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Abstract

In this article we present a different method for studying the Weingarten
map for a hypersurface in Euclidean space R". Applying the cartesian coor-
dinates of the ambient space and tangential Giinter’s derivatives we obtain a
simple matrix representation formula for the Weingarten map for the implicit
hypersurfaces, which can be applied, for example, to calculate the mean and
Gauly’s curvatures without passing to intrinsic coordinates.
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Introduction

Analysis on Riemannian manifolds usually applies intrinsic coordinates, involving
metric tensor and Christoffel symbols. But if we deal with a hypersurface, the carte-
sian coordinates of the ambient space can be applied. This seemingly trivial idea
often simplifies notions of the differential geometry. An advantage of this approach
can be clearly observed, for example, by studying partial differential equations on
hypersurfaces. It turns out that in this case the form of many classical differential
equations on the surface are much simpler, cf. [Dul, DMM1]. Analysis of this type
is connected tightly with the Weingarten map, the mean and Gauf}’s principal cur-
vatures. The main purpose of the paper is to express the Weingarten matrix through
the cartesian coordinates of the ambient space and obtain formulas for the mean
and Gauf}’s curvatures. Such results are important in applications when differential
equations (of elastic hypersurfaces, of shells etc.; cf. [Dul, DMM1]) are studied in
the same setting, involving the cartesian coordinates of the ambient space.

*This work was supported by the grant of the Georgian National Science Foundation
GNSF/ST06/3-001 .



Let.¥ be a C?-smooth hypersurface in R” and v be the unit normal vector to ..
It is well known that the matrix representation of the Weingarten map %o depends
on the choice of the frame in the tangential space T.”. For example, written in local
contravariant frame the Weingarten map is a matrix-function of order n — 1 and co-

incides with the mixed curvature tensor #.»(x) = ||b§€ | . Written in local
(n—1)x(n—1)

covariant frame, it coincides with the curvature tensor By (x) = HkaH (n—1)x(
(cf. [Cal, Cil, Ci2] and (1.15), (1.16) below).

n—1)

Our approach applies Giinter’s derivatives {@j }?:1, which are derivatives along
the vector fields {dj };:1, representing projections on the surface .% of the cartesian

n

unit vectors {e; }] .- The system of vector fields {d; };1:1 is full, but linearly depen-
dent in the space of tangential vector fields. In (2.1) we write the Weingarten map
in the system {d; }?:1 as an x n matrix function. Although the order of the matrix
is increased, the obtained representation formula displays some simplicity and pro-
vides a possibility to calculate the mean and Gaul3’s curvatures without passing to
intrinsic coordinates.

The paper is organized as follows. In Section 1 we recall some definitions and
introduce basic notation from differential geometry for hypersurfaces. The Section
2 contains the necessary tools and material from linear algebra. Also there we
express the Weingarten map through Glinter’s derivatives. In Section 3 we extend
the unit vector field and using results of Section 2 obtain the representation formula
of the Weingarten matrix. In the conclusion we illustrate the result by calculating
Weingarten map and curvatures for the ellipsoid and the saddle surface.

1 Covariant derivative and the Weingarten map

Henceforth matr [ug, . . ., ux] refers to the matrix with the listed vectors w1, . . ., uy
as columns.

Definition 1.1 A Subset . C R" of the Euclidean space is called hypersurface if
it has a covering . = U;Vil <; and coordinate mappings

0, : wj— 5 =0;w) CR",  wcR" j=1..M (LD
such that the corresponding differentials
DOj(x) := matr [010;(x),...,0,-10;(z)], (1.2)
have the full rank
rank DO;(x) =n—1 forall zecw;, k=1,...,n, j=1,...,M.

Such mapping is called an immersion as well.

The columns of the Jacobi matrix DO;(z) in (1.2) represent tangential vectors

g1(z) == 0109,(x), ..., gh-1(x) := 0,10;(x) € T,.7, forall z € w;. (1.3)
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Since DO;(x) has the full rank, the above collection is a natural covariant frame (a
basis) in the tangential space T,.7 .

The hypersurface is called smooth if the corresponding coordinate diffeomor-
phisms ©; in (1.1) are all smooth (C*°-smooth). Similarly is defined Lipschitz
and k-smooth hypersurfaces, provided ©; in (1.1) are all Lipschitz continuous or
k-smooth, respectively.

Next we expose yet another definition of a hypersurface which provides a pow-
erful source of hypersurfaces.

Definition 1.2 Let k > 1 an U C R" be a compact domain. An implicit C*-smooth
(an implicit Lipschitz) hypersurface in R" is defined as the set

Y:{pGU : \I/y(p):(]}, (1.4)

where ¥, : U — R is a C*-mapping (is a C*-mapping, respectively) which has
the non-vanishing gradient VV o (p) # 0, for all p € U.

Note that by taking a single function ¥, for the implicit definition of a hyper-
surface . we does not restrict the generality and definitions of smooth hypersurface
., since Definition 1.1 and Definition 1.2 are equivalent (a direct consequence of
the implicit function theorem).

Example 1.3 Let R > 0, a € R" be fixed. The sphere of radius R centered at a

Sk '(a) := {rc = (x1,...,2,) ER" : Upo(z)=|z—a|*—R*= 0} (1.5)

defines a hypersurface.
Similarly, for a fixed point a = (ay, . .., a,)" € R", andavectorr = (ry,...,r,)"
with positive components r; > 0,...,r, > 0 the ellipsoid
st = {x = (z1,...,2,) ER™ : U, (1) = Z (Q) —1= 0}(1,6)
b} ”” .
j=1 ’
is a hypersurface in R".
For vector fields U,V € TR™ = ¥ (R") define the first order differential oper-
ator
. V(FW)-V(p) d :
'V (p) = }Llj)f(l) N == Vv (ﬁU(p))h:O , —e<t<e, (1.7)

where p € R™ and
y=vy(t,p) = F;@p) : R" - R"

is the solution of the following initial value problem

vy =U(y), y0)=p, —e<t<e



is called the flow (or the orbit) generated by the vector field U.
Ou is a derivation, i.e., a linear mapping
dy : CF(R") — CF(R") (1.8)
with the property
ooV = fouV,  0Ou(fg)=g0uf+ foug, (1.9)
vV e ?VR"), VfgeC®R").

Now if U and V' are tangent vector fields on on a hypersurface .7 in R", i.e.,
T%, and U, V are both defined only at points of ., the derivative 0V still makes
sense as long as U is tangent to .. As usual, JyV measures the rate of change of
V in U direction, for more details cf. [Tal, v. I, § 1.7], [Nel, Ch. 5], etc. Note that
even if U is a tangent vector field, the derivative Oy V' need not be tangent to .7 .

Let v denote the unit normal vector filed on a hypersurface .#, orthogonal to
the frame of the tangent space

wp),gxp) =0,  g*(p):=9O'(P), k=1,....n—1. (110)

If the hypersurface is defined by immersions ©; € C*(w;), 7 =1,..., M, as in
Definition 1.1, the normal vector field is then defined as the normed vector product
of all tangent vectors (cf. (1.3))

v(p) = gi(p) A Ngpa(p)
gt A A g (p)]

at p € ., known in differential geometry as the Gaufs mapping.

(1.11)

If the hypersurface is defined by an implicit function W &, as in Definition 1.2,
the normed gradient

_ VU5 (p)
VU5 (p)|’

is then the normal vector field.

v(p) : peS (1.12)

It is easy to show that the derivative Jy v of the normal vector field on a hyper-
surface with respect to a tangent vector U at p is a tangent to the hypersurface at p.
Indeed, differentiating the relation 1 = (v, v), we get

0 = (Oyv,v) + (v,0yv) = (20yv,v).
Thus Oy v is orthogonal to v(p).
Definition 1.4 The linear map
Wy(p): Ty = Ty
defined for a fixed p € . by
W (p)V(p) = —Ovpv(p),
is called the Weingarten map or the shape operator of . at p € .&.
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The Weingarten map, applied to a tangent vector, can be interpreted as the rate
of change of the unit normal vector field v along the direction of a given tangent
vector. Note that if v is replaced by —v, then #/» changes to — %/ .

The fundamental forms on . can be now defined in terms of #» and the inner
product:

L(V,U)=(V(p),U(p)) and IL,(V,U)= (#o(p)V(p),U(p))

for VU € T,(.*). The first fundamental form is obviously a positive definite
symmetric bilinear function on the tangent space. An important property of the
Weingarten map and the second fundamental form is stated in the following theo-
rem.

Proposition 1.5 (see [Cal, Tal] and cf. Corollary 2.4). The second fundamental
form is symmetric, i.e.,

Wy (p)V,U) =(V.,#y(p)U) for VU e T, pe.

In other words, the Weingarten map is self-adjoint with respect to the natural
scalar product inherited from the ambient Euclidean space.

Moreover, using the pointwise principle we can take the derivative of a vector
field V, i.e., define 0y Z(p) = Ov . This leads to the following extension of the
Weingarten map

Wy TS — T = | T,7, (1.13)

peES

where

W,V Uy =11(V,U) = =(0yv,U) = —(0yv,V) forall V.U e TY.(1.14)

The matrix representation of the Weingarten map % depends on the choice of
. . . . n—1 .. .
the frame in T.%. For example, written in a local contravariant frame { g/ }?:1 it is
a matrix-function of order n — 1 coincides with the mixed curvature tensor:

M

forall z € Q= | Juw;, (1.15)

J=1

b (x) = (059" (x),v (Ok(x))) = —(g"(x), 0 (Ok(x))), = € wy.

Z’) H (n—1)x(n-1)’

. L . . -1 .. .
If the Weingarten map is written in the covariant frame { Jj }?:1 , coincides with
the curvature tensor:

By(z) = ||bjk(x)\\(n_l)x(n_l), for all z € Q (1.16)

bjk(x) := (Okg;(x), v (Or(2))) = —(gr(x), O (Or(7))), @ € wy.



Note that bj; are the coefficients of the second fundamental form and we have
the both claimed representations:

(V,U) = (B,V,U) = (B,V,U)  forall V,UETY.  (L17)

Let us remind some very well known properties of the covariant and the con-
. . . . n—1
travariant frames. First due to the orthogonality, the covariant { 9k}k:1 and the

. ~1 o
contravariant { g* }Z:1 frames are related by the equalities

n—1 n—1
gG=> g, =D ", Gk=1..n-1, (L8
k=1 k=1
where
Gr() = [96®)] _tywinory: 9k =9 ), PES (1.19)
is the covariant metric tensor and
G0 = [0 0] poyuery, 9T =) peS (1.20)
is the contravariant metric tensor (the inverse to the covariant metric tensor):

GsGl =T or gimP)g™ (D) = ¢™(D)gmr(p) = 0. (1.21)

From (1.15), (1.16) and (1.18) follows that:

n—1 n—1
W= g"bwi, b= gmb]',  Gk=1..n-1. (1.22)
m=1 m=1

The covariant curvature tensor is symmetric b;, = by;, while the contravariant cur-
vature tensor b;? is not in general. Thus,

B (0) = [V5(0)] (o_1yx(uory = G7 () B (D),

By (p) = [bin(D)] (ryxnory = B+) . PES. (1.23)

Our approach applies Giinter’s derivatives (cf. Section 2 for details), which
are derivatives with respect to the full but linearly dependent system {dj}ll of
tangential vector fields in (2.1). Before we go into details let us introduce further
notation.

Denote by x1(p),...,kn,_1(p) the eigenvalues of the mixed curvature tensor
% (p). They are called the principal curvatures, while

n—1

_ Tr B (p)
n—1

Kj (p)

‘e~ n —1
7=1

jﬁ?(?)i )

. TrBa(p) = Zbﬁ(p) =

(1.24)

n—1
Ay (p) :=det B,(p) =[] rs(0), peS
j=1
are the mean curvature and the GaufSian curvature of ., respectively.
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2 Ginter’s derivatives

Giinter’s derivatives are defined as follows

Dy = (D,..., D))", Dj:=0;—vj(p)0, =0u, , (2.1)
dj =7ye;=ej — vV,

where 0, := Z?Zl v;0; denotes the normal derivative. They represent tangent

derivatives along the tangent vector fields. Here, for each 1 < j < n, the first-
order differential operator Z; = 0, is the directional derivative along the tangential
vector d;. The operator (the matrix)

Ty R =TS, 7wy(p)=1—vip)v' (p) = [0 —vi()we®)],.. . (22
pe.S

defines the canonical orthogonal projection 72, = m onto the tangential space
T, to . at the point p € .7

(v, V) Zl/]v] Zu yop =0  forall v=(vy,...,v,) €R"

and, as usual, e; = (J;x)1<k<n € R", with the Kronecker‘s symbol § .

A derivative 0y is called covariant if it maps tangential vector fields to tangential
fields 0y : T. — T.#. Note that Giinter’s derivatives in (2.1) are not covariant
2; : T A T, ie., not always V € T.” implies 2,V € T.”. To make
Giinter’s derivatives covariant we apply the projection:

.@f\/ =DV =D,V — (v, Z;V)v (2.3)

or, in general,
oV =m0V  for UV eTZ.

Then,
D7V =DV + (W V)jv = DV + (Dyv)v, (2.4)

where ¥ := [ 21 Dvip = 1_ ViDrp, because

nxn’

(v, 2;V) Zum.@V—Z[@( i Vin) = Vin D)

m=1

=— Z Vm-@jym = 7/5// Z V @ v; = —gvl/j.

It is easy to check that the operators @f” are automorphisms of the tangential vector
space
27 TS =TS . (2.5)



Any tangential vector field U € T.# can be represented by the full system
{d;}7_, of tangential fields

U:inGj :indj <~ 8UV=iUJ8JV:iUJ@JV (2.6)
Jj=1 Jj=1 j=1 j=1

since Z?Zl U;v; = 0. Then for the corresponding covariant derivative (for the
Levi-Civita connection) 97/ we get the following representation by the full system
{.@jy }Zzl of covariant derivatives:

oV =0yV — (v,oyVv=> U;2/V  forall VeTs.  (27)

j=1
Then for the second fundamental form of . we have (cf. [Tal]):
(U (p), V(p))r(p) = 0uV (p) — 07 V(p) = (I = 72) 00V (p)
= (v(p),ouV(p)v(p), forallpe ., UV eTY.
For the Weingarten map the obtained equality gives
(HyU, VY =1(U,V) = (v,0pV) = {0y, V) = —(07 v, V) (2.8)
forall U,V € T.” .
We have applied that V' € T.¥ yields (v, V') = 0 and, by differentiating,
Oy, V) + (v, 0pV) =0 forall UeTY.
For each pair of frames [ := {h;}’_, and D := {d;}}_, in a finite dimensional
Banach space ‘B there exists the matrix of frame transformation D = </ ,pH,
Ag_p = [hjk]nxn. Due to the linear independence of frames the matrix of frame

transformation is invertible &/p_,y = 7', , = [h7*],«,, and the inverse is respon-
sible for the inverse frame transformation H = &@/p_, g D.

By fixing a frame H := {h;}}_, in a finite dimensional Banach space B, a

linear operator A : B — ‘B can be represented in the matrix form A = [ajk]nxn,
where the entries a;;, are the coefficients of the representations

Ahj = Zakjhk, Clkj = <hk,AhJ> s j = 1, e, ny (29)
k=1

and H+ = {hk}zzl is the biorthogonal frame to H: (h;,h*) = 0, j,k =
1,....n.

The matrix representation of an operator A depends on the choice of a frame:
A\D - %H%DIZ[H%D%H or [bjk]an = [hjk]an [ajk}an [hjk]nxn . (210)

Since p iy = 5, . an immediate consequence of (2.10) is that the determi-
nants of the representation matrices are independent of the choice of frames [ and
H in *B, i.e., det Ap = det Ay. Moreover, also the trace is invariant and the
following assertion is well-known in the operator theory.
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Lemma 2.1 Let A : B — ‘B be a linear operator in a finite dimensional Banach
space B with a frame H := {hj };:1 and Ay = [ajk}nm be the corresponding
matrix representation of A. Let )\, ..., \, be the eigenvalues of A counted with
their multiplicities.

The trace of A is independent of a choice of frame H in B:

n

j=1 j=1

j=1

In the next Lemma 2.2 we consider a special case, important for the present
consideration. Let /1 := {h;}"_, |h;| = 1, be a frame in n-dimensional Banach

space ‘B. Consider the hyperspace ‘B, := {u €WV : (u,v) = 0} orthogonal to a
vector v € B, |v| # 0. The system

dj = hj—VjV, l/j = <V,hj> jzl,...,n, (212)
is full in *B,, but linearly dependent and thus can not be a frame.

Lemma 2.2 [f a linear operator A : B — B, with Av = 0 has the representation
Ag = [ajk} ., in the frame H := {hj };:1 C B, the restricted operator to the

subspace AY = A . has the same representation Af, = [ajk}nxn in the systems
n
D:={d;},_, C B,

nx

If EE = [bj } (ne1)x (n—1) is the representation of the restricted operator in some
frame B = {bj };:11 C B, all eigenvalues \y,... \,_1 of the matrix ﬁ’é =

[bjk](n—l)x(n—l) are the eigenvalues of A\H = A\VD = [ajk}nxn’ which has the ex-
tra eigenvalue \,, = 0 as well. Consequently these matrices have the same traces
and

. d .
A=0

Proof: Let us notice that
n n
ZajkaIZaijkZO forall j7=1,...,n,
k=1 k=1

where the first equality is equivalent to Av = 0 and the second one-to (v, A) = 0
for all £ € B. Applying the obtained equalities we find that

n n n

Aibj = Ahj — l/jAV = Zakjhk = Zakjilk + ZaijkV = Zakﬂfbk

k=1 k=1 k=1 k=1

which entails a;; = ay; (cf. (2.9)).

If B := {b; };:11 is a frame in B, the extended system B := {b; }?:1, b, = v
is a frame in the entire space ‘5 and

Ag o= [bji], ., bnj =bin=0, j=1,...,n, (2.14)



is the representation of A in this frame. The matrix Az = [b;;] ., has the com-

mon eigenvalues A, ..., A\,_; with the matrix E% = [bjk](n 1)x(n—1) and one extra
eigenvalue A\, = 0. On the other hand, due to the foregoing Lemma 2.1 the matri-
ces A [b]k]nxn and A H= [Cl]k]nm are equivalent and thus their all eigenvalues
coincide. ]

Theorem 2.3 Let . be a C'-smooth hypersurface in R™ and v be the outer unit
normal vector to .. In the full but linearly dependent system {dj }?:1 in (2.1) we
have the following representation of the Weingarten map:

WV =—=0]v=—(v)V, Dv:i=[Zw], o (2.15)

xXn

forallV ¢ T.¥.

The eigenvalues {r;(p) }1<j<n—1 of ##(p) at p € .7, except the last one which
is trivial k,,(p) = 0, are the principal curvatures at p € .; their arithmetical mean
is the mean curvature and the product k1(p) - - - k,_1(p), except the last trivial one
kn(p) = 0, is Gauf3’s principal curvature at p € . (cf. (1.24)).

Proof: We are under the scope of the foregoing Lemma 2.2. In fact, let B =
R"™ and H := {ej = € }?:1 be the canonical frame in the Euclidean space R™.

v(p) be the normal vector to the surface at p € .% and D,, := {d; (p)}?zl be the
projection of the frame H to the tangential space T,,.%. The system D), is orthogonal

to the normal vector field v, is full in the tangential space T.¥ C R"™ and generates
Giinter’s derivatives (cf. (2.1)).

Since the Weingarten operator # in (2.8) annihilates the normal vector (cf.

(2.17)), due to the foregoing Lemma 2.2 it has the same representation in the sys-
tems H and D,:

<7%7U7 V) = H<U7 V) = <_aéﬂy7 V> = - i (Uk-@k’/j)v} = <_(@V)U7 V>'

G k=1
Since a vector field V' € T.7 is arbitrary, the latter equality implies (2.15).

1. .
, in the tangentlal space T.”

and its extension { gJ} in R" by the normal unit Vector field g" := v on .. The

Let us consider the contravariant frame {g’ }n:_

Weingarten operator is represented in the frame {g]} by the matrix B, (x) =

ku H (n—1)x (n—1) (cf. (1.15)). Thus, we are indeed under the scope of the forego-
ing Lemma 2 2 and the matrices £~ of order n — 1 and #» of order n, have n — 1

eigenvalues {x;(p)}1<;j<n—1 in common. The last extra eigenvalue of % is trivial
Ky, = 0. O

A similar assertion for the case n = 3 is proved in [Gul, Ch. 1, § 3] by a
different approach.
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Corollary 2.4 The Weingarten matrix is symmetric

Wy =— D], .. =Wy (2.16)
and has linearly dependent columns
W (p)v(p) = 0. (2.17)

The latter equality implies:

v(p) € Ker #(p) and det #o(p) =0 forall pe .. (2.18)

Proof: : (2.16) is a consequence of equality
Divy, = Ojvy, = Oyv; = Dyvj forall j5,k=1,...,n, (2.19)

proved in [DMM1, Proposition 3.1.ii] (can also be derived from Lemma 3.3 below),
while (2.17) is proved as follows:

W/V = _ZZV]@kVJ == —@k|y|2 == —akl = 0. O

3 Extension of the unit normal vector field to a hy-
persurface

Lemma 3.1 Let .¥ C R"” be a k-smooth hypersurface, k = 1,2, ..., given implic-
itly U o (p) = 0 by the function ¥, € C*(Uy) defined in some neighborhood of the
surface . C Uy C R™. The unit vector field

VU,
VU,

oV
VU |’

= { M, 4T N = i=1,...,n (3.1

is C*~1-smooth and restricted to the surface coincides with the normal vector field

on .
(AN |=1 near &/ and N|, =v. (3.2)

Moreover, if k > 2 the following equality holds:

P P
ﬁ or, componentwise, v 7 ,7=1,...,n. (3.3)
SN

v=YV |V\I//]

Proof: Let {.#},0;}}L, be an atlas which defines .. The pull-back functions

Ui(r) = (0, ¥5)(x) = ¥;(0;(z)), x € Q; C R""', are immersions: the corre-

sponding gradient has maximal rank

VU (x) == matr [0, ¥} (z),. .., 001V ()],

] _ (3.4)
rank VUi(z) =n —1 forallz €Q;, j=1,...,M.
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Since ¥} (x) = 0 for x € €2, the chain rule provides

n—1

V() = (0nTs)(0;(2))(0kO)m(z) =0, k=1...,n—1

m=1

and justifies that the gradient of the hypograph function is orthogonal to all tangen-
tial vectors

(0,0;(x), (VU »)(0;(x))=0 VzeQ;, k=1,....,n,j=1,...,M. (35)
Therefore, the normed gradient

(VUs)(2)
(Vo) ()]

coincides with the unit outer normal vector on the surface.

N (x) = x €. (3.6)

The equality (3.3) follows taking into account that ¥ | L, =0

vy

V|

s VU

0;| VU 5|
S |V\I/y|2

o a]\I/y
VU

N7

_I/j. [l

7 5

Remark 3.2 In [DMM]1, § 3] the foregoing Lemma 3.1 was proved for a particular
implicit function-for the signed distance

Uy (x) = tdist(z, ) reUgy, (3.7)

where the signs "+ “ and "—* are chosen when x is "above“ . (in the direction of
the unit normal vector) and "below* ., respectively.

The next Lemma 3.3 is identical to [DMM1, Proposition 3.1]. Here we present
a slightly simplified proof.

Lemma 3.3 For any unitary extension A € CY(Uy) of the unitary outer normal
vector field v in a neighborhood U & of .7 the following conditions are equivalent:

i. 8(/VC/V|§, =0, ie, dyNj(x) =0 forx—peSandj=12 .,n

ii. [OpM;—0;Mll, =0 for k,j=1,2,... n

Proof: The implication (i) = () follows readily by writing

(B | -{Eomr)
j=1

J=1 k=1

1 2

n

S S

k=1

1
= val =0. (3.8)

8%
As for the inverse implication, we first observe that, in general,

oy N L= 0 & A| =vimply 8VJV‘/ dependsonlyon v  (3.9)
5% 52 g
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and does not depend on a particular extension .4~ for arbitrary vector field V. In the
sequel we shall tacitly assume that the projection 7 in (2.2) has been extended to
the neighborhood U »

To(x) = [0 — N (x) M(w)] Ty =Ty, TE€Uy. (3.10)

nxn’

Note that U = 75U + (U, .A").4 for arbitrary field U in the neighborhood U..
Then

N | =Ox ol | +UNON| =Onuh| =0nuv,

because 0 4 A ‘f = 0 and 7, U is a tangential field to .. Thus, we can dwell on

the particular extension (3.3) and observe

vy
N = Ok0jr=——| = 0,0, = 0; M,
il = | = 0| = L
which proves the implication (i) = (7). O

Remark 3.4 It is clear that a normal vector field and it’s (non-unique) extension
exists for arbitrary Lipschitz surface, but almost everywhere on ..

Moreover to enjoy the properties listed in Lemma 3.3, we have to consider
smoother than Lipschitz surfaces and assume C*-smoothness of .. 0

Definition 3.5 Let . be a surface in R™ with the unit normal vector field v. A
vector filed .V € CY(Uy) in a neighborhood Uy of .# will be referred to as a

= 1in Uy, and if N satisfies one of the

(equivalent) conditions listed in Lemma 3.3.

proper extension if ./ ‘ =V

For our purposes below the conditions of Lemma 3.3 play a crucial role. Now
we are going to construct the extension of the unit normal field, which is not proper
extension, but satisfies the both conditions of Lemma 3.3.

Lemma 3.6 Let Uy (z) € C*(Uy) and A be unit vector field be as in Lemma 3.1.
Then the vector field

vy

{ 1 ) }v J J ‘V\DVI

Oy N (3.11)

is O*~'-smooth and restricted to the surface coincides with the normal vector field

on.?, ie., ﬂy:ﬂ‘yzyandwehavea;ﬁ/ﬂy:0.

Note/\that the field f is not, in contrast to (3.1) the unit normal vector field,
since | A (x)| # 1 forz & 7.
Proof of Lemma 3.6: First note that

o], = (OuN; — MOy )] (3.12)

7
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Then

afﬂyzzjk\akﬂy = Z%(@kﬂg — %Qm/ﬁg)

5

_Z%ak 3/1/</VZ</V2 L =0x |, —ox |, =0.
O
Let us consider the matrix-function
Wo(z) = —VN(2) = —[0;M(2)] reUy. (3.13)

Lemma 3.7 Let .7 be a hypersurface in R" and fix a properly  extended unit field

N in a neighborhood Uy of #. Then for the matrix function #.(x) in (3.13) the
following are true:

i Wy ¥ =0inUy;
ii. when restricted to the hypersurface % coincides with the Weingarten map-
ping of .S :
Wy‘y: Wy X (314)

iii. the trace on the surface Wy = Wy only depends on . and not on the

choice of the extension N';
iv. Tr V/y }y— Tr Wy = HY;
v. W'V is tangential to .7 for any vector field V : ./ — R".

Proof: First, %,/V = V||A4||* = 0in Uy, justifying (i). Next, (ii) and (iv) follow
from (3.13) and Lemma 2.3, whereas (iii) is a direct consequences of (3.9).

Next, (v) is a consequence of (3.14), for each V' € T.¥ we write
WV = -0 N =T Oy ) = Oy N = — WV
since, as we have just seen, Oy A = %V is tangential to .&. OJ

Let us consider a derivative
.@k—ak—e/%ﬁA 1<k <n.

which is an extended Giinter’s derivative: while restricted to the surface it coincides
with &, = 0, — 10, on .. By virtue of Lemma 3.6, Lemma 3.3 and formula
(3.12) we conclude that:

@kﬁy = 8’“/%15% = -@k‘/%ly = Dy = Dy = @j‘/%f’y‘
= M|, =DM, (3.15)
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Theorem 3.8 Let .¥ C R™ be a hypersurface given implicitly ¥ o (p) = 0 by the
function U »(p) € C*(Uy). Then at p € . the Weingarten matrix is

W (p) = (AN ()N (p) = L)W (p) (Lo — A (p)A (D)), (3.16)

where A is given by the formula (3.1) and W (p) is, up to the multiplier, the
Hessian of V o :

] RUy(p) -+ 010,V s (p)

W) = 55,0

OV y(p) -+ 02Uy (p)

Proof: Due to (3.14) for the Weingarten matrix at p € .% we have

Vo(p) = — [51«/@

pey}an'

For conciseness, we will drop the sign of restriction | when it does not leads to a
confusion. Applying (3.12) we then obtain

M - O,
Wy =(NAN"=L)| =+ o : (3.17)

Further, we have

pu— p— —_— w )
%Hil.s a’“|v\1/y| 7T VU, ‘9’“<|va|>8] 7
1
e » P
|V\II | (0;00V 5 — N; 04O,V )
and therefore we get
hM - O, . RVy o 010,Vy
: : = =7 : : (Ly— AN NT).
VU )
anf/’/l o ant/%z analqj,? e 871\1!5/’
From the obtained equality and from (3.17) follows (3.16). [
If 6(p) € T,., then
s (0)0(p) = {N (D) (p) — Lo} W (0)8(p).
Thus the eigenvalues of the matrices #(p) and of
Ay (p) = {AN (p)A T (p) — 1.} Wo(p) (3.18)

coincide. Let denote them by {x;(p) }1<;<n, setting the last one zero ,(p) = 0.
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From this representation we immediately have that the eigenvalues {x,(p) }1<j<n
are the solutions of the following equation

det(Zy(p) —rI) =0
and the mean curvature is

= H(p) _ ey (p)
n—1

for pe.”.
=1

.

Gauf3’s principal curvature £ (p) at p € .7 (cf. (1.24)) equals to the coefficient
at A of the polynomial — det(</(p) — A1) (cf. (2.13)), i.e.:
d

Hy(p) = I det(Zy(p) — A1) . (3.19)
A=0

Example 3.9 Let us demonstrate some obtained results for the ellipsoid &y L de-
fined in (1.6). We have

djk } .
Won-1(p) = | —1— = diag(a1(p), ..., ay, ,
gt ) = || = (a0 9)
a;(p) = 2;, vi(p) = pjay(p) = QL,
rj Rr,O(p) Tj Rr,O(p)
where
n 911/2
p,
ra = 3 (%)
j=1 NJ
Then from (3.18) and (3.2) we get
a1(vi—1)  aany . U Vply
anve  ap(vi—1) ... Oy Vp Vo
Hon 1 (p) = : : N : (3.20)
oy, QololVy -+ (V2 —1)
and the mean curvature is
n—1
% » (p) _ Ii](p) _ TI'QQ{g’nfl _ Z Oéj ) 1)
o —n — 1 n—1 n—1
Jj=1 7j=1
for peéy.

Further, to avoid routine and voluminous calculation, let n = 3. Then we obtain
—det(&%g;%q — k1) =k — o (V] — 1)+ a(v3 — 1) + az(vs — 1)]x?
+arasvs + agasvi + ajaavilk
and, due to (3.19), Gauf’s principal curvature at p € &, equals:
Hen1(p) = a1(p)as(p)vz (p) + az(p)as(p)vi(p) + aa(p)oz(p)v (p)

1

———5——— for pe&EYT.
7’17’27’3330( ) o
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Example 3.10 Let us calculate the mean and Gauf3’s principal curvatures of the
saddle surface in R3, given implicitly by the function

Vo (z1,x9, 3) = T3 — 2122 = 0.

Then
—x —x 1
M) = 22 2y3 ' () = 21 2V3’ () = 2 213
(1427 +23)> (1427 +23)> (1427 +23)>
and
1 0 -1 0
(L+pi+p3)2 \ o0 0 o0
From (3.18) and (3.2) we then obtain
1 v(p)va(p) vi(p) =1 0
dy(p) = ————7 | B -1 npEwnp 0 |,
L2V 4107 \ w(p)n(p) ws(p)nalp) O
which immediately gives
K (D) (- V) — () -
= (1—-v — v S
R A R Y R
and
Tra -1 -
Hy(p) = ,/(1p) = 5 IVive = % for pe.”.
n—= (1+p1+p2)2 (1+p1+p2)2

Two principal curvatures of the surface coincide with the eigenvalues of the
matrix < o

wr(p) = _PP2 ™ V(1 +p1)(£ )
(L+pi+p3)2

ralp) =~ VLT p) (13+ 7,
(1+pi+p3)2

for p € 7, while the third eigenvalue is indeed 0.
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