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A stratified general bianisotropic medium is considered, consisting of several infinite slabs either between two
half-spaces filled with isotropic material, or grounded. The slab is illuminated by an incident plane wave from
one of the half-spaces. The excited electromagnetic field inside the bianisotropic slab and in the isotropic
domains is described.
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Introduction

In three dimensional Euclidean space R3 with coordinates x, y, z the domain located between the planes z =
0 = d0 and z = −dn = −d is occupied by n–layered structure, composed of a stratified general bianisotropic
medium. The upper half space Ω′ = R3

+ = {(x, y, z) : z > 0} is filled by an isotropic medium (e.g. with an air)
with the scalar dielectric constants ε′, µ′, whereas the lower half space, the domain Ω′′ = {(x, y, z) : z < −dn},
is filled either with an isotropic material with dielectric constants ε′′, µ′′, or is grounded (see Fig. 1 and Fig. 2).

Multi-layer slab Grounded slab
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The domains Ωj = {(x, y, z) : −dj < z < −dj−1}, j = 1, . . . , n are filled up by a most general bian-
isotropic material characterized by four constitutive tensors (see [3]):
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 –relative dielectric permittivity,
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 –relative magnetic permeability,
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 and η(j) =
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–cross coupling tensors.

Interaction of electromagnetic waves with the above described system of bianisotropic slabs are governed by
the Maxwell equations. For time harmonic fields with angular frequency ω we get the following equation system
for the slab Ωj with respect to electric and magnetic field vectors E end H:

rotE = −iωµ0(ζ−1
0 η(j)E + µ(j)H) , (0.1)

rotH = iωε0(ε(j)E + ζ0ξ
(j)H) , j = 1, . . . , n , (0.2)

ζ0 :=
(
µ0

ε0

) 1
2

(0.3)

In the domains Ω′ and Ω′′ the equations acquire the form

rotE = −iωµ0µH , (0.4)

rotH = iωε0εE . (0.5)

Here

E :=

 Ex

Ey

Ez

 , H :=

 Hx

Hy

Hz

 ,
ε0 is the permittivity and µ0 is the permeability of a vacuum, ε and µ are permittivity and permeability of the
particular domain (Ω′ or Ω′′).

We assume that the domain Ω′ is illuminated with plane waves and describe the electromagnetic field in each
of the domains Ωj , j = 1, . . . , n, Ω′. Moreover, in the case when the slab is not grounded and Ω′′ is present, we
also describe the electromagnetic field in Ω′′.

The problem was treated by J.Tsalamengas in [5]. The solution found in the present paper (1.6) is simpler and
more general. Moreover, (1.6) is valid in more general situation when the matrix Pj has multiple eigenvalues, but
is still diagonalizable. (cf. [5, (22b)-(26)]). Other important case of multiple eigenvalues is the case of isotropic
slab. Then the eigenvalues are ±i and each eigenvalue has multiplicity 2. This case can not be covered by the
approach suggested in [5].

In § § 2–3 a general grounded bianisotropic slab, consisting of a single layer, is illuminated by the plane
wave (E inc,H inc) incident from the domain Ω′ along the unit vector k inc ([5]). The solution obtained below
improves the corresponding results in ([5]).

In the concluding § 4 we treat the problem of reflection and transmission of a plane wave through a general
bianisotropic slab between two half spaces Ω′ and Ω′′ filled by isotropic material.

1 Solution of Maxwell’s equations for a slab

Applying the partial Fourier transform with respect to the variables (x, y)

K(kx, ky, z) := F(x,y)→(kx,ky)[K(x, y, z)](kx, ky, z)

:=

∞∫
−∞

∞∫
−∞

eikxx+ikyyK(x, y, z)dxdy
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(the dual variables are kx and ky , respectively) we get the following system of ordinary differential equations
with respect to the Fourier images of E and H in Ωj :

−G d

dz
Et +A

(j)
1 Et +B

(j)
1 Ht + C

(j)
1 Nz = 0,

G
d

dz
Ht +A

(j)
2 Et +B

(j)
2 Ht + C

(j)
2 Nz = 0,

A
(j)
3 Et +B

(j)
3 Ht + C

(j)
3 Nz = 0.

(1.1)

Here

E :=

 Ex

Ey

Ez

 = FE , H :=

 Hx

Hy

Hz

 = FH

Et :=
[
Ex

Ey

]
, Ht :=

[
Hx

Hy

]
, Nz :=

[
Ez

Hz

]

A
(j)
1 := −ik0η

(j)
t , B

(j)
1 := −ik0ζ0µ

(j)
t , C

(j)
1 := −i

[
k0η

(j)
xz − ky k0ζ0µ

(j)
xz

k0η
(j)
yz + kx k0ζ0µ

(j)
yz

]
,

A
(j)
2 := −ik0ζ

−1
0 ε

(j)
t , B

(j)
2 := −ik0ξ

(j)
t , C

(j)
2 := −i

[
k0ζ

−1
0 ε(j) k0ξ

(j)
xz + ky

k0ζ
−1
0 ε

(j)
yz k0ξ

(j)
yz − kx

]
,

k0 := ζ0ωε0 = ω
√
µ0ε0 ,

A
(j)
3 := −i

[
k0ζ

−1
0 ε

(j)
zx k0ζ

−1
0 ε

(j)
zy

k0η
(j)
zx + ky k0η

(j)
zy − kx

]
,

B
(j)
3 := −i

[
−ky + k0ξ

(j)
zx kx + k0ξ

(j)
zy

k0ζ0µ
(j)
zx k0ζ0µ

(j)
zy

]
,

C
(j)
3 := −ik0

 ζ−1
0 ε

(j)
zz ξ

(j)
zz

η
(j)
zz ζ0µ

(j)
zz

 , G :=
[

0 −1
1 0

]
,

where Mt =
[
Mjk

]
2×2

denotes the upper left 2× 2 block of the initial 3× 3 matrix M =
[
Mjk

]
3×3

.

The total stored energy U of the dynamical electromagnetic field
[
E
H

]
in bianisotropic medium is given by

the formula (see [3, § 1.3]):

2U = ε0εuvEuEv + (µ0ε0)
1
2 (ξuvEuHv + ηvuEvHu) + µ0µuvHuHv (1.2)

(we accept the standard Einstein’s convention that with respect to repeated indices u, v the sum over u, v = x, y, z
is taken automatically).

If the electromagnetic field is excited ((E,H) 6= 0), the corresponding stored electromagnetic energy should
be positive U > 0 and the energy vanishes if and only if E = H = 0. To enforce the formulated property, we
have to accept that the quadratic form U in (1.2) is positive definite. The condition (1.2) implies in particular

εuu > 0 , µuu > 0 , Du := εuuµuu − ηuuξuu > 0 for all u = x, y, z ,

and, therefore,

detC(j)
3 = −k2

0(ε
(j)
zz µ

(j)
zz − ξ(j)zz η

(j)
zz ) 6= 0 ∀j = 1, . . . , n. (1.3)
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If we solve for N z the third equation in (1.1) and insert it into the first two equations we obtain

d

dz

[
Et

Ht

]
= −ik0P

(j)

[
Et

Ht

]
, in Ωj , (1.4)

where

P (j) :=
i

k0

[
GC

(j)
1 (C(j)

3 )
−1
A

(j)
3 −GA

(j)
1 GC

(j)
1 (C(j)

3 )
−1
B

(j)
3 −GB

(j)
1

GA
(j)
2 −GC

(j)
2 (C(j)

3 )
−1
A

(j)
3 GB

(j)
2 −GC

(j)
2 (C(j)

3 )
−1
B

(j)
3

]
. (1.5)

General solution to (1.4) in Ωj has the form[
Et(z)
Ht(z)

]
= exp[−ik0(dj−1 + z)P (j)]

[
Et(−dj−1)
Ht(−dj−1)

]
= · · · (1.6)

= T (j)(dj−1 + z)T (j−1)(dj−2 − dj−1) . . . T (1)(−d1)
[
Et(0)
Ht(0)

]
, −dj < z < −dj−1 ,

T (k)(ζ) := exp[−ik0ζP
(k)] =

[
T

(k)
1 (ζ) T

(k)
2 (ζ)

T
(k)
3 (ζ) T

(k)
4 (ζ)

]
, j, k = 1, . . . , n (1.7)

and T
(k)
1 (ζ), . . . , T (k)

4 (ζ) are 2 × 2 matrix functions. From the structure of the matrix T (k) it follows that
T (k)(−ζ) = (T (k))

−1
(ζ).

We can express T (j) as a polynomial of the matrix P (j). If the matrix P (j) is diagonalizable (i.e., P (j) has
a simple Jordan structure) and λ(j)

1 (kx, ky), . . . , λ(j)
m (kx, ky), 1 ≤ m ≤ 4 of the matrix P (j)(kx, ky) are all

different eigenvalues:

λ
(j)
k (kx, ky) 6= λ

(j)
l (kx, ky) ∀kx, ky ∈ R , k, l = 1, . . . ,m, k 6= l ,

then due to the Lagrange interpolation

T (j)(z) := exp(−ik0zP
(j)) =

m∑
k=1

∏
l 6=k

P (j) − λ
(j)
l I

λ
(j)
k − λ

(j)
l

e−ik0λ
(j)
k z, (1.8)

where I is the unit matrix (see [1]). In particular, (1.8) holds, if all eigenvalues of the matrix P (j)(kx, ky) are
distinct (i.e. m = 4).

Other cases can be treated similarly. For example, if eigenvalues coincide pairwise λ(j)
1 = λ

(j)
2 6= λ

(j)
3 = λ

(j)
4 ;

then

T (j)(z) =
exp(−ik0zλ

(j)
1 )

(λ(j)
1 − λ

(j)
3 )2

(P (j) − λ
(j)
3 I)2 − 2

exp(−ik0zλ
(j)
1 )

(λ(j)
1 − λ

(j)
3 )3

(P (j) − λ
(j)
1 I)(P (j) − λ

(j)
3 I)2

−ik0z
exp(−ik0zλ

(j)
1 )

(λ(j)
1 − λ

(j)
3 )2

(P (j) − λ
(j)
1 I)(P (j) − λ

(j)
3 I)2 +

exp(−ik0zλ
(j)
3 )

(λ(j)
3 − λ

(j)
1 )2

(P (j) − λ
(j)
1 I)2

−2
exp(−ik0zλ

(j)
3 )

(λ(j)
3 − λ

(j)
1 )3

(P (j) − λ
(j)
1 I)2(P (j) − λ

(j)
3 I)

−ik0z
exp(−ik0zλ

(j)
3 )

(λ(j)
1 − λ

(j)
3 )2

(P (j) − λ
(j)
1 I)2(P (j) − λ

(j)
3 I) . (1.9)

Let us note that for an isotropic layer Ω(j) we have to deal just with this case.
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2 Interaction of plane waves with bianisotropic grounded slab

In the present section we shall consider reflection of waves by a general grounded bianisotropic slab, consisting
of a single layer. The slab is illuminated by the plane wave (E inc,H inc) incident from the domain Ω′ along the
unit vector k inc ([5]):

E inc(r) = E0 exp
[
− ik0k

inc · r
]
,

H inc(r) = H0 exp
[
− ik0k

inc · r
]
,

(2.1)

where

k inc = x · sinψ − z cosψ, r = x · x+ y · y + z · z,

x , y , z are the basis vectors of coordinate system, ψ is the angle of incidence of the plane wave, and E0, H0 are
constant vectors. They are expressed by means of constant quantities ETM

inc and ETE
inc as follows

E0 = −ETM
inc y − ETE

inc (k inc × y),

H0 =
[
− ETM

inc (k inc × y) + ETE
inc y

]/
ζ0.

(2.2)

Since the excitation wave is independent of y-coordinate, it is rather natural to assume that also a solution is
independent of y. Then, applying the Fourier transform Fx→kx

to (2.1), we get

E inc(kx; z) = E0 exp(izk0 cosψ)δ(kx − k0 sinψ), (2.3)

H inc(kx; z) = H0 exp(izk0 cosψ)δ(kx − k0 sinψ). (2.4)

where δ denotes the Dirac’s distribution.
In the domain Ω′ occupied by the air, besides the excited wave, propagates the reflected wave, which in fact is

a solution of Maxwell homogeneous equation in the half-space z > 0 satisfying radiation condition at infinity. It
can be expressed by means of TM and TE waves as follows:

E (r)(kx; z) =
[
− ETM

0 (kx)y − ETE
0 (kx)

(
iγ0x+ kxz

)/
k0

]
e−γ0z, (2.5)

H (r)(kx; z) =
1
ζ0

[
− ETM

0 (kx)
(
iγ0x+ kxz

)/
k0 + ETE

0 (kx)y
]
e−γ0z (2.6)

Here E (r) and H (r) denote the Fourier transforms of reflected electric and magnetic fields, respectively, ETE
0

and ETM
0 are unknown temperate distributions, γ0 = (k2

x − k2
0)

1/2 and is chosen so that −π
2
< arg γ0 ≤

π

2
,

k0 = ω
√
µ0ε0, ζ0 =

√
µ0/ε0. (see [5]).

On the plane z = 0, separating the air and the slab boundary conditions have the form:{
Et
′(0)

Ht
′(0)

}
=

{
Et

(1)(0)

Ht
(1)(0)

}
; (2.7)

where

{
Et
′

Ht
′

}
and

{
Et

(1)

Ht
(1)

}
represent value of

{
Et

Ht

}
in Ω′ and Ω(1) respectively. On the plane z = −d,

separating the slab and the ground

Et
(1)(−d) = 0, (2.8)

because the slab is grounded.
Thus the problem of interaction of plane waves with grounded bianisotropic slab can be formulated in the

following way:
In the half-space {z > −d} find electric and magnetic fields E(x, z) and H(x, z) belonging to the space

of temperate distributions S′(R) for each z > −d, satisfying Maxwell equations for isotropic medium together
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6 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

with radiation conditions in the half-space {z > 0}, Maxwell equations for bianisotropic medium in the slab
{−d < z < 0} and boundary conditions (2.7) and (2.8).

An electromagnetic field appears in the domain Ω′ as the superposition of the initiated and the reflected waves:{
Et
′(0)

Ht
′(0)

}
=

{
E0t

H0t

}
δ(kx − k0 sinψ) +

{
E (r)

t (kx, 0)

H (r)
t (kx, 0)

}
. (2.9)

Here

E0t =
(
E0x

E0y

)
, H0t =

(
H0x

H0y

)
. (2.10)

In the domain Ω(1) we have (
E(1)

t (z)

H(1)
t (z)

)
= T (kx, 0; z)

(
E(1)

t (0)

H(1)
t (0)

)
, (2.11)

T (kx, 0; z) = exp
(
− ik0zP (kx, 0)

)
, T =

(
T1 T2

T3 T4

)
, (2.12)

where T1, . . . , T4 are 2× 2 matrices (see (1.6)–(1.7)) and P is defined as P (j) in (1.5) by replacing A(j)
k , B(j)

k ,
C

(j)
k with Ak, Bk, Ck, respectively.
From (2.7)–(2.12) we get

T2(d)Ht
(1)(−d) = E0tδ(kx − k0 sinψ) + E (r)

t (kx, 0), (2.13)

T4(d)Ht
(1)(−d) = H0tδ(kx − k0 sinψ) +H (r)

t (kx, 0). (2.14)

Involving 2.3–2.6 we can eliminate E0t and H0t from (2.13)–(2.14) and obtain an equation with respect to the
unknown Ht

(1)(−d):[
ζ0N T4(d)−M T2(d)

]
Ht

(1)(−d) =
[
N V +M U

]( ETE
inc

ETM
inc

)
δ(kx − k0 sinψ) . (2.15)

where M , N , U and V are the following dimensionless matrices

M = −

(
k0 0

0 iγ0

)
, N =

(
0 −iγ0

k0 0

)
.

U =
(

cosψ 0
0 1

)
, V =

(
0 − cosψ
1 0

)
.

By solving Ht(−d) from (2.15) and inserting it back into (2.13), (2.14), we get the equations for the vector(
ETE

0 , ETM
0

)
:(
ETE

0

ETM
0

)
= K(d)Ht(−d)−

(
ETE

inc

ETM
inc

)
δ(kx − k0 sinψ) , (2.16)

where

K(z) :=

(
ζ0T43(z) ζ0T44(z)
T23(z) T24(z)

)
,

As a consequence we can detect the reflected wave
(
E (r),H (r)

)
from (2.5), (2.6).

As for the electromagnetic field inside the bianisotropic slab, we can find it from (2.11), (2.12):(
Et(z)
Ht(z)

)
= T (kx, 0; z)

(
T2(kx, 0; d)

T4(kx, 0; d)

)
Ht(−d). (2.17)
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3 Solution of Equation (2.15)

Under the notation

A(kx) = ζ0N T4(d)−M T2(d),

B(kx) = N V +M U = −(iγ0 + k0 cosψ)

(
1 0

0 −1

)
,

Equation (2.15) can be rewritten as follows

A(kx)Ht(−d) = B(kx)

(
ETE

inc

ETM
inc

)
δ(kx − k0 sinψ). (3.1)

Entries of the matrices T2(d) and T4(d) are analytic functions with respect to kx. Elements of the matrices M
and N are analytic for kx 6= ±k0 and are only continuous at these points. Therefore, the determinant det A(kx)
is analytic also for kx 6= ±k0 and has either finite or infinite number of zeroes say, only at

{
kx = aj

}
j∈σ

, where
either σ = {1, 2, . . . , n} or σ = {1, 2, . . .}. They are isolated if aj 6= ±k0.

Let us prove now, that if some aj coincides to k0 or −k0, then it is isolated zero as well.
Consider

Φ(kx, γ0) = ζ0N(γ0)T4(kx, d)−M(γ0)T2(kx, d),

which coincides withA(kx), when γ0 = (k2
x−k2

0)
1/2 (cf. the notation after (2.6)). If kx = aj is a zero ofA(kx),

then γ0 = (a2
j − k2

0)
1/2 is a zero of either Φ((γ2

0 + k2
0)

1/2, γ0), or Φ(−(γ2
0 + k2

0)
1/2, γ0). Both functions are

analytic with respect to the variable γ0 everywhere except the points γ0 = ±ik0; therefore, if k0 6= 0 then γ0 = 0
(i.e., kx = ±k0) can only be an isolated zero.

If k0 = 0 then aj for each j is a zero of either Φ(kx, kx), or Φ(kx,−kx). Both functions are analytic and
therefore have only isolated roots.

Employing partition of unity we can construct a sequence {ηj(x)} of functions ηj ∈ C∞(R) possessing the
following properties:

1) ηj = 1 in some neighborhood of aj .

2) supp ηj ⊂ (pj , qj), and ak 6∈ (pj , qj), if k 6= j. Here pj , qj are either finite numbers or ±∞.

3)
∑
j∈σ

ηj(x) = 1. (3.2)

If u is a solution of the system

A(kx)u = 0, kx ∈ R, (3.3)

then u (j) = ηju solves the equation

A(kx)u (j)(kx) = 0, kx ∈ (pj , qj). (3.4)

Inside the interval (pj , qj) the matrix A only degenerates at the point aj . We have to treat the following two
cases separately:

1) aj 6= ±k0,
2) A degenerates at the point aj = +k0 or aj = −k0.
In the first case entries of A are analytic functions in (pj , qj) and detA = 0 only at one point of (pj , qj),

namely at aj . Then the matrix A can be represented as follows ([4, § 8.1])

A(kx) = A
(j)
0 (kx)D (j)(kx)R (j)(kx), kx ∈ (pj , qj), (3.5)
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where A0 is invertible with analytic entries in the interval pj < kx < qj . The matrix D (j)(kx) is diagonal

D (j)(kx) =

 (kx − aj)µ
(j)
1 0

0 (kx − aj)µ
(j)
2

 , µ
(j)
1 , µ

(j)
2 ∈ N0, (3.6)

where N0 denotes the set of nonnegative integers and R (j)(kx) is a polynomial matrix-function with the constant
non vanishing determinant. In [4, § 8.1] is described an algorithm of finding A (j)

0 , D (j) and R (j).
Denoting

v (j) = R (j)u (j) (3.7)

from (3.4) we get the scalar equations

(kx − aj)µ(j)
p v(j)

p = 0, p = 1, 2. (3.8)

A solution of (3.8) in the space D′((pj , qj)) of distributions on (pj , qj) has the form

v(j)
p (kx) =

µ(j)
p −1∑
`=0

C
(j)
p` δ

(`)(kx − aj), p = 1, 2, (3.9)

where C(j)
k are arbitrary constants (see, e.g., [6, Ch.II, § 6.4]). To verify (3.9) it is sufficient to recall that a

solution of (3.8) has pointwise support supp v(j)
p = {aj} and, therefore, represents a finite linear combination of

derivatives δ(`)(kx − aj) (see [2, Ch.2, § 2.3]). Now it is sufficient to note that (kx − aj)mδ(`)(kx − aj) 6= 0 iff
` ≥ m.

Inserting v(j)
p (kx) from (3.9) into (3.7) and solving (3.7) we find

u
(j)
k =

2∑
p=1

µ(j)
p −1∑
`=0

C
(j)
p` L

(j)
kp (kx)δ(`)(kx − aj), k = 1, 2 (3.10)

where

L (j) =

(
L

(j)
11 L

(j)
12

L
(j)
21 L

(j)
22

)
=
(
R(j)

)−1
.

Due to the properties of R (j) entries of L(j)
ik (kx) are analytic in the neighborhood of (pj , qj).

Let f ∈ C`((p, q)), a ∈ (p, q), then

f(x)δ(`)(x− a) =
∑̀
m=0

(−1)m+`C`
mf

(`−m)(a)δ(m)(x− a), (3.11)

where C`
m =

`!
m!(`−m)!

are the binomial coefficients.

Using (3.11) we can rewrite (3.10) as

u
(j)
k (kx) =

2∑
p=1

µ(j)
p −1∑
`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

`
m

d`−m

dk`−m
x

L
(j)
kp (aj)δ(m)(kx − aj) (3.12)

and obtain a solution of (3.4) when aj 6= ±k0.
Representation (3.5) also holds when aj coincides with one of the points ±k0, say, with k0. If that’s the

case, the matrix A0 in the representation (3.5) has continuous entries in the interval pj < kx < qj and is
invertible. The entries of R (j)(kx), participating in the expression (3.6), are polynomials of (kx − aj)1/2 and
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det R (j)(kx) = const 6= 0. And, finally, 2µ(j)
1 , 2µ(j)

2 ∈ N0, where µ(j)
1 , µ

(j)
2 are the numbers participating in

the expression D (j)(kx) (see (3.6)).
Inserting the factorization (3.5) into Equation (3.4) we obtain the following replacement to the system (3.8):

(kx − aj)µ(j)
p v(j)

p = 0, 2µ ∈ N0, x ∈ (pj , qj), p = 1, 2. (3.13)

Solution to (3.13) in the space D′((pj , qj)) has the form

v(j)
p =

n(j)
p∑

`=0

C
(j)
p` δ

(`)(kx − aj)

with arbitrary constants C(j)
p` and with

n(j)
p :=

 [µ(j)
p ], µ

(j)
p 6∈ N0,

µ(j)
p − 1, µ

(j)
p ∈ N0,

(3.14)

where [a] denotes the integer part of a. Note, that in this case solution v(j)
p in fact is in the space D′[µ]((pj , qj))

of distributions of order [µ], i.e. in the space of linear continuous functionals over the space C [µ]
0 ((pj , qj)) of

functions with [µ]-continuous derivatives and compact supports in (pj , qj). In this case the product (x− a)µv
(j)
p

is defined correctly (see [2, Ch.2]). Now, if we repeat the foregoing reasoning, we obtain instead of (3.12):

u
(j)
k (kx) =

2∑
p=1

n(j)
p∑

`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

(`)
m

d`−m

dk`−m
x

L
(j)
kp (aj)δ(m)(kx − aj).

Due to (3.2) the sum

uk(kx) =
∑
j∈σ

u
(j)
k (kx) =

∑
j∈σ

2∑
p=1

n(j)
p∑

`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

(`)
m

d`−m

dk`−m
x

L
(j)
kp (aj)δ(m)(kx − aj) . (3.15)

represents a solution to (3.3).
To solve (3.1) we should find prior a solution of inhomogeneous equation

A(kx)u = δ(kx − b)F (kx). (3.16)

Consider the following cases:

1) The matrix A is invertible at the point kx = b, i.e., b 6= aj , j ∈ σ, then

u = A−1(b)F (b)δ(kx − b) (3.17)

obviously solves (3.16).

2) For some j ∈ σ, b = aj and aj 6= ±k0. It can easily be observed that in this case

u
(j)
k =

2∑
p=1

µ(j)
p∑

m=0

(−1)µ(j)
p +m

µ
(j)
p !

[
(A (j)

0 (aj))−1F (aj)
]

p
C

µ(j)
p

m
dµ(j)

p −m

dk
µ

(j)
p −m

x

L
(j)
kp (aj)δ(m)(kx − aj) (3.18)

solves Equation (3.16).
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3) If b = aj and aj equals to one of the points ±k0, then from (3.5), (3.7), (3.16) follows that:

(kx − aj)µ(j)
p v(j)

p =
[
(A (j)

0 (aj))−1F (aj)
]

p
δ(kx − aj). (3.19)

If
[
(A (j)

0 (aj))−1F (aj)
]

p
6= 0 and µ(j)

p is not an integer for some j, then (3.19) has no solution; otherwise

the case 3) converts into the case 2).

Thus we have obtained a general solution of Equation (3.16) in the following form:

uk(x) =
∑
j∈σ

∑̀
p=1

n(j)
p∑

`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

`
m

d`−m

dk`−m
x

L
(j)
kp (aj)δ(m)(kx − aj) + u

(1)
k (kx), (3.20)

where n(j)
p is defined from (3.14) and u(1)

k (x) is a solution of (3.16).
If we apply obtained results to Equation (3.1) we get the following:
If ψ 6= ±π

2
, then Equation (3.1) has the solution

Ht(−d) =
∑
j∈σ

2∑
p=1

n(j)
p∑

`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

`
m

d`−m

dk`−m
x

L(j)
p (aj)δ(m)(kx − aj) +H(1)(kx), (3.21)

where L(j)
p =

(
L

(j)
1p

L
(j)
2p

)
, p = 1, 2, j ∈ σ, and

H(1)(kx) = −2k0 cosψA−1(k0 sinψ)
(

ETE
inc

−ETM
inc

)
δ(kx − k0 sinψ) for detA(k0 sinψ) 6= 0 , (3.22)

H(1)(kx) =
2∑

p=1

µ(j)
p∑

m=0

(−1)µ(j)
p +m+1

µ
(j)
p !

2k0 cosψ
[(
A

(j)
0 (aj)

)−1
(

ETE
inc

−ETM
inc

)]
p

×Cµ(j)
p

m
dµ(j)

p −m

dk
µ

(j)
p −m

x

L
(j)

p (aj)δ(m)(kx − aj) for detA(k0 sinψ) = 0 , (3.23)

where k0 sinψ = aj . For the limiting cases ψ = ±π
2

F (kx)δ(kx − k0 sinψ) = B(k0 sinψ)δ(kx − k0 sinψ) = B(k0)δ(kx − k0) = 0

and (3.1) becomes homogeneous. The solutions is then given by (3.21) with H(1) = 0.
The functions ETE

0 and ETM
0 can be found from (2.16) by inserting there the known solution Ht(−d) and

performing the multiplication according to (3.11):

(
ETE

0

ETM
0

)
=
∑
j∈σ

2∑
p=1

n(j)
p∑

`=0

∑̀
m=0

m∑
n=0

(−1)`+nC
(j)
p` C

`
mC

m
n

d`−m

dk`−m
x

L(j)
p (aj)

× dm−n

dkm−n
x

K(aj , 0, d)δ(n)(kx − aj) + S(kx)−
(

ETE
inc

ETM
inc

)
δ(kx − k0 sinψ), (3.24)

where

S(kx) = −2k0 cosψS(k0 sinψ, 0, d)A−1(k0 sinψ)
(

ETE
inc

−ETM
inc

)
δ(kx − k0 sinψ) (3.25)
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for detA(k0 sinψ) 6= 0 and

S(kx) =
2∑

p=1

µ(j)
p∑

m=0

m∑
n=0

(−1)µ(j)
p +n+1

µ
(j)
p !

2k0 cosψ
[(
A

(j)
0 (k0 sinψ)

)−1
(

ETE
inc

−ETM
inc

)]
p

×Cµ(j)
p

m Cm
n

dm−n

dkm−n
x

K(k0 sinψ, 0, d)
dµ(j)

p −m

dk
µ

(j)
p −m

x

Lp(k0 sinψ)δ(n)(kx − aj) (3.26)

for detA(k0 sinψ) = 0, with k0 sinψ = aj . The vectors Et(z) and Ht(z) can be found from (2.17) similarly.
In conclusion we perform inverse Fourier transform in obtained expressions simply replacing

δ(n)(kx − a) by
(ix)n

2π
exp(−iax).

Summarizing the above considerations we can formulate the following theorem:

Theorem 3.1 If the matrix A(kx) = ζ0N(kx)T4(kx, 0; d) −M(kx)T2(kx, 0; d) degenerates at some point
aj , then the homogeneous equation A(kx)Ht(−d) = 0 has then nontrivial solutions given by (3.15).

A general solution of inhomogeneous Equation (3.1) is given by formulae (2.5),(2.6),(2.17), (3.24)–(3.26) and
depends on arbitrary constants C(j)

p` . Functions ETE
0 , ETM

0 , Et(z), Ht(z), depend on these constants as well.

Finally note, that expressions obtained in the present section for bianisotropic slab consisting of a single layer
also remain valid for multilayered slab if in our considerations transition matrix T (d) is replaced by a product of
transition matrices of component layers (see (1.6), (1.7)):

T (d) =
(
T1(d) T2(d)
T3(d) T4(d)

)
= T (1)(d1)T (2)(d2) · · ·T (n)(dn). (3.27)

4 Reflection and transmission through a general bianisotropic slab

Consider reflection and transmission of a plane wave through a general bianisotropic slab between two half
spaces Ω′ and Ω′′ filled by isotropic material (cf. Fig. 1). In this case in addition to fields into the domains Ω′

and Ωj , j = 1, . . . , n we have an electromagnetic field (E (t), H (t)) transmitted into the domain Ω′′ ([5]):

E (t)(kx; z) =
[
− ETM

2 y − ETE
2

(
− iγ2x+ kxz

)/
k2

]
eγ2(z+d), (4.1)

H (t)(kx; z) =
1
ζ2

[
− ETM

2

(
− iγ2x+ kxz

)/
k2 + ETE

2 y
]
eγ2(z+d) (4.2)

From continuity of an electromagnetic field on the hyperplane z = 0{
Et
′(0)

Ht
′(0)

}
=

{
Et

(1)(0)

Ht
(1)(0)

}
; (4.3)

(see (2.7)) and on the hyperplane z = −d{
Et

(1)(0)

Ht
(1)(0)

}
=

{
Et

(t)(0)

Ht
(t)(0)

}
; (4.4)

similarly as in section 2 we derive the following equation

(
W T1(d)Θ− T2(d)Λ
Q T3(d)Θ− T4(d)Λ

)
ETE

0

ETM
0

ETE
2

ETM
2

 =
(

U
−V

)(
ETE

inc

ETM
inc

)
δ(kx − k0 sinψ) (4.5)
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for an unknown vector field (ETE
0 , ETM

0 , ETE
2 , ETM

2 ). Here

W = −

 iγ0

k0
0

0 1

 , Q =
1
ζ0

 0 1
−iγ0

k0
0

 ,

Θ =

 −iγ2

k2
0

0 1

 , Λ =
1
ζ2

 0 1
iγ2

k2
0

 (4.6)

and γp = (k2
x − k2

p)
1
2 , −π

2
< arg γp ≤

π

2
(p = 0, 2).

Applying the method of solution developed in the previous section we get
ETE

0

ETM
0

ETE
2

ETM
2

 =
∑
j∈σ

4∑
p=1

n(j)
p∑

`=0

∑̀
m=0

(−1)m+`C
(j)
p` C

`
m

d`−m

dk`−m
x

L
(j)
kp (aj)δ(m)(kx − aj) + U (1)(kx), (4.7)

where {aj} are all zeros of detA(kx) and

A =
(
W T1(d)Θ− T2(d)Λ
Q T3(d)Θ− T4(d)Λ

)
. (4.8)

Note, that the matrix A(kx) is analytic in the complex place C except the following four points kx = ±kp, p =
0, 2 and the set σ contains these points; L(j) = (L(j)

kp )4×4 = R(j)−1
and the matrix R(j) participates in the

decomposition of A at the point kx (see(3.5)); C`
m are binomial coefficients and C(j)

p` are arbitrary constants; n(j)
p

is defined in (3.14); the vector U (1) is a solution of inhomogeneous Equation (4.5):

U (1)(kx) = A−1(k0 sinψ)F (k0 sinψ)δ(kx − k0 sinψ) if detA(k0 sinψ) 6= 0 , (4.9)

U
(1)
k (kx) =

4∑
p=1

µp∑
m=0

(−1)µp+m

µp!

[
(A0(k0 sinψ))−1

F (k0 sinψ)
]

p

+Cµp
m

dµp−m

dk
µp−m
x

L
(0)
kp (k0 sinψ)δ(m)(kx − k0 sinψ), if detA(k0 sinψ) = 0 . (4.10)

In (4.9), (4.10) F =
(

U
−V

)
, L0 = (R0)−1; A0, R0 are the matrices participating in decomposition of A

at the point a0 = k0 sinψ, and µp are the indices of the decomposition.
Theorem 4.1 A solution to the problem of reflection and transmission of plane waves through a general

bianisotropic slab is given by formulae (4.7)–(4.10).
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[4] S. Prössdorf, Some Classes of Singular Integral Equations, North Holland Publishing Company, Amsterdam 1978.
[5] J.L. Tsalamengas, Interaction of electromagnetic waves with general bianisotropic slabs IEEE Transactions on Mi-

crowave theory and Techniques, 40, No. 10, 1992, 1870–1878.
[6] V. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow 1971.

Copyright line will be provided by the publisher


