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A stratified general bianisotropic medium is considered, consisting of several infinite slabs either between two
half-spaces filled with isotropic material, or grounded. The slab is illuminated by an incident plane wave from
one of the half-spaces. The excited electromagnetic field inside the bianisotropic slab and in the isotropic
domains is described.
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Introduction

In three dimensional Euclidean space R® with coordinates x, 3, z the domain located between the planes z =
0 = dp and z = —d,, = —d is occupied by n-layered structure, composed of a stratified general bianisotropic
medium. The upper half space ' = R3 = {(z,y,2) : z > 0} is filled by an isotropic medium (e.g. with an air)
with the scalar dielectric constants €', i/, whereas the lower half space, the domain Q" = {(z,y, 2) : z < —d, },
is filled either with an isotropic material with dielectric constants £, u”’, or is grounded (see Fig. 1 and Fig. 2).

4 4
—dy —dy
—dy
—ds
Ql/
Multi-layer slab Grounded slab
Fig. 1 Fig. 2

The domains ; = {(x,y,2) : —=d; < z < —d;j_1}, j = 1,...,n are filled up by a most general bian-
isotropic material characterized by four constitutive tensors (see [3]):
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Interaction of electromagnetic waves with the above described system of bianisotropic slabs are governed by
the Maxwell equations. For time harmonic fields with angular frequency w we get the following equation system
for the slab €2; with respect to electric and magnetic field vectors £ end H:

rot B = —iwpo(Cy 'V E + uWH), (0.1)
rot H = iweg(eWE + EWH), j=1,...,n, (0.2)
1
2
Co = (’“‘0> 03)
€0
In the domains Q' and Q" the equations acquire the form
rot £ = —iwpopH , 0.4)
rot H = iwegeF . 0.5)
Here
E; H,
E=|FLE, |, H=|H, |,
EZ HZ

€¢ is the permittivity and p is the permeability of a vacuum, € and g are permittivity and permeability of the
particular domain (2" or Q).

We assume that the domain €’ is illuminated with plane waves and describe the electromagnetic field in each
of the domains Q;, j =1,...,n, Q. Moreover, in the case when the slab is not grounded and Q" is present, we
also describe the electromagnetic field in 2.

The problem was treated by J.Tsalamengas in [5]. The solution found in the present paper (1.6) is simpler and
more general. Moreover, (1.6) is valid in more general situation when the matrix P; has multiple eigenvalues, but
is still diagonalizable. (cf. [5, (22b)-(26)]). Other important case of multiple eigenvalues is the case of isotropic
slab. Then the eigenvalues are +% and each eigenvalue has multiplicity 2. This case can not be covered by the
approach suggested in [5].

In §§ 2-3 a general grounded bianisotropic slab, consisting of a single layer, is illuminated by the plane
wave (E’mc, H mc) incident from the domain €’ along the unit vector k"¢ ([5]). The solution obtained below
improves the corresponding results in ([5]).

In the concluding § 4 we treat the problem of reflection and transmission of a plane wave through a general
bianisotropic slab between two half spaces 2’ and Q" filled by isotropic material.

1 Solution of Maxwell’s equations for a slab

Applying the partial Fourier transform with respect to the variables (z, y)
]C(kta kya Z) = f(m,y)—)(kzky) [K(i, Y, Z)](k’ﬁ kyv Z)

= / /eik”“kny(m,y,z)dxdy

—00 —O0
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(the dual variables are k. and k,, respectively) we get the following system of ordinary differential equations
with respect to the Fourier images of £ and H in ;:

-G 5 + AV + BN, + CYN, =0,
Gth + AV g, + BOH, + PN, =0, (1.1)

AY €+ BYH, + CYN. = 0.

Here
Ex H,
E=|& |=FE, H:==| Hy | =FH
o H.
Ex | He | &
gt._{gy}, H, = Hy], Nz._[HJ
; G ; , ; ; | kon¥) — k kgum
A9 . g (J)7 BY .— ik ¢ (J)7 cY) .— 077 y M50 7
! o ! ookt ! koﬁm + kg koCo,uyz
() L0 B igee) o) g | RoG eV koi(”
A5 = —iko(y , By = —ike&, Oy = —i 1.0G) ,
koCo "y k/’Ofyz — kg
ko := Qoweo = wy/Hoo
A9 | ReGte® koG el
3 kon(J) +ky k ,,7(]) k ’
BO — ;| “hut ko§ ko + ko)
3 k'o(OP'zx kOCOM.(ZJy) 7
) . Co 152]z gjz) 0 -1
03 = —Zko ) ) G = 1 0 s
nzjz COMZJZ
where M; = [Mjk] 5o denotes the upper left 2 x 2 block of the initial 3 x 3 matrix M = [M]k] 3x3°

The total stored energy U of the dynamical electromagnetic field [ [l-:jr } in bianisotropic medium is given by

the formula (see [3, § 1.3]):

2U = EOEquuE'U + (MOEO)%(SU’UEUH’U + nqu'uHu) + ,U/OIU/u'uHqu

(1.2)

(we accept the standard Einstein’s convention that with respect to repeated indices w, v the sum over u, v = x, ¥, 2

is taken automatically).

If the electromagnetic field is excited ((E, H) # 0), the corresponding stored electromagnetic energy should
be positive U > 0 and the energy vanishes if and only if £ = H = 0. To enforce the formulated property, we
have to accept that the quadratic form U in (1.2) is positive definite. The condition (1.2) implies in particular

Euu >0, fuu >0,

and, therefore,

det CY) = —k2 (D) ) —

z

Du = EuuMuu

- nuufuu >0 forall u= T, Y, 2

EDnD)#£0 Vi=1,...,n (1.3)
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4 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

If we solve for A, the third equation in (1.1) and insert it into the first two equations we obtain

a [ it* ] = —iko P [ 7‘1 ] . inQy, (1.4)
where
) . R . . . N =1 . .
P(J) _ i GC£])(C(J)) A(]) GA(lj) GCP)(Céj)) Bé]) _ GBEJ) (1 5)
"k () _ @) (AN 4G) @) _ ) (L RG) '
G A GCy/(C5) A3 G Bs GCs"(C3”) By
General solution to (1.4) in §2; has the form
E(2) | _ oxnlike(d G| Eel=dj—1) | _
[ Hy(2) ] = exp|—iko(d;j_1 + z)PV] Ho(—d, 1) | = (1.6)
=T (d;_y +2)TY"V(dj_g —dj_y)... TV (—dy) £(0) —dj < z< —dj_,
j— j— j=1) - H(0) | j J—1
(k) (k)
: ;7)) T, (¢) ,
TW® () := exp[—iko¢ PP = | "2 2 . g k=1,...,n (1.7)
7)) 770

and Tl(k)(c )y ,Tik)(g ) are 2 x 2 matrix functions. From the structure of the matrix 7 it follows that

70 (=¢) = (T®) Q).

We can express 70) as a polynomial of the matrix PU). If the matrix P) is diagonalizable (i.e., P\Y) has
a simple Jordan structure) and A (ky, ky), ..., A% (kuy ky), 1< m < 4 of the matrix PO (k,, k,) are all
different eigenvalues:

N (o by) # 0 (o by) - haoky €R, D=1, m, kAL

then due to the Lagrange interpolation

) PU — N
(4) — i () —ikoA) 2
TY)(z) := exp(—ikozPV E I | )\(J) )\(J 0K 2, (1.8)
k=11#k

where [ is the unit matrix (see [1]). In particular, (1.8) holds, if all eigenvalues of the matrix PG )(km, k,) are
distinct (i.e. m = 4).
Other cases can be treated similarly. For example, if eigenvalues coincide pairwise /\gj ) = /\gj ) 4 /\(3 ) = /\(3 ),

then
QGXP(fikozk(ﬂ)) (PY)
0 20y
exp(—ikoz)\éj))
()\éj) o )\gJ))z

exp(—iko\) LGy 6 pye
()\gj) B )\gj))Q 3
; (4)
Ozexp((j)—%koigl )( pl)
(AT = A37)?
exp(—ikoz)\é])) )
()\gy) - )\gj))3
exp(— @koz)\( ))

—ikoz TS (P9 — 2D 1)2(P9D) —2PT) (1.9)

T(J)(Z) — _ /\5])[)(])(]) _ /\é])[)?

A P9 AP 1?4 (PY —AP1)?

B )\gj)l)2(P(j) _ )‘:(Sj)j)

Let us note that for an isotropic layer 2) we have to deal just with this case.
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2 Interaction of plane waves with bianisotropic grounded slab

In the present section we shall consider reflection of waves by a general grounded bianisotropic slab, consisting
of a single layer. The slab is illuminated by the plane wave (E "¢, H ™) incident from the domain {2’ along the
unit vector k¢ ([5]):

Eim(r) = Egexp [ — ikok ™ - 1],

) . 2.1
H™¢(r) = Hyexp [ — tkok e . T],

where
k" =F.sintp —Zcos), r=x-TH+y-G+2z-%,

T,y ,Z are the basis vectors of coordinate system, 1) is the angle of incidence of the plane wave, and Ey, H are

constant vectors. They are expressed by means of constant quantities E2Y and ELTE as follows

By = —Ege'y — Efc (k™ x7),

wmc

Ho = [ - ERY (v x ) + ELE3] fo @2

Since the excitation wave is independent of y-coordinate, it is rather natural to assume that also a solution is
independent of y. Then, applying the Fourier transform F,_,j_ to (2.1), we get

EM¢(ky; 2) = Egexpl(izkg cos ) (ky — ko siny), (2.3)
'Hmc(kz; z) = Hpexp(izkg cos)d(k, — ko sin). (2.4)

where § denotes the Dirac’s distribution.

In the domain Q' occupied by the air, besides the excited wave, propagates the reflected wave, which in fact is
a solution of Maxwell homogeneous equation in the half-space z > 0 satisfying radiation condition at infinity. It
can be expressed by means of TM and TE waves as follows:

£ (ky; 2) = [ — Eg M(ke)y — Eg F (ke) (70T + k2 %) /ko] e %, (2.5)

HO ki) = = |
0

Here £ (") and H (") denote the Fourier transforms of reflected electric and magnetic fields, respectively, EFE
™

— B (k) (00T + kaZ) Ko + EL E(kx)y] 0 2.6)

and ET™ are unknown temperate distributions, o = (k2 — k2)'/? and is chosen so that —5 <argy < =

f— 2 b

ko = wy/logo, Co = \/Ho/€o. (see [5]).

On the plane z = 0, separating the air and the slab boundary conditions have the form:

&'(0 AR
0 _ tl() ; 2.7)

H,'(0) H, ™ (0)

&' EAS)
where M and H, D represent value of in € and Q) respectively. On the plane z = —d,
t t t

separating the slab and the ground
&EW(=d) =0, (2.8)

because the slab is grounded.

Thus the problem of interaction of plane waves with grounded bianisotropic slab can be formulated in the
following way:

In the half-space {z > —d} find electric and magnetic fields F(z, z) and H(z, z) belonging to the space
of temperate distributions S’(R) for each z > —d, satisfying Maxwell equations for isotropic medium together
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6 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

with radiation conditions in the half-space {z > 0}, Maxwell equations for bianisotropic medium in the slab
{—d < z < 0} and boundary conditions (2.7) and (2.8).
An electromagnetic field appears in the domain 2’ as the superposition of the initiated and the reflected waves:

&'(0 E &) (ky,0
t/( ) _ 0t §(ky — ko sin ) + t( )( ) . (2.9)
Hy'(0) Ho, H," (K, 0)
Here
_ EOCE _ HOI
EOt - ( EOy > ’ HOt - < HOy ) . (210)
In the domain Q) we have
5(1) 5(1) 0
( %ﬁ)>:nm@@< %f) , @.11)
Hy'(2) H; 7 (0)
T, T
T(ky, 05 2) = exp ( — ikozP(ks,0)), T::< ! 2>7 (2.12)
Ty T,

where T7,...,T, are 2 x 2 matrices (see (1.6)—(1.7)) and P is defined as P in (1.5) by replacing A,(Cj), B,(Cj),
C,gj ) with Ay, By, Cy, respectively.
From (2.7)—(2.12) we get
To(d)H, P (=d) = Eoy5(ky — ko sint) + £ (ky, 0), (2.13)
Ty(d)H, V) (~d) = Hotd (ks — kosine) + H, " (k,,0). (2.14)
Involving 2.3-2.6 we can eliminate Ey; and Hy; from (2.13)—(2.14) and obtain an equation with respect to the
unknown H, M (—d):

ETE
hNﬂ@—MﬂMWﬁW%%{NV+M@(E%>&M—%mw. (2.15)

inc

where M, N, U and V are the following dimensionless matrices

kO 0 0 72"}/0
M=— , N= .
0 Z"}/O k?o 0

__( cosyp O (0 —cos?
s (0 0). v= (2 )
By solving H;(—d) from (2.15) and inserting it back into (2.13), (2.14), we get the equations for the vector
(ETE, ETM):
ETE ETE _
< E§“M ) = K(d)yH¢(—d) — ( E%C/[ ) 6(ky — ko sin), (2.16)

where

[ CoTus(z) CoTua(z)
K(z) ._< Toz(2)  Taa(2) >’

As a consequence we can detect the reflected wave (5 " H (”)) from (2.5), (2.6).
As for the electromagnetic field inside the bianisotropic slab, we can find it from (2.11), (2.12):

&(2) ) _ [ Ta(ke,0:4d) B
( H(2) ) 02 ( T (k, 0 d) ) Hel(=d). 2.17)
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3 Solution of Equation (2.15)
Under the notation

A(ky) = CoN Ty(d) — M T»(d),

1 0
B(k:m)—NV—i—MU——(i’y()—i-kocosw)(0 1>,

Equation (2.15) can be rewritten as follows

TE

F
A(ky)Hy(—d) = B(k,) ( E;";I ) 3(ky — kosina). 3.1

wmc

Entries of the matrices T5(d) and T);(d) are analytic functions with respect to k.. Elements of the matrices M
and N are analytic for k, # £k and are only continuous at these points. Therefore, the determinant det A(k,,)
is analytic also for k, # +kg and has either finite or infinite number of zeroes say, only at {k;w =a; }j co» Where
eitheroc = {1,2,...,n}oro = {1,2,...}. They are isolated if a; # k.

Let us prove now, that if some a; coincides to kg or —Ko, then it is isolated zero as well.

Consider

®(kz,70) = CoN(v0)Tu(ke, d) — M (y0)T2(ke, d),

which coincides with A(k,), when 7o = (k2 — k2)'/2 (cf. the notation after (2.6)). If k,, = a; is a zero of A(k;),
then yo = (a? — k3)/? is a zero of either ®((7¢ + k3)*/2,70), or ®(—(7¢ + k3)'/2, 7). Both functions are
analytic with respect to the variable -y, everywhere except the points vy = +ikg; therefore, if kg # 0 then v = 0
(i.e., k; = £kg) can only be an isolated zero.

If kg = 0 then a; for each j is a zero of either ®(k,, k), or ®(k,, —k,). Both functions are analytic and
therefore have only isolated roots.

Employing partition of unity we can construct a sequence {7, (x)} of functions n; € C*°(R) possessing the
following properties:

1) n; = 1in some neighborhood of a;.

2) suppn; C (pj,4q5), and ar, & (p;,q;), if k # j. Here p;, ¢, are either finite numbers or +oo.

3) > mi(z)=1. (32)
jEo
If w is a solution of the system
Alky)u=0, k; €R, (3.3)
then u () = n;u solves the equation

Inside the interval (p;, g;) the matrix A only degenerates at the point a;. We have to treat the following two
cases separately:

1) a; # tko,

2) A degenerates at the point a; = +kg or a; = —ko.

In the first case entries of A are analytic functions in (p;, g;) and det A = 0 only at one point of (p;, ¢;),
namely at a;. Then the matrix A can be represented as follows ([4, § 8.1])

A(ky) = AP (k) DD (k) RO k), ko € (9, 4;), (3.5)
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8 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

where A is invertible with analytic entries in the interval p; < k; < ¢;. The matrix D ) (k,) is diagonal

(ks — a;)” 0

DD(k,) = o | s e, (3.6)

0 (k‘l — aj)“2

where Ny denotes the set of nonnegative integers and R () (k) is a polynomial matrix-function with the constant
non vanishing determinant. In [4, § 8.1] is described an algorithm of finding Aéj ), D) and R,
Denoting

0@ = R, ) (3.7)
from (3.4) we get the scalar equations

(ke — ;) o) =0, p=1,2. (3.8)

A solution of (3.8) in the space D’((p;, g;)) of distributions on (p;, ¢;) has the form

#:E)j),l
oDk = Y cé?a(f)(kx —q;), p=1,2, (3.9)
=0

where C’,(Cj ) are arbitrary constants (see, e.g., [6, Ch.Il, §6.4]). To verify (3.9) it is sufficient to recall that a
solution of (3.8) has pointwise support supp v,(,] ) = {a;} and, therefore, represents a finite linear combination of
derivatives () (k, — a;) (see [2, Ch.2,§2.3]). Now it is sufficient to note that (k, — a;)™8¥ (k, — a;) # 0 iff
?>m.

Inserting vl(,j ) (k) from (3.9) into (3.7) and solving (3.7) we find

2
u' =37 3 O L) (ka)d O (ke —ay), k=12 (310
where

(9) (9)

o= (1 ) -
Ly Ls

Due to the properties of R /) entries of Lgi) (k) are analytic in the neighborhood of (p;, ¢;).

Let f € C*((p,q)), a € (p,q), then

4
F@)8O(z —a) =Y (—1)"+Ch, M (a)d™ (@ — a), 3.11)

m=0

where C¢, = are the binomial coefficients.

m!(¢ —m)!
Using (3.11) we can rewrite (3.10) as

¢ . —m .
S (—ymtel)er, T L) (a;)0™ (ky — a;) (3.12)

and obtain a solution of (3.4) when a; # £ko.

Representation (3.5) also holds when a; coincides with one of the points ko, say, with ky. If that’s the
case, the matrix Ay in the representation (3.5) has continuous entries in the interval p; < k, < ¢; and is
invertible. The entries of R ()(k,), participating in the expression (3.6), are polynomials of (k, — a;)'/? and
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det RU)(k,) = const # 0. And, finally, Q,u( & QM(J) € Ny, where u( ),p(zj) are the numbers participating in
the expression D ) (k,) (see (3.6)).
Inserting the factorization (3.5) into Equation (3.4) we obtain the following replacement to the system (3.8):

3) ;
(ke —a;)"s 09 =0, 2u€No, z€ (pj,q;), p=1,2 (3.13)

Solution to (3.13) in the space D’((p;, g;)) has the form

n®
vl = Z C;%)d(g)(kw —aj)
=0

with arbitrary constants C’T%) and with

. [p’(])]a ;U'(]) ¢ N07
i) = ? ’(74) (3.14)
pd) =1, p’ €N,

(

where [a] denotes the integer part of a. Note, that in this case solution v;;’ ) in fact is in the space Df L (05545))

of distributions of order [u], i.e. in the space of linear continuous functionals over the space C’(g“ ) ((pj,gqj)) of

functions with [¢]-continuous derivatives and compact supports in (p;, ¢;). In this case the product (x — a)“vz(f )
is defined correctly (see [2, Ch.2]). Now, if we repeat the foregoing reasoning, we obtain instead of (3.12):

)

=33 S (Caymie O & L 0o s — ).

p=1£=0 m=0

Due to (3.2) the sum

) )
u (km) _ Zul(c]) ZZZ Z m+fc(])c(€ ké — L(])( ])é(m)(km B aj)~ (3.15)
j€o j€o p=14=0 m=0

represents a solution to (3.3).
To solve (3.1) we should find prior a solution of inhomogeneous equation

A(kz)u = 6(ky — ) F(ky). (3.16)
Consider the following cases:
1) The matrix A is invertible at the point k, = b, i.e., b # a;, j € o, then
u= A" D)F(0)S(ky — b) (3.17)
obviously solves (3.16).

2) For some j € 0, b = a; and a; # +ko. It can easily be observed that in this case

ufj)-‘rm

2 hy) . () dﬂéj)—”” ;
3y B (4@ () Fap)] — o L) (a;)5" (k, — ay) (3.18)

p=1m=0 ' p dk’gp
solves Equation (3.16).
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10 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

3) If b = a; and a; equals to one of the points £kg, then from (3.5), (3.7), (3.16) follows that:

(ke — ;)" o)) = (A5 (0,)) " F(ay)] 3k —a;). (3.19)

If [(Aéj)(aj))‘lF(aj)} # (0 and M(J) is not an integer for some j, then (3.19) has no solution; otherwise
the case 3) converts into the case 2).

Thus we have obtained a general solution of Equation (3.16) in the following form:

ng)

d'=
=30 303D N karteier T ng(aj)(s(m)(kz —a;) +ug (k,), (3.20)

j€o p=1£=0 m=0

where n(] ) is defined from (3.14) and u,(cl) (x) is a solution of (3.16).
If we apply obtained results to Equation (3.1) we get the following:

Ify # ig, then Equation (3.1) has the solution

n{

- am "
o 3) 3 D) WEIETCEeA o 147 @8 (e — ) + HO k), (321)

j€o p=1£=0 m=0

) (9)
where L;j) = ( Lip

L(J) >,p: 1,2,]‘ EU,and
2p

TE
HW (k,) = =2k cos p A~ (ko sin ) ( %%‘M ) §(ky — kosiney) for det A(kgsiney) #0, (3.22)

wmc

HO (1 2 p W, Y L By
leo 2kocosw[(Ao (aj)) ( _piu )L
p=1m !
@)
@) dt» —(
o TLS)(a»é(’”’(kI—aﬂ for det A(kgsint) =0, (3.23)
dkﬂp

where kg sin1 = a;. For the limiting cases 1) = :I:g

F(ky)6(ky — kosint) = B(ko sinv)8(ky — ko sine) = B(ko)d (ks — ko) = 0

and (3.1) becomes homogeneous. The solutions is then given by (3.21) with HD =
The functions EZF and EI™ can be found from (2.16) by inserting there the known solution H;(—d) and
performing the multiplication according to (3.11):

(J)
a-m ;
( ETJW ) ZZZ Z Z E-‘rnC j)Cﬁchl WLI(?])(aj>

j€o p=14=0 m=0n=0

Jqm—n TE
X K (05,0, )0 (ke — a) + S(ka) - ( gTM ) O(ks — ko sin ), (3.24)
where
ETE
S(kz) = —2kg cos S (ko sin z/J,O,d)A_l(ko sin ) ( EZ,’%CM ) d(ky — kosin) (3.25)
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for det A(kg sint)) # 0 and

(4)
2 N'p] /L(])+7L+1

-3 Z 2y cos [(Agj)(ko siw))*l ( EEEZ )L

p=1m=0n=0 wme

am—n ars”
K (kosin,0,d)

XCHP Cm ﬁ
dk’m n dk/l'p] —m

p(ko sin )0 (ky — a;) (3.26)

for det A(kosine) = 0, with kg sinty = a;. The vectors &;(z) and H;(z) can be found from (2.17) similarly.
In conclusion we perform inverse Fourier transform in obtained expressions simply replacing
6 (k, —a) by (i a:) exp(—iaz).

Summarizing the above considerations we can formulate the following theorem:

Theorem 3.1 If the matrix A(ky) = CoN (ky)T4(ky,0;d) — M (ky)To(ky, 0;d) degenerates at some point
a;, then the homogeneous equation A(k;)H(—d) = 0 has then nontrivial solutions given by (3.15).

A general solution Oflnhomogeneous Equation (3.1) is given by formulae (2.5),(2.6),(2.17), (3.24)—(3.26) and
depends on arbitrary constants C’ . Functions ET®, ETM &,(2), Hy(2), depend on these constants as well.

Finally note, that expressions obtained in the present section for bianisotropic slab consisting of a single layer
also remain valid for multilayered slab if in our considerations transition matrix 7'(d) is replaced by a product of
transition matrices of component layers (see (1.6), (1.7)):

T(d) = ( %Eg; %Eg ) =TW(dy) TP (dy)---T™(d,). (3.27)

4 Reflection and transmission through a general bianisotropic slab

Consider reflection and transmission of a plane wave through a general bianisotropic slab between two half
spaces ' and Q" filled by isotropic material (cf. Fig. 1). In this case in addition to fields into the domains

and Q;, j =1,...,n we have an electromagnetic field (£ ®), H ®)) transmitted into the domain Q" ([5]):
g(t)(kx;z) = {_ ETMy — E2TE( — iyoT + kxz)/k2}672(2+d)7 4.1)
1
HO (kys; 2) = - [ — BEIM( —inoT + kyZ) ko + E5 Ey} er2(z+d) 4.2)

From continuity of an electromagnetic field on the hyperplane z = 0

&' | _[&avo |, “43)
"' 0) [ | ®D0) [’ '
(see (2.7)) and on the hyperplane z = —d
&0 | _[ &0 | »
Ht(l)(O) - Ht(t)(o) 3 ( . )
similarly as in section 2 we derive the following equation
for
W Ti(d)© — Ta(d)A EIM U ETE .
( Q T;Ed;@ _ ngd%A ) E%“E = ( i v4 ) < E?JCVI ) §(kx — ko Slm/J) 4.5)
E?M inc
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12 T. Buchukuri, R. Duduchava, and L. Sigua: Electromagnetic waves in layered slab

for an unknown vector field (EZ®, EIM | ETE EIM) Here

AL 1 01
W = - k() ) Q == —0 0 9
0 1 Co ko
i (4.6)
2 1 0 1
@ = kZ 9 A = = VYQ 0
0 1 G E
and v, = (k2 — k2)%, —g <argy, < g (p=0,2).
Applying the method of solution developed in the previous section we get
Eg " 4 n®
B e e A" Gy sm) )
EJ" 3 % 3 REIRE i F @0 (e = ap) £ UO (k) @)
ETM j€o p=14=0 m=0
2

where {a,} are all zeros of det A(k,) and

_ (W Ti(d)® —Ty(d)A
4= ( Q T3(d)© — Ty(d)A ) : (4.8)

Note, that the matrix A(k,) is analytic in the complex place C except the following four points k, = +k,,p =
0,2 and the set o contains these points; LU) = (L,({jp))zlX — RO and the matrix RV) participates in the
decomposition of A at the point &k, (see(3.5)); Cf;l are binomial coefficients and CZEZ) are arbitrary constants; nj(,j )
is defined in (3.14); the vector UV is a solution of inhomogeneous Equation (4.5):

U<1>(k: )= A*l(ko simp) (ko sin )8 (ky — ko sin) if det A(kosineg) #0,  (4.9)
Z Z [ (Ao (ko sin w)) F(kosin w)}
p=1m=0
dup—m (O) . .
+CHr dkiL (ko siny))d\™ (kg — ko sin), if det A(kosineg) =0.  (4.10)
U

In (4.9), 4.10) F' = 0 = (R%)~1; Ay, R are the matrices participating in decomposition of A

-V )
at the point ay = kg sin ¢, and p,, are the indices of the decomposition.

Theorem 4.1 A solution to the problem of reflection and transmission of plane waves through a general
bianisotropic slab is given by formulae (4.7)-(4.10).
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