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Abstract. Dirichlet, Neumann and mixed crack-type boundary value problems of stat-
ics are considered in three-dimensional bounded domains filled with a homogeneous
anisotropic electro-elastic medium. Applying the method of the potential theory and
the theory of pseudodifferential equations, we prove the existence and uniqueness the-
orems in Besov and Bessel potential spaces, and derive full asymptotic expansion of
solutions near the crack edge.

Introduction

The recent years have shown an ever-growing interest in the investigation of models of
an anisotropic elastic medium which take into account the influence of various physical
fields such as thermal, electric, magnetic etc. A rather strong motivation for such studies
is the creation of new artificial materials which possess non-standard properties. Among
them are piezoelectric materials that form the core of modern structures and instruments.

Mathematical models of piezoelectric (electro-elastic) bodies and relevant boundary
value problems have been studied with sufficient completeness (see, e.g., [BG2, No1, Pa1,
To1] and the references therein). Of special interest is the case where the considered body
contains cracks or cuts with an edge having a bihedral angle2π (cuspidal edge)(see
[Ch2, CD3]). In that case the presence of an electric field essentially changes the pattern
of stress distribution near the cut or crack edge (see [DNS1, Pa1]).

In this work, Dirichlet, Neumann and mixed boundary value problems of statics are
considered for a homogeneous anisotropic piezoelectric body with a crack. The existence
and uniqueness of solutions of the considered problems are proved in Bessel potential
Hs

p (and BesovBs
p,q ) spaces. Complete asymptotic expansion of a solution near the

crack edge is obtained. These results are important in the analysis of a stress field in
electro-elastic bodies with cracks.
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1. Formulation of Boundary Value Problems

Let Ω = Ω0 and Ω1 ( Ω1 ⊂ Ω ) be bounded domains in the three-dimensional Euclidean
spaceR3 with infinitely smooth boundaries∂Ω = ∂Ω0 and ∂Ω1 respectively (we use
the alternative notationΩ0 = Ω for conciseness of forthcoming formulae). The boundary
∂Ω1 of the domainΩ1 (called interface) is divided in two parts:∂Ω1 = S0 ∪ S1 with
a smooth common boundaryE := ∂S0 = ∂S1 . Let Ω2 = Ω\Ω1 .

We assume, that the domainΩ\S1 is filled with homogeneous anisotropic electro-
elastic material, having a crack atS1 .

We use the following notation for function spaces:Ws
p(Ω) , Ws

p(∂Ωi) for the
Sobolev-Slobodetskij spaces;Hs

p(Ω) , Hs
p(∂Ωi) for the Bessel potential spaces;Bs

p,q(Ω) ,
Bs

p,q(∂Ωi) for the Besov spaces (i = 1, 2 , s ∈ R , 1 < p < ∞ , 1 ≤ q ≤ ∞ ), (see
[Tr1, Tr2] for the definitions and properties of these spaces). We use the common simpli-
fied notationHs(∂Ωi) = Hs

2(∂Ωi) . Let further,

Hs
p(Sj) = {rSju : u ∈ Hs

p(∂Ω1)} ,

H̃s
p(Sj) = {u ∈ Hs

p(∂Ω1) : suppu ∈ Sj} , j = 0, 1 ,

where rSj
ϕ := ϕ

∣∣∣
Sj

denotes the restriction operator onto the subsetSj . Similarly the

Sobolev-Slobodetskii spacesWs
p(Sj) , W̃s

p(S0) , Bs
p,q(Sj) and B̃s

p,q(S0) are defined.
We consider the system of static equations of electro-elasticity for a homogeneous

anisotropic medium [No1]

A(D)u(x) + F (x) = 0 , x ∈ Ω\S1 , (1.1)

where u = (u1, u2, u3, u4) ; u1, u2, u3 are displacement vector components,u4 is an
electric potential,F is a mass force.A(D) is a differential operator of the form

A(D) = ‖Ajk(D)‖4×4 , (1.2)

Ajk(D) = cijlk∂i∂l , j, k = 1, 2, 3,
Aj4(D) = ekjl∂k∂l , j = 1, 2, 3,
A4k(D) = −eikl∂i∂l, k = 1, 2, 3,

A44(D) = εil∂i∂l ,

where cijlk , eikl , εik are the elastic, piezoelectric and dielectric constants, respectively.
Here and in what follows we use the standard convention: the summation is carried

out over the repeated indices.
The constants in (1.2) satisfy the symmetry conditions

cijlk = cjilk = clkij , ekjl = eklj , εik = εki,
i, j, k, l = 1, 2, 3 (1.3)

and the condition which provides positiveness of the internal energy:

∀ξij , ηi, ξij = ξji, ∃c0 > 0 cijklξijξkl ≥ c0ξijξij , εijηiηj ≥ c0ηiηi. (1.4)
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The operatorA(D) has a strongly elliptic symbol:

A(ξ) := ‖Ajk(ξ)‖4×4,

Ajk(ξ) = −cijklξiξl, j, k = 1, 2, 3,
Aj4(ξ) = −ekjlξkξl, j = 1, 2, 3,
A4k(ξ) = eiklξiξl, j = 1, 2, 3,
A44(ξ) = −εilξiξl,

(1.5)

i.e. it satisfies the inequality

−Re
4∑

i,k=1

Aik(ξ)ηkηi ≥ c0|ξ|2|η|2 (1.6)

for some constantc0 > 0 and arbitraryξ ∈ R3 and η ∈ C4 . Here the overbarηi

denotes the complex conjugate toηi .
Inequality (1.6) follows from (1.3) and (1.4). Note that, in contrast to an analogous

operator of classical elasticity [Fi1], the operatorA(D) is neither a formally self adjoint
nor a positive definite operator.

Let Ω be a bounded domain with a piecewise-smooth boundary,u, v ∈ C2(Ω) .
Then the following Green formulae are valid:∫

Ω

[
v(x)A(D)u(x) + E(u, v)

]
dx =

∫
∂Ω

v(y)T (∂y, n(y))u(y)dS, (1.7)

∫
Ω

[
v(x)A(D)u(x)− u(x)A>(D)v(x)

]
dx

=
∫

∂Ω

[
v(y)T (∂y, n(y))u(y)− u(y)T̃ (∂y, n(y))v(y)

]
dS, (1.8)

where A> is the transposed matrix toA , n(y) = (n1(y), n2(y), n3(y)) is the outward
unit normal vector toΩ2 at the pointy ∈ ∂Ω ∪ ∂Ω1 ,

T (∂y, n) =
∥∥Tjk(∂y, n)

∥∥
4×4

,

Tjk(∂y, n) = cijlknl∂i, j, k = 1, 2, 3,
Tj4(∂y, n) = ekjlnl∂k, j = 1, 2, 3,
T4k(∂y, n) = −eiklni∂l, k = 1, 2, 3,

T44(∂y, n) = εijnj∂i ,

the operatorT̃ (∂y, n(y)) is obtained fromT (∂y, n(y)) by substitutingeijk with −eijk ,
and E(u, v) denotes the sesquilinear form

E(u, v) = cijkl∂ivj∂luk + ekjl∂lvj∂ku4 − eikl∂iv4∂luk +εil∂iv4∂lu4 . (1.9)
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Note, that the Green formulae (1.7) and (1.8) are also valid for unbounded domains
with a compact boundary providedu and v meet the following constraints at infinity:

vi(y)∂kuj(y) = o(|y|−2) and ui(y)∂kvj(y) = o(|y|−2), (1.10)

i, j = 1, 2, 3, 4, 5, k = 1, 2, 3.

Let rku := rΩk
u denote the restriction operator to the domainΩk , k = 1, 2 ,

and γi -the trace operator from the domainΩi to the boundary∂Ωi , i = 0, 1, 2 .

We remind that if u ∈ W1
p(Ωi) then the traceγiu ∈ W1/p′

p (∂Ω1) = B1/p′

p,p (∂Ω1)
( γiu ∈ H1/2(∂Ω1) when p = 2 ), i = 1, 2, p′ = p/(p − 1) (see [Tr1]). Moreover,
if A(D)u ∈ Lp(Ω) the traceγiT (∂y, n)(riu) exists and is defined through the Green
formula (1.7) (see [DNS1, NCS1]). In particular, ifu ∈ W1

p(Ω) is a solution of equation
(1.1) with F ∈ Lq(Ω) , q ≥ np/(n+ p) , then A(D)u ∈ Lq(Ω) and the traces

γiu = rS1{γi(riu)},
γiT (∂y, n)u = rS1{γiT (∂y, n)(riu)}, i = 1, 2,

are defined correctly. The traceγ∂ΩT (∂y, n)u on ∂Ω is defined similarly.
Based on the above arguments, we will consider the following boundary value prob-

lems (BVPs) in the domainΩ\S1 : we look for a functionu ∈ W1(Ω) 1 which solves
the following BVPs: :

the Dirichlet BVP: A(D)u = 0 in Ω\S1,
γ0T (∂y, n)u = ψ on ∂Ω,
γiu = ϕi, i = 1, 2, on S1,

(1.11)

where ϕi ∈ H1/2(S1) , i = 1, 2 , ψ ∈ H−1/2(∂Ω) ;
the Neumann BVP: A(D)u = 0 in Ω\S1,

γ0T (∂y, n)u = ψ on ∂Ω,
γiT (∂y, n)u = ψi, i = 1, 2, on S1,

(1.12)

where ψi ∈ H−1/2(S1) , i = 1, 2 , ψ ∈ H−1/2(∂Ω) .
the mixed BVP:

A(D)u = 0 in Ω\S1,
γ0T (∂y, n)u = ψ on ∂Ω,
γ1u = ϕ1, on S1,
γ2T (∂y, n)u = ψ2, on S1,

(1.13)

where ϕ1 ∈ H1/2(S1) , ψ2 ∈ H−1/2(S1) , ψ ∈ H−1/2(∂Ω) .
Note, that in the above BVPs (1.11) - (1.13) boundary conditions on the surfaceS1

differ, while they are the same on the boundary∂Ω .

1For simplicity we drop the casep 6= 2 , i.e. when u ∈ W1
p(Ω) ); these cases can be considered as in

[DNS1, NCS1, Ch2].
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Theorem 1.1.The Dirichlet and the mixed BVPs have a unique solutionu ∈ W1(Ω\S1) ,
and the solution of the Neumann boundary value problem is defined up to a summand
u = (u1, u2, u3, u4) :

ui = εijkajxk + bi, i = 1, 2, 3, v4 = b4 . (1.14)

Here aj , j = 1, 2, 3 , bi , i = 1, 2, 3, 4 , are arbitrary constants,εijk are the ε -tensor
components( the Levi-Civita symbol) .

Proof. The proof is based on the Green formula (1.6) and is standard (see similar
proofs in [BG1, DNS1, NCS1, Fi1] etc.).

2. Properties of Potentials

Denote byH a fundamental solution of the operatorA(D) and consider the simple
layer potentials

V (k)(g)(x) =
∫

∂Ωk

H(x− y)g(y)dyS, x ∈ Ω1 ∪ Ω2, k = 0, 1 .

Theorem 2.1. Let ∂Ω, ∂Ω1 be Cβ -smooth,β ≥ |s| + 1 + 1/p , 1 < p < ∞ , 1 ≤
q <∞ . Then the operatorsV (1) , V (0) extend to the continuous operators

V (1) : Bs
p,q(∂Ω1) → Bs+1+1/p

p,q (Ωi)
⋂

Hs+1+1/p
p (Ωi), i = 1, 2,

V (0) : Bs
p,q(∂Ω) → Bs+1+1/p

p,q (Ω)
⋂

Hs+1+1/p
p (Ω).

We consider the following integral operators on the surfaces

V
(1)
−1 (g)(z) =

∫
∂Ω1

H(z − y)g(y)dyS,

V
(1)
0 (g)(z) =

∫
∂Ω1

T (∂z, n(z))H(z − y)g(y)dyS, z ∈ ∂Ω1 = ∂Ω2,

V
(0)
−1 (h)(z) =

∫
∂Ω

H(z − y)h(y)dyS,

V
(0)
0 (h)(z) =

∫
∂Ω

T (∂z, n(z))H(z − y)h(y)dyS, z ∈ ∂Ω,

which are the direct values of the corresponding layer potentials. Then for the traces of
the layer potentials we have the following Plemelj formulae.
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Theorem 2.2. Let ∂Ω, ∂Ω1 be Cβ -smooth,β ≥ 3 , g ∈ C3(∂Ω1) , h ∈ C3(∂Ω1) .
Then

γiV (1)(g)(z) = V
(1)
−1 (g)(z), z ∈ ∂Ω1;

γ0V (0)(h)(z) = V
(0)
−1 (h)(z), z ∈ ∂Ω .

γi
(
T (∂z, n(z))V (1)(g)

)
(z) =

(−1)i+1

2
g(z) + V

(1)
0 (g)(z), z ∈ ∂Ω1,

γ0
(
T (∂z, n(z))V (0)(h)

)
(z) = −1

2
h(z) + V

(0)
0 (h)(z), z ∈ ∂Ω,

Theorem 2.3. Let ∂Ω, ∂Ω1 be Cβ -smooth,β ≥ |s|+ 3 , 1 < p < ∞ , 1 ≤ q ≤ ∞ .

Let Xs = Hs
p or Xs = Bs

p,q . Then the operatorsV (i)
−1 , V (i)

0 extend to the following
continuous operators:

V
(1)
k : Xs(∂Ω1) → Xs−k(∂Ω1),

V
(0)
k : Xs(∂Ω) → Xs−k(∂Ω) for k = 0,−1 .

(2.1)

Theorem 2.4. The operators in(2.1) are strongly elliptic

Re〈V (1)
−1 g, g〉 ≤ 0 ∀g ∈ H−1/2

2 (∂Ω1) ,

Re〈V (0)
−1 h, h〉 ≤ 0 ∀h ∈ H−1/2

2 (∂Ω)
(2.2)

and the equalities in(2.3) are achieved only forg = 0, h = 0 .

Moreover, the operatorsV (1)
−1 and V (0)

−1 in (2.1) are invertible.

Although the operatorsV (i)
−1 , i = 0, 1 are not self-adjoint as in the theory of

elasticity, the proofs of Theorems 2.1 - 2.4 does not differ from those proved in [DNS1,
Sh2] for the classical elasticity case.

The operatorrS0A = rS0

(
V

(1)
−1

)−1
is strongly elliptic and the following is true

(cf. [DNS1, CD1]).

Theorem 2.5. Let 1 < p <∞ , 1 ≤ q ≤ ∞ . Then the operator

rS0A : H̃s
p(S0) → Hs−1

p (S0)

: B̃s
p,q(S0) → Bs−1

p,q (S0) (2.3)

has the Fredholm property if and only if the conditions

1
p
− 1

2
< s <

1
p

+
1
2

(2.4)

hold. Moreover, if (2.4) holds, the operator (2.3) is invertible.
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Theorem 2.6. (see [BG2, NCS1]). Let 1 < p <∞ , 1 ≤ q ≤ ∞ , s ∈ R . The singular
integral operator

−1
2
I + V

(0)
0 : H̃s

p(∂Ω) → Hs
p(∂Ω)

: B̃s
p,q(∂Ω) → Bs

p,q(∂Ω) (2.5)

is Fredholm with index0 .

Theorem 2.7. Let 1 < p < ∞ , 1 ≤ q ≤ ∞ , s ∈ R . Then the pseudodifferential
operator

B(i)
N := (−V (1)

−1 )N +
(
− 1

2
I + (−1)iV

(1)
0

)
(V (1)
−1 )−1

B(i)
N : H̃s

p(∂Ω1) → Hs−1
p (∂Ω1)

: B̃s
p,q(∂Ω1) → Bs−1

p,q (∂Ω1) (2.6)

is invertible for N = 0, 1, . . . and i = 1, 2 . Moreover under the conditions

1
p
− 1

2
< s <

1
p

+
1
2

(2.7)

the following operator is invertible:

rS0

[(
B(1)

N

)−1 +
(
B(2)

N

)−1
]

: H̃s−1
p (S0) → Hs

p(S0)

: B̃s−1
p,q (S0) → Bs

p,q(S0) . (2.8)

Proof. The proof of the first part is similar to Lemmata 5.2 and 6.2, in [Ch2].
The second part follows because the pseudodifferential operatorrS0

(
B(i)

N

)−1
, i =

1, 2 , is strongly elliptic.

Let us consider aN ×N system of pseudodifferential equations onRn
+

R(x,D)χ = Ψ (2.9)

with a matrix symbolσR(x, ξ) , x ∈ Rn

+ , ξ ∈ Rn from the Ḧormander classSr
1,0(Rn×

Rn) . Let λj(x′) , j = 1, . . . , N be the eigenvalues of the matrix(
σR(x′, 0, 0,+1)

)−1
σR(x′, 0, 0,−1), x′ ∈ Rn−1 = ∂Rn

+ .

Lemma 2.8. Let the symbolσR(x, ξ) be strongly elliptic and

δ(x′) = sup
1≤j≤N

1
2π

∣∣ arg λj(x′)
∣∣

1 < p <∞ , 1 ≤ q ≤ ∞ ,
1
p
− 1 +

r

2
+ δ(x′) < s <

1
p

+
r

2
− δ(x′) .

Then the operator

R(t,D) : H̃s
p(Rn

+)⊕ H̃s
p(Rn

+) → Hs−r
p (Rn

+)⊕Hs−r
p (Rn

+)

: B̃s
p,q(Rn

+)⊕ B̃s
p,q(Rn

+) → Bs−r
p,q (Rn

+)⊕ Bs−r
p,q (Rn

+)
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is invertible.

Proof. The result follows from the general theory of pseudodifferential equations
on manifolds with boundary in [CD1, Du1, Sh1, Sh2].

3. The Dirichlet Problem

Let Φ(i)
0 ∈ H1/2(∂Ω1) be some extension of the functionϕi ∈ H1/2(S1) on ∂Ω1 ,

i = 1, 2 . Then any extensionΦ(i) of the functionϕi on ∂Ω1 has the form

Φ(i) = Φ(i)
0 + ϕ

(i)
0 , ϕ

(i)
0 ∈ H̃1/2(S0).

We will seek a solution of all considered problems in the following form:

r1u = V (1)g1 in Ω1 , g1 ∈ H1/2(∂Ω1)
r2u = V (1)g2 + V (0)h in Ω2 , g2 ∈ H1/2(∂Ω1) , h ∈ H1/2(∂Ω) .

(3.1)

Since the operatorA(D) is elliptic, any generalized solution of the homogeneous equa-
tion (1.1) is an analytic function in the domainΩ\S1 . Then{

γ1{r1u} − γ2{r2u} = 0 on S0,

γ1{T (r1u)} − γ2{T (r2u)} = 0 on S0, .
(3.2)

Due to the boundary conditions of the Dirichlet problem we have
(
− 1

2I + V
(0)
0

)
h+ γ∂Ω

(
TV (1)

)
g2 = ψ on ∂Ω,

rS1V
(1)
−1 g1 = ϕ1 on S1,

rS1V
(1)
−1 g2 + γS1

(
V (0)

)
h = ϕ2 on S1,

Taking into account (3.2) we get the system of pseudodifferential equations with respect
to (h, g1, g2, ϕ

(1)
0 , ϕ

(2)
0 ) :

(
− 1

2I + V
(0)
0

)
h+ γ∂Ω

(
TV (1)

)
g2 = ψ on ∂Ω,

V
(1)
−1 g1 − ϕ

(1)
0 = Φ(1)

0 on ∂Ω1,

V
(1)
−1 g2 − ϕ

(2)
0 + γ∂Ω1

(
V (0)

)
h = Φ(2)

0 on ∂Ω1,

ϕ
(1)
0 − ϕ

(2)
0 = −rS0Φ

(1)
0 + rS0Φ

(2)
0 on S0,

rS0

(
1
2I + V

(1)
0

)
g1 − rS0

(
− 1

2I + V
(1)
0

)
g2 − γS0

(
TV (0)

)
h = 0 on S0,

(3.3)

where the integral operatorsγ∂Ω

(
TV (1)

)
, γ∂Ω1

(
V (0)

)
and γS0

(
TV (0)

)
have infin-

itely smooth kernels (the integration and the outer variable vary on disjoint sets) and are
therefore compact. Now we formulate the basic theorems about the existence and unique-
ness of a solution to the Dirichlet problem.
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Theorem 3.1. The Dirichlet problem has a unique solution in the classW1(Ω\S1) ,
written as follows

r1u = V (1)
((
V

(1)
−1

)−1(Φ(1)
0 + ϕ

(1)
0 )

)
,

r2u = V (1)
((
V

(1)
−1

)−1(Φ(2)
0 + ϕ

(2)
0 − r∂Ω1V

(0)h
)

+ V (0)h .
(3.4)

Here Φ(i)
0 ∈ H1/2(∂Ω1) is a fixed extension of the functionϕi on ∂Ω1 , h ∈

H−1/2(∂Ω) and ϕ
(1)
0 , ϕ

(2)
0 ∈ H̃1/2(S0) can be found from the system (3.3), which is

uniquely solvable.
Moreover, let1 < r <∞ , 1 ≤ q ≤ ∞ , 1

r −
1
2 < s < 1

r + 1
2 and u ∈ W1(Ω\S1)

be the solution of the Dirichlet problem. Then

u ∈ Hs+1/r
r (Ω\S1) if ψ ∈ Bs−1

r,r (∂Ω), ϕi ∈ Bs
r,r(S1), i = 1, 2,

u ∈ Bs+1/r
r,q (Ω\S1) if ψ ∈ Bs−1

r,q (∂Ω), ϕi ∈ Bs
r,q(S1), i = 1, 2 .

(3.5)

Proof. The system (3.3) can be rewritten in the matrix form

M


h
g1
g2

ϕ
(1)
0

ϕ
(2)
0

 =


Ψ

Φ(1)
0

Φ(2)
0

−rS0Φ
(1)
0 + rS0Φ

(2)
0

0

 ,
where

M =



− 1
2I + V

(0)
0 0 γ∂Ω

(
TV (1)

)
0 0

0 V
(1)
−1 0 −I 0

γ∂Ω1

(
V (0)

)
0 V

(1)
−1 0 −I

0 0 0 I −I
−γS0

(
TV (0)

)
rS0

(
1
2I + V

(1)
0

)
−rS0

(
− 1

2I + V
(1)
0

)
0 0


.

Obviously,

M = Q + T−∞ , Q =
[
− 1

2I + V
(0)
0 0

0 P

]
, (3.6)

whereT−∞ , comprised by the operatorsγ∂Ω

(
TV (1)

)
, γ∂Ω1

(
V (0)

)
and γS0

(
TV (0)

)
,

is an infinitely smoothing compact operator, while

P =


V

(1)
−1 0 −I 0
0 V

(1)
−1 0 −I

0 0 I −I
rS0

(
1
2I + V

(1)
0

)
−rS0

(
− 1

2I + V
(1)
0

)
0 0

 .
The entry − 1

2I + V
(0)
0 of the operatorQ is a Fredholm singular operator with

index 0 (see Theorem 2.6).
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Consider the system corresponding to the operatorP
V

(1)
−1 g̃i − ϕ̃

(i)
0 = F (i), i = 1, 2, on ∂Ω1,

ϕ̃
(1)
0 − ϕ̃

(2)
0 = g on S0,

rS0

(
1
2I + V

(1)
0

)
g̃1 − rS0

(
− 1

2I + V
(1)
0

)
g̃2 = f on S0

with respect to the unknowns̃gi, ϕ̃
(i)
0 , i = 1, 2. Note that they differ fromgi, ϕ

(i)
0 by

infinitely differentiable functions.
Since the operatorV (1)

−1 is invertible,

g̃i =
(
V

(1)
−1

)−1(F (i) + ϕ̃
(i)
0 ), i = 1, 2.

On substituting these equalities in the last two equations in the foregoing system, we
obtain a system of pseudodifferential equations onS0 with respect toϕ̃(1)

0 and ϕ̃(2)
0 ϕ̃

(1)
0 − ϕ̃

(2)
0 = g,

rS0

(
1
2I + V

(1)
0

)(
V

(1)
−1

)−1
ϕ̃

(1)
0 − rS0

(
− 1

2I + V
(1)
0

)(
V

(1)
−1

)−1
ϕ̃

(2)
0 = G,

(3.7)

where

G = f + rS0

(
− 1

2
I + V

(1)
0

)(
V

(1)
−1

)−1
F (2) − rS0

(1
2
I + V

(1)
0

)(
V

(1)
−1

)−1
F (1).

The system (3.7) is thus reduced to a pseudodifferential equation on the open manifold

rS0Aϕ̃
(1)
0 = Ψ on S0,

where Ψ ∈ Hs−1
p (S0),

(
Ψ ∈ Bs−1

p,q (S0),
)

and

A =
(1

2
I + V

(1)
0

)(
V

(1)
−1

)−1 −
(
− 1

2
I + V

(1)
0

)(
V

(1)
−1

)−1 =
(
V

(1)
−1

)−1
.

The operatorrS0A = rS0

(
V

(1)
−1

)−1
is strongly elliptic and, due to Theorem 2.5, the first

part of the theorem is proved.
The second part, the solvability properties (3.5), is a consequence of the first part

and mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity).

Let us look at the asymptotics of the solution to the Dirichlet problem near the
boundaryE = ∂S1 . We assume that the boundary conditions of the Dirichlet problem
are sufficiently smooth, namely:ϕi ∈ H(∞,s+2N+1),∞

r (S1) , i = 1, 2 (see [CD1] for
the definition and details).

The principal symbolσA(x′, ξ′) of the pseudodifferential operatorA in (2.3) is
written as (see [CD1])

σA(x′, ξ′) = σ−1

−V
(1)
−1

(x′, ξ′), x′ ∈ S0.

Moreover, the principal symbolσ−V
(1)
−1

(x′, ξ′) of the operator−V (1)
−1 is even with re-

spect to the variableξ′ and, therefore, all eigenvalues of the matrix

(σA(x′, 0, 0,+1))−1σA(x′, 0, 0,−1) = I
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are trivial:
λj(x′) = 1, j = 1, 2, 3, 4, x′ ∈ E .

In the normal planeΠx′ to E , containingx′ ∈ E , we consider the polar coordi-
nates (r, θ) , where r ≥ denotes the distance fromx = (x′, r, θ) to the boundaryE
and −π ≤ θ ≤ π) is the angular parameter. Then the points(x′, r,±π) ∈ S±1 belong to
the different faces of the surfaceS1 and x′ = (x′, 0, θ) belongs to the boundaryx′ ∈ E
for all θ ∈ [−π, π] .

Applying Theorem 2.1 from [CD1] and taking into account the first equality in (3.7),
we obtain the asymptotic expansion of the functionϕ(i)

0 , i = 1, 2 ,

ϕ
(i)
0 (x′, r) = c0(x′)r

1
2 +

N∑
k=1

ck(x′)r
1
2+k + ϕ

(i)
N+1(x

′, r), (3.8)

where ck ∈ C∞(E ), k = 0, 1, ..N, and the remainder termϕ(i)
N+1 belongs to the space

H(∞,s+N+1),∞
r (E +

ε ) ⊂ Cs+N ([0, ε], C∞(E )) , E +
ε = E × [0, ε] .

As we can see from (3.8) logarithms are absent in the entire asymptotic due to the
properties of the symbolσA(x′, ξ′) (see [CDD1]).

From Theorem 3.1 it follows that the solution of a Dirichlet problem can be written
as a simple-layer potential.

For any x′ ∈ E , let τ1(x′), . . . , τ`(x′) be all different roots of the polynomial
equation

det A((J >
κ (x′))−1(0, 1, τ)>

)
= 0 , x′ ∈ E , Im τ < 0. (3.9)

We recall that(0, 1, τ) represents the value of the dual variableξ and thatIκ(x′) is
the Jacobian of the local coordinate diffeomorphismsκ (see [CD1]).

We assume that it is possible to enumerateτ1(x′), . . . , τ`(x′) so that the multi-
plicities n1, . . . , n` of τ1(x′), . . . , τ`(x′) are constant onE . Therefore the functions
τ1, . . . τ` can be chosen smoothlyτm ∈ C∞(E ) .

Since A is a 4× 4 elliptic system of order two,n1 + . . .+ n` = 4 and τm(x′)
are the roots of (3.9) withIm τ > 0 . Let us define the following functions

ψm,−1(x′, θ) := cos θ + τm(x′) sin θ ,

ψm,+1(x′, θ) := cos θ + τm(x′) sin θ , x′ ∈ E , m = 1, . . . , ` . (3.10)

Under the assumptionΦ(i)
0 ∈ H(∞,s+2N+1),∞

r (∂Ω1) the solutions of the Dirichlet
problem has the following asymptotic form in the vicinity of the crack frontE (see [CD2,
Theorems 2.2 and 2.3] and [CDD1, Theorem B.8.1]):

u = r
1
2

∑̀
m=1

∑
ω=±1

χ(r)

[
nm−1∑
j=0

sinjθ ψ
1
2−j
m,ω (x′, θ) dj

m,ω(x′) (3.11)

+
N−1∑
k=1

p(m,k)∑
j=0

∑
|α|≤N(m,k)

rk ψ
1
2−j+k
m,ω (x′, θ) sinα1θ cosα2θ dk,j,α

m,ω (x′)

]
+ urem,N
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where urem,N ∈ H
1
2+N

loc (R3) and the coefficientsdj
m,ω and dj,k,α

m,ω are C∞(E ) .
p(m, k) and N(m, k) are some positive integers.

Moreover, the explicit formulae expressing the coefficientsdj
m,ω(x′) by the first

coefficients c0(x′) , m = 1, . . . l , j = 0, . . . , nm − 1 , of the surface expansion (3.8)
are available as well (see [CD2]).

4. The Neumann Problem

Let Ψ(i)
0 ∈ H−1/2(∂Ω1) be some fixed extension of the functionψi ∈ H−1/2(S1) on

∂Ω1 = S1 ∪ S0 . Then any extensionψi ∈ H−1/2(S1) of the functionψi on ∂Ω1 has
the form

Ψ(i) = Ψ(i)
0 + ψ

(i)
0 ,

where ψ(i)
0 ∈ H̃−1/2(S0) , i = 1, 2 . Solutions of the Neumann boundary value problem

will be sought in the form (3.1). Due to the boundary conditions (1.12) we have
(
− 1

2
I + V

(0)
0

)
h+ r∂Ω

(
TV (1)

)
g2 = ψ on ∂Ω,

rS1

(
1
2I + V

(1)
0

)
g1 = ϕ1 on S1,

rS1

(
− 1

2
I + V

(1)
0

)
g2 + rS1

(
TV (1)

)
h = ϕ2 on S1,

(4.1)

Taking into account (3.2) we obtain the following system of equations

(
− 1

2
I + V

(0)
0

)
h+ r∂Ω(TV (1))g2 = ψ on ∂Ω,(1

2
I + V

(1)
0

)
g1 − ψ

(1)
0 = Ψ(1)

0 on ∂Ω1,(
− 1

2
I + V

(1)
0

)
g2 − ψ

(2)
0 + r∂Ω1(TV

(0))h = Ψ(2)
0 on ∂Ω1,

rS0V
(1)
−1 g1 − rS0V

(1)
−1 g2 − rS0V

(0)h = 0 on S0,

ψ
(1)
0 − ψ

(2)
0 = −rS0Ψ

(1)
0 + rS0Ψ

(2)
0 on S0

(4.2)

with respect to the known and unknown vector-function

(ψ,Ψ(1)
0 ,Ψ(2)

0 ,Φ(1),Φ(2)) ∈ H1/2(∂Ω)×H1/2(∂Ω1)×H1/2(∂Ω1)

×H1/2(S0)×H−1/2(S0) ,

(h, g1, g2, ψ
(1)
0 , ψ

(2)
0 ) ∈ H1/2(∂Ω)×H1/2(∂Ω1)×H1/2(∂Ω1)

×H̃−1/2(S0)× H̃−1/2(S0) .

(4.3)

Now we can formulate the basic theorem about the existence and uniqueness of a
solution of the Neumann problem.
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Theorem 4.1. The Neumann problem has a solution of the classW1(Ω\S1) in the
bounded domainΩ if and only if the equality∫

∂Ω

[
εijkψiajzk +

4∑
k=1

bkψk

]
dzS = 0 (4.4)

is fulfilled for any constant vectorsa = (a1, a2, a3) and b = (b1, b2, b3, b4) .
Solutions of the Neumann problem are represented as{

r1u = V (1)
(
V

(1)
−1

)−1
g1 in Ω1,

r2u = V (1)
(
V

(1)
−1

)−1
g1 + V (0)h in Ω2,

(4.5)

where h, g1, g2 are solutions of system(4.1) .
Moreover, let

1 < r <∞ , 1 ≤ q ≤ ∞ ,
1
r
− 1

2
< s <

1
r

+
1
2
. (4.6)

If u ∈ W1(Ω\S1) is a solution of the Neumann problem then

u ∈ Hs+ 1
r

r (Ω\S1) if ψ ∈ Ws−1
r (∂Ω), ψi ∈ Ws−1

r (S1), i = 1, 2,

u ∈ Bs+ 1
r

r,q (Ω\S1) if ψ ∈ Bs−1
r,q (∂Ω), ψi ∈ Bs−1

r,q (S1), i = 1, 2 .
(4.7)

Proof. The system (4.2) can be rewritten in the matrix form

M


h
g1
g2

ψ
(1)
0

ψ
(2)
0

 =


Ψ

Ψ(1)
0

Ψ(2)
0

0
rS0Ψ

(2)
0 − rS0Ψ

(1)
0

 , (4.8)

where

M =



−1
2
I + V

(0)
0 0 r∂Ω(TV (1)) 0 0

0
1
2
I + V

(1)
0 0 −I 0

r∂Ω1(TV
(0)) 0 −1

2
I + V

(1)
0 0 −I

−rS0V
(0) rS0V

(1)
−1 −rS0V

(1)
−1 0 0

0 0 0 I −I


.

The operatorM has the same representation (3.6) with a compact and smoothingT−∞ ,
but yet differentP :

P =


1
2
I + V

(1)
0 0 −I 0

0 −1
2
I + V

(1)
0 0 −I

rS0V
(1)
−1 −rS0V

(1)
−1 0 0

0 0 I −I

 .
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Let us introduce the operators

PN =


(−V (1)

−1 )N + M+(V (1)
−1 )−1 0 −I 0

0 (−V (1)
−1 )N + M−(V (1)

−1 )−1 0 −I
−rS0I −rS0I 0 0

0 0 I −I

 ,

M+ :=
(1

2
I + V

(1)
0

)
, M− :=

(
− 1

2
I + V

(1)
0

)
, N = 1, 2, . . . ,

and

D =


−(V (1)

−1 )−1 0 0 0
0 (V (1)

−1 )−1 0 0
0 0 I 0
0 0 0 I

 .
Then P ◦D differs from PN only modulo a compact operatorT−N :

P ◦D−PN = T−N .

Consider the following system
B(i)

N g̃i − ψ̃
(i)
0 = F̃ (i), i = 1, 2, on ∂Ω1,

−rS0 g̃1 − rS0 g̃2 = G̃1 on S0,

ψ̃
(1)
0 − ψ̃

(2)
0 = G̃2 on S0,

(4.9)

where

B(i)
N = (−V (1)

−1 )N +
(
− 1

2
I + (−1)iV

(1)
0

)
(V (1)
−1 )−1, i = 1, 2.

g̃i = (B(i)
N )−1ψ̃

(i)
0 + (B(i)

N )−1F (i), i = 1, 2, N = 1, 2, . . . .

The systems (4.1) (i.e., the system (4.2)) and (4.9) are Fredholm-equivalent: are Fredholm
or are not Fredholm only simultaneously and have equal indices. Due to Theorem 2.7 the
pseudodifferential operator

B(i)
N : H̃s

p(S0) → Hs−1
p (S0)

: B̃s
p,q(S0) → Bs−1

p,q (S0)

is invertible.
Let us defineg̃1 and g̃2 from the first two equations of system (4.9) and insert

them into the third equation. We obtain the system of differential equations on the open
manifold S0 {

rS0(B
(1)
N )−1ψ̃

(1)
0 + rS0(B

(2)
N )−1ψ̃

(2)
0 = F,

ψ̃
(1)
0 − ψ̃

(2)
0 = G2,

or {
rS0Bψ̃

(1)
0 = Ψ̃,

ψ̃
(2)
0 = ψ̃

(1)
0 −G2,

(4.10)
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where
B = (B(1)

N )−1 + (B(2)
N )−1.

The pseudodifferential operatorrS0B is strongly elliptic and, due to Theorem 2.7 the
operator

rS0B : H̃s−1
p (S0) → Hs

p(S0)
(
B̃s−1

p,q (S0) → Bs
p,q(S0)

)
is invertible provided the conditions (4.6) hold.

Summarizing we find that if the conditions (4.6) hold, the operator

N :

Hs−1
p (∂Ω)
⊕

Hs−1
p (∂Ω1)
⊕

Hs−1
p (∂Ω1)

→

Hs−1
p (∂Ω)
⊕

Hs−1
p (S1)
⊕

Hs−1
p (S1)


Bs−1

p,q (∂Ω)
⊕

Bs−1
p,q (∂Ω1)

⊕
Bs−1

p,q (∂Ω1)

→

Bs−1
p,q (∂Ω)
⊕

Bs−1
p,q (S1)
⊕

Bs−1
p,q (S1)


defined by the left-hand side of (4.1) is Fredholm and IndN = 0 . It is well known that
the kernel, the cokernel and, therefore, the index of the operatorN are independent of
the parameters of the spaces where it is Fredholm (see [Ag1, DNS1, Ka1]). Therefore it
suffices to find CokerN for s = 1/2 and p = 2 . Thus, we consider the dual (adjoint)
operator in the spaces:

N∗ :

H1/2
2 (∂Ω)
⊕

H̃1/2
2 (S1)
⊕

H̃1/2
2 (S1)

→

H1/2
2 (∂Ω)
⊕

H1/2
2 (∂Ω1)
⊕

H1/2
2 (∂Ω1)

.

If (h̃, χ(1)
0 , χ

(2)
0 ) is the solution of homogeneous equation

N∗(h̃, χ(1)
0 , χ

(2)
0 ) = 0 , suppχ(1)

0 ⊂ S1, suppχ(2)
0 ⊂ S1 .

Then we have

(
− 1

2
I + Ṽ

(0)
0

)
h̃+ r∂Ω(Ũ (1))χ(2)

0 = 0 on ∂Ω,(1
2
I + Ṽ

(1)
0

)
χ

(1)
0 = 0 on ∂Ω1,

r∂Ω1(Ũ
(0))h̃+

(
− 1

2
I + Ṽ

(1)
0

)
χ

(2)
0 = 0 on ∂Ω1.

(4.11)

Here Ũ (i) are the double-layer potentials:

Ũ (i)(g)(x) =
∫

∂Ωi

[
T̃ (∂y, n(y))HT (x− y)

]T

g(y)dyS , i = 0, 1 .

Let

v(2) = Ũ (0)h̃+ Ũ (1)χ
(2)
0 ,

v(1) = Ũ (1)χ
(1)
0 .
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Due to (4.11)v(i), i = 1, 2, satisfy the boundary conditions:
γ−v(2) = 0 on ∂Ω,
γ1v(1) = 0 on ∂Ω1,
γ2v(2) = 0 on ∂Ω1 .

Here γ− denotes the trace on∂Ω from the outer domainR3 \Ω . Thereforev(2) is the
solution of the following BVP:

AT (D)v(2) = 0 in R3\Ω2,
γ−v(2) = 0 on ∂Ω,
γ1v(2) = 0 on ∂Ω1,

which have only the trivial solution inR3\Ω2 . Consequently,v(2) ≡ 0 in R3\Ω2 and
from boundary condition

γ0
(
T̃ v(2)

)
− γ−T̃ v(2) = 0 on ∂Ω;

γ2
(
T̃ v(2)

)
− γ1

(
T̃ v(2)

)
= 0 on ∂Ω1;

it follows that

γ0
(
T̃ v(2)

)
= 0 on ∂Ω, γ2

(
T̃ v(2)

)
= 0 on ∂Ω1.

Thus, v(2) is the solution of the next BVP inΩ2 :
AT (D)v(2) = 0 in Ω2,

γ0
(
T̃ v(2)

)
= 0 on ∂Ω,

γ2
(
T̃ v(2)

)
= 0 on ∂Ω1,

which have only solution of the formv(2) = a · x + b, where a is an antisymmetric
matrix and b is an arbitrary constant vector. Due to the boundary conditions:

γ0v(2) − γ−v(2) = h̃ on ∂Ω,

γ2v(2) − γ1v(2) = χ
(2)
0 on ∂Ω1

it follows that

h̃ = a · x+ b, χ
(2)
0 = a · x+ b,

Since suppχ(2)
0 ⊂ S1 , we getχ(2)

0 = 0. Analogously we obtainχ(1)
0 = 0 .

The second part, the solvability properties (4.7), are consequences of the first part
and the mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity).

Let us investigate the asymptotic behavior of the solution to the Neumann problem
in the vicinity of the edgeE . Assume that the corresponding boundary data are suffi-
ciently smooth. Namely,ψi ∈ H(∞,s+2N),∞

r (S1) .
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We can rewrite the symbolσB(x′, ξ′) as

σB(x′, ξ′) =
[(

− 1
2
I + σ

V
(1)
0

(x′, ξ′)
)
(σ

V
(1)
−1

(x′, ξ′))−1
]−1

−
[(1

2
I + σ

V
(1)
0

(x′, ξ′)
)
(σ

V
(1)
−1

(x′, ξ′))−1
]−1

.

The principal symbolσ
V

(1)
0

(x′, ξ′) is odd with respect to the variableξ′ , while the

symbol σ
V

(1)
−1

(x′, ξ′) is even; therefore,σB(x′, ξ′) is even with respect toξ′ :

σB(x′,−ξ′) = σB(x′, ξ′), x′ ∈ S0

and all eigenvalues of the matrix(σB(x′, 0, 0,+1))−1σB(x′, 0, 0,−1) = I are trivial:
λj = 1 , j = 1, 2, 3, 4 , x′ ∈ C∞(E ) .

Consider the above-described local coordinate systemx = (x′, r) ∈ S0 . Using the
theory of strongly elliptic pseudodifferential equations (see [CD1, Theorem 2.1]) we get
the following asymptotic expansion of solutions of equation (4.8):

ψ
(i)
0 (x′, r) = c0(x′)r−

1
2 +

N∑
k=1

ck(x′)r−
1
2+k + ψ

(i)
N+1(x

′, r) , i = 1, 2 , (4.12)

x′ ∈ E , 0 < r < ε , ψ
(i)
N+1 ∈ H(∞,s+N),∞

r (E +
ε ) ⊂ Cs+N ([0, ε], C∞(E ) ,

where ck ∈ C∞(E ), k = 0, 1, ..N .
And again, logarithms are absent in the entire asymptotic representation (4.12).

Let (h, g1, g2, ψ
(1)
0 , ψ

(2)
0 ) be a solution of the system (4.2):

M(h, g1, g2, ψ
(1)
0 , ψ

(2)
0 ) = Ψ,

Ψ = (ψ,Ψ(1)
0 ,Ψ(2)

0 , 0,−(rS0Φ
(1)
0 − rS0Φ

(2)
0 )),

then (g1, g2, ψ
(1)
0 , ψ

(2)
0 ) satisfies the equation

PN

(
− V

(1)
−1 g1, V

(1)
−1 g2, ψ

(1)
0 , ψ

(2)
0

)
=
∗
Ψ, (4.13)

where
∗
Ψ=

(
Ψ(1)

0 + (V (1)
−1 )2Ng1,Ψ

(2)
0 + (V (1)

−1 )2Ng2 − r∂Ω1(TV
(0))h,

rS0V h,−rS0Φ
(1)
0 + rS0Φ

(2)
0

)
.

Equation (4.8) (i.e., equation (4.2)) can be written in the form
B(1)

2N(−V (1)
−1 )g1 − ψ

(1)
0 = Ψ(1)

0 + (V (1)
−1 )2Ng1,

B(1)
2N(V (1)

−1 )g2 − ψ
(2)
0 = Ψ(2)

0 + (V (1)
−1 )2Ng1 − r∂Ω1(TV

(0))h,
−rS0g1 − rS0g2 = rS0V

(0)h,

ψ
(1)
0 − ψ

(2)
0 = −rS0Φ

(1)
0 + rS0Φ

(2)
0 .

(4.14)
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where

B(1)
2N =

(
V

(1)
−1

)2N −
(

1
2I + V

(1)
0

)(
V

(1)
−1

)−1
,

B(2)
2N =

(
V

(1)
−1

)2N +
(
− 1

2I + V
(1)
0

)(
V

(1)
−1

)−1
.

As we have seen before, equation (4.14) can be reduced to a pseudodifferential
equation with a strongly elliptic operator.

Using the first two equations of system (4.14), we find

g1 =
(
− V

(1)
−1

)−1(
B(1)

2N

)−1
ψ

(1)
0 + F1,

g2 =
(
V

(1)
−1

)−1(
B(2)

2N

)−1
ψ

(2)
0 + F2.

Note that
Fi ∈ H(∞,s+2N+1),∞

r (∂Ωi), i = 1, 2.
Hence we obtain a representation of the solutions of the Neumann BVP by potential-type
functions:

r1u = V (1)
(
− V

(1)
−1

)−1(B(1)
2N

)−1
ψ

(1)
0 +G1,

r2u = V (1)
(
V

(1)
−1

)−1(B(2)
2N

)−1
ψ

(2)
0 +G2,

where Gi ∈ CN+1(Ωi) i = 1, 2.
Thus, using the asymptotic expansion (4.12) of the functionψ

(i)
0 , i = 1, 2 and

the asymptotic expansion of functions that can be represented by potential operators (see
[CD2, Theorems 2.2 and 2.3]) we obtain the asymptotics of solutions to the Neumann
problem in terms of the local coordinates (see§ 3) in a neighborhood of the crack bound-
ary:

u =
∑̀
m=1

∑
ω=±1

χ(r)

[
nm−1∑
j=0

r
1
2 sinjθ ψ

1
2−j
m,ω (x′, θ)dj

m,ω(x′) (4.15)

+
N−1∑
k=1

p(m,k)∑
j=0

∑
|α|≤N(m,k)

r
1
2+k ψ

1
2−j+k
m,ω (x′, θ) sinα1θ cosα2θ dk,j,α

m,ω (x′)

]
+ urem,N ,

where urem,N ∈ H
1
2+N

loc (R3) and the coefficientsdj
m,ω and dj,k,α

m,ω are C∞(E ) (see
(3.11) for a similar notation).

As in § 3, the coefficientsdj
m,ω ∈ C∞(E ) of the asymptotic formula (4.15) can be

expressed by the first coefficientsc0 of the surface expansion (4.12) (see [CD2]).

5. The Mixed Problem

Any extensionΦ(1) ∈ H1/2(∂Ω1) of the function ϕ1 to the whole boundary∂Ω1 =
S1 ∪ S0 has the form

Φ(1) = Φ(1)
0 + ϕ

(1)
0 ,

where Φ(1)
0 is a fixed extension of the functionϕ1 , and ϕ(1)

0 ∈ H̃1/2(S0) .
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Any extensionΨ(2) ∈ H−1/2(∂Ω1) of the function ψ2 to the whole boundary
∂Ω1 = S1 ∪ S0 has the form

Ψ(2) = Ψ(2)
0 + ψ

(2)
0 ,

where Ψ(2)
0 is a fixed extension of the functionψ2 , and ψ(2)

0 ∈ H̃−1/2(S0) .
Solutions of the mixed boundary value problem will be sought in the form (3.1).

Bearing in mind boundary conditions of the mixed problem and equalities (3.2) for the
function u , we get a system of equations with respect toh , g1 , g2 , ϕ(1)

0 , ϕ(2)
0 :

(
− 1

2I + V
(0)
0

)
h+ r∂Ω

(
TV (1)

)
g2 = ψ on ∂Ω,

V
(1)
−1 g1 − ϕ

(1)
0 = Φ(1)

0 on ∂Ω1,(
− 1

2 I + V
(1)
0

)
g2 − ψ

(2)
0 + r∂Ω1(TV

(0))h = Ψ(2)
0 on ∂Ω1,

−rS0V
(0)h− rS0V

(1)
−1 g2 + ϕ

(1)
0 = −rS0Φ

(1)
0 on S0,

rS0

(
1
2I + V

(1)
0

)
g1 − ψ

(2)
0 = rS0Ψ

(2)
0 on S0,

(5.1)

Now we can formulate the basic theorem of the existence and uniqueness of a solu-
tion of the mixed problem.

Theorem 5.1. The mixed boundary value problem has a unique solution in the space
W1(Ω\S1) , which is given by the potential-type functions

u(1) = V (1)(V (1)
−1 )−1ϕ

(1)
0 +R1,

u(2) = V (1)(B(1)
2N+1)

−1V
(1)
−1 ψ

(2)
0 +R2,

where

Ri ∈ CN+1(Ωi), i = 1, 2,

B(1)
2N+1 = −(V (1)

−1 )2N+1 + V
(1)
−1

(
− 1

2 I + V
(1)
0

)
and (−L−1

+ ψ
(2)
0 , ϕ

(1)
0 ) is the solution of the strongly elliptic pseudodifferential equation

(5.3).
Moreover, let

δ := sup
1≤j≤8

x′∈E

1
2π

|arg λj(x′)| ,

1 < t <∞ , 1 ≤ r ≤ ∞ ,
1
t
− 1

2
+ δ < s <

1
t

+
1
2
− δ .

(5.2)

and u ∈ W1(Ω\S1) be the solution of the mixed BVP. Then:

If ϕ1 ∈ Bs
t,t(S1) , ψ2 ∈ Ws−1

t (S1) , ψ ∈ Ws−1
t (∂Ω) , we haveu ∈ Hs+1/t

t (Ω\S1) .

If ϕ1 ∈ Bs
t,r(S1) , ψ2 ∈ Bs−1

t,r (S1) , ψ ∈ Bs−1
t,r (∂Ω) , we haveu ∈ Bs+1/t

t,r (Ω\S1) .
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Proof. The operator corresponding to the system (5.1) will be denoted byM . It
has the form

M =



(
− 1

2 I + V
(0)
0

)
0 r∂Ω(TV (1)) 0 0

0 V
(1)
−1 0 −I 0

r∂Ω1(TV
(0)) 0 − 1

2 I + V
(1)
0 0 −I

−rS0V
(0) 0 −rS0V

(1)
−1 I 0

0 rS0

(
1
2 I + V

(1)
0

)
0 0 −I


.

And again, operatorM is decomposed in the form (3.6) with a compact and smoothing
T−∞ , but yet differentP :

P =


V

(1)
−1 0 −I 0
0 − 1

2I + V
(1)
0 0 −I

0 −rS0V
(1)
−1 I 0

rS0

(
1
2I + V

(1)
0

)
0 0 −I

 .
We consider the compositionD ◦P of P with the invertible operator

D =


I 0 0 0
0 V

(1)
−1 0 0

0 0 I 0
0 0 0 I

 .

For the invertibility of the pseudodifferential operatorV (1)
−1 see Theorem 2.4.

Note that, as in previous cases, the difference

TN = D ◦P−PN , N = 2, 3, . . . , ,

where

PN =


V

(1)
−1 0 −I 0
0 (−V (1)

−1 )N + V
(1)
−1 (− 1

2I + V
(1)
0 ) 0 −V (1)

−1

0 −rS0V
(1)
−1 I 0

rS0(− 1
2I + V

(1)
0 ) 0 0 I


is a compact operator. So it is sufficient for us to investigate the operatorPN which acts
in the following spaces:

PN :

Hs−1
p (∂Ω1)
⊕

Hs−1
p (∂Ω1)
⊕

H̃s
p(S0)
⊕

H̃s−1
p (S0)

−→

Hs
p(∂Ω1)
⊕

Hs
p(∂Ω1)
⊕

Hs
p(S0)
⊕

Hs−1
p (S0)



Bs−1
p,r (∂Ω1)
⊕

Bs−1
p,r (∂Ω1)
⊕

B̃s
p,r(S0)
⊕

B̃s−1
p,r (S0)

−→

Bs
p,r(∂Ω1)
⊕

Bs
p,r(∂Ω1)
⊕

Bs
p,r(S0)
⊕

Bs−1
p,r (S0)


(β ≥ [|s|] + 3, 1 < p <∞, 1 ≤ t ≤ ∞).
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Now let us consider a system of equations that corresponds to the operatorPN with
respect toh1 , h2 , ψ(1)

0 , ψ(2)
0


V

(1)
−1 g̃1 − ϕ̃

(1)
0 = Φ̃(1)

0 ,[
(−V (1)

−1 )N + V
(1)
−1

(
− 1

2I + V
(1)
0

)]
g̃2 − V

(1)
−1 ψ̃

(2)
0 = Ψ̃(2)

0 ,

−rS0V
(2)
−1 g̃2 + ϕ̃

(1)
0 = F1,

rS0

(
− 1

2I + V
(1)
0

)
g̃1 + ψ̃

(2)
0 = F2 .

(5.3)

Similarly as it has been done in [Ch2] system (5.3) is reduced equivalently to a strongly
elliptic pseudodifferential equation onS0

R(x′, D′)χ = Ψ , (5.4)

where

R(x′, D′) =
[
L− ◦ rS0A2(x′, D′) ◦ L+ L−

−L+ rS0A1(x′, D′)

]
,

A1 =
(
− 1

2
I + V

(1)
0

)
(V (1)
−1 )−1,

A2 =
[
− (V (1)

−1 )2N+1 −
(1

2
I + V

(1)
0

)
(V (1)
−1 )−1

]−1

,

L− = r+diagΛ−`, L+ = diagΛ+.

Here Λ± are the pseudodifferential operators with symbolΛ±(ξ′) = ξ2± i± i|ξ1| , r+

denotes the operator of restriction onR2
+ and ` is an extension operator.

Since the operator has the same kernel and cokernel in all spaces where it is Fred-
holm and thus it has the same index (see [Ag1, Ka1, DNS2]), from Lemma 2.8 and Theo-
rem 1.1 it follows that the operatorN is invertible in the corresponding Besov and Bessel
potential spaces (cf. similar proofs in [DNS1, DNS2]).

The second part, the solvability properties, are consequences of the first part and
the mapping properties of the potential operators (see [DNS1, NCS1, Ch2] for similar
considerations in elasticity).

We drop the detailed asymptotic expansion of a solution to mixed BVP, because we
can not suggest any simplification in contrast to the Dirichlet and Neumann BVPs consid-
ered above. Asymptotic formulae for general PsDOs on a smooth surface with a smooth
boundary are exposed in detail in [CD1, CDD1]. Spatial asymptotic representations of
the solution to a BVP, based on surface asymptotics of a solution to the corresponding
boundary pseudodifferential equation is exposed in [CD2, CDD1].
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6. An example: media with cubic symmetry

Consider an electro-elastic medium with cubic symmetry [No1, To1]. In this case the
entries of the corresponding operator (1.2) are of the form:

A11(D) = c11∂
2
1 + c44∂

2
2 + c44∂

2
3 ,

A22(D) = c44∂
2
1 + c11∂

2
2 + c44∂

2
3 ,

A33(D) = c44∂
2
1 + c44∂

2
2 + c11∂

2
3 ,

Aik(D) = (c12 + c44)∂i∂k, i, k = 1, 2, 3, i 6= k,

A14(D) = −A41(D) = 2e14∂2∂3,

A24(D) = −A42(D) = 2e14∂1∂3,

A34(D) = −A43(D) = 2e14∂1∂2,

A44(D) = ε11∆.

Condition (1.4) of internal energy positiveness imposes the following restrictions on the
coefficientscij :

c11 > 0, c44 > 0, ε11 > 0, −1
2
<
c12
c11

< 1.

We can calculate the eigenvaluesλ1, λ2, . . . , λ8 with the help of the following
theorem (see [Ch2, Theorem 6.6]):

Theorem 6.1. Let λk(x′) , k = 1, . . . , 8, be the eigenvalues of the matrixbR . Then

λk(x′) =


i

√
1− 2βk(x′)
1 + 2βk(x′)

, if k = 1, . . . , 4,

−i

√
1− 2βk−4(x′)
1 + 2βk−4(x′)

, if k = 5, . . . , 8, x′ ∈ E ,

where βk ∈
]
−1

2
;
1
2

[
are the eigenvalues of the matrixσ ∗

V0
.

After calculating the matrixσ
V

(1)
0

we obtain

σ
V

(1)
0

=



0 0 0 0

0 0 i
(c11 − c12)

2c11
√

2(c̃+ 1)
0

0 −i (c11 − c12)
2c11

√
2(c̃+ 1)

0 0

0 0 0 0

 ,

where

c̃ =
c211 − c212
2c11c44

− c12
c44

> −1.

So
β1 = β2 = 0, β3,4 = ± c11 − c12

2c11
√

2(c̃+ 1)
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and the eigenvaluesλj are purely imaginary.
Moreover, in this special case exponents of the leading term of asymptotic are1

4

and 1
4 + iδ ; exponents of further terms increase by order1

2 and not by1 as it was in
(3.8), 3.11), (4.12) and (4.15). A similar asymptotic encounters in mixed problems (see
[CD3] and also [Ch2, DN1]). In case of general anisotropy however, these exponents
depend on the elastic constants as well as on the geometry of the crack edge.
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