k<n

provided that (v, U) = >, ;U7 = 0 and isfinite dimensional, i.e., dim (') < oo (cf.
(4.21)) and Z () C C*(.¥) isthe surface . isinfinitely smooth.

If . isa C?-smooth hypersurfacein R and ¢ C . isan open C?-smooth subsurface,
the set () has the strong unique continuation property from the boundary.

Let us find a formally adjoint operator to Z;.
With (4.50) and with (2.15) we get

Dip==—0jp+ Zak (vivkp) = =050 + Z [vivkOke + (VeOkv;) o + v (Oevi) @]
k=1 =1
=90 —v; o+ (Ovy)p, @€ C (), (4.27)

since, like (2.22),
aul/j = Z l/kakyj = Z l/kajl/k = 5 Zajl/g = 58]1 =0 (428)
k=1 k=1 k=1
(cf. Lemma 2.12.ii). Here
A7) == D(=) (4.29)
k=1

and (n — 1)"'#%(2) = 7, () is actually the mean curvature of the surface at 2 € ..
It is obvious that the formal adjoint to the derivation 0y, with respect to the vector field

U € 7 (%) in Cartesian coordinates U = ) U]de, can be written as follows
j=1

n

f=—ZQI(Uff)Z—Z(-@ﬂrﬁy%)([fff)

Jj=1

Iy f =

Zn: U; 2,
j=1

=Y 9,(U%f) = —0uf — (div, U)f,  (4.30)
j=1
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since 7; = —9; — vy (cf. (4.52)) and Z%yijff = Ky f(v,U) = 0. This further
=1
entails that 7]
(07) =y (0y) = =0 —div,U, YU e V(). (4.31)

In particular, for U = d,
@) =(27) =-27 ~divyd =-27 —v 22, j=1,...n, (4.32)

since

n

diny dj = Z .@k(yjl/k) = Z [l/j.@kl/k + Vk-@kl/j)
k=1 k=1
= v;divyv + O,v; = v; 0.

The adjoint Def”, to Def ., is defined in Cartesian coordinates by
. 1 i :
(Def?, Z)F = é(gj”) (Z7% + 2% (4.33)

for each tensor field Z = [ij] of type (0, 2). Indeed, by assuming . a closed surface, we
get

/ (Def, U, Z) dS = / Tr[(Def, U)ZT] dS = %Z/ (2.U; + 2;U,,) Z27% dS
S S IR

1 , .
= —Z/ U [(2; 27% + (27 2M] dS:/ (U,Def%, Z) dS
2 IR ’ 7
which holds for all tangential vectors U € ¥ /(%) and all tensor fields Z = [Z*] of type
(0,2) and Def?, defined in (4.33).

Let

P(Dyu =Y a;u+bu,  a;beC (R™™) (4.34)
j=1
be a first-order differential operator with real valued (variable) matrix coefficients, acting on
vector-valued functions « = (ug)s in R™ and its principal symbol is given by the matrix-
valued function

o(Pi&) =) a;§ &= {6}, eR". (4.35)
j=1

Definition 4.7 We say that P is a weakly tangential operator to the hypersurface ., with
unit normal v, provided that

o(P;v) =0 onthehypersurface .7 (4.36)
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The most important weakly tangential differential operators to the hypersurface for us
are the following:

A. The weakly tangential Giinter’s derivatives
.@j::(?j—uj&,zaj—l/jzy;ﬁk, jzl,...,n,
k=1

introduced in (2.19);
B. The weakly tangential Stoke’s derivatives .#;, = v;0,, — v;,0;, introduced in § 3.

The Ginter’s and Stoke’s derivatives are tangent since their directing vector fields are
tangent

@jizadj:dj-v, //jkzzﬁm].k:mjk-v,
& =nyel=e —vv=vAVre)= Z((Sjk —vvp)er, (4.37)
) k=1
mj, = vje, — e, (d,v) =0, (mjp,v)=0, jk=1...,n.
Here 7 is the projection on the tangential space to the surface. Therefore ; and .#;;, can
be applied to functions which are defined on the surface . only.

The generating vector fields {d’}"

{mjk}?kzl are not frame since they are linearly
dependent ’

j=1

n

Y vi(a)d(2)=0,  my;=0, (4.38)

j=1
but both systems {d’ };’:1 and {mjk}? ., are complete in the space of all tangential vector
fields: any vector field U € 7/ (.¥) is represented as follows

n

U(z)=> U(n)d(2)= > cpplz)mu(2). (4.39)

0<j<k<1

Let .4 be a proper extension of the unit normal vector field v to . (cf. Definition 2.9).
Then each operator &; and .#;;, extends accordingly by setting (cf. (2.19))

Dj =05 — N0y, My = N;O — M0, 1<jk<n (4.40)

In the sequel, we shall make no distinction between the operator &; or .#;;, on . and the
extended one in R™ given by (4.40).

Note that in a weakly tangential operator P (cf. (4.34)) the coordinate derivatives 0; can
be replaced by the Giinter’s derivatives Z;:

P(D)u = Z a;0;u + bu = Z a;Zju+o(Pv)u=P(P)u. (4.41)

j=1 j=1
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Therefore, any weakly tangential operator P in (4.34) is strongly tangential to .&, which
means the following: there exists an extended unit field .4 such that

o(P;.4) =0 inan open neighborhood of . in R™. (4.42)

In particular, the extended operators &; and .#;;, are strongly tangential.

For further reference, below we collect some of the most basic properties of this system
of differential operators.

Lemma 4.8 Let .4 be a proper extension of the unit vector field of normal vectorsv to ..
Thefollowing relationsarevalidfor j, k=1, ..., n:

\. M =0, Mix = — My,
il O =3 5oy Nl + MOy = =3 s Nl + N0,

i, Yo M = — N A0, where HY(#) = —divy w(7) and Ay () = (n
1)~12(2) isthe mean curvature at 2~ € .

V. 2, = 3 Nl
k=1
V. .ﬂ]k = Jg@k — %@j,
Vi, S NP, =0
j=1

m+1
viie. " o(r g k)Nl =2 Y olr g k) Ml = 0form =2, n—1,
r,j,k=m—1 {r,7,k}{(m—1),m,(m+1)}

where o (r, j, k) isthe permutation sign;

vili. (2, D) = (M) Dy + [ N0 N — MOy N Oy
r=1

X (25, Dl =Y (MeH)Dr = N[ Doyr, 0j] — N[ Dy, O

r=1

X. 0 M = Dy = Dy ;.

Proof: The identities (i)-(ii) and (iv)-(vii) are simple consequences of the definitions. For
the equality (iii) we have

n

SN MM = M N = (N0 — MDy) M,
k=1 k=1

k=1

i 1
— Ajdiv ¥ = SO ND) = — A4,

as claimed.
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To prove (viii) we calculate

DD = (0; — N;0x ) (O — MO.y) = 0;0 — (0;M)In

=S 0,000, + NeHiD,0; + N N0, 0y) + N (O M) Dy + NNy

r=1

== M0 M)0p + N (D MOy + B

r=1

== M N) Dy + N;(D M)Ow + By, (4.43)

r=1

since
Zwk (O N ) N0y = Z,/Vk (8;42)0.4 %,/Vk(aﬂ)m =0.
r=1

The operator

n

Bji = 0,0k — (03 M)0n — Y [ Me[0,0; + N;70,0] + N; MOy
r=1

is symmetric B, = By, and the desired commutator identity in (viii) follows from (4.43).

The first commutator identity in (ix) utilizes the facts that 0_, .4, = 0 (cf. Lemma (2.15))
and follows from the identity in (viii). The second commutator identity in (ix) applies the
same identity 0 .43, = 0, the identity 0,.4;, = 0x.#; (cf. (2.18)), and follows by a routine
calculations.

The identities in (x) are already proved in (2.15) and (2.20). |

The next proposition generalizes Stoke’s formulae (3.12) and (3.13). Since the proof
applies some properties of differential forms on hypersurfaces, we drop the proof and refer
[Ta2, § 2.2, Theorem 2.1], where the case a compact Riemannian manifolds is considered.

Proposition 4.9 Let vr(¢) = (v4(€), ..., z/’g(f))T be the unit tangential vector to .7 at the
boundary point £ € T' := 0.% and outward (unit) normal vector to the boundary I' = 0.7
Then

/ MipdS = 7{ [l/jyllf — l/kl/%]goJ’ ds , (4.44)
/ DipdS = ]f Vit ds (4.45)

for any real-valued function ¢ € C''(.¥), itstrace ™ on the boundary I, and any j # k,
L k=1,....n
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The formal adjoint in R™ to P in (4.34) is defined by

Py =— Z @a}ru +b'u (4.46)
J

Moreover, if 2 C R™ is a smooth, bounded domain, and if P is a first-order operator, weakly
tangential to 052, then, applying (3.4), P can be integrated by parts over 2 without boundary
terms, i.e.

(Pu,v)q = /Q<Pu,v> dr = /Q<u, P*v) dx =: (u, P*v)q (4.47)

for all vector-valued sections of vector fields u,v € C*(€).

For a weakly tangential differential operator P on a closed hypersurface .7 let %,
denote the “surface” adjoint:

Qi )y = f Qi) dS = f (0. Q) S = (0, Q) (4.48)
5

27
Vo, v € CHQ).

Throughout the paper we use the following notation
(), = pu RIS (o= f 6T (TGN (449)
7 T
Corollary 4.10 For aweakly tangential differential operator P in (4.34) the surface-adjoint
and the formally adjoint operators coincide, i.e.,
Pyo=Po=—> 0ao+b . (4.50)
j=1
In particular, the Sioke’s derivatives are skew-symmetric
(A}, = My = —Min = My Vi k=1,...n, (4.51)
while the adjoint operator to the operator Z; isgiven by formula

(25)0=Dro=—Djp—v; 00, peCY(Y). (4.52)

For any real-valued function ¢ € C'(¥), any1 < j < k < n and for v =

(Vi) " being the the same as in Theorem 4.9 the following integration by parts for-
mulaisvalid:

/y [(-@js@)w - so%*w] S = f o ds. (4.53)

T
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Proof: We start by proving (4.51): applying the The Stoke’s formulae (3.12) from § A.5, we

get
§ (M) dS = § (Myp0)dS ~ § o M) aS = § o Aw)as
S S S S
and the equality
(M) o = =i = Ay (4.54)
follows. Moreover, note that the formal adjoint to .#;;, = A} %, — 4:.%; is
Mo = (A0 — M;)" 0 = =0;(Mep) + Ou(N5)
= N0j0 — NiOpp + (0 M) o — (OnNy)p = — Mo

(cf. (2.15)), where ¢ € C'(Q ) is defined in a neighborhood of .. (4.51) is proved.
To prove (4.50) we note that, on .,

Po=> a0 +bp = a;[Z;+v;0,]¢

j=1 j
:Zaj.@jgo+bg0+0(P; V)0 = Zaj@jcp (4.55)

j=1 j=1

jk=1

due to Lemma 4.8.iv and the weak tangentiality of P. The property postulated in (4.50)
follows from (4.56) and (4.51):

PLo= Y (M)ya]vp+b o= (M) a]np+b =P
k=1 k=1

(4.52) follows as in (4.27), since (cf. (2.18)) 0.4 .4; = 0.
To prove (4.29) we apply (2.22) and proceed as follows

Z Dy, = Z (@kuk — i yjajyk) e i Zo1= -,
k=1 Jj=1 J=1

For the proof of the last formula (4.53) we apply Lemma 4.8.iv, (4.51), the equalities

n

Z =1, Z vek = 0 and proceed as follows:

k=1 k=1
F(@opvas- wac o) dS — nyw M) d
7 k= 1/ k= 1y

+; fé(u,%y% — yrv ) ds = Efw(@;w) ds + 7{ u%wp ds. ®
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Lemma 4.11 Let P be, asin ((4.34)), a first-order differential operator with C''-smooth
coefficients. P isweakly/strongly tangential if and only if the adjoint P* operator is so.

If P isweakly tangential to . and P is defined in a neighborhood of .#, then
(Pe)| = P(els) (457)
for every C'* function ¢ defined in a neighborhood of .. In particular,
91905#:91(90 y)’ ///jk‘p’y:jfjk(gp}y)’ Jik=1,....mn. (4.58)
Furthermore, (4.57) istruefor the adjoint P*, and
[ povyas= [ o.rrpas+ dloivme.)ds (4.59)
7 7 T

for any vector-valued functions ¢, ) € .%.

Proof: The first assertion follows since o(P*; &) = —o(P;€)7, for each £ € R™,

Due to the representation (4.55) it suffices to prove (4.57) for only the operator 2, = d’ -
V,where & = 1 el = A A (A Ae?) isat least C''-smooth vector field in a neighborhood
Q. of .7, tangent to the surface . at surface points (cf. (4.37)). Thus, we have to justify
the following equality:

D;p

@S]~ (o) -

y) . (4.60)

The vector field d’(z) = d’ (6, 2") depends on the signed distance § = dist(xz,.”) =
+ |2 — 27| continuously (¢ > 0 for the outer domain and # > 0 for the inner one). Let ﬁéj(_)

be the integral curve of the vector field d’ and
be the flow generated by this vector field ¢4 in the neighborhood €2 (cf. (4.7)). Since the
flow depends continuously on the parameter 6, we get

4 d
7 g . =1 7. J\t. —
(@0.2)- V)|, =lim T2 (Foon) |~ &

:dﬂ’.v(gp

s) =

and (4.60) is proved.
Next, using (4.55), (4.53) and integrating by parts we get

[ evras=3" [ wawas+ [ vouis

_ - * T T " i T
_;/y«p, Dia 1)) dS—i—/y(cp,b Y) dS+;7€(¢, vial¢)dS

:/ (¢, P*) ds+7§<a(P; vr)p, ) ds
% I
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and this completes the proof. |

Based on the above formulae it is easy to write adjoint to a high order partial differential
operator

G(2) = 3 9u(2)2°= X fa(2)MP, 2 €S

|| <k 1B|<k
& =90 LD a e Np,
n(n —1
M= MO AP, BEND, m:%

on a hypersurface . and find ample examples of self adjoint operators among them. Be-
low we will consider concrete examples of such self adjoint operators which encounter in
applications.

5 DIFFERENTIAL OPERATORS ON HYPERSURFACES IN R"

Let us start by the definition of the surface divergence div o, the surface gradient V
and the surface Laplace-Beltrami operator A .

Consider the following differential 1-form

n—1 n—1
wi(V):=dvf=> Viof for feC'(s), V=> Vg e?(¥), (1)
k=1 k=1

where 7' (.#) denotes the linear space of tangential vector fields to a surface .. The form
is well defined because the differential operator Oy is tangential and can be applied to a
function f defined on the surface .& only.

Due to the Riesz theorem for a given f there exists a vector field V.o f € 7() such
that

wi(V) = (Vs f, V) forall V e 7(Y), (5.2)

which is, according the classical differential geometry, the surface Gradient of a function
f € CY() and maps

Vg : C¥(S) =V (S). (5.3)
The surface divergence

divy : V(&) — C*(Y) (5.4)

of a smooth tangential vector field V' in (5.1) is, by the definition,

n—1 n—1
divy V=) VI, Vi=0V/ +) T} V" (5.5)
k=1

— m=1
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where T/ denotes the Christoffel symbols:
. 1 n—1 ‘
L = B Z 97 [OmGre + OrGime — Orgrm) = T (5.6)
k=1

div & is the negative dual to the surface gradient:
(diveV, f) = —(V,Vaf), YV eV (), Vfell(y). (5.7)
The Laplace-Beltrami operator A .~ on . is defined as the composition
Ay h=div, Vs ==V (Vo0). (5.8)

Expressions of the surface divergence and gradient in intrinsic parameters of the surface .7
(tangential vector fields, Metric tensor etc.) are rather complicated (cf. e.g., [Tal]). We
suggests an alternative, much simpler interpretation.

Theorem 5.1 For any function ¢ € C'(.#) we have

Vo= {%p, Dop ... @ngo}T. (5.9)

Also, for a 1-smooth tangential vector field V' = > 7, Viej € ¥ (),
divy V ==V, V=Y 7V (5.10)
j=1
The Laplace-Beltrami operator A o, on . takesthe form

A=Y P =Y Mw=1 Y M VveCHF). (61
j=1

j<k 3k=1

Proof: Any function ¢ € C*(.) is approximated, || — ¢4|C* ()| — 0 as k — oo, by
a functions ¢, € C1(Uy), k = 1,2, ..., defined in a neighborhood U, C R™ of .. Then,
from the definition of the surface gradient (5.2), follows

(Voo, V) i=w,(V) =0vp = klim v = klim Z V7005 = klim (Vor, V)
j=1

n—1 n
= lim (m, Vi, V) for peC'(), V=3 Vg =3 Vie, e 7(),
> k=1 k=1
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where 7o denotes the orthogonal projection onto the tangential vector fields ¥ (.) (cf.
(2.24)); we get finally

Vop = khjgo TV = klgf)lo {33'8% Sz Z Vmams%}

m=1 j

= lm (Dipn,.. Dur) | = (Drg.., D)

1

—

Now we consider the divergence operator div, = V%, (cf. (5.4), (5.7)). Let a scalar
function ¢ and a tangential vector field V' € 7/(.) be both smooth, . be non-closed
with the boundary 0. # (), and the supports have no intersections with the boundary
suppp (0 = 0, suppV (0¥ = (). By applying the duality, the proved formulae
(5.9) and (4.52) for the dual (Z;)%,, we get:

(@i Vo) = (V. V) = f > Vi) Zpe(2) a5

]{Z )5 VI (2)p(2) dS = ]fz.@w ds
+,%@]§Zu] YW 2)p(2)dS = Z(.@V,(p)y

We applied above that V' is tangent v (27) -V (27) = Zn: v;(2)V?(27) = 0. Since the function
j=1
 is arbitrary, (5.10) follows.

To prove (5.8) we apply (5.9), (4.52) and proceed as follows

n

Ay =divyVyh == (D) Do =) Do+ A0 v;Ppb=> D,
j=1 Jj=1 Jj=1

j=1

sincev -9 = Z v;9; = 0 (cf. Lemma 4.8.v)).

To prove the last equality (5.11) we note that (cf. (4.28))

Z l/j.@k(ij) = I/2.@]€’¢ —+ Z Vj (.@kyj)w = .@kw (512)

j=1 j=1
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and Y v;2; =0, Mj, = v; Dy — v for j,k =1,...,n; (cf. Lemma 4.8.vi, 4.8.v). Then
j=1

1 & 1 & 1
5 Z %2k¢:§ Z [l/j@k — l/k@j]Q V= 5 [Vj@]dﬁ@]ﬂﬁ — l/j@kl/k@jiﬁ
7,k=1 7,k=1 7,k=1
+ Vk-@jl/k@jw — Vk-@jl/j-@kw] = [Vj@kyj@kw — l/j.@kl/k.@jw]
j,k=1
_Z D — Z Vi Dy + (Do) vi 2] = > D = A
k=1

j,k=1

Lemma 5.2 Let.” be u—smoothand ¢ € Ny, ¢ < p. The Laplace-Beltrami operator A & is
elliptic on the hypersurface . and self adjoint, i.e.,

Ayt =lEf, Ve eT (), (Ar)y=As. (5.13)

For arbitrary ¢ = 0, =1, . .. the operator
~Ay  Wy(S) — W) (5.14)

IS positive definite (coercive) on non—constant functions

n

(= Asrp, @)y = Z(-@k% D) 1oy = IV 0| Lo(F)]| > 0 (5.15)

k=1

for Vo € Wy(.), ¢ # const .

Proof. Let us prove that A , is elliptic. We proceed straightforwardly:

Z@k (t,€) = Z[Sk — u()(7(t), )]’

!5!2— (#(1),€)" +\ J(t)*(7(t),¢)*
= [§]* = (#(1),£)* = I¢|* for (t,§) € T*(F). (5.16)

From the definition (5.8) and the property (5.7) it follows easily that A o is self adjoint
and non-negative:

(Ase, O)wir) = Voo, Voolw s = (0, Asr@lwe o)
(Ao, @)Wg(y) = —(Vop, Vﬁﬂ@)wg(y HVS”SO}WK )| >0

provided ¢ € Wit2(.7), ¢ # const .
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The last assertion (5.15) also follows from the definition (5.8) and the property (5.7):

(= As, Qo) = (Vro, Vool = Voo W5(S)| > 0
for € Wy(.#), ¢ # const. -

We remind that the surface gradient V - maps scalar functions to the tangential vector
fields

Vg : C®S) = V() :=C(S, ¥V () (5.17)
and the scalar product with the normal vector vanishes everywhere on the surface .&:

v(z) - Vop(2)=0 forall ¢ e CY(). (5.18)

Tangential derivatives can be applied to the definition of Sobolev spaces Wf;(y) =
H(.#), ¢ € N° 1 < p < oo on an /-smooth surface .7

H(S) =Wi(S) :={peD'(S) : VipeL,(S), VaeN}, [o|<(}. (519

Equivalently, W (.#) is the closure of the space C**(.”” with respect to the norm

1/p
lp |WL() | = Z%wlp(f)p} :

|al<e

The space Wﬁ(&”) can also be understood in distributional sense: derivative ;¢ €
L, (.~”) means that there exists a function in L, (%) denoted by Z; such that

Gy 0) = (0. T30) = /y STV dS Vi € Lo()

(cf. (4.52) for the formal dual Z;).
Moreover, W(.) is a Hilbert space with the scalar product

(0: 05 =D ¢ 2o ()2 0(#)dS . (5.20)
la| <Ly

Under the space W, *(.) with a negative order —¢, ¢ € N, is understood, as usual, the
dual space of distributions to the Sobolev space W5(.7).

The following Proposition 5.3 accomplishes the definition of the Banach spaces H " (.)
(cf. [Du3] for a simple proof).
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Proposition 5.3 For ¢ € C'(.¥) the surface gradient vanishes V o = 0 if and only if
o(2) = const.

Remark 5.4 For any smooth scalar function f, defined in a neighborhood of .7, there holds
(see [DMM1])

(8w f)| = As(Fl2) + HL@uPl s + (25 (5:21)

In particular, for the case the unit sphereinR", i.e., . = S™~! one can choose v () :=
z/||z|, z € R"\ 0, sothat 70 := divv = (n — 1)/|z||, and 9, = > (x;/||z||)9; = 9/0r,
theradial derivativein R™. Then (5.21) becomes, after a rescaling, the classical formula

_8_2 n_1£_|_iA
- Or2 r or 20T

Agn

A number of related identities, at least for n = 3 and special extensions of the unit
normal, can be found in [DL1], [Cel], [Col], [KGBB1], [MM1], [NDS1] [Nel] and the
references therein.

6 THE EQUATION OF ANISOTROPIC ELASTIC HYPERSURFACE

One way of understanding the genesis of the Laplace-Beltrami operator (5.8) is to con-
sider the energy functional

&l ::L\yvu\des, we Cx(F). 6.1)

Then any minimizer « of the functional (6.1) should satisfy

Oz%é"[u—ktv]

= / (Vu,Vu)+(Vu,Vu)] dS

t=0

:2Re/ (Vu,Vo)dS ue C*(Y), Vo e CP (), (6.2)
57

which implies
Au=0 on .. (6.3)

In other words, (6.3) is the Euler-Lagrange equation associated with the integral func-
tional (6.1).

We assume that the closed hypersurface . is /-smooth and ¢ > 1.

Our aim is to adopt a similar point of view in the case of anisotropic (Lamé) system of
elasticity on .. The starting point is to consider the total free (elastic) energy

S[U] = /y E(y,27UW)dS, 27U = [(27U))]

Uecv(?), (64)

nxn’
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ignoring at the moment the displacement boundary conditions (Koiter’s model). As before,
equilibria states correspond to minimizers of the above variational integral (see [NH1, §
5.2]). First we should identify the correct form of the stored energy density E(x, 27U (x)).
We shall restrict attention to the case of linear elasticity. In this scenario, £ = (&, Defy)
depends bi-linearly on the stress tensor & > = [61’“} 1, @nd the deformation (strain) tensor

Defy = [ij}

nxn’

1 , , 1
DU = 5 [(%U), + (270),| = 5[2U8 + 208 + dulvn)]
1 n
= (2,00 + 200+ U Dy(vivr)], Vik=1,....n (6.5)
q=1

(cf. [DMML1]) which, according to Hooke’s law, satisfy & = T Def, for some linear,
fourth-order tensor T. If the medium is also homogeneous (i.e. the density and elastic para-
meters are position-independent), it follows that £ depends quadratically on the covariant
derivative 27U, i.e.

E(z,27U(x)) = (T27U(z), 27 U(z)) (6.6)

for a linear operator
T : M, n(R) — M, »,(R), (6.7)
where M, ,,(IR) stands for the vector space of all n x n matrices with real entries. Hereafter,

we organize M, ,(R) as a real Hilbert space with respect to the inner product

<A, B> = TI‘(ABT) = Zaijbij, VA = [aij]i,j7 B = [bij]i,j - Mn,n(R)a (68)
i
where BT denotes transposed matrix, and Tr is the usual trace operator for square matrices.
A linear operator (6.7) is a tensor of order 4, i.e., T = [c;jx] . and

TA=

Z Cijkg&kg] , for A= [au]M € Mnm(R) . (69)
k. ..
ij
T will be referred to in the sequel as the elasticity tensor. It is customary to assume that the
elasticity tensor (6.7) is self-adjoint
(TA,B)=(A,TB), A, BeM,,(R). (6.10)

The condition rescaling (6.10), written in coordinate notation, is equivalent to the following
equality
Cijkt = Cketij, Viaja ka 0. (611)
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Indeed, the equality

Tr((TA)B') = Z Cijheiebij = Z Creijanebi; = Tr(A(T B)T)

1,7,k 0 1,5,k
holds, for arbitrary A = [ax],, and B = [by],,, if and only if (6.11) holds: by inserting the
delta functions ay, = dxe, b;; = 9;; We get the equality (6.11).
Itis also customary to impose a symmetry condition, presented with two natural options:

T(A")=TA and (TA)'=TA VAecM,,R). (6.12)
Then (6.12) amounts to the following symmetry in the indices of the elastic tensor:
Cijke = Cijer  and  Cijre = Cjipe Vi, g,k ¢, (6.13)

where the second (the first) equality follows already from (6.11) and the first (the second)
equality in (6.13).

Remark 6.1 The conditions (6.10) and the first equality in (6.12) imply the second equality
in (6.12) as well as the conditions (6.10) and the second equality in (6.12) imply the first
equality in (6.12). Thisis evident if we apply an equivalent formulation for corresponding
tensors and matrices: (6.11) and (6.13).

A linear operator T in the energy functional of anisotropic elasticity (6.6) satisfies the
symmetry conditions (6.10), and (6.12). Equivalently, the corresponding elasticity tensor
T = [cijne] ;1 Nasthe symmetries (6.11), (6.13) and, therefore, might have n + n%(n—1)%/2
different entries only. |

By inserting the value (6.5) of deformation tensor Def U and applying the symmetry
properties (6.13), we obtain

4T Def, U (2),Def U () = (T 27U (x), 27U (x)) = BE(x, 2”U(x))  (6.14)

(cf. (6.6)) which means that the density of the el astic energy functional dependsquadratically
also on the deformation tensor.

The density of the potential energy of an elastic medium should be strictly positive for
the non-vanishing deformation tensor Def .U # 0 (the energy conservation law!). This
leads to the following.

Lemma 6.2 There exists a constant C, > 0 such that

(T¢,¢): ZWQJCWOOZ\QJP Col¢)? (6.15)

1,5,k

for all symmetric and complex valued (;; = (j; € Ctensors¢ := [(;] .
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Proof: The sum in the left hand side of (6.15) is real (T (,{) = (T (,() (easy to check
applying the symmetry properties (6.13) of the real valued coefficients). Dividing equality
in (6.15) by [¢|* = 3",,,, |G |* we find that it suffices to prove

inf Cijk@CijZkzﬁ Z C() > 0. (616)

=1
< VL

If otherwise C, = 0, we select a sequence ( = ij € C,q=1,2,...such that
Jim S PG =0, 10 =1.
1,5,k

Since the space of tensors [C (Q)]nxn is finite dimensional, there exists a convergent subse-

quence C,ig) — (0) as r — oo. Then we get an obvious contradiction

> cijkeC Gy =0, ¢ =1.

i7j7k:7£

which proves that C'y > 0. |
Theorem 6.3 Thetotal free (elastic) energy functional (cf. (6.4)) acquiresthe form
51U) = [ (197U(). 77U())d5 =1 [ (TDef,U(y). Def,U(y)) S (617
s s
UecV ()

and the Euler-Lagrange equation associated with the energy functional (6.17) for a linear
anisotropic elastic medium, reads

Ay(t,2)U = Def, T Def, U (6.18)
= { Z [—Cjkzm@m — H9CjtimVy + Um Z Cikgm2iVq | [ DU + vi(D5v, U}]}
jikym=1 a=1 =1

for U € ¥ (7). Hereagain T = [cjue], " is the elasticity tensor which is positive definite
(cf. (6.15)) and has the symmetry propertles(G 11), (6.13).

Proof: The representation (6.17) follows from (6.4) and (6.14).

The Euler-Lagrange equation (6.18) is derived from (6.17) as a similar equation €3.3 is
derived from (6.1):

SU] =4 L (T Def , U (y), Def, U y)) dS

/(Def T Def, U(y), Uy)) dS = 0
5
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ifand only if U € 7/ (.) is a solution of equation (6.18) due to the positive definiteness of
the elasticity tensor T (cf. (6.15)).

The vector-function U (t) = (U, (t),...,U,(t))" denotes the tangential field of elastic
displacement. The strain (the deformation) tensor has the following mapping properties

Def, : H)(Y):= (H)"() — (H, )" "(S) (6.19)

for arbitrary § € R, 1 < p < oo and maps displacement vector field to the tensors of order
2. The dual operator

Def,w = {D;w}i_,, (6.20)
* 1 - * -
Diw = 3 ]Zl D (Wi + wiy) + jmzl Wi Die(ViVm) for  w = [lwjklnxn

(cf. (4.33)) maps tensor functions to vector functions and has the following mapping prop-
erties

Def;, : (H))""(.) — (H~")2(S) (6.21)
for arbitrary 0 € R, 1 < p < co. Moreover,
Djw = Fwip+ > vn(Op)ws,  forsymmetric wj, =wy;  (6.22)

j=1 7ym=1

due to the curl-free condition O0,v; = 0,1, (see Lemma 2.12.ii). Then, by applying the
equality

n 1 n
Z Cjklmgj,kU = 5 Z Cjklm [.@kUj + .@jUk + <U, V%ﬂ(l/juk»]

jk=1 jk=1

n
= E Cikim

J,k=1

= Z Cjklm [.@kUJ + V]g(.@jl/, U>] s (623)

J,k=1

.@kUj + v Z(@qu)Uq
q=1

which exploits the symmetry of coefficients (6.13) and the symmetry properties of the defor-
mation tensor (6.22), we finally prove (6.18)

Ay(t, @)U = Def;T DefyU = Def} Z Cjklmgj,kU
Jk=1 nxn
= Def*sp Z Cjiklm [.@kUJ + l/]g<.@jl/, U>]
k=1 nxn
= { Z Cjklm@; + U Z Cjk:qm@lyq [@kUj + I/k<@jl/, U)]}
jkom=1 L g=1 | —

n

= { Z —Citim D — H9CikimVi + Vm Z Cikgm Vg | (DU + v (D5, U}]}

Jykym=1 L q=1

=1
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since 77 = —9; — v; 4y (cf. (4.52)). n

If the surface .~ is isotropic, i.e., has the corresponding energy functional is invariant
with respect to any rotation, the elasticity tensor T has the properties

T(BAB™')=B(TA)B™', VA BecM,,(R)andunitary B" = B~!.  (6.24)
Moreover, then the tensor T has the form
TA=A(Tr AT +u(A+AT), AeM,,(R), (6.25)

where \, i € R are some constants. The corresponding lamé operator A(D) = Z(t, 2)
(cf. (6.18)) on the hypersurface acquires the form

gy(t,@)zuﬂyv;Vy+()\—i-,u)v;ﬂv; —M%;Wy
=—puAy — AN+ p)Vodivy —u oWy, Wo=—[Zivl, . -(6.26)

For details of the formulated assertions we refer to [DMM1].

The next Proposition 6.4 is proved in [Du3, Theorem t4.2x] for a isotropic case. For the
anisotropic case the proof is similar.

Proposition 6.4 Let .~ be an ¢-smooth closed hypersurface in R”. The operator Ao )D)
for anisotropic/isotropic media (cf. (6.18) and (6.26)) is elliptic. Therefore the mapping

A, D) HSH(S) - H () (6.27)

is Fredholm and has the trivial index Ind A »(t,2) = 0forall 1 < p < ccand all s € R,
provided |s| < ¢.

The kernel of the operator KerA »(t, ) C H,(.#’) isindependent of the parameters p
and s, isfinite dimensional dim #Z () = dim Ker A »(t, Z) < oo and coincides with the
space of Killing's vector fields

Ker Ay (t, 2) = {U € V(%) : Ay(t,D)U =0} = Z(F). (6.28)

%5 is non-negative on the space H'(.%”') and positive definite on the orthogonal com-
plement H,(.”) to the kernel

(As(t,2)U,U), >0  forall UeH'(Y), (6.29)
(As(t,2)U,U), > C||UHNS)||"  forall UeHL(¥), C>0,630)

where H' () = HL, () & Z(.7).
Moreover, the following Gaarding'sinequality

(As(t, 2)U,U), > C1|UHN(S)|]* = Co|[U[H" ()" (6.31)

holdsfor all U € H'(.), with arbitrary 0 < r < ¢ and positive constants Cy > 0, C; > 0.
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7 BOUNDARY INTEGRAL EQUATIONS FOR THE LAPLACE-BELTRAMI OPERATOR

To apply the potential method to the investigation of BVPs (8.1) and (8.2) for the laplace-
Beltrami operator A« on an open hypersurface ¢ in the next section, we need a fundamental
solution for A »» when . is a closed hypersurface, which coincides with the Schwartz kernel
of the inverse operator (see [Du2]). Such fundamental solution might fail to exist and we
consider an alternative.

Theorem 7.1 Let .7 be pu-smooth and ¢ € Ny, ¢ < u. Assume 7 € C*(R") isreal valued
and non-negative .7 > (0 with non-trivial support 0 # mes supp 77.

The perturbed Laplace-Beltrami operator
Ay -1 . I3 — Hy H(S) (7.1)

isinvertiblefor arbitrary s € R, i.e. A » — 21 hasthe fundamental solution.

Proof: As an elliptic operator on the closed hypersurface A »,— 771 in (7.1) is Fredholm
for s =0,1,.... On the other hand,

(= (Ay = )0, 9) 1) = V79| Lao( L) + H N p|Lo(S)|| Vo € Wy(F). (1.2)

and, therefore, Ker (A — 1) = ().

The same is true for the dual operator, which is the same and, therefore, Coker (A 5 —
A1) =, which yields the invertibility.

The dual operator, which is again A ,, — J# 1, but between spaces W1(.7) — W, (.%),

is also invertible. Then for non-integer s € R the invertibility of the operator (7.1) follows
by the interpolation (see [Tr1]). [ |

Remark 7.2 A ,—2271 isinvertibleasan operator between more general Sobol ev-S obodetski
spaces Wst! () — W 1() and the Bessel potential spaces HY*!(.) — H~'(.7) for
arbitrarys € R, 1 < p < oo.

In fact, for p = 2 thisfollows from Theorem 7.1. For arbitrary 1 < p < oo the assertion
follows since the operator A o — 77°[ has the same kernel and cokernel in all these spaces
(see [DNSL)).

Remark 7.3 The function

1
gu(xay) = )Pu71/2(_x : y) 9 1% € Ra €,y € 82 ) (73)

cos (mu

where P, (t), —1 < t < 1, isthe Legendre special function of the first kind of order ~,
represents the fundamental solution to the Laplace-Beltrami equation

(Aé + p? - i) gu(r,y) =6(x —y) (7.4)
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on theunit sphere S? := {u € R® : || =1} (cf. [BGSL, Snl]).

Thus, g,(x,y) is the fundamental solution to the perturbed Laplace-Beltrami operator
A%+ p? —1/4.

Now let 4 C .¥ be a smooth subsurface of a closed hypersurface . and v = 9% # ()
be its smooth boundary 0% = I (see Fig. 2).

Following [Tr1], by Ws(%) (and by H: (%)) we denote the subspace of Ws(.”) (of
H?(.7), respectively) obtained by closure of the subset Cg°(%'). If s > 0, by an equivalent
definition,

We (%) = {u L u e W), (OFu)t(t)=0fork=0,...,m, t¢ y} (7.5)

where m = [s] is the integer part of s. Similar definition holds can be given for IF]I;(%),
s> 0.

W3(%) and H’ (%) denote the quotient spaces
Wi(€) = Wy(.7)/Ws(#\ 6)
HS (%) = Hy (%) /H (S \ E). (7.6)

T2

Fig. 2
The next Corollary 7.4 is a standard consequence of the Stoke’s formulae (4.45).

Corollary 7.4 For the Laplace-Beltrami operator A on the open hypersurface ¢ with the
boundary 0% := I the following Green formulae are valid

(As(t, 2)p, V) + Ve, Ve)y = —(Zoet ¥ ), (7.7)
(A%(ta 9)307 ¢)<g - (.@ﬁF80+, w—’—)l“ = (()07 A‘K(ta 9)@% - (()0+7 95p¢+)r (78)
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for arbitrary ¢, € C*(%), , where (p, 1), and (v, ) denote the appropriate scalar
products (cf. (4.49)).

By continuity the Green formulae (7.7) and (7.8) are extended to arbitrary functions
0 € W(E), v € W, (F),1<p<oo,p = E

Let us consider the following volume (Newton), the double and the single layer poten-
tials, respectively

(N ) (1) 74 HA (6t —7)f(7)dS |

(Wr)(t gr(s),%/A)(t,S—t)} YT (s)ds, (7.9)
)

) 74 (@
r
(Vry)(t) ::f%/A(t,t—s YT(s)ds, teve,
I
where JZA )(t,7) is a fundamental solution to the Laplace-Beltrami operator A, — 21

with some function .7Z € C>*(R").

Theorem 7.5 Let 1 < p < oo, r € R. Then the direct values of the double and the single
layer potential operators are bounded between the spaces:

Ny : H(€) — H3™(4),
W (€) — Wi 2(¢) NH P (6),

Ve - B0 —H 7 (9),
W) — W @) N (), (7.10)
s+1

Wr o H(D) — H, (%),
W) — WP (%) NHL P ().

The following Plemelj formulae for the layer potentials hold:

(Wrg)* (5) = + 5p(s) + Wols, Z0)(s).
(25 Vo) (5) = T gols) + Wils, 22)¢(s), (7.11)

(Vre)™(s) = (Vi) T (s) = V_i(s, Zs)e(s)

(Z5: Wrp)™(s) = (Zo: Wre) T (s) = V (s, Zs)o(s) -
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Here @~ (s) denotes the trace of ®(¢) on I' from the hypersurface %, complemented to ¢
(outer with respect of I', which is the common boundary I' = 0% = 0%’¢). The operators
Wo(s, Z;) and V _y(s, Z;) arethe direct values of the corresponding double and the single
layer potentialson the boundary I" and represent PsDOs of order —1. Wi (s, &) isthe dual
(adjoint) PSDO to W (s, Zs). V 11(s, Zs) is the direct values of the operator ;. Wr on
the boundary I' and represent a PsDO of order +1.

Proof. The proof is verbatim to the case of domains in R™ and we quote for details [Du2,
Fil, KGBB1] etc. [

By a standard approach it is proved that the operator
V. Hy(D) — HYY(T),
WD) — WD) (7.12)

is invertible for all s € R, 1 < p < oo (is positive definite for p = 2, s = —5) while the
operator

Vi Hy(D) — Hy (D),
D WD) — Wi (D) (7.13)

has one dimensional kernel and cokernel for all s € R, 1 < p < oo, is non-negative for

1 - .
p=25s= 3 (cf. [CS1, DNS1, DW1, MT1, MMT1] for a similar assertions). Theorem 8.2
follows from these results by standard arguments (see [CS1, DNS1, DW1, MT1, MMT1]).

Remark 7.6 The “indirect potential method” is also applicable: if we look for a solution
of the Dirichlet BVP (8.1) as the double layer potential and for a solution of the Neumann
BVP (8.2) as the single layer potential with unknown densities, from boundary conditions
we derive appropriate boundary integral equations, which are Fredholm integral equations.
These equations can beinvestigated by a standard procedure (seg, e.g., [KGBB1]). We derive
Theorem 8.2 from these results.

In conclusion of the present section we formulate the following auxiliary assertions.

Lemma 7.7 (Lax-Milgram). Let B be a Banach space, A(y,¥) be a continuous, bilinear,
symmetric form
A() B xB —R (7.14)

and positive definite
A(p,9) 2 Cllg|B|I*  YpeB, C>o0. (7.15)

Let L(-) : B — R bea continuouslinear form (a functional).
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A linear equation
Alp, ) = L(¥) (7.16)

has a unique solution ¢ € ‘B for arbitrary ¢» € 8. Moreover, the same ¢ minimizes the
functional

F(¥) = 5AW,¥) ~ L(¥), (7.17)
I.e., represents a unigue solution to the following problem
1 1
min | S A, ¥) — L) | = 5A(p, ) — L(9). (7.18)

Proof; For the proof we refer to [Ci2, § 6.3].

8 BOUNDARY VALUE PROBLEMS FOR THE LAPLACE-BELTRAMI OPERATOR

Let again & C . be a smooth subsurface of a closed hypersurface . and v = 9% # ()
be its smooth boundary 0% = T (see Fig. 2). Let A« (¢, 2) be the laplace-Beltrami operator
restricted to the hypersurface ¢’. Consider the Dirichlet

{ (Ag(t, 2)p)(t) = f(1), tee, (8.1)
ot (s) = g(s), sel =0%
and the Neumann
{ (Ag(t, D)) (t) = f(1), tev, (8.2)
(.@ﬁr(s)w)+(3) = h(s), sel'=0% .

boundary value problems for the Laplace-Beltrami operator A (see (5.11)) on the open
hypersurface ¢ with the boundary I'. The derivative Zj, () is defined as follows

Dir(s) = Z vr k()P vr(s) = (vra(s),...,vra(s)), seT, (8.3)
k=1

where 7, is a tangent derivative on the hypersurface ¢ and the normal derivative with
respect to the boundary I'.

Note, that BVPs (8.1) and (8.2) describe the stationary heat transfer process in a thin
conductor having the shape of the hypersurface 2 .7 (see [Hal, § 72]).

Corollary 8.1 For arbitrary solution ¢ € W (%) of the equation A ¢ = f, f € W, (€
the trace (Z;.¢)* existsand belongsto W,, ” (T").

(2)We consider the stationary heat conduction only for simplicity. For the time dependent process, which is
represented by a Hypoelliptic operator, similar results can be obtained.
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Proof: Let ¢ € W(%) be a solution of the equation A ¢ = f, f € W' (¥) and ¢ €
W), (€) be arbitrary. Then (7.7) gives

(Zap™ e = —(f, )y — Ve, Ve)g, . (8.4)
Since the right-hand side in (7.8) is correctly defined and ¢+ W;fF(F) = W?,(I), the
functional in the left-hand side is defined correctly and the trace 2.0+t € W, 7 (.%) by
duality. -

We impose the following constraints on the participating functions in BVPs (8.1) and
(8.2):
feWS(@),  peWi(7),
s—1 s—1-—1 (85)
gew, *(I'), heWw, ), l1<p<oo, s>1.
Note that due to Corollary 7.4 the traces of solutions to the equation A4 = f in BVPs (8.1)
and (8.2) under constraints (8.5) are defined correctly.

In the perturbed Laplace-Beltrami operator A ,»— 21 (see (7.1)) we choose the function
A € C>=(R™) which is supported in the complemented domain supp # C €€ := . \ €.
Then any solution of the Dirichlet (8.1), (8.5) and the Neumann (8.2), (8.5) boundary value
problems is represented as follows

p(t) = Nef)(t) + (Wre")(t) = (Ve(Zap))(t),  te?, (8.6)
where the potential operators are defined in (7.9).
The proof of (8.6) is standard: by inserting the solution ¢ of A4 = f and the funda-
mental solution o) = JZA (t,t — 7),
Ay At —T7) = xg(Ay = HL)FA(t, 1 —T) = X0t —T) = 6(t —7), t,TEC
truncated properly around the diagonal ¢ = 7 on the distance ¢ > 0, into the Green formula
(7.8), written for A — 21, we get the representation formula (8.6) by sending e — 0.

Following the “direct potential method” we apply the representation formulae (8.6) and
note that one of the densities either * or (Z;.5¢)" is already known and given by the
boundary conditions in (8.1) or in (8.2), respectively. Applying also the appropriate Plemelj
formulae from (7.11) we get the following equivalent boundary pseudodifferential equations:

A. For the Dirichlet BVP (8.1)

V(s 200(5) = (Nuls, Z))6s) = 50+ (Wols, Z))(s),  s€T, B

where ¢(s) := (Z.) " (s) is the unknown function and the right-hand side is known.
B. For the Neumann BVP (8.2)

Vaals, 20ls) = —(Ne(s, Z))(5) + 5h+ (Wils, 201)(5), s€T,  (89)

where w(s) := ¢ (s) is the unknown function and the right-hand side is known again.
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Theorem 8.2 Let 1 < p < oo, s > 11. The Dirichlet problem (8.1), (8.5) has a unique
solution ¢ € W2 (%) for arbitrary right-hand side g € W, *(I).
The Neumann problem (8.2), (8.5) has a solution o € W5 (%) only for those right-hand

1

sidesh € W, 7 (I) which satisfy the condition

7{ h(s)ds = 0. (8.9)

r

If the condition (8.9) holds, the Neumann problem has a solution o € W?(%’) and a
general solution reads ¢ = ¢ + const.

Proof. For the proof of existence in the restricted space settings (8.5) we recall that the
equivalent boundary pseudodifferential equations (8.7) and (8.8) to BVPs (8.1) and (8.2),
respectively, are Fredholm and have indices zero. Moreover, the operator in (8.7) is even
invertible, while the kernel and cokernel of the equation in (8.8) coincide with constants
(cf. (7.12) and (7.13)). Therefore, the Dirichlet BVP (8.1) is solvable uniquely, while for
solvability of the Neumann problem there must hold the orthogonality condition (8.9) for the
data with the solution v(¢) = const of the homogeneous equation. |

9 BVPS FOR AN ELASTIC HYPERSURFACE AND GREEN’S FORMULAE

Throughout the present section . is an open C2-smooth hypersurface the Lipschitz
boundary 0% = I" # (),a subsurface of a closed C'*-smooth hypersurface .. r, denotes the
restriction to the surface % from . and

A(,g(t, @) = Tch(,g(t, 9), O%g(t, @) = Tcg,,%g(t, @),

Note that the imposed constraint on the surface ¢ can not be relaxed, because in the defini-
tion of the equation

A,(DWU=F, UcecH'(¥), FcH %), (9.1)

is participating the gradient Vv = [Z;1;] . of the unit normal vector field v (cf. (6.18)
and (6.26)). v(t) is defined almost everywhere on ¢ is just C''-smooth.

Equation (9.1) is actually understood in a weak sense:
(As(t,2)U,V), = (T Def,U, Def, V), = (F, V), 9.2)
YU € H(¥),V € H'(%)
(cf. (6.18)). In particular, for the Lamé operator in isotropic medium we have
(L (t, 2)U, V) = ANVeU,VeV)e + (A + p)(diveU, divg V) = (F, V), (9.3)

VV e Hi(.?)



44 SHELLS

(cf. (6.26)).

Letvr = (v, .., VP)T be the tangential to 4" and outer unit normal vector field to I

If a tangential vector field U € H)(¢) N (%) denotes the displacement, the natural
boundary value problems for ., are the following:

I. The Dirichlet problem when the displacement is prescribed on the boundary
(Ac(t. DU)(t) = F(t),  te%,
{ U' (1) = G(r), Tel,
FecHY(¢), GeHY* ), UcH(?%);

(9.4)

the first (basic) equation in the domain is understood in a weak sense (see (9.2), (9.3))
and

ViU =U* (9.5)

is the Dirichlet trace operator on the boundary.
I1. The Neumann problemwhen the traction is prescribed on the boundary:

(A% (t, 2)U)(t) = F(t), tes, ©56)
(Te(vr, 2) U)* (1) = H(7), Tel, '
FcHY(¢), HecHYXI), U-ecH(?):
here
WU = (Te(vr, 2) U)" (9.7)
and
S%(VF, Q)U = [ Z CjklmV%[-@kUj + Vk<.@jl/, U)] . (98)
k,m=1 nXn
In particular, for an isotropic case,
To(vr, 2)U :=—\(dive U ))v F—Q,LLZ{ vl + 00D i }k .
7=1
= -2y, U — (A + p)(diveU)vr (9.9)
is the Neumann trace operator on the boundary (the traction) with
Dyep = Z vl ¢ € HY(%). (9.10)

The trace v U exists provided that U is a solution to the basic (first) equation in (9.6)
(see Corollary 9.2 below).
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Later we will relax constraints on the data and the solution and replace them by con-
straints in H}-setting to gain some a priori smoothness of solution. On the other hand we
should raise constraints on the underlying hypersurface ¢ and require the infinite smooth-
ness to apply the potential method.

A crucial role in the investigation of BVPs (9.4)-(9.6) belongs to the Green formula.

Lemma 9.1 For the operator A« (t, %) on the open hypersurface ¢ the following Green
formulae are valid:

(A%(ta 9>U7 V)% = Cg)(Ua V) + ((S%(Vra -@)U)Jra V+))F7 (911)
(A¢(t, 2)U, V) — (Zo(vr, 2)U) ", V))r = (U, As(t, 2)V )¢
_(U+7 (f(,g(l/p, 9)‘/)—i_))lﬂ (912)

for arbitraryU, V € H;(y). Here the traction operator in (9.8) (see (9.9) for an isotropic
case). The energy bilinear form & (U, V') is defined by the formulae

U, V) = // (TDef,Ul(y), Def,U(y)) dS, U e ¥ () (9.13)

(cf. (6.17)) and, in particular,

SU,V) = /

[mva, Vo, V) 4+ O+ p) (dive U, dive V>] ds (9.14)

for an isotropic case.

Proof: Using the first representation of A« (¢, 2) in (6.18) (for an isotropic case-in (6.26)),
the integration by parts on surfaces (Stoke’s formulae) (4.45) we get the following

F 1A AU VS = (Selor, 20)7 V), 4 60.V), 019
P
where is defined in (9.13) (in (9.14) for an isotropic case).

To find the expression for the traction operator T« (v, 2 we apply the second represen-
tation of A« (t, 2) in (6.18), the integration by parts on surfaces (Stoke’s formulae) (4.45)
and get the following:

n

% [A%(t, .@)U(t)]—r V(t)dS = % Z [ — Cjklm@j - %;Cjklmuj
@ 2 jkmi=1

n

Fon(t) 3 G P (0)] [ Z6U(0) + v Dy (), U (1)) Vi) dS

— > a9 [(AU)* )+ Zw(9). U )] VT (5)ds
b gkmi=1

+&6U,V) = ((Ze(vr, 2)U)H V) +EU, V).
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For an isotropic case we apply the representation of .2 (¢, D) in (6.26) and proceed simi-
larly. [

Corollary 9.2 For arbitrary solution U € H(.#) to the equation A »(t, 7)U = F, F €
H'(€), thetrace (T4 (vr, 2)U) " existsand belongsto W, * (.%).

P

Proof: The proof is based on (9.11) and is verbatim to the proof of Corollary 8.1. |

Theorem 9.3 Let .7 be p-smooth and ¢ € Ny, ¢ < u. Assume 7 € C*(R") isreal valued
and non-negative 277 > 0 with non-trivial support 0 # mes supp 77 .

The perturbed operator of anisotropic elasticity
Ay(t,2)— AT . B3 () - H () (9.16)

isinvertiblefor arbitrary s € R, i.e. A »(t, ) — 71 hasthe fundamental solution.

Proof: The proof is based on Proposition 6.4 and follows the proof of Theorem 7.1. |

10 THE DIRICHLET BVP FOR THE EQUATION OF ANISOTROPIC ELASTICITY

Throughout this section ¢ is a C?-smooth hypersurface with the Lipschitz boundary
['=0%.

Theorem 10.1 The Dirichlet problem (9.4) has a unique solution U € H' (%) for arbitrary
data F € H (%) and G € H'2(T).

The proof will be exposed at the end of the section after we prove some auxiliary results.
Lemma 10.2 (Garding’s inequality “with boundary condition”). The operator
Ag(t,2) : HY(C) — H Y(€) (10.1)
is positive definite: there exists some constant C' > 0 such that

(A¢(t, 2)U,U)y > C|UHYS)||” VYU € H'(%). (10.2)

Proof: Due to (6.30) inequality (10.1) holds for all U € HY,(.), i.e., for U € H'(.¥) and
U ¢ Z(&). SinceU € H! (%) due to the strong unique continuation from the boundary
(cf. Proposition 4.6), all Killing’s vector fields K € ]ﬁll(%) are identically 0. Therefore,
(6.30) holds for all U € H(%). n
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Corollary 10.3 Theoperator A« (t, ) in (10.1) isinvertible.

Proof: From the inequality (10.2) follows that A« (¢, 2) is normally solvable (has the closed
range) and the trivial kernel Ker A« (t, 2) = {0}. Since A«(t, 2) is self adjoint, the co-
kernel (the kernel of the adjoint operator) is trivial as well Ker A (¢, 2) = Ker A4 (t, Z) =
{0}. Therefore A4 (t, 2) is invertible. n

Definition 10.4 (see [LM1, Ch.2, §1.4]). A partial differential operator
B(z,7):= Y  ad.(x)Vy, Vou=P" -5, an€C(€,CVN)  (10.3)
|a| <m
iscalled normal on I" if
inf |det%y(t,v(t))| #£0, tel, |{=1, (10.4)

where %, (x, £) is the homogeneous principal symbol of A

Bo(z,8) = Y aa(z)(—if)*, z€F, EeR" (10.5)

|a|=m

Definition 10.5 A system {D;(t, Dt)}g‘.’;é of differential operatorswith matrix N x N coef-
ficientsis called a Dirichlet system of order £ if all participating operators are normal on I
(see Definition 10.4) and ord D = j, j = 0,1,...,k — 1.

Let us assume % is k-smooth and m < k (m,k = 1,2, ...) and define the trace operator
(cf. (9.10)):

RnU = {yrDU,... . yrD, U, U cCHE). (10.6)

Proposition 10.6 Let ¢ bek-smooth,1 <p <oco,m=1,2,...m<kandm < s—1/p &
Ny. The trace operator

B« H3(€) - & W3/7I(T), (10.7)

7=0

where W (¢') = B (%) is the Sobolev-Sobodecki-Besov space (cf. [Tr1] for details) isa
retraction, i.e., is continuous and has a continuous right inverse, called a coretraction

@) W) - B(Q)

R R) 1O =D, VD @ W)

Jj=0

(10.8)
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Proof: The result was proved in [Trl, Theorem 2.7.2, Theorem 3.3.3] for a domain 2 C
R~ and the classical Dirichlet trace operator Z,,,u := {yro,u,...,yro"u}". In [Du3]
the theorem was proved for a domain 2 ¢ R™~! and for arbitrary trace operator %, .

A surface ¢ = UJL,6; is covered by a finite number of local coordinate charts ;
Q; — ¢, Q; C R After transformation, the Dirichlet trace operator %,,,u on a portion
¢; of the surface transform into another Dirichlet trace operator on the coordinate domains
2;. Therefore, we prove the assertion locally on each coordinate chart 4; C ¢ and, by
applying a partition of unity, extend it to the entire surface % [ |

Proof of Theorem 10.1: Let G = (%,) G € H! (%) be the continuation of the Dirich-
let boundary data G € H'/?(I") from BVP (9.4) into the surface ¥ from the boundary T,
found with the help of a coretraction from Proposition 10.6. Then the Dirichlet BVP

{ (Ag(t, 2)U)(t) = Fo(t),  t€, (10.9)

l~]+(7') =0, Tel,
Fo:=F — Ay(t, )G c H\(%),

is an equivalent reformulation of BVP (9.4) and the solutions are related by the equality
U := U — G. On the other hand, since

H(¢) = {UcH Y %) : U =0},

the solvability of BVP (10.9) is equivalent to the invertibility of the operator A (¢, Z) in
(10.1). Now the unique solvability of BVP (10.9) (and of the equivalent BVP (9.4)) follows
from Corollary 10.3. |

11 THE NEUMANN BVP FOR THE EQUATION OF ANISOTROPIC ELASTICITY

Throughout this section ¢ is a C'2-smooth hypersurface with the Lipschitz boundary
['=0%.

Theorem 11.1 T~he Neumann problem (9.6) hasa solution U € H'(%’) only for those right-
hand sides F ¢ H(T") and H <€ H~/2(I") which satisfy the equality

/ F()K(t)dS = ]f H(r ds VK € Z(€) (11.1)

If the condition (11.1) holds, the Neumann problem has a general solutionU = U° + K €
H'(%), where U" € H'(%) is a particular solution and K € #(%) is a Killing's vector
field.

The proof will be exposed at the end of the section after we prove some auxiliary results.
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Lemma 11.2 The condition (11.1) is necessary for the Neumann problem (9.6) to have a
solutionU € H'(%).

Proof: First note that for a Killing’s vector field K € Z(¢),
Ae(t, 7)K =0 and K = (To(vr, 2)K)" = 0. (11.2)

Indeed, if K € Z(%¢) is naturally extended to K ¢ Z(5), then Ay(t, 7)K(t) =
As(t, 2)K (t) = 0fort € € (cf. (6.28)) and the first equality follows.

The second equality in (11.2) follows from (9.9) if we recall that Def,(K) = 0 (see
4.26) and this implies

Ty (vr, 7)K = Def’, (vr)TDefo(D)K =0, U € ¥ (7). (11.3)

The latter formula can easily be seen analyzing (9.15).
From (9.13) and Defy(K) = 0 it follows

E(K,U) = / (T Def, K (y), Def, U (y)) dS = 0 (11.4)
5
forall U cHY(¥) andall K € %Z(¥).

Introducing into the Green formula (9.11) FF = A« (t,2)U, V = K € Z(%¢) and the
obtained equality, we get the claimed orthogonality condition (11.1). [

Lemma 11.3 The bilinear form
AN(U,V) = (Ax(t, 2)U,V)y — (U, V)r =&U,V) (11.5)

iswell defined, symmetric Ay (U, V) = Ax(V,U)forall U, V € H! (%) and non-negative
Ax(U,U) > 0for U € H' () (cf. (9.13)). Moreover, the formis positive definite

AN(U,U) > Ms|[UHYS)||° YU e Hy () (11.6)

on the orthogonal complement H, (.~') to the finite dimensional subspace of Killing's vector
fields Z (%) in the Hilbert-Sobolev space H! (%).

Proof: The proof is a direct consequence of the equality
ANy(U,V)=&(U,V) := (TDef, U, Def ,U) VYU € H'(.¥) (11.7)

(cf. (9.13)) if we recall that the tensor T is positive definite (cf. Lemma 6.2). |

Proof of Theorem 11.1: The space of Killing’s vector fields Z(.#) is finite dimensional
and consists of continuous vector-fields with bounded second derivatives (these fields are
actually as smooth as the surface %, i.e., are infinitely smooth if .# is infinitely smooth;



50 SHELLS

see Proposition 4.6). Let K4, ..., K,, a the finite dimensional orthonormal basis in Z(%),
(K, K,)s = d;r, j,7 =1,...,m. Consider the finite rank smoothing operator
TU (2) := Zm: (K,;,U), K;(2), reS. (11.8)
j=1
The operator T' is symmetric and non-negative:
(TU,V), = (TV,U),. (TU,U), = i (U,K;); >0 (11.9)
Jvzrlj, V c HY(%).

Consider the modified bilinear form
AYU, V) = (A¢(t, 2) + T)U, V)y — GRU 75 V)
—&U,V)+(TU,V), U,V eH (%) (11.10)
The form is symmetric because both summands are
AU, V)=EU,V)+(TU, V), = &EV,U) + (TV,U), = A%(V,U)

(cf. Lemma 11.3 and the first equality in (11.9)).
Moreover, the corresponding quadratic form is strongly positive

AL(U,U)=&(U,U) + (TU,U), > C||[UH"(%)|| (11.11)

for some C' > 0. Indeed, Aﬁ(U, U) = 0 due to the positivity of the summands implies:

EU,U) = 0, and further U € Z(%¥) (cf. Lemma 11.3), (T'U,U), = 0 and further

(U,K;) =0forallj =1,...,m. ThenU = Z}”:l (U,K;)K; = 0. A non-negative

symmetric form with the property A}t(U, U) =0ifandonly if U = 0 is positive definite.
According to Lax-Milgram’s Lemma 7.7 the equation

AU V)=(F, V), — (H V), (11.12)
has a unique solution U € H'(%) forall V' € H' (). This solves the problem

(11.13)

{ (As(t,2)U)(t) + TU(t) = F(t), tee,
(Te(vr,2)U)" (1) = H(T), Tel,

which is a modified Neumann’s problem (9.6).

Now assume that the vector-functions F € H~'(¢) and H € H/2(I) satisfy the
orthogonality condition (11.1) from Theorem 11.1and U° € H*(%) be a solution of (11.13).
Since

(TanKk)%”:(UOaKk)%a AN(anKk):g(anKk>:O k:1727"'7m
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(cf. (11.3)) from (11.12) we get
0= (F,K)e — (H, Ky = ALU", K;) = AyU°, K) + (TU°, K})
=(U"K)), k=12....m

Therefore, TU® = >°)", (U°, K}), K} = 0 and BVP (11.13), which is uniquely solv-
able, coincides with BVP (9.6) provided that the right hand sides satisfy the orthogonality
condition (11.1). Since the kernel of BVP (9.6) coincides with the space of Killing’s vector
fields %2(%), a general solution of BVP (9.6) has the form U = U" 4 K with arbitrary
K € Z(%). n

12 POTENTIAL METHOD AND BOUNDARY INTEGRAL EQUATIONS

In the present section we relax the constraints on the data for the BVPs in (9.4) and (9.6):

FcW:%(%), UcW (%),
s—1 s—1-1 (12.2)
GeWw, "I, Hecew, =), 1 <p<oo, s>1.

Note that due to Corollary 9.2 the traces of solutions to the equation A« (t, 2)U = f in
BVPs (9.4) and (9.6) under constraints (12.1) are defined correctly.

To apply the potential method and relax constraints on the data of BVPs we have to
restrict ourselves with smooth hypersurfaces to ensure the existence of a fundamental so-
lution to the basic equation. Thus, throughout this section a hypersurface . will be infi-
nitely smooth and %" will be a subsurface with the /-smooth boundary I' = 9%. A function
B € C>(%¥) is supported in the complemented domain supp # C ¢°¢ := . \ € and let
Ja(t,t—7) be the fundamental solution to the perturbed elasticity operator A (¢, 2)+ A1,
which exists due to Theorem 9.3. Then any solution to the BVPs (9.4) and (9.6) is repre-
sented by the formulae

U(t) = (NgF)(t)+ (WrU)(t) — (Vi(Z4(vr, 2)U)N)(1), te &, (12.2)

where the corresponding potential operators are defined as follows

(Ng t @ %%A t t— T ) S
(Wr(t, 2)p)(t) = j{ (T (vr(r), Z7) Ha)(t, 7 = )] (r) ds, (12.3)
(th@ %%Att—T ) te®.

The proof of (12.2) is standard: by inserting the solution U to A« (t,Z)U = F and the
fundamental solution V' = 2 (t,t — 7),

A%%A(tat - T) = X‘K(A,Sﬁ - ’%ﬂ[)’%/A(ta t— T) - X‘Ké(t - T) = 5(t - T) ; taT €
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truncated properly around the diagonal ¢ = 7 on the distance € > 0, into the Green formula
(9.12) we get the representation formula (12.2) by sending ¢ — 0.

Let us consider the following pseudodifferential operators on the boundary I', which
are direct values of potential operators and their compositions with the boundary operator

Ta-(vr, 2) (cf. (9.9)):
1t DU =Vi(z, 2)U]|,, Wi(t, 2)U := Zq-(vr, 2)Vr(z, 2)U|

Wo(t, 2) == Wr(z, 2)U|,,  Vu(r,2):=%q(vr,2)Wr(z, 2)U|, . 124

For these operators we have the standard Plemelji formulae, proved in [Du3]:

(Weo)*(r) = +§w> + Wo(r, @)e(r),
(Telor, 2)Vp) " (1) = T 0(r) + Wi(r, 2)(7), .
(Vre) (1) = (er) (1) = Vou(r, Z)e(7),
(Te(vr, 2)Wro) (1) = (T4(vr, 2)Wre)t (1) = V (1, 2) (1), rel.
Moreover, if I" is /-smooth and |s| < ¢, 1 < p < oo, the pseudodifferential operators

V_i=V_(r,2) : BT) — H* (D), (12.6a)
Vau=Va(r2) : BT — (D), (12.6b)
Wi = Wo(1,2) : H3(T) — H3(D). (12.6¢)

are bounded (cf. similar assertions in [Dul, DNS1, DW1]).

Lemma 12.1 The pseudodifferential operators V _; is€liptic, positive definite (and, there-
fore, self adjoint)
(V_U.U), > CllUE YD) (12.7)

for some C' > 0.
The pseudodifferential operators

Va=Vu(n2) : H/*T) — H YD), (12.8)
is elliptic, non-positive
—(V_1Z,Z)r >0, YZeHYT) (12.9)

and hasthetrivial index Ind V', = 0.

Proof: For the proof of (12.7) we refer to [CS1, DNS1, DW1, MT1, MMT1] where similar
assertions are proved. |
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Corollary 12.2 LetT"is¢-smoothand |s| < ¢, 1 < p < oo.
The pseudodifferential operators V' _; in (12.6a) isinvertible.

The pseudodifferential operators V' ; in (12.6a) is Fredholm, has the trivial index, i.e.,
Ind V; = 0 and Killing's vector fieldsall belong to the kernel Z () C Ker V ;.

Proof: For p = 2 the first two assertions are direct consequences of the inequalities (12.7),
(12.14) and of ellipticity of the corresponding WDOs. Concerning the last assertion about
the kernel-the proof is standard and we refer to [CS1, DNS1, DW1, MT1, MMT1] for such
proofs.

For arbitrary 1 < p < oo the we quote [DNS1] (also see [Agl, Du2, Kal]) where is
proved that an elliptic pseudodifferential operator on closed manifold have the same kernel
and cokernel in the spaces H; (') for all [s| < fand all 1 < p < oc. n

As a byproduct we prove in the next Theorem 12.3 that the kernel Ker V' ; consists of
only Killing’s vector fields Ker V ,; = Z(.¥) (cf. Corollary 12.4.

Theorem 12.3 Letl < p < occands > 1.
The Dirichlet problem (9.4), (12.1) hasa unique solution U € H (%) for arbitrary data
G € H; "/”(I"). This solution iswritten in the form

U(2)=(NgF)(2)+ (WrG)(2) — (VrZ)(2), 2 €F, (12.10)
where Z € Hfo_l/ P _I(F) Is a unique solution to the boundary pseudodifferential equation
1
(V_1Z)(t) = (N F)(t) — §G + (WoG)(t), tel. (12.11)

The Neumann problem (9.6), (12.1) has a solution U € H; (%) for those data H <

H;~/771(I") which satisfy the condition (11.1). If thisis the case, a solution is written in the
form

U(2)=(NgF)(2)+ (WrZ)(2)— (VrH)(2)+ V(2), 2 €%, (12.12)

where V' € 2(T") is arbitrary Killing's vector field and Z € H3 '/?7'(I) is a solution to

the boundary pseudodifferential equation

(Va2)(1) =~ (Telor, 2)NGF) (0) + SH() + (WoH)(1),  teT. (12.13)

Proof: By introducing the representation of a solution (12.10) into the boundary condition
in (9.4), invoking Plemelji formulae (12.5), we obtain an equivalent boundary pseudodiffer-
ential equation (12.11). Since this boundary WDE is uniquely solvable (see Corollary 12.2),
the initial BVP has a unique solution, the first part of the theorem is proved.
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Similarly, by introducing the representation of a solution (12.12) into the boundary con-
dition in (9.6), invoking Plemelji formulae (12.5), we obtain an equivalent boundary integral
(pseudodifferential) equation (12.13). Due to the equivalence, the homogeneous equation
V 1 Z = 0 has as solutions Killing’s vector fields Z € %(%’) only. The solvability condi-
tion (11.1) is a consequence of the definition of a Fredholm operator. [ |

Corollary 12.4 The pseudodifferential operators V' ; satisfies the Garding'sinequality
—(V_ U, U)y > G |[URD)|* - G|luE"[) (12.14)

for some C; > 0, Cy > 0 and arbitrary 0 < r < /.

Proof: Let {Kj};”:l be a biorthogonal basis (K ;, Ki)r = 4,5 in the finite dimensional

space of traces of Killing’s vector fields Z(T") on the boundary T". Let us consider the

smoothing (infinitely smoothing if ¢ = oo) finite rank operator operator 7" : H~"(I') —

H"(T") defined in (11.8). We remind that {Kj};”:l C CYT) is the orthonormal system of
Killing’s vector fields. Then, the operator

Vo +T : H/AT) - HVXD)
is invertible and non-negative

(=Va+T)U, Uy = ~(VaU, U+ ) (K; U >0

j=1
(cf. (12.9)). This implies that —V ", + T is positive definite
(~V 1 + DU, U > Cy|[U[H(D)|
and we write
—(VU,U)p = (~V 4 + TU,U)r — (TU, U). > G ||UJHY(D)|]* - (TU, U)y
> O||UE2(ID)|]° - Co|u (D),
which proves (12.14). |

Remark 12.5 Not only the pseudodifferential operator V', in(12.6a) isinvertiblefor closed
surface I" of codimension 2, but also for an open partof itI'p, C I

rpV_y @ H(Tp) — H(Tp), (12.15)
provided that

1 1 1 1
———<s< -+, 1<p<oo. (12.16)
p 2 p 2
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Here rp istherestriction of functions fromI" to the subsets I p.
The proof is standard and can be retrieved from [ DNSL, DW1, NCSL1] and other sources.

This assertion can be used for the investigation of the mixed type BVPs, associated with
(9.4) and (9.6).
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