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ABSTRACT
We investigate three–dimensional interface crack problems

(ICP) for metallic-piezoelectric composite bodies with regard
to thermal effects. We give a mathematical formulation of the
physical problem when the metallic and piezoelectric bodies are
bonded along some proper parts of their boundaries where in-
terface cracks occur. By potential methods the ICP is reduced to
an equivalent strongly elliptic system of pseudodifferential equa-
tions (ΨDEs) on overlapping manifolds with boundary, which
have no analogues in mathematical literature. We study the solv-
ability of obtained ΨDEs on overlapping manifolds with bound-
ary by reduction to ΨDEs on non-overlapping manifolds with
boundary in different function spaces. These general results are
applied to prove the uniqueness and the existence theorems for
the original ICP-Problem.

1 FORMULATION OF THE PROBLEM
1.1 Geometrical description of the composite confi-

guration
Let us start by explaining some notation used in the paper:

The bar Ω denotes the closure of the set Ω, the equality := reads
as “by the definition”, the square “�” denotes the end of the
proof, while “A \B” denotes the “setminus”, i.e., all elements
of the set A which does not appear in the set B.

Let Ω(m) and Ω be bounded disjoint domains of the three-
dimensional Euclidean space R3 with boundaries ∂Ω(m) and ∂Ω,
respectively (cf. Fig. 1). Moreover, let ∂Ω and ∂Ω(m) have a non-
empty, simply connected intersection Γ (m) with a positive surface

∗Address all correspondence to this author.

measure, i.e., ∂Ω∩ ∂Ω(m) = Γ(m), measΓ (m) > 0. From now on
Γ(m) will be referred to as an interface surface. Throughout the
paper n and ν = n (m) stand for the outward unit normal vectors
to ∂Ω and to ∂Ω (m), respectively. Evidently, n(x) = −ν(x) for
x ∈ Γ(m).

Further, let Γ (m) = Γ(m)
T ∪Γ(m)

C , where Γ (m)
C is an open, sim-

ply connected proper part of Γ (m). Moreover, Γ (m)
T ∩Γ(m)

C = ∅

and ∂Γ (m) ∩Γ(m)
C = ∅.
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Fig. 1: Metallic-piezoelectric composite

We set S (m)
N := ∂Ω (m) \Γ(m) and S∗ := ∂Ω \Γ (m). Further,

we denote by SD some open, nonempty, proper sub-manifold of
S∗ and let SN := S∗ \ SD. Thus, we have the following dissec-
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tions of the boundary surfaces (see Figure 1) ∂Ω = Γ (m)
T ∪Γ(m)

C ∪

SN ∪ SD, ∂Ω(m) = Γ(m)
T ∪ Γ(m)

C ∪ S(m)
N . Throughout the paper,

for simplicity, we assume that ∂Ω (m), ∂Ω, ∂S (m)
N , ∂Γ(m)

T , ∂Γ(m)
C ,

∂SD, ∂SN are C∞-smooth and ∂Ω(m) ∩ SD = ∅, if not otherwise
stated. Some results, obtained in the paper, hold also true when
these manifolds and their boundaries are Lipschitz and we for-
mulate them separately.

Let Ω be filled by an anisotropic homogeneous piezoelectric
medium (ceramic matrix) and Ω (m) be occupied by an isotropic
or anisotropic homogeneous elastic medium (metallic inclusion).
These two bodies interact to each other along the interface Γ (m),
where the interface crack Γ (m)

C occurs. Moreover, it is assumed
that the composed body is fixed along the sub-surface SD (the
Dirichlet part of the boundary), while the sub-manifolds S(m)

N
and SN are the Neumann parts of the boundary. In the metal-
lic domain Ω (m) we have a four-dimensional thermoelastic field
described by the displacement vector u (m) = (u(m)

1 ,u(m)
2 ,u(m)

3 )>

and temperature distribution function u (m)
4 = ϑ(m), while in the

piezoelectric domain Ω we have a five-dimensional physical field
described by the displacement vector u = (u1,u2,u3)

>, tempera-
ture distribution function u4 = ϑ and the electric potential u5 = ϕ.

1.2 Thermoelastic and thermopiezoelastic field equa-
tions

In the present subsection we expose partial differential equa-
tions of the linear theory of thermoelasticity and thermopiezoe-
lasticity for a general anisotropic case (see [14, 17, 18] for de-
tails).

Throughout the paper the Einstein convention about the
summation over the repeated indices is meant from 1 to 3, un-
less stated otherwise.

From the constitutive relations, Fourier law, equations of
motion and the equation of the entropy balance we derive the
linear system of pseudo-oscillation equations of thermoelasticity
in a matrix form

A(m)(∂,τ)U (m) + X̃ (m) = 0 in Ω(m), (1)
where U (m) := (u (m),ϑ(m))> is the unknown vector, X̃ (m) =

(X (m)
1 ,X (m)

2 ,X (m)
3 ,X (m)

4 )> is a given vector (X (m)
j , j = 1,2,3, are

the mass force densities and X (m)
4 is the heat source density) and

the nonselfadjoint matrix differential operator A (m)(∂,τ) reads as

A(m)(∂,τ) =
[
A(m)

jk (∂,τ)
]

4×4
, (2)

A(m)
jk (∂,τ) = c (m)

i jlk ∂i ∂l −ρ(m) τ2 δ jk,

A(m)
4k (∂,τ) = −τT (m)

0 γ(m)
kl ∂l , A(m)

j4 (∂,τ) = −γ (m)
i j ∂i,

A(m)
44 (∂,τ) = κ

(m)
il ∂i ∂l −α(m) τ, j,k = 1,2,3

where δ jk stands for Kronecker’s delta. τ = σ + iω is a com-
plex oscillation parameter, T (m)

0 is the temperature in the natural

state; ϑ(m) is the temperature increment; parameters c (m)
i jlk , ρ(m),

γ(m)
kl , κ

(m)
il , α(m) are material constants of thermoelastic medium.

Constants involved in equations (1)-(2) have the following prop-
erties (see, e.g., [14, 17]) (c0 and c1 are positive constants):

c(m)
i jkl = c(m)

jikl = c(m)
kli j , γ(m)

i j = γ(m)
ji , κ

(m)
i j = κ

(m)
ji , (3)

i, j,k, l = 1,2,3,

c(m)
i jkl ξi j ξkl ≥ c0 ξi j ξi j for all ξi j = ξ ji ∈ R, (4)

κ
(m)
i j ηi η j ≥ c1 ηi ηi , for all η ∈ R

3. (5)

Note that for an isotropic medium the thermomechanical coeffi-
cients are

c(m)
i jlk = λ(m) δi j δlk +µ(m) (δil δ jk +δik δ jl ),

γ(m)
i j := γ(m) δi j, κ

(m)
i j = κ

(m) δi j,

where λ (m) and µ (m) are the Lamé constants.
With the help of the symmetry conditions and inequalities

(3)-(5) it can easily be shown that the principal part A (m,0)(∂)
of the operator A (m)(∂,τ) is a selfadjoint elliptic operator with
positive definite symbol matrix

A(m,0)(ξ)η ·η≥ c (m) |ξ|2 |η|2 for all ξ∈R
3 and for all η∈C

4

with some positive constant c (m) > 0 depending on the material
parameters.

Components of the mechanical thermostress vector acting
on a surface element with a normal ν = (ν1,ν2,ν3) read as fol-
lows

σ(m)
i j νi = c(m)

i jlk νi ∂lu
(m)
k − γ(m)

i j νi ϑ(m), j = 1,2,3,

while the normal component of the heat flux vector (with oppo-
site sign) has the form −q (m)

i νi = κ
(m)
il νi ∂lϑ(m). We introduce

the following generalized thermostress operator

T (m)(∂,ν) = [ T (m)
jk (∂,ν) ]4×4, (6)

T (m)
jk (∂,ν)=c (m)

i jlk νi ∂l , T (m)
j4 (∂,ν)=−γ (m)

i j νi,

T (m)
4k (∂,ν)=0, T (m)

44 (∂,ν)=κ
(m)
il νi ∂l , j,k = 1,2,3. (7)

For a four–vector U (m) = (u(m),ϑ(m))> we have

T (m)U (m) = (σ(m)
i1 νi, σ(m)

i2 νi, σ(m)
i3 νi, −q(m)

i νi )
>. (8)

Clearly, the components of the vector T (m)U (m) given by (8)
have the physical sense: the first three components correspond
to the mechanical stress vector in the theory of thermoelastic-
ity, while the forth one is the normal component of the heat flux
vector (with opposite sign).

From the constitutive relations, Fourier law, equations of
motion, equation of the entropy balance and the equation of sta-
tic electric field we derive the linear system of pseudo-oscillation
equations of thermopiezoelasticity in a matrix form

A(∂,τ)U(x)+ X̃(x) = 0 in Ω, (9)
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where U := (u,ϑ,ϕ)>, X̃ = (X1,X2,X3,X4,X5)
> and the matrix

differential operator A(∂,τ) is

A(∂,τ) =
[
A jk(∂,τ)

]
5×5 , (10)

A jk(∂,τ) = ci jlk ∂i ∂l −ρτ2 δ jk,

A j4(∂,τ) = −γi j ∂i, A j5(∂,τ) = eli j∂l∂i,

A4k(∂,τ) = −τT0 γkl ∂l , A44(∂,τ) = κil ∂i ∂l −ατ,
A45(∂,τ) = τT0 gi ∂i, A5k(∂,τ) = −eikl ∂i∂l ,

A54(∂,τ) = −gi∂i, A55(∂,τ) = εil ∂i∂l , j,k = 1,2,3.

Here X = (X1,X2,X3)
> is a mass force density, X4 is a heat source

density, X5 is a charge density and gi are pyroelectric constants
characterizing the relation between thermodynamic processes
and piezoelectric effects. Parameters ci jlk, ρ, γkl , e(li j), κil , α, gi
involved in (9)-(10) are material constants of thermopiezoelastic
medium. They have the following properties (see, e.g., [17])

ci jkl = c jikl = ckli j , ei jk = eik j, εi j = ε ji,

γi j = γ ji, κi j = κ ji, i, j,k, l = 1,2,3,

ci jkl ξi j ξkl ≥ c0 ξi j ξi j for all ξi j = ξ ji ∈ R, (11)

εi j ηi η j ≥ c1 ηi ηi , κi j ηi η j ≥ c2 ηi ηi ∀η ∈ R
3. (12)

and c0, c1, and c2 are positive constants. With the help of the
symmetry conditions and inequalities (11)–(12) it can easily be
shown that the principal part A (0)(∂) of the operator A(∂,τ) is
nonselfadjoint, although is strongly elliptic, that is,

Re A(0)(ξ)η ·η ≥ c |ξ|2 |η|2 for all ξ ∈ R
3 and for all η ∈ C

4

with some positive constant c > 0 depending on the material pa-
rameters.

In the theory of thermopiezoelasticity the components of the
three-dimensional mechanical stress vector acting on a surface
element with a normal n = (n1,n2,n3) have the form

σi j ni = ci jlk ni ∂luk + eli j ni ∂lϕ− γi j ni ϑ for j = 1,2,3,

while the normal components of the electric displacement vector
and the heat flux vector (with opposite sign) read as

−Di ni = −eikl ni ∂luk + εil ni ∂lϕ−gi ni ϑ, −qi ni = κil ni ∂lϑ.

Let us introduce the following matrix differential operator

T (∂,n) =
[

T jk(∂,n)
]

5×5, (13)

T jk(∂,n) = ci jlk ni ∂l , T j4(∂,n) = −γi j ni,

T j5(∂,n) = eli j ni ∂l , T4k(∂,n) = 0, (14)
T44(∂,n) = κil ni ∂l , T45(∂,n) = 0, T54(∂,n) = −gi ni,

T5k(∂,n) = −eikl ni ∂l , T55(∂,n) = εil ni ∂l , j,k = 1,2,3.

For a vector U = (u,ϕ,ϑ)> we have

T (∂,n)U = (σi1 ni, σi2 ni, σi3 ni, −qi ni, −Di ni )
>. (15)

Clearly, the components of the vector T U given by (15) have
the physical sense: the first three components correspond to the
mechanical stress vector in the theory of thermoelectroelasticity,
the forth and fifth ones are the normal components of the heat

flux vector and the electric displacement vector (with opposite
sign), respectively.

Let us introduce some further notation. Throughout the pa-
per the symbol {·}+ denotes the interior one-sided trace operator
on ∂Ω (respectively ∂Ω (m)) from Ω (respectively Ω (m)). Simi-
larly, {·}− denotes the exterior one-sided trace operator on ∂Ω
(respectively ∂Ω (m)) from the exterior of Ω (respectively Ω (m)).

By Lp, W r
p , Hs

p, and Bs
p,q (with r ≥ 0, s ∈ R, 1 < p <

∞, 1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev-
Slobodetski, Bessel potential, and Besov function spaces, respec-
tively (see, e.g., [19]). Recall that H r

2 = W r
2 = Br

2,2 for any r ≥ 0,
Hs

2 = Bs
2,2 for any s ∈ R, W t

p = Bt
p,p for any positive and non-

integer t, and Hk
p = W k

p for any non-negative integer k.
Let M0 be a smooth surface without boundary. For a smooth

sub-manifold M ⊂ M0 by H̃s
p(M ) and B̃s

p,q(M ) we denote the
subspaces of Hs

p(M0) and Bs
p,q(M0), respectively,

H̃s
p(M ) = {g : g ∈ Hs

p(M0), suppg ⊂ M },

B̃s
p,q(M ) = {g : g ∈ Bs

p,q(M0), suppg ⊂ M }.

By rM f denote the restriction of f onto a submanifold M and
introduce the spaces: Hs

p(M ) = {rM Hs
p(M0)} and Bs

p,q(M ) =

{rM Bs
p,q(M0)}.

1.3 Formulation of the ICP-Problem and the unique-
ness of a solution

In what follows, without loss of generality, we assume that
the mass force density, heat source density and charge density
vanish in the corresponding regions. Otherwise, we can write
particular solutions to the nonhomogeneous differential equa-
tions explicitly, in the form of volume Newtonian potentials.
Therefore, we will consider the homogeneous versions of the
above differential equations. However, we have to take into con-
sideration that the original mechanical and thermo-electrical ho-
mogeneous boundary and transmission conditions become then
nonhomogeneous, in general.
ICP-Problem: We consider the problem when the crack gap is
thermally and electrically conductive. Find vector-functions

U (m) = (u(m)
1 ,u(m)

2 ,u(m)
3 ,u(m)

4 )> : Ω(m) → C
4

and U = (u1,u2,u3,u4,u5)
> : Ω → C

5

belonging respectively to the spaces [W 1
p (Ω(m))]4 and [W 1

p (Ω)]5

with 1 < p < ∞ and satisfying:
(i) the systems of partial differential equations :

[
A(m)(∂,τ)U (m)

]
j = 0 in Ω (m), j = 1,2,3,4,

[A(∂,τ)U ]k = 0 in Ω, k = 1,2,3,4,5, (16)
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(ii) the boundary conditions :

r
S (m)

N

{
[T (m)(∂,ν)U (m) ] j

}+
= Q(m)

j on S (m)
N , j = 1,2,3,4,

rSN{[T (∂,n)U ]k}
+ = Qk on SN , k = 1,2,3,4,5,

rSD{uk}
+ = fk on SD, k = 1,2,3,4,5, (17)

rΓ (m){u5}
+ = f (m)

5 on Γ(m),

(iii) the transmission conditions :

r
Γ (m)

T
{ul}

+ − r
Γ (m)

T

{
u(m)

l

}+
= f (m)

l on Γ(m)
T , l = 1,3,

r
Γ (m)

T

{
[T (∂,n)U ]l

}+
+ r

Γ (m)
T

{
[T (m)(∂,ν)U (m) ]l

}+

= F (m)
l on Γ(m)

T , l = 1,3, (18)

rΓ (m) {u4}
+− rΓ (m)

{
u(m)

4
}+

= f (m)
4 on Γ(m),

rΓ (m)

{
[T (∂,n)U ]4

}+
+ rΓ (m)

{
[T (m)(∂,ν)U (m) ]4

}+

= F (m)
4 on Γ(m),

(iv) the interface crack conditions :

r
Γ (m)

C

{
[T (m)(∂,ν)U (m) ]l

}+
= Q̃(m)

l on Γ(m)
C , l = 1,2,3,

r
Γ (m)

C
{[T (∂,n)U ]l}

+ = Q̃l on Γ(m)
C , l = 1,2,3. (19)

Here Q(m)
j , Qk, Q̃(m)

l , Q̃l , f (m)
k , fk, F(m)

j , j = 1, . . . ,4, k = 1, . . . ,5,
are given data.

Next we formulate the uniqueness result. The proof is stan-
dard, based on the Green formula and we drop the details.

Theorem 1.1. Let Ω(m) and Ω be Lipschitz and either τ =
σ + iω with σ > 0 or τ = 0. The above formulated inter-
face crack ICP-problem has at most one solution in the space
[W 1

2 (Ω(m))]4 × [W 1
2 (Ω)]5, provided measSD > 0.

2 REPRESENTATION OF SOLUTIONS
Here we derive integral representation formulas of solutions

to the homogeneous equations (1) by means of the layer poten-
tials and certain boundary integral (pseudodifferential) operators
generated by them.

2.1 Layer potentials
Let Ψ(m)(· ,τ) =

[
Ψ(m)

k j (· ,τ)
]

4×4 and Ψ(· ,τ) =[
Ψk j(· ,τ)

]
5×5 be the fundamental matrix-functions of the

differential operators A (m)(∂,τ) and A(∂,τ) and introduce the
single and the double layer potentials:

Vτ(h)(x) =

∫

∂Ω

Ψ(x− y,τ) h(y)dyS, (20)

Wτ(h)(x) =

∫

∂Ω

[
T̃ (∂,n(y),τ) [Ψ(x− y,τ)]>

]> h(y)dyS,

where T̃ (∂,n(y) =
[

T̃ jk(∂,n,τ)
]

5×5 is the boundary operator, as-
sociated with the formally adjoint differential operator A∗(∂,τ):

T̃ jk(∂,n,τ) = ci jlk ni ∂l , T̃ j4(∂,n,τ) = τT0 γi j ni,

T̃ j5(∂,n,τ) = −eli j ni ∂l , T̃4k(∂,n,τ) = 0,

T̃44(∂,n,τ) = κil ni ∂l , T̃45(∂,n,τ) = 0,

T̃54(∂,n,τ) = −τT0gi ni, T̃5k(∂,n,τ) = eikl ni ∂l ,

T̃55(∂,n,τ) = εil ni ∂l , j,k = 1,2,3.

Similarly, using the boundary operator T̃ (m)(∂,n(y) =[
T̃ (m)

jk (∂,n,τ)
]

5×5, associated with the formally adjoint differ-
ential operator A (m)∗(∂,τ)

T̃ (m)
jk (∂,ν,τ) = c (m)

i jlk νi ∂l , T̃ (m)
j4 (∂,ν,τ) = τT (m)

0 γ(m)
i j νi,

T̃ (m)
4k (∂,ν,τ) = 0, T̃ (m)

44 (∂,ν,τ) = κ
(m)
il νi ∂l , j,k = 1,2,3,

one defines the layer potentials V (m)
τ (h(m)) and W (m)

τ (h(m)); here
h(m) = (h(m)

1 ,h(m)
2 ,h(m)

3 ,h(m)
4 )> and h = (h1,h2,h3,h4,h5)

> are
densities of the potentials.

For the boundary integral (pseudodifferential) operators
generated by the layer potentials we will employ the following
notation:

Hτ(h)(x) :=
∫

∂Ω

Ψ(x− y,τ) h(y)dyS,

Kτ(h)(x) :=
∫

∂Ω

[
T (∂,n(x))Ψ(x− y,τ)

]
h(y)dyS,

K̃ ∗
τ (h)(x) :=

∫

∂Ω

[
T̃ (∂,n(y),τ)[Ψ(x− y,τ)]>

]> h(y)dyS,

Lτ(h)(x) :=
{

T (∂,n(x))Wτ(h)(x)
}±

, x ∈ ∂Ω.

Similarly, with the help of the fundamental solution
Ψ(m)(x− y,τ) are defined the boundary integral (pseudodiffer-
ential) operators H (m)

τ , K (m)
τ , K̃ (m)∗

τ and L (m)
τ .

The layer boundary operators H (m)
τ , Hτ and L (m)

τ , Lτ are
pseudodifferential operators of order −1 and 1, respectively,
while the operators K (m)

τ , K̃ (m)∗
τ , Kτ and K̃ ∗

τ are singular in-
tegral operators (pseudodifferential operators of order 0) (for de-
tails see [2–6, 12, 16]).

2.2 Auxiliary problems and representation of solu-
tions

Here we assume that Re τ = σ > 0 and consider two auxil-
iary boundary value problems needed for our further purposes.
Auxiliary problem I: Find a vector function U (m) =

(u(m)
1 , u(m)

2 , u(m)
3 , u(m)

4 )> : Ω(m) → C4 which belongs to
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the space [W 1
2 (Ω(m)) ]4 and satisfies the following conditions:

A(m)(∂,τ)U (m) = 0 in Ω (m), (21)
{

T (m)U (m)
}+

= χ(m) on ∂Ω (m),

where χ(m) = (χ(m)
1 , χ(m)

2 , χ(m)
3 , χ(m)

4 )> ∈
[

H
− 1

2
2 (∂Ω(m))

]4. With
the help of Green’s formula it can easily be shown that the homo-
geneous version of this auxiliary BVP possesses only the trivial
solution. Moreover, we have the following existence result.

Lemma 2.1. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary so-
lution vector U (m) ∈ [W 1

p (Ω(m)) ]4 to the homogeneous equation
(21) is uniquely represented by the single layer potential

U (m)(x) = V (m)
τ

([
P (m)

τ
]−1χ(m)

)
(x), x ∈ Ω (m), (22)

where
P (m)

τ := −2−1 I4 +K (m)
τ

and χ (m) =
{

T (m)U (m) }+ ∈
[

B
− 1

p
p,p (∂Ω(m))

]4
.

(23)

Proof. Evidently, if χ(m) ∈
[

B
− 1

p
p,p (∂Ω(m))

]4 then the vector func-
tion (22) solves the auxiliary BVP and belongs to the space
[W 1

p (Ω(m)) ]4 due to standard theorems on the mapping proper-
ties of potentials and Sokhotsky-Plemelji formulae, describing
their traces on the boundary (cf. [2,4–6] and [10] for a most gen-
eral theorems). The uniqueness follows from the general integral
representation formula

U (m)(x) = W (m)
τ

(
{U (m)}+

)
(x)−V (m)

τ
(
{T (m)U (m)}+

)
(x)

for all x∈Ω (m), and a standard application of the Green formulae
(cf., e.g., [2, 4–6] for similar proofs). �

Auxiliary problem II: Find a vector function U =
(u1,u2,u3,u4,u5)

> : Ω → C5 which belongs to the space
[W 1

2 (Ω) ]5 and satisfies the following conditions:
A(∂,τ)U = 0 in Ω,{

T U
}+

+β {U }+ = χ on ∂Ω,
(24)

where χ := (χ1,χ2,χ3,χ4,χ5)
> ∈

[
H

− 1
2

2 (∂Ω)
]5

, β is a smooth
real valued scalar function which does not vanish identically and

β ≥ 0, suppβ ⊂ SD. (25)
By standard arguments, involving the Green formulae, we can
easily show that the homogeneous version of this boundary
value problem possesses only the trivial solution in the space
[W 1

2 (Ω) ]5.
We look for a solution to the auxiliary BVP (24)

as a single layer potential, U(x) = Vτ( f )(x), where f =

( f1, f2, f3, f4, f5)
> ∈

[
H

− 1
2

2 (∂Ω)
]5 is an unknown density. The

boundary condition in (24) leads then to the system of equations:(
−2−1 I5 +Kτ

)
f +β Hτ f = χ on ∂Ω.

Denote the matrix operator generated by the left hand side ex-
pression of this equation by P τ and rewrite the system as

Pτ f = χ on ∂Ω,

Pτ := −2−1 I5 +Kτ +β Hτ. (26)

Lemma 2.2. Let Re τ = σ > 0. The operators

Pτ :
[

Hs
p(∂Ω)

]5
→

[
Hs

p(∂Ω)
]5

,

:
[

Bs
p,t(∂Ω)

]5
→

[
Bs

p,t(∂Ω)
]5

,
(27)

are invertible for all 1 < p < ∞, 1 ≤ t ≤ ∞, and s ∈ R.

Proof. From the uniqueness result for the auxiliary BVP (24) it
follows that the operator (27) is injective for p = 2 and s =−1/2.

The operator Hτ :
[

H
− 1

2
2 (∂Ω)

]5
→

[
H

− 1
2

2 (∂Ω)
]5 is compact. By

a standard theorem on a perturbation of a Fredholm operator we
then conclude that the index of the operator (27) equals to zero.
Since Pτ is an injective singular integral operator of normal type
with zero index it follows that it is surjective. Thus the operator
(27) is invertible for p = 2 and s = −1/2.

The invertibility of the operators (27) for all 1 < p < ∞,
1 ≤ t ≤ ∞, and s ∈ R then follows by standard duality and inter-
polation arguments for the C∞−regular surface ∂Ω from [1, 13]
(see [3, 4, 16] for similar arguments). �

Lemma 2.3. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary
solution U ∈ [W 1

p (Ω) ]5 to the homogeneous equation (24) can
be uniquely represented by the single layer potential U(x) =

V τ
(

P−1
τ χ

)
(x), where χ =

{
T U

}+
+β

{
U

}+
∈

[
B
− 1

p
p,p (∂Ω)

]5
.

Remark 2.4. For p = 2 the above results remain true for Lip-
schitz domains Ω (m) and Ω (cf. [15]).

3 EXISTENCE AND REGULARITY OF A SOLUTION
TO ICP-PROBLEM
The ICP-Problem from Subsection 1.2 is reduced to a com-

plicated, nonclassical system of boundary pseudodifferential
equations which needs a special analysis.

3.1 Reduction to boundary equations
For the data of the problem in (17), (18), (19) we assume that

Q(m)
j ∈ B−1/p

p,p (S(m)
N ), Qk ∈ B−1/p

p,p (SN),

f (m)
l ∈ B1/p ′

p,p (Γ(m)
T ), f (m)

t ∈ B1/p ′

p,p (Γ(m)),

F (m)
l ∈ B−1/p

p,p (Γ(m)
T ), F (m)

4 ∈ B−1/p
p,p (Γ(m)),

Q̃l ∈ B−1/p
p,p (Γ(m)

C ), Q̃(m)
l ∈ B−1/p

p,p (Γ(m)
C ),

fk ∈ B1/p ′

p,p (SD), j = 1,4, k = 1,5, t = 4,5, l = 1,2,3.

(28)

Further, let

Gl :=

{
Ql on SN ,

Q̃l on Γ(m)
C ,

G(m)
l :=





Q(m)
l on S(m)

N ,

Q̃(m)
l on Γ(m)

C ,

Gt := Qt on SN , G(m)
4 := Q(m)

4 on S(m)
N ,

(29)

l = 1,2,3, t = 4,5, k = 1,5, j = 1,4,
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and let G0k ∈ B−1/p
p,p (∂Ω), G(m)

0 j ∈ B−1/p
p,p (∂Ω(m)) be some fixed

extensions of the functions Gk and G(m)
j respectively onto ∂Ω and

∂Ω(m) preserving the space. Denote

G0 := (G01, · · · , G05)
> ∈ [B−1/p

p,p (∂Ω)]5,

G(m)
0 := (G(m)

01 , · · · , G(m)
04 )> ∈ [B−1/p

p,p (∂Ω(m))]4.
(30)

It is evident that arbitrary extensions G∗
j and G(m)∗

j of the same
functions can be represented then as G∗

k = G0k +ψk +hk for k =

1,5 and G (m)∗
j = G(m)

0 j +h(m)
j for j = 1,4, where ψk ∈ B̃−1/p

p,p (SD),

for k = 1,5, hl ∈ B̃−1/p
p,p (Γ(m)

T ) for l = 1,2,3, ht ∈ B̃−1/p
p,p (Γ(m)) for

t = 4,5, h (m)
l ∈ B̃−1/p

p,p (Γ(m)
T ) for l = 1,2,3, h (m)

4 ∈ B̃−1/p
p,p (Γ(m))

are arbitrary functions. We set

ψ := (ψ1, · · · , ψ5)
> ∈ [B̃−1/p

p,p (SD)]5,

h = (h1, · · · , h5)
> ∈ [B̃−1/p

p,p (Γ(m)
T )]3 × [B̃−1/p

p,p (Γ(m))]2, (31)

h(m) = (h(m)
1 , · · · , h(m)

4 )> ∈ [B̃−1/p
p,p (Γ(m)

T )]3 × B̃−1/p
p,p (Γ(m)).

We apply the indirect boundary integral equations method and, in
accordance with Lemmas 3.1 and 3.3, look for a solution vectors
U (m) = (u(m), · · · ,u(m)

4 )> and U = (u1, · · · ,u5)
> of the interface

crack problem (16)-(19) in the form of single layer potentials

U (m) = V (m)
τ

([
P (m)

τ
]−1 [

G(m)
0 +h(m)

])
in Ω(m),

U = Vτ
(

P−1
τ

[
G0 +ψ+h

])
in Ω,

(32)

where P (m)
τ and Pτ are given by (23) and (26), G0 and G (m)

0 are
the above introduced known vector-functions, and h (m), h and ψ
are unknown vector-functions satisfying the inclusions (31).

By Lemmas 2.1, 2.3 and the property (25) we see that the
homogeneous differential equations (16), the first two boundary
conditions in (17) and the crack conditions (19) are satisfied au-
tomatically.

The remaining boundary and transmission conditions in
(17), (18) lead to the following system of pseudodifferential
equations with respect to the unknown vector-functions ψ, h and
h(m):

rSD
[Aτ ψ ]k + rSD

[Aτ h]k = f̃k on SD, k = 1,5, (33)




r
Γ (m)

T

[Aτ ψ]l + r
Γ (m)

T

[(Aτ +B (m)
τ )h]l = g̃(m)

l

r
Γ (m)

T

h(m)
l + r

Γ (m)
T

hl = F̃ (m)
l , on Γ(m)

T l = 1,3,
(34)





r
Γ (m)

[Aτ ψ]4 + r
Γ (m)

[(Aτ +B (m)
τ )h]4 = g̃(m)

4 ,

r
Γ (m)

[Aτ ψ ]5 + r
Γ (m)

[Aτ h ]5 = g̃(m)
5

r
Γ (m)

h(m)
4 + r

Γ (m)
h4 = F̃ (m)

4 on Γ(m),

(35)

where

g̃(m)
l := f̃ (m)

l + r
Γ (m)

T

[
H (m)

τ
[
P (m)

τ
]−1 F̃ (m)

]
l ∈ B1−1/p

p,p (Γ(m)
T ),

f̃ (m)
l := f (m)

l + r
Γ (m)

T

[
H (m)

τ
[
P (m)

τ
]−1 G(m)

0
]

l ,

−r
Γ (m)

T

[
Hτ P−1

τ G0
]

l ∈ B1−1/p
p,p (Γ(m)

T ), l = 1,3,

g̃(m)
4 := f̃ (m)

4 + r
Γ (m)

T

[
H (m)

τ
[
P (m)

τ
]−1 F̃ (m)

]
4 ∈ B1−1/p

p,p (Γ(m)),

f̃ (m)
4 := f (m)

4 + r
Γ (m)

[
H (m)

τ
[
P (m)

τ
]−1 G(m)

0

]
4 (36)

−r
Γ (m)

[
Hτ P−1

τ G0
]

4 ∈ B1−1/p
p,p (Γ(m)),

g̃(m)
5 = f̃ (m)

5 ∈ B1−1/p
p,p (Γ(m)),

f̃k := fk − rSD
[Hτ P−1

τ G0]k ∈ B1−1/p
p,p (SD), k = 1,5,

f̃ (m)
5 := f (m)

5 − r
Γ (m)

[
Hτ P−1

τ G0
]

5 ∈ B1−1/p
p,p (Γ(m)),

F̃ (m)
l := F (m)

l − r
Γ (m)

T

G0l − r
Γ (m)

T

G(m)
0l ∈ r

Γ (m)
T

B̃−1/p
p,p (Γ(m)

T ),

l = 1,3, (37)

F̃ (m)
4 := F (m)

4 − r
Γ (m)

G04 − r
Γ (m)

G(m)
04 ∈ r

Γ (m)
B̃−1/p

p,p (Γ(m)).

and
Aτ := Hτ P−1

τ ,

B (m)
τ :=

[
[H (m)

τ
[
P (m)

τ
]−1

]4×4 [0 ]4×1
[0 ]1×4 [0 ]1×1

]

5×5

.
(38)

The inclusions in (37) are the compatibility conditions for ICP-
Problem due to the relations (31). Therefore, in what follows
we assume that F̃ (m)

l and F̃ (m)
4 are extended from Γ (m)

T and Γ (m),

respectively, onto ∂Ω (m) by zero, i.e., F̃ (m)
l ∈ B̃−1/p

p,p (Γ(m)
T ), l =

1,3, and F̃ (m)
4 ∈ B̃−1/p

p,p (Γ(m)).

Note that the above systems are non-classical systems of
pseudodifferential equations since the sub-manifolds Γ (m)

T and
Γ(m)

C are proper parts of Γ (m). We will discuss this problem in
detail in the next subsection.

3.2 Existence theorems
Here we show that the system of pseudodifferential equa-

tions (33)-(35) is uniquely solvable. To this end we introduce the
suitable spaces:

X
s
p := [H̃s

p(SD)]5 × [H̃s
p(Γ

(m)
T )]3 × [H̃s

p(Γ
(m))]2 ×

×[H̃s
p(Γ

(m)
T )]3 × H̃s

p(Γ
(m)) ,

Y
s
p := [Hs+1

p (SD)]5 × [Hs+1
p (Γ(m)

T )]3 × [Hs+1
p (Γ(m))]2 ×

×[H̃s
p(Γ

(m)
T )]3 × H̃s

p(Γ
(m))
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and similarly the spaces Xs
p,q and Ys

p,q, where Hs
p spaces are re-

placed by Bs
p,q-spaces. Notice that Xs

2,2 = Xs
2 and Ys

2,2 = Ys
2.

Let us rewrite the system (33)-(35) as the operator equation
N (B)

τ Φ = Y, (39)
where the vector Φ := (ψ, h, h (m))> ∈ X

−1/p
p,p is unknown,

while Y := ( f̃ , g̃(m), F̃ (m))> ∈ Y
−1/p
p,p is a given vector with

f̃ = ( f̃1, · · · , f̃5)
>, g̃(m) := (g̃ (m)

1 , · · · , g̃(m)
5 )>, and F̃ (m) :=

(F̃ (m)
1 , · · · , F̃ (m)

4 )>.

The operator N (B)
τ in the left hand side of the system (33)-

(35) (rearranged properly) is a 14×14 matrix operator

N (B)
τ := (40)

=




rSD
Aτ rSD

Aτ [0 ]5×4

r
Γ (m)

T

[(Aτ)l,k]3×5 r
Γ (m)

T

[(Aτ +B (m)
τ )l,k]3×5 [0 ]3×4

r
Γ (m)

[(Aτ)t,k]2×5 r
Γ (m)

[(Aτ +B (m)
τ )t,k]2×5 [0 ]2×4

[0 ]3×5 r
Γ (m)

T

I3×5 r
Γ (m)

T

I3×4

[0 ]1×5 r
Γ (m)

I1×5 r
Γ (m)

I1×4




,

where Aτ and B (m)
τ ) are defined in (38); the indices appearing in

the block matrices take the following values k = 1,5, l = 1,2,3,

and t = 4,5; Aτ and B (m)
τ are the Steklov-Poincaré type 5× 5

matrix pseudodifferential operators; the symbol [0 ]N×M stands
for the zero matrix of dimension N ×M, while

I3×5 :=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


 , I3×4 :=




1 0 0 0
0 1 0 0
0 0 1 0


 ,

I1×5 = (0, 0, 0, 1, 0),

I1×4 = (0, 0, 0, 1).

Applying the results on boundedness of potential and the
related boundary pseudodifferential operators, invoking Lemma
2.2 we easily establish the following mapping properties

N (B)
τ : Xs

p → Ys
p, s ∈ R,

: Xs
p,q → Ys

p,q, 1 < p < ∞, 1 ≤ q ≤ ∞
(41)

(see, e.g., [3–5, 12, 16] etc. and also [10] for the boundedness
results of general layer potentials).

Our goal is to establish Fredholm properties and invert-
ibility of the operator (41). For this we have to define some
constants. Let λ (1)

j (x), j = 1,5, be the eigenvalues of the
matrix [S(Aτ)(x,0,+1)]−1 S(Aτ)(x,0,−1) for x ∈ ∂SD, where
S(Aτ)(x,ξ1,ξ2) is the homogeneous principal symbol matrix of
the pseudodifferential operator Aτ in (38). Let

γ1
′ :=

1
2π

inf arg λ (1)
j (x), γ1

′′ :=
1

2π
sup arg λ (1)

j (x), (42)

where “infimum” and “supremum” are taken over the sets x ∈
∂SD, 1 ≤ j ≤ 5.

Similarly, λ (2)
j (x) and λ (3)

j (z), j = 1,5, be the eigenvalues of

the matrices [S(Aτ +B (m)
τ )(x,0,+1)]−1 S(Aτ +B (m)

τ )(x,0,−1)
and [S(Dτ,y)(z,0,+1)]−1 S(Dτ,y)(z,0,−1) for x ∈ ∂Γ(m), z ∈

∂Γ(m)
C where S(Aτ +B (m)

τ )(x,ξ1,ξ2) and S(Dτ,y)(x,ξ1,ξ2) are
the homogeneous principal symbol matrices of the pseudodiffer-
ential operators Aτ +B (m)

τ in (38) and Dτ,y in (55). Let

γ2
′ :=

1
2π

inf arg λ (2)
j (x), γ2

′′ :=
1

2π
sup arg λ (2)

j (x), (43)

γ3
′ :=

1
2π

inf arg λ (3)
j (z), γ3

′′ :=
1

2π
sup arg λ (3)

j (z), (44)

where “infimum” and “supremum” is taken over the sets x ∈

∂Γ(m) and z ∈ ∂Γ(m)
C respectively, and 1 ≤ j ≤ 5.

Let B1 and B2 be Banach spaces and B := B1×B2 be their
direct product, consisting of pairs U = (u ′,u ′′)> ∈ B, where
u ′ ∈ B1 and u ′′ ∈ B2. Further, let B

∗
j be the adjoint spaces

to B j, j = 1,2, and B∗ := B∗
1 ×B∗

2. The notation 〈F, u〉 with
F ∈ B∗

j and u ∈ B j (or F ∈ B∗ and u ∈ B ) is used for the du-
ality pairing between the adjoint spaces. It is obvious that the
bounded operator A : B → B∗ has the matrix form A =

[
A jk

]
,

where the operators A jk : Bk → B∗
j are all bounded.

Lemma 3.1. Let the operator A =
[
A jk

]
be strongly coer-

cive Re 〈AU,U〉 ≥ C‖U‖2
B

∀U ∈ B (or be positive definite
〈AU,U〉 ≥ C‖U‖2

B
∀U ∈ B). Then the operators A11 and A22

are both strongly coercive (are positive definite, respectively) and
thus invertible. Moreover, the operators

B := A11 −A12A−1
22 A21 : B1 → B

∗
1, (45)

D := A22 −A21A−1
11 A12 : B2 → B

∗
2 (46)

are strongly coercive (are positive definite) and, thus, invertible.

Proof: The strong coercivity (the positive definiteness) of A11
and of A22 follows by taking consecutively U = (u,0)> ∈B and
U = (0,v)> ∈ B, u ∈ B1, v ∈ B2. The strong coercivity implies
the invertibility.

Recall that ‖u‖2
B1

≤ ‖u‖2
B1

+ ‖v‖2
B2

= ‖U‖2
B

for U =

(u,v)> ∈ B, u ∈ B1, v ∈ B2. The strong coercivity (the posi-
tive definiteness) of B and of D in (45), (46) follows if we intro-
duce consecutively v = −A−1

22 A21u and u = −A−1
11 A12v into the

equality 〈AU,U〉 = 〈A11u,u〉+ 〈A12v,u〉+ 〈A21u,v〉+ 〈A22v,v〉
and apply the strong coercivity (the positive definiteness) of A.

�

Theorem 3.2. The operator N (B)
τ in (40) and (41) is invertible

provided the following constraints hold

1
p
−

3
2

+max{γ1
′′,γ2

′′,γ3
′′} < r <

1
p
−

1
2

+min{γ1
′,γ2

′,γ3
′}.

(47)
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Proof. Note, that the operators rSD
Aτ : [B̃s

p,q(Γ(m))]5 →

[Bs+1
p,q (SD)]5 and r

Γ (m)
Aτ : [B̃s

p,q(SD)]5 → [Bs+1
p,q (Γ(m))]5 are com-

pact for 1 < p < +∞, s ∈ R and 1 ≤ q ≤ +∞ since the domains
are disjoint: SD∩Γ(m) = ∅. Then the pseudodifferential operator

N (B,0)
τ :=




rSD
Aτ [0 ]5×5 [0 ]5×4

[0 ]3×5 r
Γ (m)

T

[(Aτ +B (m)
τ )l,k]3×5 [0 ]3×4

[0 ]2×5 r
Γ (m)

[(Aτ +B (m)
τ )t,k ]2×5 [0 ]2×4

[0 ]3×5 r
Γ (m)

T

I3×5 r
Γ (m)

T

I3×4

[0 ]1×5 r
Γ (m)

I1×5 r
Γ (m)

I1×4




14×14

is a compact perturbation of the operator N (B)
τ and has the same

mapping property as N (B)
τ in (41). N (B,0)

τ is of block-lower tri-
angular form

N (B,0)
τ :=




rSD
Aτ [0 ]5×5 [0 ]5×4

[0 ]5×5 N (2)
τ [0 ]5×4

[0 ]4×5 I4×5 I4×4




14×14

, (48)

N (2)
τ :=




r
Γ (m)

T

[(Aτ +B (m)
τ )l,k]3×5

r
Γ (m)

[(Aτ +B (m)
τ )t,k]2×5




5×5

, (49)

where k = 1,5, l = 1,2,3, and t = 4,5. Further, the operators

rSD
Aτ : [H̃r

p(SD)]5 → [Hr+1
p (SD)]5,

: [B̃r
p,q(SD)]5 → [Br+1

p,q (SD)]5
(50)

are invertible if

1
p
−1+ γ1

′′ < r +
1
2

<
1
p

+ γ1
′, (51)

where γ1
′ and γ1

′′ are defined in (42). The proof is based on the
results of [7] and similar proofs for ΨDOs with positive definite
symbols are available e.g. in [3–5, 7, 11, 12, 16] and many other
papers.

To prove the invertibility of N (B,0)
τ it remains to investigate

the operators

N (2)
τ : H̃r

p → Hr+1
p ,

: B̃
r
p,q → B

r+1
p,q

(52)

where the spaces are H̃r
p := [H̃r

p(Γ
(m)
T )]3 × [H̃r

p(Γ(m))]2,

H
r+1
p := [Hr+1

p (Γ(m)
T )]3× [Hr+1

p (Γ(m))]2, B̃
r
p,q := [B̃r

p,q(Γ
(m)
T )]3×

[B̃r
p,q(Γ(m))]2, Br+1

p,q := [Br+1
p,q (Γ(m)

T )]3 ×Br+1
p,q (Γ(m))]2.

Since Γ (m)
T is a proper part of Γ (m) we can not apply stan-

dard theorems on Fredholm properties of the operators (52). In-
stead we will apply the local principle for para-algebras, ex-
posed in the book [9]. To this end, let either Zr

p := Hr
p (Z̃r

p :=

H̃r
p) or Zr

p := Br
p,q (Z̃r

p := B̃r
p,q). Consider the quotient para-

algebra Ψ ′(Z̃r
p,Z

r+1
p ) = [Ψ(Z̃r

p,Z
r+1
p )/C(Z̃r

p,Z
r+1
p )]2×2 of all

ΨDOs Ψ(Z̃r
p,Z

r+1
p ) acting between the indicated spaces factored

by the space of all compact operators C(Z̃r
p,Z

r+1
p ). Further,

for arbitrary point y ∈ Γ(m) we define the following localizing
class ∆y :=

{
[gyI5], gy ∈ C∞(Γ(m)), suppgy ⊂Wy, gy(x) =

1 ∀x ∈ W̃y
}

, where W̃y ⊂ Wy ⊂ Γ(m) are arbitrarily small em-
bedded neighborhoods of y. The symbol [A] stands for the quo-
tient class containing the operator A. It is obvious that the system{

∆y
}

y∈Γ(m) is covering and all its elements [gyI5] commute with

the class [A] for arbitrary ΨDO A ∈ Ψ(Z̃r
p,Z

r+1
p ) (to justify the

commutativity recall that a commutant AgI − gA, with the iden-
tity operator I, is compact for an arbitrary smooth function g).

The ΨDO Aτ = Hτ P−1
τ “lives” on the surface ∂Ω (see (38)

and Section 2). Let us consider a similar operator A (m)
τ :=

H(m),τ P−1
(m),τ which “lives” on the surface ∂Ω(m), composed of

ΨDOs H(m),τ and P(m),τ representing the direct values of the
potential operators, defined in Section 2 in the domain Ω(m).
The closed surfaces ∂Ω and ∂Ω(m), where the operators Aτ and
A(m)

τ are defined, have in common the open surface Γ(m) =
∂Ω∩ ∂Ω(m). On the other hand, an arbitrary ΨDO A(x,D) and,
in particular the operators Aτ and A (m)

τ , are of local type: if g1
and g2 are functions with disjoint supports suppg1∩suppg2 = ∅,
then the operator g1A(x,D)g2I is compact in the spaces where
A(x,D) is bounded. Applying the mentioned property, it is easy
to check that the operators Aτ and A (m)

τ are locally equivalent

[Aτ]
∆y
∼ [A(m)

τ ] for all y ∈ Γ(m). Applying the above lo-
cal equivalence we can check the following local equivalences

[N (2)
τ ]

∆y
∼ [N (2)

τ,y ], where

N (2)
τ,y := A (m)

τ +B (m)
τ : [Hr

p(∂Ω(m))]5 (53a)

→ [Hr+1
p (∂Ω(m))]5 for y ∈ Γ(m)

T ,

N (2)
τ,y :=

[
(A (m)

τ +B (m)
τ )t,q

]
2×2

: [Hr
p(∂Ω(m))]2

→ [Hr+1
p (∂Ω(m))]2 for y ∈ Γ(m)

C , (53b)

N (2)
τ,y :=

[
r

Γ (m)
(A (m)

τ +B (m)
τ )

]
5×5

: [H̃r
p(Γ(m))]5

→ [Hr+1
p (Γ(m))]5 for y ∈ ∂Γ(m), (53c)

N (2)
τ,y :=


 rΓc

(m)
[(A (m)

τ +B (m)
τ )l,k]3×3 rΓc

(m)
[(A (m)

τ +B (m)
τ )l,q]3×2

[(A (m)
τ +B (m)

τ )t,k ]2×3 [(A (m)
τ +B (m)

τ )t,q]2×2




: Ṽ
r
p → V

r+1
p for y ∈ ∂Γ(m)

C , l,k = 1,2,3, t,q = 4,5. (53d)

Here ∂Ω(m) is a closed surface, Γc
(m) := ∂Ω(m)\Γ(m)

C = Γ(m)
T ∪S(m)

N

and Ṽr
p := [X̃ r

p(Γc
(m))]

3× [X r
p(∂Ω(m))]2, Vr+1

p := [X r+1
p (Γc

(m))]
3×
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[X r+1
p (∂Ω(m))]2 with either X r

p = Hr
p or X r

p = Br
p,q.

Due to the local principle the operator N (2)
τ in (52) is Fred-

holm if and only if the operators N (2)
τ,y in (53a)-(53d) are Fred-

holm for all y ∈ Γ(m).
The positive definite ΨDOs N (2)

τ,y in (53a) and in (53b) on
the closed surface ∂Ω(m) are Fredholm with index 0 for all y ∈

Γ(m)
C ∪Γ(m)

T .
The same positive definite ΨDOs N (2)

τ,y in (53c) but on the
surface Γ(m) with the smooth boundary ∂Γ(m) 6= ∅ is Fredholm
if the following constraints hold

1
p
−

3
2

+ γ2
′′ < r <

1
p
−

1
2

+ γ2
′ (54)

with γ2
′ and γ2

′′ defined in (43) (see [7, 11]).
To investigate the strongly elliptic ΨDO N (2)

τ,y in (53d) for

y ∈ ∂Γ(m)
C , first note that Gy := [(A (m)

τ + B (m)
τ )t,q]2×2 is defined

on the closed surface ∂Ω(m), is strongly elliptic due to Lemma
3.1 and, therefore, is Fredholm. Then the quotient class [Gy] is
invertible and since IndGy = 0, there exists a compact operator Ty

such that Gy +Ty is invertible for all y ∈ ∂Γ(m)
C . For the quotient

classes the equalities [Gy +Ty] = [Gy] and [Gy +Ty]
−1 = [Gy]

−1

hold.
Note that the quotient classes

[F±] :=




[I3×3] [[0]3×2]

± [Gy]
−1

[
[(N (2)

τ,y )t,k]2×3

]
[I2×2]




5×5

are invertible [F−] [F+] = [F+] [F−] = [I5×5] and the composing
with the quotient class

[
N (2)

τ,y

]
gives

[
Ñ (2)

τ,y

]
:=

[
N (2)

τ,y

]
[F−] =


 [Dτ,y]

[
rΓc

(m)
[(N (2)

τ,y )l,q]3×2

]

[[0]2×3] [Gy]


 ,

Dτ,y := rΓc
(m)

(
[(N (2)

τ,y )l,k]3×3

−[(N (2)
τ,y )l,k]3×2[Gy +Ty]

−1[(N (2)
τ,y )t,k ]2×3

)
. (55)

Dτ,y is the positive definite ΨDO of order −1 due to Lemma

3.1. It is sufficient to prove that the composition
[
Ñ (2)

τ,y

]
is an

invertible class.
[
Ñ (2)

τ,y

]
in upper block-triangular and the entry

[Gy] on the diagonal is an invertible class. Moreover, the entries
on the diagonal Dτ,y and Gy are ΨDOs and the corresponding
quotient classes commute (actually, these entries are matrices of
different dimension 3×3 and 2×2, but we can extend the entire
matrix

[
Ñ (2)

τ,y

]
by identity on the diagonal and by zeros on the

off-diagonal entries in the last row and the last column, without
affecting the invertibility properties of the entire matrix and the
diagonal entries. Then [Gy] extends to the matrix of the same

dimension 3×3 as [Dτ,y]). Therefore
[
Ñ (2)

τ,y

]
is invertible if and

only if the quotient class [Dτ,y] is invertible. This is interpreted

as follows: the operator Ñ (2)
τ,y : Z̃r

p → Zr+1
p is Fredholm if and

only if the operator

Dτ,y : [X̃ r
p(Γc

(m))]
3 → [X r+1

p (Γc
(m))]

3 (56)

is Fredholm.
Let S(Dτ,y)(x,ξ1,ξ2) be the principal homogeneous symbol

matrix of the operator Dτ,y and λ (3)
j (x), j = 1,2,3, be the eigen-

values of the matrix [S(Dτ,y)(x,0,+1)]−1 S(Dτ,y)(x,0,−1) for
x ∈ ∂Γ(m)

C . The operators Dτ,y in (56) and, therefore, the oper-

ator N (2)
τ in (52) are Fredholm if the following constraints are

fulfilled
1
p
−

3
2

+ γ3
′′ < r <

1
p
−

1
2

+ γ3
′, (57)

where γ3
′ and γ3

′′ are defined in (44).
The conditions (51), (54) and (57) are equivalent to (47).
Next we have to prove that the operator N (2)

τ in (52) has
zero index: IndN (2)

τ = 0. To this end we consider the homotopy

Bλ := λR +(1−λ)N (2)
τ : H̃r

p → Hr+1
p 0 ≤ λ ≤ 1,

R :=


 Λr,−1

Γ (m)
T

I3 [0]3×2

[0]2×3 Λr,−1
Γ (m)I2




5×5

,

where Λ(r,−1)

Γ (m)
T

(x,D) := Λ−1−r
Γ (m)

T

(x,D)Λ̃−r
Γ (m)

T

(x,D) and

Λ̃r
Γ (m)

T
(x,D) : H̃r

p(Γ
(m)
T ) → H̃0

p(Γ
(m)
T ) = H0

p(Γ
(m)
T ),

Λ−1−r
Γ (m)

T

(x,D) : H0
p(Γ

(m)
T ) → Hr+1

p (Γ(m)
T )

are the Bessel potential operators, arranging isomorphism of the
spaces. Therefore Λ(r,−1)

Γ (m)
T

(x,D) is an invertible ΨDO. Moreover,

the potential operators Λ−1−r
Γ (m)

T

(x,D), Λ̃−r
Γ (m)

T

(x,D) and therefore

Λ(r,−1)

Γ (m)
T

(x,D), are positive definite (have the positive definite sym-

bols; cf., e.g., [11]). The definition and the properties of the op-
erator Λ(r,−1)

Γ (m) (x,D) are verbatim.
The homotopy Bλ connects continuously the operator B0 =

N (2)
τ with the invertible operator B1 = R : H̃r

p → Hr+1
p . The

operator Bλ is positive definite for all 0 ≤ λ ≤ 1 since represents
the sum of the operators with positive definite and positive defi-
nite symbols (see Lemma 3.1). The operator Bλ is then Fredholm
for all 0 ≤ λ ≤ 1 and p = 2 and, therefore, IndN (2)

τ = IndB0 =
IndB1 = IndR = 0.

From the results obtained above it follows that the ΨDO
N (B,0)

τ is Fredholm with zero index in the space setting (41).

9 Copyright c© 2009 by ASME



Therefore its compact perturbation, the operator N (B)
τ in (41) is

Fredholm with zero index as well in the same space setting (41).
Due to Theorem 1.1 the operator N (B)

τ : X
−1/2
2 → Y

−1/2
2 has the

trivial kernel and is invertible.
The invertibility of the ΨDO N (B,0)

τ in the space setting (41)
and if the conditions (47) are fulfilled follows then by standard
duality and interpolation arguments from [1] (see [3, 4, 16] for
similar arguments). �

Corollary 3.3. Let the compatibility conditions hold (see
the inclusions in (37)). Let the inclusions (28) hold and

4
3−2γ ′′

< p <
4

1−2γ ′
with γ ′ := min{γ1

′, γ2
′, γ3

′}, γ ′′ :=

max{γ1
′′, γ2

′′, γ3
′′}.

Then the interface crack problem (16)–(19) has a unique so-
lution (U (m),U) ∈ [W 1

p (Ω(m))]4 × [W 1
p (Ω)]5, which can be rep-

resented by formulae U (m) = V (m)
τ

([
P (m)

τ
]−1 [

G(m)
0 +h(m)

])
in

Ω(m) and U = Vτ
(

P−1
τ

[
G0 + ψ + h

])
in Ω where the densities

ψ, h, and h (m) are to be determined from the system (33)-(35).
Moreover, the vector functions G0 + ψ + h and G (m)

0 + h(m)

are defined uniquely by the above systems.

Remark 3.4. Based on results from [7, 8] one can formulate
and prove regularity results for solutions of the interface crack
problem ICP and write their detailed asymptotic expansion near
the crack edge (see [3, 4] etc. for similar formulations).

Remark 3.5. Theorem 3.3 with p = 2 remains valid for Lip-
schitz domains Ω (m) and Ω. This follows with the help of lax-
Milgram Lemma and Theorem 1.1.
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