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Abstract

In this article we present a different method for studying the Weingarten
map for a hypersurface in Euclidean space Rn. Applying the cartesian coor-
dinates of the ambient space and tangential Günter’s derivatives we obtain a
simple matrix representation formula for the Weingarten map for the implicit
hypersurfaces, which can be applied, for example, to calculate the mean and
Gauß’s curvatures without passing to intrinsic coordinates.
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Introduction

Analysis on Riemannian manifolds usually applies intrinsic coordinates, involving
metric tensor and Christoffel symbols. But if we deal with a hypersurface, the carte-
sian coordinates of the ambient space can be applied. This seemingly trivial idea
often simplifies notions of the differential geometry. An advantage of this approach
can be clearly observed, for example, by studying partial differential equations on
hypersurfaces. It turns out that in this case the form of many classical differential
equations on the surface are much simpler, cf. [Du1, DMM1]. Analysis of this type
is connected tightly with the Weingarten map, the mean and Gauß’s principal cur-
vatures. The main purpose of the paper is to express the Weingarten matrix through
the cartesian coordinates of the ambient space and obtain formulas for the mean
and Gauß’s curvatures. Such results are important in applications when differential
equations (of elastic hypersurfaces, of shells etc.; cf. [Du1, DMM1]) are studied in
the same setting, involving the cartesian coordinates of the ambient space.

∗This work was supported by the grant of the Georgian National Science Foundation
GNSF/ST06/3-001 .
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Let S be aC2-smooth hypersurface in Rn and ν be the unit normal vector to S .
It is well known that the matrix representation of the Weingarten map WS depends
on the choice of the frame in the tangential space TS . For example, written in local
contravariant frame the Weingarten map is a matrix-function of order n− 1 and co-
incides with the mixed curvature tensor BS (x) =

∥∥bkj∥∥(n−1)×(n−1). Written in local
covariant frame, it coincides with the curvature tensor BS (x) =

∥∥bjk∥∥(n−1)×(n−1)
(cf. [Ca1, Ci1, Ci2] and (1.15), (1.16) below).

Our approach applies Günter’s derivatives
{
Dj

}n
j=1

, which are derivatives along
the vector fields

{
dj
}n
j=1

, representing projections on the surface S of the cartesian
unit vectors

{
ej
}n
j=1

. The system of vector fields
{
dj
}n
j=1

is full, but linearly depen-
dent in the space of tangential vector fields. In (2.1) we write the Weingarten map
in the system

{
dj
}n
j=1

as a n× n matrix function. Although the order of the matrix
is increased, the obtained representation formula displays some simplicity and pro-
vides a possibility to calculate the mean and Gauß’s curvatures without passing to
intrinsic coordinates.

The paper is organized as follows. In Section 1 we recall some definitions and
introduce basic notation from differential geometry for hypersurfaces. The Section
2 contains the necessary tools and material from linear algebra. Also there we
express the Weingarten map through Günter’s derivatives. In Section 3 we extend
the unit vector field and using results of Section 2 obtain the representation formula
of the Weingarten matrix. In the conclusion we illustrate the result by calculating
Weingarten map and curvatures for the ellipsoid and the saddle surface.

1 Covariant derivative and the Weingarten map

Henceforth matr [u1, . . . , uk] refers to the matrix with the listed vectors u1, . . . , uk
as columns.

Definition 1.1 A Subset S ⊂ Rn of the Euclidean space is called hypersurface if
it has a covering S =

⋃M
j=1 Sj and coordinate mappings

Θj : ωj → Sj = Θj(ωj) ⊂ Rn, ωj ⊂ Rn−1, j = 1, . . . ,M, (1.1)

such that the corresponding differentials

DΘj(x) := matr [∂1Θj(x), . . . , ∂n−1Θj(x)] , (1.2)

have the full rank

rankDΘj(x) = n− 1 for all x ∈ ωj , k = 1, . . . , n , j = 1, . . . ,M.

Such mapping is called an immersion as well.

The columns of the Jacobi matrix DΘj(x) in (1.2) represent tangential vectors

g1(x) := ∂1Θj(x), . . . , gn−1(x) := ∂n−1Θj(x) ∈ TxS , for all x ∈ ωj . (1.3)
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Since DΘj(x) has the full rank, the above collection is a natural covariant frame (a
basis) in the tangential space TxS .

The hypersurface is called smooth if the corresponding coordinate diffeomor-
phisms Θj in (1.1) are all smooth (C∞-smooth). Similarly is defined Lipschitz
and k-smooth hypersurfaces, provided Θj in (1.1) are all Lipschitz continuous or
k-smooth, respectively.

Next we expose yet another definition of a hypersurface which provides a pow-
erful source of hypersurfaces.

Definition 1.2 Let k ≥ 1 an U ⊂ Rn be a compact domain. An implicit Ck-smooth
(an implicit Lipschitz) hypersurface in Rn is defined as the set

S =
{
p ∈ U : ΨS (p) = 0

}
, (1.4)

where ΨS : U → R is a Ck-mapping (is a C1-mapping, respectively) which has
the non-vanishing gradient∇ΨS (p) 6= 0, for all p ∈ U .

Note that by taking a single function ΨS for the implicit definition of a hyper-
surface S we does not restrict the generality and definitions of smooth hypersurface
S , since Definition 1.1 and Definition 1.2 are equivalent (a direct consequence of
the implicit function theorem).

Example 1.3 Let R > 0, a ∈ Rn be fixed. The sphere of radius R centered at a

Sn−1R (a) :=
{
x = (x1, . . . , xn)> ∈ Rn : ΨR,a(x) = |x− a|2 −R2 = 0

}
(1.5)

defines a hypersurface.

Similarly, for a fixed point a = (a1, . . . , an)> ∈ Rn, and a vector r = (r1, . . . , rn)>

with positive components rj > 0, . . . , rn > 0 the ellipsoid

E n−1
r,a :=

{
x = (x1, . . . , xn)> ∈ Rn : Ψr,a(x) =

n∑
j=1

(
xj − aj
rj

)2

− 1 = 0

}
(1.6)

is a hypersurface in Rn.

For vector fields U, V ∈ TRn = V (Rn) define the first order differential oper-
ator

∂UV (p) := lim
h→0

V
(
F h
U(p)

)
− V (p)

h
=

d

dt
V
(
F t
U(p)

)∣∣
t=0

, −ε < t < ε , (1.7)

where p ∈ Rn and
y = y(t, p) = F t

U(p) : Rn → Rn

is the solution of the following initial value problem

y′ = U(y) , y(0) = p , −ε < t < ε
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is called the flow (or the orbit) generated by the vector field U .

∂U is a derivation, i.e., a linear mapping

∂U : C∞0 (Rn)→ C∞0 (Rn) (1.8)

with the property

∂fUV = f∂UV , ∂U(fg) = g∂Uf + f∂Ug , (1.9)

∀V ∈ V (Rn) , ∀ f, g ∈ C∞0 (Rn) .

Now if U and V are tangent vector fields on on a hypersurface S in Rn, i.e.,
TC , and U , V are both defined only at points of S , the derivative ∂UV still makes
sense as long as U is tangent to S . As usual, ∂UV measures the rate of change of
V in U direction, for more details cf. [Ta1, v. I, § 1.7], [Ne1, Ch. 5], etc. Note that
even if U is a tangent vector field, the derivative ∂UV need not be tangent to S .

Let ν denote the unit normal vector filed on a hypersurface S , orthogonal to
the frame of the tangent space

〈ν(p), g∗k(p)〉 = 0 , g∗(p) := g(Θ−1(p)), k = 1, . . . , n− 1. (1.10)

If the hypersurface is defined by immersions Θj ∈ C1(ωj), j = 1, . . . ,M , as in
Definition 1.1, the normal vector field is then defined as the normed vector product
of all tangent vectors (cf. (1.3))

ν(p) := ±
g∗1(p) ∧ · · · ∧ g∗n−1(p)
|g∗1(p) ∧ · · · ∧ g∗n−1(p)|

(1.11)

at p ∈ S , known in differential geometry as the Gauß mapping.

If the hypersurface is defined by an implicit function ΨS , as in Definition 1.2,
the normed gradient

ν(p) :=
∇ΨS (p)

|∇ΨS (p)|
, p ∈ S (1.12)

is then the normal vector field.

It is easy to show that the derivative ∂Uν of the normal vector field on a hyper-
surface with respect to a tangent vector U at p is a tangent to the hypersurface at p.
Indeed, differentiating the relation 1 ≡ 〈ν, ν〉, we get

0 = 〈∂Uν, ν〉+ 〈ν, ∂Uν〉 = 〈2 ∂Uν, ν〉.

Thus ∂Uν is orthogonal to ν(p).

Definition 1.4 The linear map

WS (p) : TpS → TpS

defined for a fixed p ∈ S by

WS (p)V (p) = −∂V (p)ν(p),

is called the Weingarten map or the shape operator of S at p ∈ S .
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The Weingarten map, applied to a tangent vector, can be interpreted as the rate
of change of the unit normal vector field ν along the direction of a given tangent
vector. Note that if ν is replaced by −ν, then WS changes to −WS .

The fundamental forms on S can be now defined in terms of WS and the inner
product:

Ip(V, U) = 〈V (p), U(p)〉 and IIp(V, U) = 〈WS (p)V (p), U(p)〉

for V, U ∈ Tp(S ). The first fundamental form is obviously a positive definite
symmetric bilinear function on the tangent space. An important property of the
Weingarten map and the second fundamental form is stated in the following theo-
rem.

Proposition 1.5 (see [Ca1, Ta1] and cf. Corollary 2.4). The second fundamental
form is symmetric, i.e.,

〈WS (p)V, U〉 = 〈V,WS (p)U〉 for V, U ∈ TpS , p ∈ S .

In other words, the Weingarten map is self-adjoint with respect to the natural
scalar product inherited from the ambient Euclidean space.

Moreover, using the pointwise principle we can take the derivative of a vector
field V , i.e., define ∂VZ(p) = ∂V (p)Z. This leads to the following extension of the
Weingarten map

WS : TS −→ TS :=
⋃
p∈S

TpS , (1.13)

where

〈WSV, U〉 = II(V, U) = −〈∂V ν, U〉 = −〈∂Uν, V 〉 for all V, U ∈ TS . (1.14)

The matrix representation of the Weingarten map WS depends on the choice of
the frame in TS . For example, written in a local contravariant frame

{
gj
}n−1
j=1

it is
a matrix-function of order n− 1 coincides with the mixed curvature tensor:

BS (x) =
∥∥bkj (x)

∥∥
(n−1)×(n−1), for all x ∈ Ω :=

M⋃
j=1

ωj , (1.15)

bkj (x) := 〈∂jgk(x), ν (Θk(x))〉 = −〈gk(x), ∂jν (Θk(x))〉, x ∈ ωk .

If the Weingarten map is written in the covariant frame
{
gj
}n−1
j=1

, coincides with
the curvature tensor:

BS (x) =
∥∥bjk(x)

∥∥
(n−1)×(n−1) , for all x ∈ Ω (1.16)

bjk(x) := 〈∂kgj(x), ν (Θk(x))〉 = −〈gk(x), ∂jν (Θk(x))〉, x ∈ ωk .
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Note that bjk are the coefficients of the second fundamental form and we have
the both claimed representations:

II(V, U) = 〈BSV, U〉 = 〈BSV, U〉 for all V, U ∈ TS . (1.17)

Let us remind some very well known properties of the covariant and the con-
travariant frames. First due to the orthogonality, the covariant

{
gk
}n−1
k=1

and the
contravariant

{
gk
}n−1
k=1

frames are related by the equalities

gj =
n−1∑
k=1

gjkg
k , gj =

n−1∑
k=1

gjkgk , j, k = 1, . . . , n− 1 , (1.18)

where

GS (p) =
[
gjk(p)

]
(n−1)×(n−1) , gjk = 〈gj, gk〉 , p ∈ S (1.19)

is the covariant metric tensor and

G−1S (p) =
[
gjk(p)

]
(n−1)×(n−1) , gjk = 〈gj, gk〉 , p ∈ S (1.20)

is the contravariant metric tensor (the inverse to the covariant metric tensor):

GSG
−1
S = I or gjm(p)gmk(p) = gjm(p)gmk(p) = δjk . (1.21)

From (1.15), (1.16) and (1.18) follows that:

bkj =
n−1∑
m=1

gkmbmj , bjk =
n−1∑
m=1

gkmb
m
j , j, k = 1, . . . , n− 1 . (1.22)

The covariant curvature tensor is symmetric bjk = bkj , while the contravariant cur-
vature tensor bkj is not in general. Thus,

BS (p) :=
[
bkj (p)

]
(n−1)×(n−1) = G−1S (p)BS (p) ,

BS (p) :=
[
bjk(p)

]
(n−1)×(n−1) = B>S (p) , p ∈ S . (1.23)

Our approach applies Günter’s derivatives (cf. Section 2 for details), which
are derivatives with respect to the full but linearly dependent system

{
dj
}n
j=1

of
tangential vector fields in (2.1). Before we go into details let us introduce further
notation.

Denote by κ1(p), . . . , κn−1(p) the eigenvalues of the mixed curvature tensor
BS (p). They are called the principal curvatures, while

HS (p) :=
Tr BS (p)

n− 1
, Tr BS (p) :=

n−1∑
j=1

bjj(p) =
n−1∑
j=1

κj(p)

n− 1
,

KS (p) := det BS (p) =
n−1∏
j=1

κj(p) , p ∈ S

(1.24)

are the mean curvature and the Gaußian curvature of S , respectively.
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2 Günter’s derivatives

Günter’s derivatives are defined as follows

DS := (D1, . . . ,Dn)> , Dj := ∂j − νj(p)∂ν = ∂dj , (2.1)

dj := πS ej = ej − νjν ,

where ∂ν :=
∑n

j=1 νj∂j denotes the normal derivative. They represent tangent
derivatives along the tangent vector fields. Here, for each 1 ≤ j ≤ n, the first-
order differential operator Dj = ∂dj is the directional derivative along the tangential
vector dj . The operator (the matrix)

πS : Rn → TS , πS (p) = I − ν(p)ν>(p) =
[
δjk − νj(p)νk(p)

]
n×n , (2.2)

p ∈ S

defines the canonical orthogonal projection π2
S = πS onto the tangential space

TpS to S at the point p ∈ S :

(ν, πS v) =
∑
j

νjvj −
∑
j,k

ν2j νkvk = 0 for all v = (v1, . . . , vn)> ∈ Rn

and, as usual, ej = (δjk)1≤k≤n ∈ Rn, with the Kronecker‘s symbol δjk.

A derivative ∂U is called covariant if it maps tangential vector fields to tangential
fields ∂U : TS → TS . Note that Günter’s derivatives in (2.1) are not covariant
Dj : TS 6→ TS , i.e., not always V ∈ TS implies DjV ∈ TS . To make
Günter’s derivatives covariant we apply the projection:

DS
j V := πS DjV = DjV − 〈ν,DjV 〉ν (2.3)

or, in general,
∂S
U V := πS ∂UV for U, V ∈ TS .

Then,

DS
j V = DjV + (WSV )jν = DjV + (DV νj)ν , (2.4)

where WS :=
[
Djνk

]
n×n, DV ϕ :=

∑n
k=1 VkDkϕ, because

〈ν,DjV 〉=
n∑

m=1

νmDjVm =
n∑

m=1

[
Dj(νmVm)− VmDjνm

]
=−

n∑
m=1

VmDjνm = −(WSV )j = −
n∑

m=1

VmDmνj = −DV νj .

It is easy to check that the operators DS
j are automorphisms of the tangential vector

space
DS
j : TS → TS . (2.5)
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Any tangential vector field U ∈ TS can be represented by the full system{
dj
}n
j=1

of tangential fields

U =
n∑
j=1

Ujej =
n∑
j=1

Ujdj ⇐⇒ ∂UV =
n∑
j=1

Uj∂jV =
n∑
j=1

UjDjV (2.6)

since
∑n

j=1 Ujνj = 0. Then for the corresponding covariant derivative (for the
Levi-Civita connection) ∂S

U we get the following representation by the full system{
DS
j

}n
j=1

of covariant derivatives:

∂S
U V := ∂UV − 〈ν, ∂UV 〉ν =

n∑
j=1

UjD
S
j V for all V ∈ TS . (2.7)

Then for the second fundamental form of S we have (cf. [Ta1]):

II(U(p), V (p))ν(p) = ∂UV (p)− ∂S
U V (p) = (I − πS )∂UV (p)

= 〈ν(p), ∂UV (p)〉ν(p), for all p ∈ S , U, V ∈ TS .

For the Weingarten map the obtained equality gives

〈WSU, V 〉 = II(U, V ) = 〈ν, ∂UV 〉 = −〈∂Uν, V 〉 = −〈∂S
U ν, V 〉 (2.8)

for all U, V ∈ TS .

We have applied that V ∈ TS yields 〈ν, V 〉 ≡ 0 and, by differentiating,

〈∂Uν, V 〉+ 〈ν, ∂UV 〉 ≡ 0 for all U ∈ TS .

For each pair of frames H := {hj}nj=1 and D := {dj}nj=1 in a finite dimensional
Banach space B there exists the matrix of frame transformation D = AH→DH ,
AH→D =

[
hjk]n×n. Due to the linear independence of frames the matrix of frame

transformation is invertible AD→H = A −1
H→D =

[
hjk]n×n and the inverse is respon-

sible for the inverse frame transformation H = AD→HD.

By fixing a frame H := {hj}nj=1 in a finite dimensional Banach space B, a
linear operator A : B → B can be represented in the matrix form A =

[
ajk]n×n,

where the entries ajk are the coefficients of the representations

Ahj =
n∑
k=1

akjhk , akj = 〈hk, Ahj〉 , j = 1, . . . , n , (2.9)

and H⊥ :=
{
hk
}n
k=1

is the biorthogonal frame to H: 〈hj, hk〉 = δjk, j, k =
1, . . . , n.

The matrix representation of an operator A depends on the choice of a frame:

ÂD = AH→DÂHAD→H or
[
bjk]n×n =

[
hjk]n×n

[
ajk]n×n

[
hjk]n×n . (2.10)

Since AD→H = A −1
H→D, an immediate consequence of (2.10) is that the determi-

nants of the representation matrices are independent of the choice of frames D and
H in B, i.e., det ÂD = det ÂH . Moreover, also the trace is invariant and the
following assertion is well-known in the operator theory.
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Lemma 2.1 Let A : B → B be a linear operator in a finite dimensional Banach
space B with a frame H :=

{
hj
}n
j=1

and ÂH =
[
ajk]n×n be the corresponding

matrix representation of A. Let λ1, . . . , λn be the eigenvalues of A counted with
their multiplicities.

The trace of A is independent of a choice of frame H in B:

TrA =
n∑
j=1

ajj =
n∑
j=1

〈hj, Ahj〉 =
n∑
j=1

λj. (2.11)

In the next Lemma 2.2 we consider a special case, important for the present
consideration. Let H :=

{
hj
}n
j=1

, |hj| = 1, be a frame in n-dimensional Banach
space B. Consider the hyperspace Bν :=

{
u ∈ B : 〈u, ν〉 = 0

}
orthogonal to a

vector ν ∈ B, |ν| 6= 0. The system

dj := hj − νjν , νj := 〈ν, hj〉 j = 1, . . . , n , (2.12)

is full in Bν but linearly dependent and thus can not be a frame.

Lemma 2.2 If a linear operator A : B→ Bν with Aν = 0 has the representation
ÂH :=

[
ajk
]
n×n in the frame H :=

{
hj
}n
j=1
⊂ B, the restricted operator to the

subspace Aν := A
∣∣
Bν

has the same representation ÂνD =
[
ajk
]
n×n in the systems

D :=
{
dj
}n
j=1
⊂ Bν .

If ÂνB =
[
bjk
]
(n−1)×(n−1) is the representation of the restricted operator in some

frame B :=
{
bj
}n−1
j=1
⊂ Bν , all eigenvalues λ1, . . . λn−1 of the matrix ÂνB =[

bjk](n−1)×(n−1) are the eigenvalues of ÂH = ÂνD =
[
ajk
]
n×n, which has the ex-

tra eigenvalue λn = 0 as well. Consequently these matrices have the same traces
and

det ÂνB = λ1 · · ·λn−1 = − d

dλ
det(ÂH − λ I)

∣∣∣∣
λ=0

. (2.13)

Proof: Let us notice that
n∑
k=1

ajkνk =
n∑
k=1

akjνk = 0 for all j = 1, . . . , n ,

where the first equality is equivalent to Aν = 0 and the second one-to 〈ν,Aξ〉 = 0
for all ξ ∈ B. Applying the obtained equalities we find that

Aĥj = Ahj − νjAν =
n∑
k=1

akjhk =
n∑
k=1

akjĥk +
n∑
k=1

akjνkν =
n∑
k=1

akjĥk

which entails ãkj = akj (cf. (2.9)).

If B :=
{
bj
}n−1
j=1

is a frame in Bν , the extended system B̃ :=
{
bj
}n
j=1

, bn := ν

is a frame in the entire space B and

ÂB̃ :=
[
bjk
]
n×n, bnj = bjn = 0 , j = 1, . . . , n, (2.14)
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is the representation of A in this frame. The matrix ÂB̃ =
[
bjk
]
n×n has the com-

mon eigenvalues λ1, . . . , λn−1 with the matrix ÂνB =
[
bjk](n−1)×(n−1) and one extra

eigenvalue λn = 0. On the other hand, due to the foregoing Lemma 2.1 the matri-
ces ÂB̃ =

[
bjk]n×n and ÂH =

[
ajk]n×n are equivalent and thus their all eigenvalues

coincide. �

Theorem 2.3 Let S be a C1-smooth hypersurface in Rn and ν be the outer unit
normal vector to S . In the full but linearly dependent system

{
dj
}n
j=1

in (2.1) we
have the following representation of the Weingarten map:

WSV = −∂S
V ν = −(Dν)V , Dν :=

[
Djνk

]
n×n on S (2.15)

for allV ∈ TS .

The eigenvalues {κj(p)}1≤j≤n−1 of WS (p) at p ∈ S , except the last one which
is trivial κn(p) = 0, are the principal curvatures at p ∈ S ; their arithmetical mean
is the mean curvature and the product κ1(p) · · ·κn−1(p), except the last trivial one
κn(p) = 0, is Gauß’s principal curvature at p ∈ S (cf. (1.24)).

Proof: We are under the scope of the foregoing Lemma 2.2. In fact, let B =
Rn and H :=

{
ej = ej

}n
j=1

be the canonical frame in the Euclidean space Rn.
ν(p) be the normal vector to the surface at p ∈ S and Dp :=

{
dj(p)

}n
j=1

be the
projection of the frameH to the tangential space TpS . The systemDp is orthogonal
to the normal vector field ν, is full in the tangential space TS ⊂ Rn and generates
Günter’s derivatives (cf. (2.1)).

Since the Weingarten operator WS in (2.8) annihilates the normal vector (cf.
(2.17)), due to the foregoing Lemma 2.2 it has the same representation in the sys-
tems H and Dp:

〈WSU, V 〉 = II(U, V ) = 〈−∂S
U ν, V 〉 = −

n∑
j,k=1

(
UkDkνj

)
Vj = 〈−(Dν)U, V 〉 .

Since a vector field V ∈ TS is arbitrary, the latter equality implies (2.15).

Let us consider the contravariant frame
{
gj
}n−1
j=1

in the tangential space TS

and its extension
{
gj
}n
j=1

in Rn by the normal unit vector field gn := ν on S . The

Weingarten operator is represented in the frame
{
gj
}n−1
j=1

by the matrix BS (x) =∥∥bkj (x)
∥∥
(n−1)×(n−1) (cf. (1.15)). Thus, we are indeed under the scope of the forego-

ing Lemma 2.2 and the matrices BS of order n− 1 and WS of order n, have n− 1
eigenvalues {κj(p)}1≤j≤n−1 in common. The last extra eigenvalue of WS is trivial
κn = 0. �

A similar assertion for the case n = 3 is proved in [Gu1, Ch. 1, § 3] by a
different approach.
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Corollary 2.4 The Weingarten matrix is symmetric

WS = −
[
Djνk

]
n×n = W >

S (2.16)

and has linearly dependent columns

WS (p)ν(p) = 0. (2.17)

The latter equality implies:

ν(p) ∈ KerWS (p) and det WS (p) ≡ 0 for all p ∈ S . (2.18)

Proof: : (2.16) is a consequence of equality

Djνk = ∂jνk = ∂kνj = Dkνj for all j, k = 1, . . . , n, (2.19)

proved in [DMM1, Proposition 3.1.ii] (can also be derived from Lemma 3.3 below),
while (2.17) is proved as follows:

(WS ν)k = −2
∑
j

νjDkνj = −Dk|ν|2 = −∂k1 = 0. �

3 Extension of the unit normal vector field to a hy-
persurface

Lemma 3.1 Let S ⊂ Rn be a k-smooth hypersurface, k = 1, 2, . . ., given implic-
itly ΨS (p) = 0 by the function ΨS ∈ Ck(US ) defined in some neighborhood of the
surface S ⊂ US ⊂ Rn. The unit vector field

N :=
∇ΨS

|∇ΨS |
= {N1, . . . ,Nn}> , Nj =

∂jΨS

|∇ΨS |
, j = 1, . . . , n (3.1)

is Ck−1-smooth and restricted to the surface coincides with the normal vector field
on S

|N | = 1 near S and N
∣∣
S

= ν . (3.2)

Moreover, if k ≥ 2 the following equality holds:

ν = ∇ ΨS

|∇ΨS |

∣∣∣∣
S

or, componentwise, νj = ∂j
ΨS

|∇ΨS |

∣∣∣∣
S

, j = 1, . . . , n. (3.3)

Proof: Let {Sj,Θj}Mj=1 be an atlas which defines S . The pull-back functions
Ψ∗j(x) = (Θj,∗ΨS )(x) = Ψj(Θj(x)), x ∈ Ωj ⊂ Rn−1, are immersions: the corre-
sponding gradient has maximal rank

∇Ψ∗j(x) := matr [∂1Ψ
∗
j(x), . . . , ∂n−1Ψ

∗
j(x)] ,

rank∇Ψ∗j(x) = n− 1 for all x ∈ Ωj , j = 1, . . . ,M .
(3.4)
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Since Ψ∗j(x) ≡ 0 for x ∈ Ωj , the chain rule provides

∂kΨ
∗
j(x) =

n−1∑
m=1

(∂mΨS )(Θj(x))(∂kΘj)m(x) = 0 , k = 1, . . . , n− 1

and justifies that the gradient of the hypograph function is orthogonal to all tangen-
tial vectors〈
∂kΘj(x), (∇ΨS )(Θj(x))

〉
≡ 0 ∀x ∈ Ωj , k = 1, . . . , n, j = 1, . . . ,M. (3.5)

Therefore, the normed gradient

N (x) =
(∇ΨS )(x)

|(∇ΨS )(x)|
, x ∈ S (3.6)

coincides with the unit outer normal vector on the surface.

The equality (3.3) follows taking into account that ΨS

∣∣
S
≡ 0:

∂j
ΨS

|∇ΨS |

∣∣∣∣
S

=
∂jΨS

|∇ΨS |

∣∣∣∣
S

− ΨS

∣∣
S

∂j|∇ΨS |
|∇ΨS |2

∣∣∣∣
S

=
∂jΨS

|∇ΨS |

∣∣∣∣
S

= νj . �

Remark 3.2 In [DMM1, § 3] the foregoing Lemma 3.1 was proved for a particular
implicit function-for the signed distance

ΨS (x) := ±dist(x,S ) x ∈ US , (3.7)

where the signs ”+“ and ”–“ are chosen when x is ”above“ S (in the direction of
the unit normal vector) and ”below“ S , respectively.

The next Lemma 3.3 is identical to [DMM1, Proposition 3.1]. Here we present
a slightly simplified proof.

Lemma 3.3 For any unitary extension N ∈ C1(US ) of the unitary outer normal
vector field ν in a neighborhood US of S the following conditions are equivalent:

i. ∂N N
∣∣
S

= 0, i.e., ∂N Nj(x)→ 0 for x→ p ∈ S and j = 1, 2, ..., n;

ii. [∂kNj − ∂jNk]|S = 0 for k, j = 1, 2, . . . , n.

Proof: The implication (ii)⇒ (i) follows readily by writing

∂N N
∣∣
S

=

{
n∑
j=1

Nj∂jNk

}n

k=1

∣∣∣∣∣
S

=

{
n∑
j=1

Nj∂kNj

}n

k=1

∣∣∣∣∣
S

=
1

2
∇x|N |2

∣∣∣
S

=
1

2
∇x1 = 0 . (3.8)

As for the inverse implication, we first observe that, in general,

∂V N
∣∣∣
S

= 0 & N
∣∣∣
S

= ν imply ∂V N
∣∣∣
S

depends only on ν (3.9)
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and does not depend on a particular extension N for arbitrary vector field V . In the
sequel we shall tacitly assume that the projection πS in (2.2) has been extended to
the neighborhood US

π̃S (x) =
[
δjk −Nj(x)Nk(x)

]
n×n , π̃2

S = π̃S , x ∈ US . (3.10)

Note that U = π̃SU + 〈U,N 〉N for arbitrary field U in the neighborhood US .
Then

∂UN
∣∣∣
S

= ∂π̃SUN
∣∣∣
S

+ (U,N )∂N N
∣∣∣
S

= ∂π̃SUN
∣∣∣
S

= ∂πSUν ,

because ∂N N
∣∣∣
S

= 0 and πSU is a tangential field to S . Thus, we can dwell on
the particular extension (3.3) and observe

∂kNj|S = ∂k∂j
ΨS

|∇ΨS |

∣∣∣∣
S

= ∂j∂k
ΨS

|∇ΨS |

∣∣∣∣
S

= ∂jNk|S ,

which proves the implication (i)⇒ (ii). �

Remark 3.4 It is clear that a normal vector field and it’s (non-unique) extension
exists for arbitrary Lipschitz surface, but almost everywhere on S .

Moreover to enjoy the properties listed in Lemma 3.3, we have to consider
smoother than Lipschitz surfaces and assume C2-smoothness of S . �

Definition 3.5 Let S be a surface in Rn with the unit normal vector field ν. A
vector filed N ∈ C1(US ) in a neighborhood US of S will be referred to as a
proper extension if N

∣∣∣
S

= ν, |N | = 1 in US , and if N satisfies one of the
(equivalent) conditions listed in Lemma 3.3.

For our purposes below the conditions of Lemma 3.3 play a crucial role. Now
we are going to construct the extension of the unit normal field, which is not proper
extension, but satisfies the both conditions of Lemma 3.3.

Lemma 3.6 Let ΨS (x) ∈ C2(US ) and N be unit vector field be as in Lemma 3.1.
Then the vector field

N̂ = {N̂1, . . . , N̂n}>, N̂j := Nj −
ΨS

|∇ΨS |
∂N Nj (3.11)

is Ck−1-smooth and restricted to the surface coincides with the normal vector field
on S , i.e., N̂

∣∣
S

= N
∣∣
S

= ν and we have ∂N̂ N̂
∣∣
S

= 0.

Note that the field N̂ is not, in contrast to (3.1) the unit normal vector field,
since |N̂ (x)| 6= 1 for x 6∈ S .
Proof of Lemma 3.6: First note that

∂kN̂j

∣∣
S

= (∂kNj −Nk∂N Nj)
∣∣
S
. (3.12)
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Then

∂N̂ N̂
∣∣
S

=
n∑
k=1

N̂k∂kN̂j

∣∣∣
S

=
n∑
k=1

Nk(∂kNj −Nk∂N Nj)
∣∣∣
S

=
n∑
k=1

Nk∂kNj

∣∣∣
S
− ∂N Nj

n∑
k=1

N 2
k

∣∣∣
S

= ∂N Nj

∣∣
S
− ∂N Nj

∣∣
S

= 0.

�

Let us consider the matrix-function

W̃S (x) := −∇N (x) = −
[
∂jNk(x)

]
n×n , x ∈ US . (3.13)

Lemma 3.7 Let S be a hypersurface in Rn and fix a properly extended unit field
N in a neighborhood US of S . Then for the matrix function W̃S (x) in (3.13) the
following are true:

i. W̃S N = 0 in US ;

ii. when restricted to the hypersurface W̃S coincides with the Weingarten map-
ping of S :

W̃S

∣∣∣
S

= WS ; (3.14)

iii. the trace on the surface WS = W̃S

∣∣
S

only depends on S and not on the
choice of the extension N ;

iv. Tr (W̃S )
∣∣
S

= Tr WS = H 0
S ;

v. WSV is tangential to S for any vector field V : S → Rn.

Proof: First, W̃S N = ∇‖N ‖2 = 0 in US , justifying (i). Next, (ii) and (iv) follow
from (3.13) and Lemma 2.3, whereas (iii) is a direct consequences of (3.9).

Next, (v) is a consequence of (3.14), for each V ∈ TS we write

WSV = −∂S
V N

∣∣∣
S

= −πS (∂V N ) = −∂V N = −W̃SV

since, as we have just seen, ∂V N = W̃SV is tangential to S . �

Let us consider a derivative

D̂k = ∂k − N̂k∂N̂ , 1 ≤ k ≤ n.

which is an extended Günter’s derivative: while restricted to the surface it coincides
with Dk = ∂k − νk∂ν on S . By virtue of Lemma 3.6, Lemma 3.3 and formula
(3.12) we conclude that:

D̂kN̂j

∣∣
S

= ∂kN̂j

∣∣
S

= DkNj

∣∣
S

= Dkνj = Djνk = DjNk

∣∣
S

= ∂jN̂k

∣∣
S

= D̂jN̂k

∣∣
S
. (3.15)
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Theorem 3.8 Let S ⊂ Rn be a hypersurface given implicitly ΨS (p) = 0 by the
function ΨS (p) ∈ C2(US ). Then at p ∈ S the Weingarten matrix is

WS (p) = (N (p)N >(p)− In)WS (p)(In −N (p)N (p)>), (3.16)

where N is given by the formula (3.1) and WS (p) is, up to the multiplier, the
Hessian of ΨS :

WS (p) =
1

|∇ΨS (p)|

 ∂21ΨS (p) · · · ∂1∂nΨS (p)
... . . . ...

∂n∂1ΨS (p) · · · ∂2nΨS (p)

 .

Proof: Due to (3.14) for the Weingarten matrix at p ∈ S we have

WS (p) = −
[
∂kN̂j

∣∣
p∈S

]
n×n.

For conciseness, we will drop the sign of restriction |S when it does not leads to a
confusion. Applying (3.12) we then obtain

WS = (N N > − In)

 ∂1N1 · · · ∂1Nn
... . . . ...

∂nN1 · · · ∂nNn

 . (3.17)

Further, we have

∂kNj

∣∣
S

= ∂k
∂jΨS

|∇ΨS |
∣∣
S

=
∂k∂jΨS

|∇ΨS |
+ ∂k

( 1

|∇ΨS |

)
∂jΨS

=
1

|∇ΨS |
(
∂j∂kΨS −Nj ∂N ∂kΨS

)
and therefore we get ∂1N1 · · · ∂1Nn

... . . . ...
∂nN1 · · · ∂nNn

 =
1

|∇ΨS |

 ∂21ΨS · · · ∂1∂nΨS
... . . . ...

∂n∂1ΨS · · · ∂2nΨS

 (In−N N >).

From the obtained equality and from (3.17) follows (3.16). �

If θ(p) ∈ TpS , then

WS (p)θ(p) =
{
N (p)N >(p)− In

}
WS (p)θ(p).

Thus the eigenvalues of the matrices WS (p) and of

AS (p) :=
{
N (p)N >(p)− In

}
WS (p) (3.18)

coincide. Let denote them by {κj(p)}1≤j≤n, setting the last one zero κn(p) ≡ 0.
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From this representation we immediately have that the eigenvalues {κj(p)}1≤j≤n
are the solutions of the following equation

det(AS (p)− κ I) = 0

and the mean curvature is

HS (p) =
n−1∑
j=1

κj(p)

n− 1
=

TrAS (p)

n− 1
for p ∈ S .

Gauß’s principal curvature KS (p) at p ∈ S (cf. (1.24)) equals to the coefficient
at λ of the polynomial − det(AS (p)− λ I) (cf. (2.13)), i.e.:

KS (p) := − d

dλ
det(AS (p)− λ I)

∣∣∣∣
λ=0

. (3.19)

Example 3.9 Let us demonstrate some obtained results for the ellipsoid E n−1
r,0 de-

fined in (1.6). We have

WE n−1
r,0

(p) =

[
δjk

Rr,0(p)r2k

]
n×n

= diag(α1(p), . . . , αn(p)) ,

αj(p) =
1

r2jRr,0(p)
, νj(p) = pjαj(p) =

pj
r2jRr,0(p)

,

where

Rr,0(p) :=

[
n∑
j=1

(
pj
r2j

)2
]1/2

.

Then from (3.18) and (3.2) we get

AE n−1
r,0

(p) =


α1(ν

2
1 − 1) α2ν2ν1 . . . αnνnν1

α1ν1ν2 α2(ν
2
2 − 1) . . . αnνnν2

...
... · · · ...

α1ν1νn α2ν2νn · · · αn(ν2n − 1)

 (3.20)

and the mean curvature is

HE n−1
r,0

(p) =
n−1∑
j=1

κj(p)

n− 1
=

TrAE n−1
r,0

(p)

n− 1
=

n∑
j=1

αj(p)(ν
2
j (p)− 1)

n− 1

for p ∈ Er,0.

Further, to avoid routine and voluminous calculation, let n = 3. Then we obtain

− det(AE n−1
r,0
− κ I) = κ3 − [α1(ν

2
1 − 1) + α2(ν

2
2 − 1) + α3(ν

2
3 − 1)]κ2

+[α1α3ν
2
2 + α2α3ν

2
1 + α1α2ν

2
3 ]κ

and, due to (3.19), Gauß’s principal curvature at p ∈ Er,0 equals:

KE n−1
r,0

(p) = α1(p)α3(p)ν
2
2(p) + α2(p)α3(p)ν

2
1(p) + α1(p)α2(p)ν

2
3(p)

=
1

r21r
2
2r

2
3R

4
r,0(p)

for p ∈ E n−1
r,0 .
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Example 3.10 Let us calculate the mean and Gauß’s principal curvatures of the
saddle surface in R3, given implicitly by the function

ΨS (x1, x2, x3) = x3 − x1x2 = 0.

Then

N1(x) =
−x2

(1 + x21 + x22)
1
2

, N2(x) =
−x1

(1 + x21 + x22)
1
2

, N3(x) =
1

(1 + x21 + x22)
1
2

and

WS (p) =
1

(1 + p21 + p22)
1
2

 0 −1 0
−1 0 0
0 0 0

 , p ∈ S .

From (3.18) and (3.2) we then obtain

AS (p) =
−1

(1 + p21 + p22)
1
2

 ν1(p)ν2(p) ν21(p)− 1 0
ν22(p)− 1 ν1(p)ν2(p) 0
ν3(p)ν2(p) ν3(p)ν1(p) 0

 ,

which immediately gives

KS (p) = − 1

1 + p21 + p22
(1− ν21(p)− ν22(p)) =

−1

(1 + p21 + p22)
2

and

HS (p) =
TrAS (p)

n− 1
=

−1

(1 + p21 + p22)
1
2

ν1ν2 =
−p1p2

(1 + p21 + p22)
3
2

for p ∈ S .

Two principal curvatures of the surface coincide with the eigenvalues of the
matrix AS

κ1(p) = −p1p2 −
√

(1 + p21)(1 + p22)

(1 + p21 + p22)
3
2

,

κ2(p) = −p1p2 +
√

(1 + p21)(1 + p22)

(1 + p21 + p22)
3
2

,

for p ∈ S , while the third eigenvalue is indeed 0.
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