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Abstract. Dirichlet, Neumann and mixed crack-type boundary value problems of stat-
ics are considered in three-dimensional bounded domains filled with a homogeneous
anisotropic electro-elastic medium. Applying the method of the potential theory and
the theory of pseudodifferential equations, we prove the existence and uniqueness the-
orems in Besov and Bessel potential spaces, and derive full asymptotic expansion of
solutions near the crack edge.

Introduction

The recent years have shown an ever-growing interest in the investigation of models of
an anisotropic elastic medium which take into account the influence of various physical

fields such as thermal, electric, magnetic etc. A rather strong motivation for such studies
is the creation of new artificial materials which possess non-standard properties. Among
them are piezoelectric materials that form the core of modern structures and instruments.

Mathematical models of piezoelectric (electro-elastic) bodies and relevant boundary
value problems have been studied with sufficient completeness (see, e.g., [BG2, Nol, Pal,
Tol] and the references therein). Of special interest is the case where the considered body
contains cracks or cuts with an edge having a bihedral aggle(cuspidal edge)(see
[Ch2, CD3]). In that case the presence of an electric field essentially changes the pattern
of stress distribution near the cut or crack edge (see [DNS1, Pal]).

In this work, Dirichlet, Neumann and mixed boundary value problems of statics are
considered for a homogeneous anisotropic piezoelectric body with a crack. The existence
and uniqueness of solutions of the considered problems are proved in Bessel potential
H;, (and BesovB; ,) spaces. Complete asymptotic expansion of a solution near the
crack edge is obtained. These results are important in the analysis of a stress field in
electro-elastic bodies with cracks.
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1. Formulation of Boundary Value Problems

Let Q= Qg andQ; (Q; C Q) be bounded domains in the three-dimensional Euclidean
spaceR? with infinitely smooth boundarie® = 99, and 992, respectively (we use
the alternative notatiof)y = 2 for conciseness of forthcoming formulae). The boundary
09, of the domain; (called interface) is divided in two part€i); = Sy U S; with
a smooth common boundai := 9Sy = 957 . Let Qy = Q\Q; .

We assume, that the domain\ S; is filled with homogeneous anisotropic electro-
elastic material, having a crack & .

We use the following notation for function space®?;(2), W;(9Q;) for the
Sobolev-Slobodetskij spacesl; (€2) , Hy (0€2;) for the Bessel potential spaces; ,(€2),
B, ,(09;) for the Besov spacesi(= 1,2, s € R, 1 <p < oo, 1 < ¢ < ), (see
[Tr1, Tr2] for the definitions and properties of these spaces). We use the common simpli-
fied notationH*(052;) = H5(0<;) . Let further,

H5(S)) = {rs;u: uweH ()},
]ﬁl;(Sj):{uEH;(aﬂl) : suppuESij}, j=0,1,
where rg; 0 := ¢ p denotes the restriction operator onto the sub$gt Similarly the
Sobolev-Slobodetskii spaceéd’; (.S;) , W;(SO) , B; ,(S;) and I@l@;yq(SO) are defined.
We consider the system of static equations of electro-elasticity for a homogeneous
anisotropic medium [No1]

A(D)u(z)+ F(z) =0, x € Q\St, (1.1)
where u = (uq,us,us, uyq) ; u1,us,us are displacement vector components, is an
electric potential ' is a mass force A (D) is a differential operator of the form

A(D) = [|Ajr(D)llaxa (1.2)
Ajk(D) :Cijlkaialv .77k = 1a2737
A]4(D) = ek’jlakal 5 .7 = 1a 27 37
Ay (D) = €00, k=1,2,3,
Ay (D) = €400, ,
where ¢k, ek, i are the elastic, piezoelectric and dielectric constants, respectively.
Here and in what follows we use the standard convention: the summation is carried

out over the repeated indices.
The constants in (1.2) satisfy the symmetry conditions

Cijlk = Cjilk = Clkij> Ckjl = Ckljs Eik = Ekis (1.3)
5,k 1=1,2,3

and the condition which provides positiveness of the internal energy:

V&, i, & = &ji, eo >0 il 2> coii&iy,  €iymimg = comini- (1.4)
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The operatorA (D) has a strongly elliptic symbol:
A(E) = [|Ak(E)laxa,

Ajk(g) = 7Cijkl§i§la j7 k= 17 23 35
A]4(£) = _ekjlgkglv .7 = 1) 2737 (1 5)
A4k(€) = eiklgigh ] = 17 27 37 ’
Ayu(8) = —ea&i&,
i.e. it satisfies the inequality
4
—Re Y Au(&)mi; > colél*|nl® (1.6)
ik=1

for some constant, > 0 and arbitrary¢ € R* and n € C*. Here the overbaryj,
denotes the complex conjugate g .

Inequality (1.6) follows from (1.3) and (1.4). Note that, in contrast to an analogous
operator of classical elasticity [Fil], the operatA( D) is neither a formally self adjoint
nor a positive definite operator.

Let Q be a bounded domain with a piecewise-smooth boundary, € C?() .
Then the following Green formulae are valid:

[ F@AD@) + Bu.v]ds = [50)7@,ntm)utas. @)

Q o9
/ [@(w)A(D)u(x) - u(m)AT(D)@(x)]dx
Q

~ [ BT, nw)ul) - )T @, nwW]dS,  @8)
o0

where AT is the transposed matrix t& , n(y) = (n1(y), n2(y), n3(y)) is the outward
unit normal vector toQ2, at the pointy € 9Q U 094 ,

T'(0y,n) = HTjk(ayvn)H4x4’
Tik(0y,n) = cijiktuds, J,k=1,2,3,
Ti4(0y,m) = exymOs, Jj=1,2,3,
Tup(0y,n) = —eipn: 01, k=1,2,3,
T4a(0y,n) = €4jn,;0; ,

the operator‘f(ay,n(y)) is obtained fromI'(9,, n(y)) by substitutinge;;x with —e; ;s ,
and E(u,v) denotes the sesquilinear form

E(u, U) = cl-jklaﬁjaluk + ekjlé)ﬁjakm — i 0iU40iug,  +€;10;U401uyq . (1.9)



4 T. Buchukuri, O. Chkadua, and R. Duduchava

Note, that the Green formulae (1.7) and (1.8) are also valid for unbounded domains
with a compact boundary provided and v meet the following constraints at infinity:

vi(y)Oku;(y) = o(ly|~2) and wu;(y)0kv;(y) = o(ly|~2), (1.10)
ij=1,2,3,4,5 k=1,2,3.

Let r*u := rq,u denote the restriction operator to the domép , k = 1,2,
and ~ -the trace operator from the domaif; to the boundaryd;, i = 0,1,2.
We remind that ifu € W(2,) then the tracey'u € Wy/” (90,) = B2 (9Q)
(vu € HY2(0Q,) whenp = 2), i = 1,2, p' = p/(p — 1) (see [Trl]). Moreover,
if A(D)u € L,(Q) the tracey*T(9,,n)(r'u) exists and is defined through the Green
formula (1.7) (see [DNS1, NCS1]). In particular,if € W () is a solution of equation
(1.1) with F € L,(Q), ¢ > np/(n+ p),then A(D)u € L, () and the traces

Yu=rs, {7 (r'u)},
VT (Oy,n)u = rs, {¥T(0y,n)(r'u)}, i=1,2,

are defined correctly. The tracgnT'(9,, n)u on 99 is defined similarly.

Based on the above arguments, we will consider the following boundary value prob-
lems (BVPs) in the domairf2\ S; : we look for a functionu € W!(Q2) ! which solves
the following BVPs: :

the Dirichlet BVP:

ADu=0 in Q\S5,
FOT(dy, n)u =1 on 09, (1.11)
fyiu:@iv 1= 1527 on Sl7

where p; € HY/2(S)), i =1,2, ¢ € H-/2(0Q) ;
the Neumann BVP:

AD)u=0 in Q\Sy,
VT (By,n)u =9 on 09, (1.12)
YT (Dy,n)u =1, i=1,2, on Si,

where y; € H™1/2(S,), i =1,2, ¢ € H /2(09) .
the mixed BVP:

AD)u=0 in Q\Sy,

0 -
le(ay, n)u =1 on 09, (1.13)
Yu = 1, on Sl,

V2T(dy, n)u = o, on Sy,

where o1 € HY2(Sy), 1o € H™V/2(S)), ¢ € H-/2(09) .
Note, that in the above BVPs (1.11) - (1.13) boundary conditions on the susface
differ, while they are the same on the bound&p .

!For simplicity we drop the case # 2, i.e. whenu € W, (Q)); these cases can be considered as in
[DNS1, NCS1, Ch2].
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Theorem 1.1. The Dirichlet and the mixed BVPs have a unique solutioa W!(Q\S;),
and the solution of the Neumann boundary value problem is defined up to a summand
u = (u1,ug, us, uyq) :

U; = €4k Tk + bi, 1=1,2,3, vy =0by. (114)

Herea;, j =1,2,3, b;, i =1,2,3,4, are arbitrary constantsg;;, are the ¢ -tensor
componenty the Levi-Civita symbol .

Proof. The proof is based on the Green formula (1.6) and is standard (see similar
proofs in [BG1, DNS1, NCS1, Fil] etc.). [ |

2. Properties of Potentials

Denote by H a fundamental solution of the operat@t(D) and consider the simple
layer potentials

vk (g /Hz— y)d,S, z€QUQy, k=0,1.
Theorem 2.1. Let 99, 9004 be CP-smooth,3 > [s| +1+1/p, 1 <p< oo, 1<
q < oo . Then the operatord’ () | V(0) extend to the continuous operators

v By (0) — BEEIVP(Q) (HGTP(Q,), i=1,2,

vO By (0Q) — By e (@) (HG TR ().

We consider the following integral operators on the surfaces

(1) /Hzf dyS,

o

WU@X@=L/T@deﬂﬂz—wdw%SvZGMM:an

o0
=/Hu—mmm%&
o0

o0

which are the direct values of the corresponding layer potentials. Then for the traces of
the layer potentials we have the following Plemelj formulae.
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Theorem 2.2. Let 99,09Q; be C? -smooth,3 > 3, g € C3(0%), h € C3(0%) .
Then

FVO(g)(2) =V (9)(2), =€ 0;

VVO(h)(z) =V (h)(2), z€ 0.

i 1 (_1)”1 (1)
YH(T(9:,n(2))V D (g))(2) = 59+ Vo (9)(2), 2 €0,

(T @ n(@)VO W) (2) = ~3h() + VO W)E), € 0n,

Theorem 2.3. Let 992,00, be C” -smooth,3 > |s| +3, 1 <p<oo, 1 <g< 0.

Let X* = H? or X* = Bs . Then the operatorg/_(’f , Vo(i) extend to the following
continuous operators:

VI XE(09,) — Xk (09,),

(2.1)
V9 X5 (09) - Xs7F(0Q)  for k=0,-1.
Theorem 2.4. The operators in(2.1) are strongly elliptic
1 —1/2
Re(V:ig,9) <0 Vg e H 00q),
(V2ig,9) 2 T (0f) 2.2)

Re(VYh,n)y <0 VheH, ' *00)

and the equalities in(2.3) are achieved only fory = 0,h = 0.
Moreover, the operatord”'} and V9 in (2.1) are invertible.

Although the operatorsV("l) , @ = 0,1 are not self-adjoint as in the theory of

elasticity, the proofs of Theorems 2.1 - 2.4 does not differ from those proved in [DNS1,
Sh2] for the classical elasticity case.

The operatorrg, A = rg, (V_(ll))_1 is strongly elliptic and the following is true
(cf. [DNS1, CD1J).

Theorem 2.5.Let 1 < p < oo, 1 < ¢ < oo. Then the operator

rs,A o H3(So) — HE1(So)

B;,(S0) — By, (So) (2.3)
has the Fredholm property if and only if the conditions
1 1 1 1
;—§<S<5+§ (24)

hold. Moreover, if (2.4) holds, the operator (2.3) is invertible.
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Theorem 2.6. (see [BG2, NCS1])Let 1 < p < 0, 1 < ¢ < o0, s € R.The singular
integral operator
1 ~S S
—51+ VO H3(09) — H3(69)
By ,(0Q) — BS (09) (2.5)
is Fredholm with index0 .

Theorem 2.7. Let 1 < p < 0, 1 < g < 00, s € R. Then the pseudodifferential
operator

% 1 i —
BY = (V)N + (= 5 1+ () (v
BY : H3(09) — HSH(9)

BS ,(0Q) — B (091) (2.6)
is invertible for N = 0,1,... and i = 1,2 . Moreover under the conditions
1 1 1 1
- — = -+ = 2.7
573 <s< 5 + 3 (2.7)

the following operator is invertible:
-1 -1 s — s
rs, [(BRY) T+ (BY) Y] ¢ HT(S0) — H3(S0)

B3 (So) — B ,(S0)- (2.8)
Proof. The proof of the first part is similar to Lemmata 5.2 and 6.2, _in [Ch2].
The second part follows because the pseudodifferential operggoéB%)) ! IS
1,2, is strongly elliptic. [ |
Let us consider aV x N system of pseudodifferential equations Bt
R(z,D)x =" (2.9)
with a matrix symbolog(z, &), = € Ri , £ € R™ from the Hormander clas$7 ,(R™ x
R™).Let A\;j(z'), j=1,...,N be the eigenvalues of the matrix
(0r(2',0,0,+1)) op(a’,0,0,~1), 2’ € R = OR".
Lemma 2.8. Let the symbob g (z, &) be strongly elliptic and

1
5(x') = sup —|arg (2’
(@) = sup 5|arg (@)
1 T , 1 r ,
l<p<oo, 1<g¢< o0, ——14+-4+6@@")<s< -4+ -—-95(z).
D 2 p 2

Then the operator
R(t,D) : H3(RY)®HS(RY) — H"(RY) @ H"(RY)
B, (RY) © B, (RY) — By (RY) @ By " (RY)
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is invertible.

Proof. The result follows from the general theory of pseudodifferential equations
on manifolds with boundary in [CD1, Dul, Sh1, Sh2]. [ |

3. The Dirichlet Problem
Let @) € H/2(09,) be some extension of the functiop; € H'/2(S;) on 9y,
i =1,2. Then any extensio®() of the function; on 99, has the form
@ =) + o), o) e HY2(S,).
We will seek a solution of all considered problems in the following form:

rlu=VWg in O, g1 € Hl/z(an)

Pu=VWgp +VOhr in Qy, g € HY2(0Q), heHY?(09). (3.1)

Since the operatoA (D) is elliptic, any generalized solution of the homogeneous equa-
tion (1.1) is an analytic function in the domain\S; . Then

{ yHrtu} — 2 {r?u} =0 on Sy, 3.2)
AYHT(r'u)} — v*{T(r*u)} =0 on Sy, .

Due to the boundary conditions of the Dirichlet problem we have

( -3+ VO(O))h + Yo0 (TV(1)>92 =1 on 99,
s, V—(ll)gl =¥ on Slv
rs, V,(ll)gz + s, (V(O))h = g on S,

Taking into account (3.2) we get the system of pseudodifferential equations with respect

to (h7917925 ng)l)v 9082)> :

(_ %I+V()(O))h+VBQ<TV(1))92 =9 on 09,
V—(11)91 - <PE)1) = ‘1’81) on 0%,
s 20 o (VO o oo,
@él) - %0(()2) = —TSOq’él) + Tsoq)gQ) on So,
rso (31 + Vi g1 = rs, (= 314 Vi) g2 =75, (TV@)h =0 on S,

(3.3)

where the integral operatorgo (T7V ™ ), vaq, (V(O)) and s, (TV(O)) have infin-

itely smooth kernels (the integration and the outer variable vary on disjoint sets) and are
therefore compact. Now we formulate the basic theorems about the existence and unique-
ness of a solution to the Dirichlet problem.
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Theorem 3.1. The Dirichlet problem has a unique solution in the clags'(Q\S;),
written as follows

= VO() 0 + )
r2u=VO (V)@ + ol — roa, VOR) + VOh,

Here @éi) € HY?(99,) is a fixed extension of the functiop; on 99, h €
H-1/2(9Q) and @él),wgf) € H'Y?(Sy) can be found from the system (3.3), which is
uniquely solvable.

Moreover, letl <7 < oo, 1<g<oo, -3 <s< 14l andue W (Q\S))
be the solution of the Dirichlet problem. Then

we HETYT(O\S)) if ¢ € B HORQ), ¢ €BEL(S1), i=1,2,

(3.4)

we BT (Q\Sy) if Y€ B; 1 (09), @i €B: (S1), i=1,2. 39
Proof. The system (3.3) can be rewritten in the matrix form
h v
g1 @él)
M| %= o :
90(()2) —Tso@gl) +7r 0(1)(()2)
Yo 0
where
YRR AN 0 Yo (TVD) 0 0 ]
0 V,(ll) 0 -1 0
M= 70, (V(O)) 0 v 0 -I
0 0 0 I -1
s (TV©@) re (314 V) —rs (= 41+VY) 0 o |
Obviously,
M=Q+T._., Q:[éfgvo(o) g} (3.6)

where T _ . , comprised by the operatorg)q, (TV(U) » Yoo (V(O)) and vs, (TV(0>) ,
is an infinitely smoothing compact operator, while

v 0 -7 0
b_ 0 vy 0 -I
= 0 0 I -1

() e (1) 0o

The entry —%I + VO(O) of the operatorQ is a Fredholm singular operator with
index 0 (see Theorem 2.6).
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Consider the system corresponding to the oper&or
Vf(ll)gl - (;58) = F(2)7 1= 17 27 on 0(21,
~(1) _ =(2) _ IS
%o Yo =9 on oo,
o (1 D\~ _1 1)\~ _
750<2I+‘/0 )gl ’I”So( 2[+VO )gg—f on Sy

with respect to the unknowng;, @éi)7 i = 1,2. Note that they differ fromg;, gp(()i) by
infinitely differentiable functions.

Since the operatonll) is invertible,
~ 1)y —1 i ~(1 .
gi= (VY THFED 4500y, i=1,2.
On substituting these equalities in the last two equations in the foregoing system, we

obtain a system of pseudodifferential equationsSynwith respect to{ﬁgl) and 6&2)
7 & =9,
3.7)

1 1)\ —1~(1 1 1)\ —1~(2
oo (314 V3 ) (V) TR s (< T W) (V) R = ¢
where
1 - 1 -

G=ftrs,( =5+ Vi) (V) TF® g, (ST V) (VD) RO,

The system (3.7) is thus reduced to a pseudodifferential equation on the open manifold
rSOAﬁél) =WV on Sy,

where & € H3~1(Sp), (¥ e B! (So),) and

1 1 1 -1 1
A= (GI+V) () = (= 51V (v T = ()T

The operatorrs, A = rg, (V_(ll)) s strongly elliptic and, due to Theorem 2.5, the first
part of the theorem is proved.

The second part, the solvability properties (3.5), is a consequence of the first part
and mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity). [ |

Let us look at the asymptotics of the solution to the Dirichlet problem near the
boundary & = 95; . We assume that the boundary conditions of the Dirichlet problem
are sufficiently smooth, namelyp; € H{®*T2N D205y i — 1 2 (see [CD1] for
the definition and details).

The principal symboloa (2/,¢’) of the pseudodifferential operatok in (2.3) is
written as (see [CD1])

UA(x/,gl) = U:\I/fl) (CC/7§’), z e So.

Moreover, the principal symbolr (', &) of the operator—V_(ll) is even with re-

7V_(11)
spect to the variablg’ and, therefore, all eigenvalues of the matrix

(JA(xlvoa Oa +:I-))71(7—A(x,7 Oa Oa 71) =1
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are trivial:
Ny =1, j=1,2,3,4, 2’ €&.

In the normal plandl,. to &, containinga’ € &, we consider the polar coordi-
nates (r,0) , where r > denotes the distance from = (z/,r,6) to the boundarys’
and —7 < # < 7) is the angular parameter. Then the poifit$, r, +7) € ST belong to
the different faces of the surfacg, and 2’ = (2,0, ) belongs to the boundary’ € &
forall 0 € [-m, 7).

Applying Theorem 2.1 from [CD1] and taking into account the first equality in (3.7),
we obtain the asymptotic expansion of the functkpﬁ 1=1,2,

o (@' r) = co(a')r? + ch Npath oy <p5\i,)+1(x',r), (3.8)

where ¢, € C>(&), k =0,1,..N, and the remainder terrmNJrl belongs to the space
H{ SN (o) 05N ([0,], C=(&)), &F =& x [0,¢] .

As we can see from (3.8) logarithms are absent in the entire asymptotic due to the
properties of the symbab 4 (z/,¢’) (see [CDD1]).

From Theorem 3.1 it follows that the solution of a Dirichlet problem can be written
as a simple-layer potential.

Forany 2’ € &, let 7 (2'),...,7e(z") be all different roots of the polynomial
equation

det A((Z,] (z")710,1,7)") =0, 2'€&, Imr<O0. (3.9)

We recall that(0, 1, 7) represents the value of the dual varialgleand that .7, (z) is
the Jacobian of the local coordinate diffeomorphismgsee [CD1]).

We assume that it is possible to enumeratéz’), ..., 7¢(z’) so that the multi-
plicities ny,...,n, of m(z),...,7(2’) are constant ons’ . Therefore the functions
T1,...7¢ can be chosen smoothhy, € C>°(&) .

Since A isa 4 x 4 elliptic system of order twop; + ...+ ny, =4 and 7., (a')
are the roots of (3.9) witHm 7 > 0. Let us define the following functions

Y, —1(2',0) == cos O + 7, (z) sin 6,
Ym,41(2,0) := cos + T, (') sin b, ¥ed&, m=1,...,0. (3.10)

Under the assumptio®) € H{** T2V 12290 the solutions of the Dirichlet

problem has the following asymptotic form in the vicinity of the crack fréhi(see [CD2,
Theorems 2.2 and 2.3] and [CDD1, Theorem B.8.1]):

¢ Ny, — 1
=2y 3 x( Z sinf9 i (2! ,0)dl, ,(z') (3.11)
m=1w==+1
—1p(m,k)

1 j
+ Z Z Z rk wfn,fk (2, 0) sin® 0 cos*?6 dfrﬁ(’ua (@) | + Urem, N

k=1 j=0 |a|<N(m,k)
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where u,em v € HéjN(R?’) and the coefficientsd’, , and d’;"" are C=(&).
p(m, k) and N(m, k) are some positive integers.

Moreover, the explicit formulae expressing the coefficiedfg’w(x’) by the first
coefficientsco(z’), m = 1,...1, j =0,...,n, — 1, of the surface expansion (3.8)

are available as well (see [CD2]).

4. The Neumann Problem

Let ¥ ¢ H-1/2(90;) be some fixed extension of the functiafy € H~1/2(S;) on
0 = S; US, . Then any extension); € H~'/2(S;) of the function; on 9Q; has
the form

v = w4y,

where z[}éi) S ﬁ*lﬂ(So) , ¢ =1,2. Solutions of the Neumann boundary value problem
will be sought in the form (3.1). Due to the boundary conditions (1.12) we have

( - %I + Vo(o))h + roq (TV(l))g2 =1 on 99,
o, (314 Vg1 = 1 on S, 4.1)

rs, (- %1 + Vi) g2 47, (TVI )i =2 on 8y,

Taking into account (3.2) we obtain the following system of equations

1
(‘ §I+V0(O))h+7“asz(TV(1))92 =1 on 99,
1
(5 I+ V()(l))gl — ) = o) on 9y,
1 4.2
(214 ) g — ol ron, VO = 0 on o0, @2
TS, Vfll)gl —Ts, Vfll)gg — TSUV(O)h =0 on Sp,
zb(()l) — w(()Q) = —TSO\IJ(()I) + TSO\I/(()2) on Sy
with respect to the known and unknown vector-function
(1, UV, wlP e (@) € HY2(0Q) x H/2(99;) x HY2(09Q;)
xHY2(Sg) x H™/2(S)
(4.3)

(By g1, 92,08V, 057) € HY2(99) x HY2(90) x HY2(89)
xH1/2(Sy) x H™1/2(Sy) .

Now we can formulate the basic theorem about the existence and uniqueness of a
solution of the Neumann problem.
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Theorem 4.1. The Neumann problem has a solution of the cla&d(Q\S;) in the
bounded domairf2 if and only if the equality

4
/ [Eijk'(/}iajzk + Z bkwk} d.5$=0 (4.4)
0 k=1

is fulfilled for any constant vectors = (a1, as, az) and b = (b1, ba, b3, by) .
Solutions of the Neumann problem are represented as

rlu: V(l)(vi(ll))ilgl in Ql,
2 1) (y,/ (M1 0)7, (4.5)
reu=V (V_l) g1+ VWh in Q,
where h, g1, go are solutions of systenu.1) .
Moreover, let
1 1 1 1
1<r<oo, 1<g< 0, - <s< -+ . (4.6)
r 2 r o 2
If we WL(Q\S;) is a solution of the Neumann problem then
we HITT(O\S) i Y e Wi (09), g e WISy, i=1,2, “n
S 1 . . ’
w € BT (NS if ¥ € B H(09), ¢i € BiH(S)), i=1,2.
Proof. The system (4.2) can be rewritten in the matrix form
h \
g1 \I/(()l)
— (2)
M wg(zl = \118 : (4.8)
0
2
(() ) T’SO\I/EJQ) — T’SO‘I/E)I)
where
— ;
51+ v 0 roo(TVD) 0 0
1
0 ~1+vW 0 1 0
M = 2 |
roa, (TV©) 0 B N A A B
—rs, VO g VY gV 0 0
L 0 0 0 I -1 |

The operatoM has the same representation (3.6) with a compact and smodthigg,
but yet differentP :

1
sI+ v 0 I 0
1
P 0 S R A A N
TS, Vfll) —Ts, V,(11) 0 0

0 0 I -I
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Let us introduce the operators

(VIO 4, (vi)? 0 7 0
Py — 0 (VIO (v 0 -1 |
g, 1 —rs, ] 0 0
0 0 I -
//4::(%“1/0(1)), ///_;:(féuvg”), N=12...,
and
— (vt 0 0 0
D— 0 V-1 0 o
0 0O I 0
0 0o 0 I

Then P o D differs from Py only modulo a compact operat@ _ y :
PoD-Py=T_p.
Consider the following system
B%)ﬁi — ~(()i) = ﬁ(l)N, 1=1,2, on 09,
—T5,1 — T5.92 = Gh on S, (4.9)
N(()l) (2) GQ on Sy,

where
i 1 i - )
B“:(fvﬁ”)M(ﬂH(fl)%“’)(VE?) Li=12.
gl:( ) ¢0 ( )) 1F() i:1727 N:1’2’

The systems (4.1) (i.e., the system (4.2)) and (4.9) are Fredholm-equivalent: are Fredholm
or are not Fredholm only simultaneously and have equal indices. Due to Theorem 2.7 the
pseudodifferential operator

B() : H(So) — HS (o)

B ,(So) — B3, (So)
is invertible.

Let us defineg; and go from the first two equations of system (4.9) and insert
them into the third equation. We obtain the system of differential equations on the open
manifold Sy

rso(BR)) 1y + sy (BY) 7y
5 =957 = Ga,
or

(1) _
{ TSOBw (4.10)

s —wé” G%
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where
B=(B{)'+BY)"

The pseudodifferential operators, B is strongly elliptic and, due to Theorem 2.7 the
operator

rs, B H3 N (Sp) — H3(So) (B3, (So) — B3 ,(So))
is invertible provided the conditions (4.6) hold.
Summarizing we find that if the conditions (4.6) hold, the operator

H;_l (092) H~ L(o%) BZ,_ql (092) IBZ;; (09)
S @ @ S
N @ HL00) — HSLU(S) By L (00) — BSTL(S))
D ¥ S S
H;il(agl) Hfjl(Sl) B;zl(an) IB%;;II(Sl)

defined by the left-hand side of (4.1) is Fredholm and Md= 0 . It is well known that
the kernel, the cokernel and, therefore, the index of the opekatane independent of
the parameters of the spaces where it is Fredholm (see [Agl, DNS1, Kal]). Therefore it

suffices to find CokeiN for s = 1/2 and p = 2. Thus, we consider the dual (adjoint)
operator in the spaces:

H/2(02) H/? (09)

N D (&)
N* :© HY2(S) — HY?*(09) -
D ()

Hy(51)  Hy*(0)
It (h,x(",x?) is the solution of homogeneous equation
N* (ﬁ, Xél), X((JQ)) =0, suppx(()l) c Sy, suppx((J2) cS.
Then we have
(— %I + 170(0))% + rgg(ﬁ(l))x((f) =0 on 09,
(%I + ) =0 on 90, (4.11)
Too, (U + (— %I—F Vo(l))ng) =0 on 09;.
Here U are the double-layer potentials:
0@ = [ [F@munH -] sw)d,s,  i=0.L.

o9
Let

V@ = O, 4 T2,
v = T,
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Due to (4.11)v) i = 1,2, satisfy the boundary conditions:

v~ v® =0 on 09,
710(1) =0 on 094,
y?v® =0 on 99 .

Here v~ denotes the trace 08 from the outer domairR? \ © . Thereforev?) is the
solution of the following BVP:

AT(D)v® =0 in R*\Qy,
v~ v® =0 on 09Q,
' =0 on 99y,

which have only the trivial solution ifiR?\(2, . Consequentlyp® =0 in R?*\Q, and
from boundary condition

0 (fv@)) — 4 Tv® =0 on 99;
72 (fv(z)) —t (Tv(z)) =0 on 9y;
it follows that

yo(fv@)) =0 on 09, ° (fv(2)> =0 on 0.

Thus, v(?) is the solution of the next BVP i), :
AT (D)@ =0 in Qy,
A (Tv®) =0 on 09,
72 Tv®) =0 on 09,
which have only solution of the form(? = a - 2 + b, where a is an antisymmetric
matrix and b is an arbitrary constant vector. Due to the boundary conditions:
'yov(z) —y @ = h on 09,
7@ —Ay@) = XE)2) on 0%
it follows that
TL:CL-J]-F[L X(()2) =a-x+0b,
Since supp X(()z) c S;,we get X(()Q) = 0. Analogously we obtairpgf)l) =0.
The second part, the solvability properties (4.7), are consequences of the first part

and the mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity). |

Let us investigate the asymptotic behavior of the solution to the Neumann problem
in the vicinity of the edge&’ . Assume that the corresponding boundary data are suffi-

ciently smooth. Namely); € H{™* 2" (g,y |
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We can rewrite the symbab g (2/,¢’) as

-1

os(e,€) = [(~ 3T+ oy @ €)) oy @ )]
_ [(%I +oym (x’,f’)) (GV_(11> (x’)f’))ﬂ] *1.

v (2,€") is odd with respect to the variabl¢’, while the
0
(', &) is even; thereforegp (2, &’) is even with respect t@’ :

The principal symbolo

symbol Ty

op(z',=¢) =op(a',¢), =’ € So
and all eigenvalues of the matrifoz(2',0,0,+1)) " tog(2’,0,0,—1) = I are trivial:
Aj=1,7=1,2,34, 2’ € C®(&).
Consider the above-described local coordinate system(z’,r) € Sy . Using the

theory of strongly elliptic pseudodifferential equations (see [CD1, Theorem 2.1]) we get
the following asymptotic expansion of solutions of equation (4.8):

N
1) = co@)r 2 + 3 (@i 400 (), i=1,2, (4.12)
k=1

des, 0<r<e, PV, eHHNx(oF) c 0N (([0,e],C=(&),

where ¢, € C*(&), k=0,1,..N .
And again, logarithms are absent in the entire asymptotic representation (4.12).
Let (h,¢1,92, z/)((,l), (()2)) be a solution of the system (4.2):

M(h, g1, g2, 0§, 98) = W,
U= (4, U5, 05,0, —(rs, & — 5, 257)),

then (g1, g2, él),w((f)) satisfies the equation

P (= V0. V00 o) =v, (4.13)
where
U= (957 + (V)N gy 0 + (VD) go — roq, (TV ),
TSOVh, —Tgo(pél) =+ TSO‘I)(()Q)).
Equation (4.8) (i.e., equation (4.2)) can be written in the form
BAN(-V o1 — " = 0! 4 (V)N
Bon(V)g2 —wg” = 067 + (V)N g1 = raq, (TVO)h,

—75,91 — T'S092 = 75,V Oh,
Sl

(4.14)
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where
BiR = (V)™ = (3r+ v (v
BR = (V)™ + (- 31+ V) (V)

As we have seen before, equation (4.14) can be reduced to a pseudodifferential
equation with a strongly elliptic operator.
Using the first two equations of system (4.14), we find

o =(=V) 7 (Byw) 0p +Fu,

Dy—1/n(2)\—1 (2
= (V) (BR) Y
Note that

F; € H®sT2N+HD090)), i =1,2.
Hence we obtain a representation of the solutions of the Neumann BVP by potential-type
functions:

—1 —1
rlu=vO (= v T B e + G,
rly = V(l)(V,(ll))il(Bg\);)il (()2) + G,
where G; € CNT1(Q,)i=1,2.
Thus, using the asymptotic expansion (4.12) of the funchldﬁ , 1 =1,2 and
the asymptotic expansion of functions that can be represented by potential operators (see
[CD2, Theorems 2.2 and 2.3]) we obtain the asymptotics of solutions to the Neumann

problem in terms of the local coordinates (§63 in a neighborhood of the crack bound-
ary:

4 Ny, —1
) 1, .
u=>" X | S v sin?0ya d (o, 0) d, (2') (4.15)
m=1w==%1 j=0
N—1p(m,k)
1 1_5 -
+ Z r§+k 1/}7%7(j+k (I/, 9) sin®' 0 cos“20 dl:,fb‘{“jx (‘T/) + urem,N 5

l+N
where urem, v € H

(3.11) for a similar notation).
As in § 3, the coefficientsd), , € C>°(&’) of the asymptotic formula (4.15) can be
expressed by the first coefficientg of the surface expansion (4.12) (see [CD2)).

(R%) and the coefficientst/, , and dJ,".* are C>(&) (see

m,w

5. The Mixed Problem

Any extension®() ¢ H'/2(9Q;) of the function ¢; to the whole boundanp$; =
S, U Sy has the form
o) = a6 + (),

where <I>((Jl) is a fixed extension of the functiop; , and @él) € IFHVQ(SO) .
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Any extension ¥(?) ¢ H~1/2(9Q;) of the function ¢, to the whole boundary
00 = S1 US, hasthe form

v = w4y,

where \I/Ef) is a fixed extension of the functiott, , and w((f) € ﬁ‘l/Q(SO) .

Solutions of the mixed boundary value problem will be sought in the form (3.1).
Bearing in mind boundary conditions of the mixed problem and equalities (3.2) for the
function v , we get a system of equations with respechtp g1 , g2, @él) , <pé2) :

(- 1I+VO(O))h+raQ<TV(1))gg =) on 99,
V(l) (1) CI)(U on 0y,
o V ) — 8 4 ro0, (TVOY = 0P on 90y, (5.1)
*TSOV(O —rg VW0 + oV = —rg @V on So,
r, (31 + Vi) g — 0 = rg, 0 on Sp,

Now we can formulate the basic theorem of the existence and uniqueness of a solu-
tion of the mixed problem.

Theorem 5.1. The mixed boundary value problem has a unique solution in the space
WH(2\S;) , which is given by the potential-type functions
uD = V(l)(V_(ll))—1<pél) TRy,

u® = VOB ,) Vv

where
R; € CNFL(Q,), i=1,2,
B, = (VPN v (= L1 v?)

and (—L7 % ,@61 ) is the solution of the strongly elliptic pseudodifferential equation

(5.3).
Moreover, let

1
§:= sup — larg);(a)],
1<j<s 27
z'e& (5.2)
1 1 1 1
1<t 1<r< ~—— =494 —+--9.
<t<oo, <r<oo, : 2+ <S<t+2

and u € W(Q\S;) be the solution of the mixed BVP. Then:
If o1 € B ,(S1), ¢ € WiTH(S1), & € W3~ 1(0Q) , we haveu € Hy ™ /*(0\S)) .
If 1 € B;,(S1), o € B, 1(S1), ¢ € By, 1(89) ,we haveu € B /" (Q\S)) .



20 T. Buchukuri, O. Chkadua, and R. Duduchava

Proof. The operator corresponding to the system (5.1) will be denote@/by|t
has the form

[ (7 %IJrVO(O)) 0 roo(TVD) 0 0 |
0 v 0 1 0
M= | 1y (TVO) 0 e A (-
—rg, V©® 0 —re, VY 1 0
0 rs, (314 V") 0 0 I

And again, operatoM is decomposed in the form (3.6) with a compact and smoothing
T_ , but yet different P :

v 0 I 0

b 0 Y A

- 0 —rg, VYT 0

rs, (31 + V") 0 0 -1

We consider the compositio o P of P with the invertible operator

I 0 0 0
b_| 0 VvY 0o
0 0 I 0
0 0 0 I

For the invertibility of the pseudodifferential operatlz(ﬂll) see Theorem 2.4.
Note that, as in previous cases, the difference

Ty =DoP Py, N=2,3,...,,

where
v 0 I 0
Py 0 (VN + v ((:)%I +vi) o —vy
0 —T5,V_1 1 0
roo (=21 + VM) 0 0 I

is a compact operator. So it is sufficient for us to investigate the opeRtorwhich acts
in the following spaces:

H3~1(061) H (69,) By ' (0Q) B, (99)
& &) 52 &
HE =1 (09) H (09 BS 1 (02) B, (09)
Py ~EB — ) ~G§ — &)
HZ(So) HZ (So) B, ,.(So) B, ,.(So)
e ) K B
H (o) H, ™ (S0) B! (So) B;! (So)

(B>s]] +3, 1<p<oo, 1<t<o0).
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Now let us consider a system of equations that corresponds to the op&gtowith
respecttohy , hy, ¥, ¥

Vi(ll)glli %1) :1&;(()1)7 (1 72 32
(VIO + VI (= 51+ Vg)]g = Vo = w5,

SV + 0 = B,
roo (= ST+ Vg + 45 = Fy .

(5.3)

Similarly as it has been done in [Ch2] system (5.3) is reduced equivalently to a strongly
elliptic pseudodifferential equation 0§

R(z',D')x =1, (5.4)
where
;A | LoorgyAg(x’, D)o Ly L_
R(x D ) - |: ~L, TSOA1(30/7D/) s

Av= (VD))
Az = [— (V_(11))2N+1 - (% I+ ‘/0(1)>(V_(11))*1] _1’

L_ =rtdiagh_¢, L, = diagA,.

Here A1 are the pseudodifferential operators with symbal (¢') = &; 47 4 i[&;], T
denotes the operator of restriction @t and ¢ is an extension operator.

Since the operator has the same kernel and cokernel in all spaces where it is Fred-
holm and thus it has the same index (see [Agl, Kal, DNS2]), from Lemma 2.8 and Theo-
rem 1.1 it follows that the operatdN is invertible in the corresponding Besov and Bessel
potential spaces (cf. similar proofs in [DNS1, DNS2]).

The second part, the solvability properties, are consequences of the first part and
the mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity). |

We drop the detailed asymptotic expansion of a solution to mixed BVP, because we
can not suggest any simplification in contrast to the Dirichlet and Neumann BVPs consid-
ered above. Asymptotic formulae for general PsDOs on a smooth surface with a smooth
boundary are exposed in detail in [CD1, CDD1]. Spatial asymptotic representations of
the solution to a BVP, based on surface asymptotics of a solution to the corresponding
boundary pseudodifferential equation is exposed in [CD2, CDD1].
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6. An example: media with cubic symmetry

Consider an electro-elastic medium with cubic symmetry [Nol, Tol]. In this case the
entries of the corresponding operator (1.2) are of the form:

A(D) = ¢110] + cas03 + cas03,

Ax(D) = 440} + 1103 + 1403,
A33(D) = 440} + c1a03 + 1103,
A (D) = (c12+caa)0iOk, i,k =1,2,3, i #k,
A(D) = —Au(D)=2e140:05,
Aoy (D) = —Ay(D)=2e140,0s,
Az (D) = —Au3(D) = 2e14010,,

A44(D) = 611A.

Condition (1.4) of internal energy positiveness imposes the following restrictions on the
coefficientsc;; :

1 cro
c11 >0, c44>0, €611>0, ——<—<1.
2 e
We can calculate the eigenvalues, As, ..., A\s with the help of the following

theorem (see [Ch2, Theorem 6.6]):
Theorem 6.1. Let \¢(2'), k= 1,...,8, be the eigenvalues of the matrbg, . Then

/
i LMM’ if k=1,...,4,
Ak(z) 1+ 26(w)
k =
1= 2Bk 4(2") .
N e LG T A N AT 3
Vit28a6) )

11 . .
where (3, € ] ~3'5 { are the eigenvalues of the matrtx\*/ .
]

After calculating the matrimv(1> we obtain
0
0 0 0 0
0 0 ; (011 ;512)1
c c—+
Ty = (c11 — c12) b ( : ’
0 —i— 27 0 0
2011 2(6 + ].)
0 0 0 0
where ) )
ik R Y
2c11C44 Ca4
So
C11 — C12

= = O7 4 = j:—
B =P B3.4 2o 2 D)
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and the eigenvalues; are purely imaginary.

Moreover, in this special case exponents of the leading term of asymptoti§ are
and i + 10 ; exponents of further terms increase by or(%erand not byl asitwas in
(3.8), 3.11), (4.12) and (4.15). A similar asymptotic encounters in mixed problems (see
[CD3] and also [Ch2, DN1]). In case of general anisotropy however, these exponents
depend on the elastic constants as well as on the geometry of the crack edge.
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