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ABSTRACT

We investigate three—dimensional interface crack problems
(ICP) for metallic-piezoelectric composite bodies with regard
to thermal effects. We give a mathematical formulation of the
physical problem when the metallic and piezoelectric bodies are
bonded along some proper parts of their boundaries where in-
terface cracks occur. By potential methods the ICP is reduced to
an equivalent strongly elliptic system of pseudodifferential equa-
tions (WDEs) on overlapping manifolds with boundary, which
have no analogues in mathematical literature. We study the solv-
ability of obtained WYDEs on overlapping manifolds with bound-
ary by reduction to WYDEs on non-overlapping manifolds with
boundary in different function spaces. These general results are
applied to prove the uniqueness and the existence theorems for
the original ICP-Problem.

1 FORMULATION OF THE PROBLEM
1.1 Geometrical description of the composite confi-
guration

Let us start by explaining some notation used in the paper:
The bar Q denotes the closure of the set Q, the equality := reads
as “by the definition”, the square “[1” denotes the end of the
proof, while “A \ B” denotes the “setminus”, i.e., all elements
of the set A which does not appear in the set B.

Let Q™ and Q be bounded disjoint domains of the three-
dimensional Euclidean space R* with boundaries Q) and 9Q,
respectively (cf. Fig. 1). Moreover, let 9Q and 9Q (™ have a non-

empty, simply connected intersection I" (") with a positive surface
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measure, i.e., 0Q N Q" = T'(m measI'™ > 0. From now on
(" will be referred to as an interface surface. Throughout the
papernand v =n (m) stand for the outward unit normal vectors
to 0Q and to 0Q ("), respectively. Evidently, n(x) = —v(x) for
xem,

Further, let T'(m) = F;m U Fém, where Fém is an open, sim-

ply connected proper part of I'™). Moreover, F;m) N Fém) =0
and O™ NI = o,

Fig. 1: Metallic-piezoelectric composite

We set S := 9Q (™ \ T and §* := 9Q\ ['. Further,
we denote by Sp some open, nonempty, proper sub-manifold of
S* and let Sy := S*\ Sp. Thus, we have the following dissec-
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tions of the boundary surfaces (see Figure 1) 0Q = F;m) U Fém) U
SyUSp, o0Qlm = F;'") U Fém) U Sl(vm). Throughout the paper,
for simplicity, we assume that 9Q.") 9Q, 98 l(vm) , 81“;’"), aré”*),
9Sp, dSy are C*-smooth and 0Q"™ NS, = @, if not otherwise
stated. Some results, obtained in the paper, hold also true when
these manifolds and their boundaries are Lipschitz and we for-
mulate them separately.

Let Q be filled by an anisotropic homogeneous piezoelectric
medium (ceramic matrix) and Q") be occupied by an isotropic
or anisotropic homogeneous elastic medium (metallic inclusion).
These two bodies interact to each other along the interface rom,

where the interface crack Fém) occurs. Moreover, it is assumed
that the composed body is fixed along the sub-surface Sp (the
Dirichlet part of the boundary), while the sub-manifolds S;vm)
and Sy are the Neumann parts of the boundary. In the metal-
lic domain Q™ we have a four-dimensional thermoelastic field

described by the displacement vector u ") = (u," ,u,™ ,u3™)"

and temperature distribution function u im) = ﬁ(’”), while in the
piezoelectric domain Q we have a five-dimensional physical field
described by the displacement vector u = (u1,u, M3)T, tempera-
ture distribution function u4 = ¥ and the electric potential us = @.

1.2 Thermoelastic and thermopiezoelastic field equa-
tions

In the present subsection we expose partial differential equa-
tions of the linear theory of thermoelasticity and thermopiezoe-
lasticity for a general anisotropic case (see [14, 17, 18] for de-
tails).

Throughout the paper the Einstein convention about the
summation over the repeated indices is meant from 1 to 3, un-
less stated otherwise.

From the constitutive relations, Fourier law, equations of
motion and the equation of the entropy balance we derive the
linear system of pseudo-oscillation equations of thermoelasticity
in a matrix form

AME@HUM 4+ XM =0 in Q) (1
where U™ := (u(™ 9T is the unknown vector, X ") =
(X, m) 2(m)7 3('"),X4(m))T is a given vector (Xj(m),j =1,2,3, are

) is the heat source density) and
the nonselfadjoint matrix differential operator A () (9, 1) reads as

AM Q1) = {Aj(.,’:’) (8717)} )

the mass force densities and X 4(m

4x4’

AR (0,7) = 503, — p " T By,

Ay @) ="y e, AT =1,
A @) =" 0 —alt,  jk=1,23

where & ik stands for Kronecker’s delta. T = 0+ i® is a com-

T (m)

plex oscillation parameter, 7, is the temperature in the natural

state; 90" is the temperature increment; parameters cé’?,ﬂ, p(”‘),

y,((;"), %i(lm), o™ are material constants of thermoelastic medium.

Constants involved in equations (1)-(2) have the following prop-
erties (see, e.g., [14, 17]) (co and ¢ are positive constants):

==l A, =,
i7j7k7l = 172737

C;;Z? €ij&u > co&ij€ij forall &;;=¢&;ieR, “4)

U, > emm;, forall me R, 5)

Note that for an isotropic medium the thermomechanical coeffi-
cients are

cim =M 8y 8y + ™) (881 + 81871,
Yi(jm) = Y(m) 81.].’ %l.(;") = %(m) 8,']‘,

where A" and u(™ are the Lamé constants.

With the help of the symmetry conditions and inequalities
(3)-(5) it can easily be shown that the principal part A ":0)(9)
of the operator A ") (9,1) is a selfadjoint elliptic operator with
positive definite symbol matrix

AM@E > €2 > forall &eR>and forallm e C*

with some positive constant cm >0 depending on the material
parameters.

Components of the mechanical thermostress vector acting
on a surface element with a normal v = (v;,v,v3) read as fol-
IOWS m m m m

Gi(j )V,‘Zci(jl]z\’,'aluk )—'Y( )V,‘ﬁ(m), ]2172737

4
while the normal component of the heat flux vector (with oppo-
site sign) has the form —qi(m) Vi = %igm) via,mm). We introduce
the following generalized thermostress operator

T (@,v) = [T, (@,V) Jaxa, ©)

T @) =clvio, T @) =" v,

T"M@,v)=0, T@v)=x"vi0, jk=123. (7)

For a four—vector U ") = (1™ 8(")T we have

‘T(m) U(m) = (Gi(lm) Vi, Gl-(zm) Vi, Gigm)\’,', —qi(m)V,')T. (8)
Clearly, the components of the vector 7 ™) U (") given by (8)
have the physical sense: the first three components correspond
to the mechanical stress vector in the theory of thermoelastic-
ity, while the forth one is the normal component of the heat flux
vector (with opposite sign).

From the constitutive relations, Fourier law, equations of
motion, equation of the entropy balance and the equation of sta-
tic electric field we derive the linear system of pseudo-oscillation

equations of thermopiezoelasticity in a matrix form
A(0,T)U(x)+X(x) =0 in Q, )
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where U := (u,9,9)", X = (X1,X2,X3,X4,Xs5) " and the matrix
differential operator A (8, T) is

A(9,7) = [A(9,)] 5.5 (10)

(a,‘C) C,'j[ka‘al — przajk,
4(3717) =—Y;0i, Aj5(0,7)=e;;019;,
Agr(9,7) = —TtToY0;, Aa4a(0,T) = 50;0; —
Ays5(0,7) =1Tpgidi, Ask(9,T) = —ejy 9,

A54(aat) = _giaiu ASS(aJT) =§j aiala ]7k = 1a2u3'

Here X = (X1,X2,X3 )T is a mass force density, X4 is a heat source
density, X5 is a charge density and g; are pyroelectric constants
characterizing the relation between thermodynamic processes
and piezoelectric effects. Parameters c¢;ji, P, Y/, e(ij)> #ils O &i
involved in (9)-(10) are material constants of thermopiezoelastic
medium. They have the following properties (see, e.g., [17])
Cijkl = Cjiki = Cklij, €ijk = €ikj> &ij = &ji,
Yij = Yjis #ij = %jis b J k1 =1,2,3,
Cijki Gij&u > coij&ij forall ;=& € R, (1D
&;MiM; > MM, 26NN, > c2Mimi VN € R 12)
and cp, c1, and ¢, are positive constants. With the help of the
symmetry conditions and inequalities (11)—(12) it can easily be
shown that the principal part A(©)(d) of the operator A(9,T) is
nonselfadjoint, although is strongly elliptic, that is,

Re A (E)n-m > c|€[* | for all € € R? and for all ) € C*

with some positive constant ¢ > 0 depending on the material pa-
rameters.

In the theory of thermopiezoelasticity the components of the
three-dimensional mechanical stress vector acting on a surface
element with a normal n = (n1,n2,n3) have the form

Oijn; :C,‘ﬂknialuk—|—€l,‘jnial([)—'y,'jni‘6 for j: 1,2,3,

while the normal components of the electric displacement vector

and the heat flux vector (with opposite sign) read as
—Din; = —ej n;Ojuy + €y n; 0,9 — gini ¥, —qin; = ;0.

Let us introduce the following matrix differential operator

T(9,n) = [ Ti(d,n) |5, s, (13)
Tjk(0,n) = cijknidr,  Tja(d,n) = —Yijni,
‘2;‘5 (a,n) =elijn; a[, ‘sz(a,n) = 0, (14)
T44(0,n) = syn;0;, Tas(9,n) =0, Ts54(d,n) = —gin,
Tsi(d,n) = —ejynid;, Tss(d,n) =¢gyn;id;, j.k=1,2,3.

For a vector U = (u,®,%) " we have

T(9,n)U = (011 ni, Gani, Si3ni, —qini, —Din) " (15)

Clearly, the components of the vector 7 U given by (15) have
the physical sense: the first three components correspond to the
mechanical stress vector in the theory of thermoelectroelasticity,
the forth and fifth ones are the normal components of the heat

flux vector and the electric displacement vector (with opposite
sign), respectively.

Let us introduce some further notation. Throughout the pa-
per the symbol { - } * denotes the interior one-sided trace operator
on 0Q (respectively 0Q (™)) from Q (respectively Q™). Simi-
larly, {-}~ denotes the exterior one-sided trace operator on 0Q
(respectively 0Q () from the exterior of Q (respectively Q (")),

By L,, W,f, H,S,, and B;!q (withr >0, seR, 1 <p<
oo, 1 < g < o) we denote the well-known Lebesgue, Sobolev-
Slobodetski, Bessel potential, and Besov function spaces, respec-
tively (see, e.g., [19]). Recall that H’ W, =B, forany r > 0,
Hj = B;, forany s € R, Wt = B), , for any positive and non-
integer 7, and H; k— Wk for any non- negatlve integer k.

Let My be a smooth surface without boundary. For a smooth
sub-manifold M C My by Hy (M) and E},q(M ) we denote the
subspaces of H), (M) and Bj, ,(Mo), respectively,

{g: g € H}(Mp), suppg C M},
={g:g¢€ Bi,kq(ﬂ\/lb)7 suppg C M}.

HS (M) =
B, (M)

By rq,f denote the restriction of f onto a submanifold M and
introduce the spaces: H,(M) = {r, H,(Mp)} and B), (M) =
{raBpg(Mo)}-

1.3 Formulation of the ICP-Problem and the unique-
ness of a solution

In what follows, without loss of generality, we assume that
the mass force density, heat source density and charge density
vanish in the corresponding regions. Otherwise, we can write
particular solutions to the nonhomogeneous differential equa-
tions explicitly, in the form of volume Newtonian potentials.
Therefore, we will consider the homogeneous versions of the
above differential equations. However, we have to take into con-
sideration that the original mechanical and thermo-electrical ho-
mogeneous boundary and transmission conditions become then
nonhomogeneous, in general.
ICP-Problem: We consider the problem when the crack gap is
thermally and electrically conductive. Find vector-functions

Um — (ul(m),uz(m),u§m),uim))T - lm _, ¢t

and U = (ul,uz,u3,u4,u5)T . Q—>(C5

belonging respectively to the spaces [W,} (Q™)]* and [W}(Q)]°
with 1 < p < o and satisfying:
(1) the systems of partial differential equations :

[A(”’)(&T)U(’”)L:O in Q" j=1,2,34,
[A@,7)U], =0 in Q, k=1,2,3,4,5, (16)
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(i) the boundary conditions :
rsgn){[fﬂm)(a,v)U(m)]l,-}* =0 on 8\, j=1,23.4,
rSN{[‘T( ) ]k}Jr Qk on SN, k= 172737475,
rSD{uk} = fy on Sp, k=1,2,3,45, 17
reon {usyt = £ on T,
(iii) the transmission conditions
e () — F;m){u,"”)ﬁzﬁ(’”) on T\ 1=T3,
e {(TEMUNY T + 1 ([T @01}
=F" onry" 1=T3 (8
Fp(m) {I,t4}Jr —I’F(m){uim)}+ :f4(m) on F(m),
e {[T@,mU s} +rpm {[T™(@,v)U™ 4}
= F4(m) on (M,

(iv) the interface crack conditions :

r <m>{ (M @,v)U ™ =™ on T, 1=1,2,3,
e T @mU i}t =
Here Qﬁ‘m)’ Qk’ é[(’,n)’ él’ fk fk’ ’J_l

are given data.
Next we formulate the uniqueness result. The proof is stan-
dard, based on the Green formula and we drop the details.

0 onré>,1_123 (19)

LA k=1,....5,

Theorem 1.1. Ler Q) and Q be Lipschitz and either T =
G+ i with 6 > 0 or T = 0. The above formulated inter-

face crack ICP-problem has at most one solution in the space
(W, (QU)]* x [W)(Q)]°, provided measSp > 0.

2 REPRESENTATION OF SOLUTIONS

Here we derive integral representation formulas of solutions
to the homogeneous equations (1) by means of the layer poten-
tials and certain boundary integral (pseudodifferential) operators
generated by them.

2.1 Layer potentials
Let ¥O(1) = [¥(,0],, ad ¥1) =
[Wij(-,7)] 5,5 be the fundamental matrix-functions of the

differential operators A" (d,1) and A(d,t) and introduce the
smgle and the double layer potentials:

/ W(x— 1) h(y)dyS, (20)

Walh) () = / [T@n().7) [Pr— 0] ] ) dS.

oQ

where T(3,n(y) = [ T(3,n,7) ] 5.5 is the boundary operator, as-
sociated with the formally adjoint differential operator A*(9,7):

i‘k(a;n T) = Cijik i 01, ‘5}4(37%17) =TTy Yijni,

Tis(0,n,7) = —eyjnid,  Tux(d,n,7) =0,
Taa(3,n,7) = sqn; 9y,  Tas(9,n,7) =0,
Ta(3,n,7) = —tTogini, Ten(d,n,T) = ejunio;,
Ts(d,n,7) =eumdy, j.k=1,2,3.

Similarly, using the boundary operator T (m) (d,n(y) =
[T .(m) (9,n,7) | 5 5, associated with the formally adjoint differ-
entlal operator A ")*(9, 1)

(m (0,v,1) = cz(jlk \z 8,, ’Z;f‘m (9,v,7) = ‘CTOm yl.(jm) Vi,
,(('" (9,v,7) =0,

_;i:l \q

4 (87\}71):%1'[ Vialv J7 :17273a

one defines the layer potentials Vr(m) (h(™)) and W, m) (h™); here
R = (™ B B BT and b = (hy,ha, ha, ha,hs) T are
densities of the potentials.

For the boundary integral (pseudodifferential) operators
generated by the layer potentials we will employ the following
notation:

)= W0 h)ds.

Kal) ()= [ [T@.n(0)(x=3.7)] K1) 4,5,

oQ

K (@)= [ [T@n(). D37 ] h0)dS,
0Q

Le(h)(x) := { T@,n(x))We(h) ()}, x€Q.

Similarly, with the help of the fundamental solution

g (m) (x —y,7) are defined the boundary integral (pseudodiffer-
Kf(m)’ i(.l(m)* and Lﬁgm)

The layer boundary operators 9", #£; and L™, L. are
pseudodifferential operators of order —1 and 1, respectively,
while the operators ‘](T(m), QNCT(mJ*, X and 5@ are singular in-
tegral operators (pseudodifferential operators of order 0) (for de-
tails see [2-6, 12, 16]).

ential) operators }[T(m) ,

2.2 Auxiliary problems and representation of solu-
tions
Here we assume that Re T = ¢ > 0 and consider two auxil-
iary boundary value problems needed for our further purposes.
Auxiliary problem I Find a vector function U™ =

(ul(m), uz(m), ugm), uim))-'— : Q" —, C* which belongs to
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the space [W, (Q(™))]* and satisfies the following conditions:
AM@ U™ =0 in QM Q1)
{ - (m) g7 (m) }* — x(m) on aQ(m),

where 3™ = (7", 0" 2 AT € [H;% (@Q(™)]*. With
the help of Green’s formula it can easily be shown that the homo-
geneous version of this auxiliary BVP possesses only the trivial
solution. Moreover, we have the following existence result.

Lemma 2.1. LetRet=0 > 0and 1 < p < . An arbitrary so-
lution vector U™ ¢ [Wp1 (QU)]* to the homogeneous equation
(21) is uniquely represented by the single layer potential

UM @) =vim([2M] ™)), xeQ™, (22

where
T(m) = _27114_’_ QG(’")

_1
and x™ ={TMymi+e[B,r@QM)]"

1
Proof. Evidently, if (™ e [ P«,E (0Q (”‘))]4 then the vector func-
tion (22) solves the auxiliary BVP and belongs to the space
[Wp1 (Q(™)]* due to standard theorems on the mapping proper-
ties of potentials and Sokhotsky-Plemelji formulae, describing
their traces on the boundary (cf. [2,4-6] and [10] for a most gen-
eral theorems). The uniqueness follows from the general integral
representation formula
U ) =W ({U ) ) = v ({70 ) )
forall x € Q") and a standard application of the Green formulae
(cf., e.g., [2,4-6] for similar proofs). [l
Auxiliary problem II: Find a vector function U =
(up,uz,u3,us,us)’ : @ — C3 which belongs to the space
[W,(Q)]° and satisfies the following conditions:
(8 YU =0 in Q,
{TU} +B{U} =y on 9Q,
where y := (x17X25X37X45X5) [ (BQ)] B is a smooth
real valued scalar function which does not Vamsh identically and
B>0, suppP C Sp. (25)
By standard arguments, involving the Green formulae, we can
easily show that the homogeneous version of this boundary
value problem possesses only the trivial solution in the space
W) Q).

We look for a solution to the auxiliary BVP (24)
as a single layer potential, U(x) = V¢(f)(x), where f =
(fi,s s o fa, f5) T € [H;%(BQ)]S is an unknown density. The
boundary condition in (24) leads then to the system of equations:

(=27'I5+ %K) f+PB He f =3 on 0Q.
Denote the matrix operator generated by the left hand side ex-
pression of this equation by P and rewrite the system as

(23)

(24)

P f =y on 0Q,
Pri= 2"+ K+ B H. (26)

Lemma 2.2. Let Re t =6 > 0. The operators
2e: [H02)] — [H00)],
H[B,,09)]" = [B),00)]",

are invertible for all 1 < p < oo, 1 <t < oo, and s € R.

27)

Proof. From the uniqueness result for the auxiliary BVP (24) it
follows that the operator (27) is injective for p=2 and s = —1/2.
1
The operator #; : [H, (asz)} [H,? (89)]5 is compact. By
a standard theorem on a perturbation of a Fredholm operator we
then conclude that the index of the operator (27) equals to zero.
Since P; is an injective singular integral operator of normal type
with zero index it follows that it is surjective. Thus the operator
(27) is invertible for p =2 and s = —1/2.
The invertibility of the operators (27) for all 1 < p < oo,
1 <t < oo, and s € R then follows by standard duality and inter-
polation arguments for the C*—regular surface dQ from [1, 13]
(see [3,4, 16] for similar arguments). O

Lemma 2.3. Let Ret=06>0and 1 < p < oo. An arbitrary

solution U € [Wpl (Q) to the homogeneous equation (24) can

be uniquely represented by the single layer potential U(x) =
_1
Ve (P o) (x), where y = {TUY +B{U}" € [B,5(3Q)]’.

Remark 2.4. For p =2 the above results remain true for Lip-
schitz domains Q"™ and Q (cf. [15]).

3 EXISTENCE AND REGULARITY OF A SOLUTION
TO ICP-PROBLEM
The ICP-Problem from Subsection 1.2 is reduced to a com-
plicated, nonclassical system of boundary pseudodifferential
equations which needs a special analysis.

3.1 Reduction to boundary equations
For the data of the problem in (17), (18), (19) we assume that

Q(m) EB*UI’( 1(\;"))7 Qk EBfl/ (SN)
f( m) 6Bl/l’ (F; ))’ ft 1/1’ (F( ))
Ewe%Ww?>F“eBW¢“>
01 € B, (re"), 0" € By (T,
feeBYY(Sp), j=T.4 k=15, t=4,5 1=1,2,3.

Further, let

Gy 0 on Sy, G Qz on S m)
G onti, 3" on r(m)7 (29)
0

G; := Q; on Sy, Gim) =
[1=1,2,3, t=4,5, k=1,5 j=1,4,

)

(28)

3
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and let Gox € B, p/p(BQ) GE) ") e Bil/p(aQ(”‘)) be some fixed

(m)

extensions of the functions Gy and G respectively onto 0Q and

oQ.(m) preserving the space. Denote

Go = (Gor, -+, Gos)" € [Byy/"(3Q)P,

(30)

- m m -1 m
Gy = (G, -+ G € [By " (0@,

It is evident that arbitrary extensions G and Gg-m)* of the same
functions can be represented then as G} = Gox + Yy + hy for k =
ﬁandG(m) Gé;")—l-h(m) for j = 1,4, where W € B, /p( Sp),
fork=T1,5,h € By "(T\" ))forl— 1,2,3, hy € By /P (T) for

t=4,5, h( " e By P for 1 = 1,2,3, "™ € B, /(0 m)
are arbltrary funct1ons We set

W:: (Wla"' 7W5)T 6[ l/p(SD)] )
h=(hy,- hs)" € [Bpy"(CI)) x
WO = (- )T € Byl (.

[B#“’( ()2 31
") x By P(T ).

We apply the indirect boundary integral equations method and, in
accordance with Lemmas 3.1 and 3.3, look for a solution vectors
U = (... ,uim))-'— and U = (uy,--- ,us) " of the interface
crack problem (16)-(19) in the form of single layer potentials

U (m) fv(m)([ﬂ(m)rl [G(m)._i_h(m)]) in QM (32)
U=Ve(? '[Go+Ww+h]) in Q

where 2™ and P, are given by (23) and (26), Go and G(gm) are
the above introduced known vector-functions, and & (’”), h and ¢
are unknown vector-functions satisfying the inclusions (31).

By Lemmas 2.1, 2.3 and the property (25) we see that the
homogeneous differential equations (16), the first two boundary
conditions in (17) and the crack conditions (19) are satisfied au-
tomatically.

The remaining boundary and transmission conditions in
(17), (18) lead to the following system of pseudodifferential

equations with respect to the unknown vector-functions y, & and
R0

ro [ AW+, [Ahli=fi onSp, k=T,5,  (33)

r o BVl (At ﬂt(’”))h] = gl(mJ
ry ry N IECY)

T hl(m) 7w hy = Fl(m), on F(m) [=1,3,

Iy Iy

T [ﬂt \|I]4 + rl"<”’) [(/‘41 + ﬂt(m))hh = gim)7

o Vs 47 [Aeh]s = g0 (35)
(m) = (m)

rr(m) h4m + rr(m) ha = F4m on F(m)’

where

~(m ~(m m m)1—1 = (m 1-1 m
gl< ) :ﬁ( )—"_rr(lrl) I:"]_[;( ) I:TT( )] F< ):I[ € Bpap /p(l—‘; ))7
T

Z(m m m m)71—1 m
l( ): f‘l( )+rr(trz) [}L;( )[TT( )} Gé )]17

T

—r . [#21Go), € By, (i), 1=T3,

FT

f4 rm [%C(M) [TT(M)]ilf(m)]4 € Bll’,Pl/p( ))7
T

ﬁf’") = A [ (2] 60, (36)
o [ Gol, € By /P (),

&= f“'”eB1 p/re),

Jii= fi—ry, (962, Goli € By " (Sp), k=13,
me ::fsm) - [}[T GO} 1 I/P(F(M))’
=(m) . _ p(m) (m) »—1/p ( )
Fi=F _rr¥") GOl_rr;m)GOI EVF;M)B,,,, (T T )
1=1,3, (37)
~(m m m 1
F4< ).: F4( ) (m) G04 )G(<)4) Err(lrl)Bp p/p( ( ))
and
. = }[TTT’I,
m . _ " e 71]4><4 [0]4x1 (38)
[0]1x4 [0]1x1 ] 55

The inclusions in (37) are the compatibility conditions for ICP-
Problem due to the relations (31). Therefore, in what follows

we assume that fl(m) and Ia(m) are extended from F;m) and F(’”),
respectively, onto Q™ by zero, i.e., E("l) EE;;,/ b (F;m)), =
1,3, and 174(m) Egg,},/p(l“(’”)).

Note that the above systems are non-classical systems of
pseudodifferential equations since the sub-manifolds F;m) and

Fém) are proper parts of I'("). We will discuss this problem in
detail in the next subsection.

3.2 Existence theorems

Here we show that the system of pseudodifferential equa-
tions (33)-(35) is uniquely solvable. To this end we introduce the
suitable spaces:

Xy, = [Hy (Sp))° x [Hy(T7")] x [y )] x
<[H (T x Hy (™),

¥y 1= [Hy 1 (Sp))° x [Hy () < [Hy ()
<[Hy (") x Hy(r ™)
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and similarly the spaces X, - and Y, ., where H, spaces are re-
placed by B, ,-spaces. N0t1ce that X3 20 = =Xj and Y2 ) =Y5.

Let us rewrlte the system S33) -(35) as the operator equation
Bep_y, (39)
where the vector <I> = (\|l, h, him )) € X,;,,/p is unknown,
while Y : (f gm. F
f= )0 g
(Fl(M)’ e F4(m))T.
The operator 9\&(3) in the left hand side of the system (33)-
(35) (rearranged properly) is a 14 x 14 matrix operator

))T € Y, /7 is a given vector with
= @", &), and F =

A = (40)
rSD /‘711 I’SD ﬂq; [0]5><4
(m) [(Ao)ixlaxs 7 i) (A + 3r(m))1,k]3x5 [0]3x4
= m [(F)ikl2xs T [(/‘41-1—173( ))t,k]2><5 [0]oxa | >
FT Iy
i [0]1xs Ty 115 T T4 |

where 4; and CBT ) are defined in (38); the indices appearing in
the block matrices take the following values k = 1,5, 1 =1,2,3,
and t = 4,5; A4, and CBT(’") are the Steklov-Poincaré type 5 x 5
matrix pseudodifferential operators; the symbol [0]yxas stands
for the zero matrix of dimension N x M, while

10000 1000 Lixs=1(0,0,0,1,0),
I3><5I= 01000 ,I3><4I= 0100 s
00100 0010]| Iixa=(0,0,0,1).

Applying the results on boundedness of potential and the
related boundary pseudodifferential operators, invoking Lemma
2.2 we easily establish the following mapping properties

AP X -, sER,

XY, 1<p<eo, 1<g<e

(41)

(see, e.g., [3-5,12,16] etc. and also [10] for the boundedness
results of general layer potentials).

Our goal is to establish Fredholm properties and invert-
ibility of the operator (41). For this we have to define some
constants. Let ?»j(-l)(x), j = 1,5, be the eigenvalues of the
matrix [S(4)(x,0,+1)] 7! &(4)(x,0,—1) for x € dSp, where
S(4;)(x,&1,8&2) is the homogeneous principal symbol matrix of
the pseudodifferential operator A4; in (38). Let

P (1) w1 (1)
Y1 .—%mfarg?uj (x), ™ ._ﬁsupargkj (x), (42)

where “infimum” and “supremum” are taken over the sets x €
dSp, 1 < j<5.

Similarly, k}(z) (x) and 7&}3) (z), j = 1,5, be the eigenvalues of

the matrices [& (4 + ) (x,0,+1)] "' & (4 + B{") (x,0,—1)
and [&(D+y)(z,0,+1)]7! &(Dzy)(z,0,—1) for x € oL
e where & (4 + B{"™)(x,&1,&) and &(Dx,)(x,&1,E2) are
the homogeneous principal symbol matrices of the pseudodiffer-
ential operators A4; + Bt(m) in (38) and D, in (55). Let

/ "

1 2) ] 2)
T2 .—ﬁmfargkj x), T ._ﬁsupargkj (x), (43)

P (3) w1 3)
w'i=oinfargd;7(2), v = osupargh; (), (44)

where “infimum” and “supremum” is taken over the sets x €
orm andz e BF(Cm) respectively, and 1 < j <5.

Let ‘B and ‘B, be Banach spaces and ®B := B x B, be their
direct product, consisting of pairs U = (u’,u”)" € 9B, where
u' € By and u” € B,. Further, let B be the adjoint spaces
to B;, j = 1,2, and B* := B} x Bj. The notation (F, u) with
FE‘B; and u € B (or F € B* and u € 9B ) is used for the du-
ality pairing between the adjoint spaces. It is obvious that the
bounded operator A : B — B* has the matrix form A = [A ],
where the operators A j; : B — %j are all bounded.

Lemma 3.1. Let the operator A = [Ajk] be strongly coer-
cive Re (AU,U) > C||U||3; YU € B (or be positive definite
(AU,U) > C||U||% VU € B). Then the operators A1y and Ay
are both strongly coercive (are positive definite, respectively) and
thus invertible. Moreover, the operators

B:=Aj —ApAy Ay By — B, (45)

D:=A»n—AyA A : By — B3 (46)
are strongly coercive (are positive definite) and, thus, invertible.

Proof: The strong coercivity (the positive definiteness) of A
and of Ay, follows by taking consecutively U = (u,0) " € 8 and

=(0,v)" €8, u € By, v € B,. The strong coercivity implies
the invertibility.

Recall that ||u\|2%l < ||u||2%1 + ||v||2%2 = ||U||3 for U =
(u,v)T € B, u € By, v € B,. The strong coercivity (the posi-
tive definiteness) of B and of D in (45), (46) follows if we intro-
duce consecutively v = —A521A21u and u = —AfllAlzv into the
equality (AU,U) = (A11u,u) + (A1av,u) + (Az1u,v) + (Apv,v)
and apply the strong coercivity (the positive definiteness) of A.

0

Theorem 3.2. The operator M(B) in (40) and (41) is invertible
provided the following constraints hold

1 1 1
P % Fmax{y "y <r< - bmin{np'')
47)
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Proof. Note, that the ?Vperators rg, A [B‘l",ﬁq(r(m))]S —
[Bﬁrql (Sp)]° and L [B‘;'W(SD)]S — [B;}Jrql (D)} are com-
pact for I < p < 40, s € Rand 1 < g < +oo since the domains
are disjoint: Sp NI"(") = &. Then the pseudodifferential operator

A [0]5x5 [0]s554

(0135 7 [(Ae+ BV 4J3xs [0]axa
T

(B,0) ,__
2™ = | [0]s 7 (B + B )iilaxs [0]2xs
[0]3><5 T () I35 T I34
Iy Iy
_[0]1x5 ") Iixs ") pry Ll

is a compact perturbation of the operator Q\G(B) and has the same
mabDi (B) . (BO) . i Ny
pping property as Az’ in (41). A; is of block-lower tri
angular form
rSD A [O]SXS [0]5><4

AP = | [0]5xs NG [0]sxa
[Olaxs Iaxs  Iaxa |41

(m)
A® = e (A4 Be ™ )14)3x5 | w
") (A + 817(m))tJ<]2><5

) (48)

5x5

where k =1,5,1=1,2,3, and t = 4,5. Further, the operators

rg, [H},(Sp))® — [H; ' (Sp)),

_ (50)
L (B}, ,(Sp))° — B} (Sp)I°
are invertible if
1 1 1
—— 14" <r+z<—+7, (51)
P 2 p

where v; " and ;" are defined in (42). The proof is based on the
results of [7] and similar proofs for ¥YDOs with positive definite
symbols are available e.g. in [3-5,7,11, 12, 16] and many other
papers.

To prove the invertibility of 7\[;(8’0) it remains to investigate

the operators
@ . mr r+1
L7 VAN %]Ip — H, 1, 52)
. +
1 Bhg — Bl

where the spaces are f[-v}l;, = [H, (1:;’"))]3 x [I-NI[Z(F(’”))]Z,
B, = [y () < () B = (B (O]
Bl (D) B o= (B2 (T < B (D) 2

Since F;m) is a proper part of (™ we can not apply stan-
dard theorems on Fredholm properties of the operators (52). In-
stead we will apply the local principle for para-algebras, ex-
posed in the book [9]. To this end, let either Z;, = ]HI;, (Z;, =

Iﬁl;) or Z; = B;)q (Z; = IEZ,V @ ConsideNr the quotient para-
algebra W'(Z),, Z') = [W(Z, 25 ) [€(Z, 2 )]axa of all

p>“p
YDOs ‘P(Z;, Z;“) acting between the indicated spaces factored
by the space of all compact operators Q(Z;,Z;“). Further,

for arbitrary point y € I'™) we define the following localizing
class Ay = {[gyls], gy € C*(T™), suppgy CW,, g(x)=
1 Vxe W)}, where Wy, C W, C L") are arbitrarily small em-
bedded neighborhoods of y. The symbol [A] stands for the quo-
tient class containing the operator A. It is obvious that the system

{AY}yeW is covering and all its elements [gy/5] commute with

the class [A] for arbitrary ¥DO A € ‘P(Z;,Z;“) (to justify the

commutativity recall that a commutant Agl — gA, with the iden-
tity operator I, is compact for an arbitrary smooth function g).
The ¥DO 4, = % P; ! “lives” on the surface 0Q (see (38)

and Section 2). Let us consider a similar operator ﬂt(m) =
Hm) ’.P(;ll) . Which “lives” on the surface Q" composed of

YDOs }Qm)ﬂ and P, representing the direct values of the

potential operators, defined in Section 2 in the domain Q™).
The closed surfaces 0Q and BQ(’”), where the operators 4; and

ﬂé’”) are defined, have in common the open surface rim —
QN aQ™)  On the other hand, an arbitrary WYDO A(x,D) and,

in particular the operators A; and ﬂlT(m), are of local type: if g;
and g» are functions with disjoint supports supp g1 Nsupp g2 = &,
then the operator g;A(x,D)g2I is compact in the spaces where
A(x,D) is bounded. Applying the mentioned property, it is easy
to check that the operators 4; and ﬂT(m) are locally equivalent
Ay .
[Z] ~ [ﬂle)] forall y € T"). Applying the above lo-
cal equivalence we can check the following local equivalences

(267 = (7AG2)], where
A = a4 B - H QM) (53a)
— [H;,+1 (0QUN)]°  for ye F(Tm),

2 = (A ), ER )P

— [H(QU)? for yerl, (53b)
2 m m rr m
G 1= [r g (" + B [H O
— [H@)P for yeor™, (53¢)
(m) () (m) , p(m)
9\&%) :: rrc(m) [(/q't +B; )l,k]3><3 rrfm) [(ﬂfc +B; )l,q]3><2

[(ﬂr(m) + ﬂr(m))z,k]zw [(ﬂr(m) + fBr(m))z,q]zxz
VSV for yedll!, Lk=12,3, 1,q=45.(53d)

Here 0Q™ is a closed surface, I'¢ )= 0Q") \F(Cm) = F(Tm) USI(Vm)

(m

and V!, := p?;(pc(m))p X [Xp(@Q )P, Vit = X ()1 x

Copyright © 2009 by ASME



(X, (0Q(™))? with either X, =H,or X, =B, .

Due to the local principle the operator .‘7\&(2) in (52) is Fred-
holm if and only if the operators 57\[1%) in (53a)-(53d) are Fred-
holm forall y € rim).

The positive definite ¥DOs .‘7\[1%) in (53a) and in (53b) on
the closed surface 9Q (") are Fredholm with index O for all y €
rmorim,

The same positive definite ¥YDOs 9\&(3) in (53c) but on the

surface T with the smooth boundary oI'™ # & is Fredholm
if the following constraints hold

l—§+n”<r<l—l+w/ (54)
p 2 p 2
with v, and v, ” defined in (43) (see [7,11]).

To investigate the strongly elliptic ¥DO 9\[;%) in (53d) for
yE€ 8F(m), first note that G, := [(ﬂt(m) + Q%T(m))t,q]zw is defined
on the closed surface 0Q(™, is strongly elliptic due to Lemma

3.1 and, therefore, is Fredholm. Then the quotient class [G,] is
invertible and since Ind G, = 0, there exists a compact operator 7},

such that G, + T, is invertible for all y € BF(Cm) . For the quotient

classes the equalities [G, + T;] = [Gy] and [G, + T ' = [G,] "
hold.
Note that the quotient classes

[I3><3] [[0]3><2]
1G] [[6)alaa] o)

are invertible [7_][F+] = [F+][F-] = [I5x5] and the composing
with the quotient class {9\[3) gives

[Fe] =
5%x5

{3@;)} . [%(ﬂ (7= (D] [rrfm)[(%ﬁi))z7q]sxz] ,
| | [[025c5] 6]

Dry:=r.

N (CEPMe
63216+ T A l2es). 59)

D+, is the positive definite WYDO of order —1 due to Lemma

3.1. It is sufficient to prove that the composition [7\&(?} is an

invertible class. {Mﬂ in upper block-triangular and the entry

[Gy] on the diagonal is an invertible class. Moreover, the entries
on the diagonal D¢, and G, are ¥DOs and the corresponding
quotient classes commute (actually, these entries are matrices of
different dimension 3 x 3 and 2 x 2, but we can extend the entire

matrix [.‘7\&(?)} by identity on the diagonal and by zeros on the
off-diagonal entries in the last row and the last column, without
affecting the invertibility properties of the entire matrix and the
diagonal entries. Then [G,] extends to the matrix of the same

dimension 3 x 3 as [D+,|). Therefore P@ﬂ is invertible if and
only if the quotient class [D+,] is invertible. This is interpreted

as follows: the operator 9\[;? : Z;, — Z;“ is Fredholm if and
only if the operator

Dy ¢ [XI(TS

P (m))]3 - [X;;H(rf(m))P (56)

is Fredholm.

Let (D) (x,&1,&2) be the principal homogeneous symbol
matrix of the operator D, and k](-3) (x), j=1,2,3, be the eigen-
values of the matrix [&(Dr,)(x,0,41)] 7! &(Dzy)(x,0,—1) for
X € 8Fém). The operators D1y, in (56) and, therefore, the oper-

ator 7\&(2) in (52) are Fredholm if the following constraints are
fulfilled

1 3 1 1
—— i <r< —— =47, (57)
p 2 p 2

where 73’ and y;” are defined in (44).
The conditions (51), (54) and (57) are equivalent to (47).

Next we have to prove that the operator 9\&(2) in (52) has
zero index: Ind 9\&(2) = 0. To this end we consider the homotopy

., (2) . +1
By :=AR + (1 —=M)N; : HY, — H, 0<A<I,
rn—1
. Ar}’")h [0]3x2
: . ,
[0]2x3 Alr_'(m)lz s
where A(r”(,;)l)(x,D) = A*(lmf)’(x,D)/N\ () (X, D) and

(
Iy Iy Iy

ALy (x,D) + Hy(Tf™) — H(7") = Hy(T7"),

T
A" (D) 2 H)(T™) — HH (1)
T

are the Bessel potential operators, arranging isomorphism of the

spaces. Therefore A(Fr‘(,;)l) (x,D) is an invertible ¥DO. Moreover,
T

. - ~_
the potential operators A_ "(x,D), A_(,

x,D) and therefore
l_,;m) rl )( ) )

A&T;)l) (x,D), are positive definite (have the positive definite sym-
bols; cf., e.g., [11]). The definition and the properties of the op-
erator Aifz;)l) (x,D) are verbatim.

The homotopy B; connects continuously the operator By =
57\&(2) with the invertible operator B} = X : ﬁ; — H;“. The
operator By, is positive definite for all 0 < A < 1 since represents
the sum of the operators with positive definite and positive defi-
nite symbols (see Lemma 3.1). The operator B is then Fredholm
for all 0 <A < 1 and p = 2 and, therefore, Ind 7\&(2) =IndBy =
IndB; =IndR =0.

From the results obtained above it follows that the ¥YDO
9\&(3’0) is Fredholm with zero index in the space setting (41).
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Therefore its compact perturbation, the operator 7\&(8) in (41) is
Fredholm with zero index as well in the same space setting (41).
Due to Theorem 1.1 the operator 9\&(3) 1 Xy vz, Y, 12 has the
trivial kernel and is invertible.

The invertibility of the ¥YDO 9\&(8’0) in the space setting (41)
and if the conditions (47) are fulfilled follows then by standard
duality and interpolation arguments from [1] (see [3,4, 16] for
similar arguments). |

Corollary 3.3. Let the compatibility conditions hold (see
the inclusions in (37)). Let the inclusions (28) hold and
3—2y" <pP< 1—2y with Y/ = min{yl/,YZ’,y3/}, Y// =
max {,Yl //7 ,YZ //7 ,Y3 //}'

Then the interface crack problem (16)—(19) has a unique so-
lution (U™, U) € [Wpl (Qm)* x [WP1 (Q)]%, which can be rep-
resented by formulae U ") = Vt(m)( [fPt(m) } - [Gém) +h(m)] ) in
QM and U = VT(iPT’l [Go + v+ h] ) in Q where the densities
v, h, and h™) are to be determined from the system (33)-(35).

Moreover, the vector functions Go+ Y + h and G(gm) +pm)
are defined uniquely by the above systems.

Remark 3.4. Based on results from [7, 8] one can formulate
and prove regularity results for solutions of the interface crack
problem ICP and write their detailed asymptotic expansion near
the crack edge (see [3,4] etc. for similar formulations).

Remark 3.5. Theorem 3.3 with p = 2 remains valid for Lip-
schitz domains Q) and Q. This follows with the help of lax-
Milgram Lemma and Theorem 1.1.
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